Modeling, Simulation and Control

Finn Aakre Haugen

24 August 2023



Contents

I INTRODUCTION

1 Flash course in automatic control

1.1

1.2

1.3

1.4

Introduction . .

What can be obtained with control? . . . . . . . . . . ... ... ... ...

Process variables that are typically controlled . . . . . . . . ... ... ....

Feedback control . . . . . . . . . .. e

1.4.1 Manual feedback control . . . . . . . . . . ...

1.4.2 Automatic feedback control . . . . . . ... ...

1.4.3  Brief presentation of components of general feedback control loops . .

1.4.3.1

1.4.3.2

1.4.3.3

1.4.3.4

1.4.3.5

1.4.3.6

1.4.3.7

1.4.3.8

1.4.3.9

1.4.3.10

1.4.3.11

Block diagram of a general control loop . . . . . .. .. ...

Process . . . . ..o

Measurement signal scaling . . .. ... ... ... .....
Measurement signal filter . . . . . .. ... ... ... ...
Controller . . . . . . . ...
Auto/man-switch . . . . ... ...
Control signal scaling . . . . .. ... ... ... .......

DA converter . . . . ...

28

29

29

29

31

32

32

34

39



CONTENTS

11

2

1.4.3.12 Actuator . . . . . . . ..
1.4.4 PID controller . . . . . . . . . .
1.4.4.1 Continuous-time PID controller . . . ... .. ........
1.4.4.2 PID parameters . . . . . . . . . .. e
1.4.4.3 Discrete-time PID algorithm . . . ... ... ... ... ...
1.4.4.4 How does the PID controller work? . . . .. .. .. .. ...
1.4.5 On-off controller . . . . . ... ... ...
1.4.5.1  The basic On-off controller . . . . . ... ... ... .....

1.4.5.2  On-off controller for processes with negative process gain . .

1.4.5.3  On-off controller with deadband . . . . . . ... .. .. ...
1.5 Feedforward control . . . . . . ... ...
1.6 Performance measures of control systems. . . . . . . .. ... ... ...
1.7 Problems for Chapter 1 . . . . . . . . i i
1.8 Solutions to problems for Chapter 1. . . . . . . . . .. .. ... ....

INSTRUMENTATION OF CONTROL SYSTEMS

Piping & Instrumentation Diagrams

2.1 Imstrument codes . . . . . . . . L
2.1.1 Lettercodes . . . . . . . . L
2.1.2 Numeric codes . . . . . . . . e
2.1.3 Localization . . . . . . . .. L

2.2 Signals . . . . .

2.3 Material flows . . . . . .. L

2.4 Process equipment . . . . .. ..o e e
2.4.1 Codes of process equipment . . . . . . . . . ..o
2.4.2 Valves . . . .. e

56
o7
99
64
67

74

80

81



CONTENTS

2.4.3 Rotational low components . . . . . . .. ... ... 87
2.4.4 Heat exchangers . . . . . . . . . . . o e 87
2.4.5 Vessels . . . . oo e 87
2.4.6 Mathematical functions . . . . . .. ... ... . oo, 87
2.4.7 Logical functions . . . . . . . .. L 88

2.5 Problems for Chapter 2 . . . . . . . . . e e 89
2.6 Solutions to problems for Chapter 2. . . . . . . . . . . . .. .. ... ... 90
Components of control systems 92
3.1 Introduction . . . . . . ..o 92
3.2 Automation hardware . . . . . . ... ... L 93
3.2.1 Introduction . . . . . .. . 93
3.2.2 Process controllers . . . . .. ... 93
3.2.3 Programmable logic controllers (PLCs) . . . ... ... ........ 96
3.2.4 Programmable automation controllers . . . . . .. .. ... ... ... 97
3.2.5 Plantwide control systems . . . . . . ... ... 98
3.2.6  Platforms for home-made automation systems . . . . . . ... ... .. 101
3.2.6.1 Standard PC with I/O device . . ... ... ......... 101

3.2.6.2 Raspberry Pi. . . . .. ... oo 102

3263 Arduino. . . . . . ... 105

3.3 SENSOTS . . o .o e e e 106
3.3.1 Imntroduction . . . . . .. . . 106
3.3.2 Temperature sensors . . . . . . . ... e e 106
3.3.2.1 Resistance thermometer . . . . . . .. .. .. .. .. ... 107

3.3.2.2  Thermocouple thermometers . . . . .. ... ... ...... 109

3.3.3  Pressure sensors . . . ... ..o 110
3.34 Level sensors . . . . . . .. 112



CONTENTS

3.3.4.1 Ultrasonic level sensor . . . . . . . . .. .. ... ... ... 112

3.3.4.2 Dpecellsaslevel sensor . . .. ... ... ... ........ 113

3.3.5 Flow rate Sensors . . . . . . . . ..o e e e e 114
3.3.5.1 Flow rate measurement with orifice and dp cell . . . . . . .. 114

3.3.5.2  Ultrasonic flow rate measurement . . . . .. .. .. .. ... 115

3.3.5.3 Coriolis flow rate sensor . . . . . . .. ... L oL 117

3.3.5.4 Magnetic flow rate sensor . . . . . ... ... 118

3.3.5.5  Thermal flow rate sensor . . . . . ... ... ... ... ... 120

3.3.5.6  Vortex flow rate sensor . . . . . ... ... ... ... 120

3.3.6  Sensors for gas concentration . . . . ... ... ... 122
3.3.7 Positionsensors. . . . . . . ..o 123
3.3.71 Emncoder. . .. . .. ... 123

3.3.8  Speed SENSOTS . . . v v vt e e e e e e e e e e e e 125
3.38.1 Encoder. . . ... ... 125

3.3.8.2 Tachogenerator . . . . . .. .. ... ... . 126

3.4 Signal conditioning of measurement signals . . . . .. .. ... . 0L 126
3.4.1 Analog measurement signals . . . . . . ... ... 0L 126
3.4.2 Current loop . . . . . . . e 127
3.4.3 Analog-digital (AD) conversion . . . . . . ... ... ... 128
3.4.4 Scaling of measurement signals . . . . . .. ... ... ... .. 132
3.4.5 Accuracy of measurement signals . . . . ... ... L. 133
3.4.6 Measurement filters . . . . . . . ... 135
3.4.6.1 Moving averaging (MA) measurement filter (revisited) . . . . 135
3.4.6.2 Time constant filter . . . . . .. ... ..o oL 139

3.4.6.3 Continuous-time filter function . . . . . . ... ... .. ... 139

3.4.6.4 Analog RC circuit filter . . . . . ... ... ... ... .. 141

3.5 Actuators . ... .. 141



CONTENTS

3.6

3.7

3.8

3.5.1 Imtroduction . . . .. . ... 141
3.5.2 Valves . . . . e 142
3.5.2.1 Structure and operation . . . . . ... ..o 142
3.5.2.2  Valve equation and valve characteristics . . . . . .. .. ... 142
3.50.3 Pumps . . .. 148
3.5.3.1  Centrifugal pumps . . . . . .. ..o oo 148
3.5.3.2 Displacement pumps . . . . . . . . ... 149
3.5.4 Electrical motors . . . . . .. ... 150
3.5.4.1 ACmotors . . . . . . . 150
3.5.4.2 DCmotors . . . . . . 151
3.5.5 Electrical heaters . . . . . . . ... oL 151
Signal conditioning of control signals . . . . . . . .. ... ... ... .. 153
3.6.1 Scaling of control signals . . . . . . . ... ... .. 153
3.6.2 Digital-analog (DA) conversion . . . . ... ... ............ 155
3.6.3 Pulse-width modulation . . . . ... ... ... ... ... ... 155
3.6.4 Converting current to voltage . . . . . . . .. ... .. oo, 157
Problems for Chapter 3 . . . . . . . . e 158
Solutions to problems for Chapter 8 . . . . . . . . . . . .. ... ... .. 164

IIT MODELING and SIMULATION OF DYNAMIC SYSTEMS 170

4 Mechanistic modeling 171
4.1 Introduction . . . . . . . . . e 171
4.2 What is a dynamic system? . . . . . . ..o o 171
4.3 A procedure for mathematical modeling . . . . . ... ... ... ... .... 173
4.4 Mathematical modeling of material systems . . . . . ... .. ... ... ... 175
4.5 Mathematical modeling of thermal systems . . . . .. .. ... ... ..... 176



CONTENTS

4.6 Mathematical modeling of kinetic systems . . . . . . ... ... ... ... 179
4.6.1 Systems with linear motion . . . . . .. ... ... L oL 179
4.6.2 Systems with rotational motion . . . . . . ... o000 181

4.6.2.1 Momentum balance . . . . ... ... o000 181
4.6.2.2 Relations between rotational and linear motion . . . . . . . . 182
4.6.2.3 Coupled mechanical systems . . . .. .. ... ... ..... 182
4.7 Mathematical modeling of electric systems . . . . . . . .. .. ... 184
4.7.1 Kirchhoff’s law . . . . . . . .. . 184
4.7.1.1 Kirchhoff’s Current Law . . . . .. ... ... ... ..... 184
4.7.1.2 Kirchhoff’s Voltage Law . . . . . . ... ... .. ... .... 185
4.7.2 Resulting resistance . . . . . .. ... L Lo 185
4.7.2.1 Resistorsinseries . . . . . . . ... oo o 185
4.7.2.2 Resistors in parallel . . . . . ... ... 0oL 185
4.7.3 Models of resistor, capacitor, and inductor . . . . . ... ... ... L. 186
474 Power . ... 188
4.7.4.1 Instantaneous power . . . . . . . . . ... ..o 188
4.7.4.2 Mean power . . . . ... .o e e 188

4.8 Physical component based simulators . . . . .. .. .00 188
4.8.1 OpenModelica . . . . . . . . . e 188
4.8.2 Aspentech Hysys . . . . . . . . . . 188
4.8.3 SIMSCAPE . . . ..o e e e 188

4.9 Problems for Chapter 4 . . . . . . .« e e e e e 189

4.10 Solutions to problems for Chapter 4. . . . . . . . . . . .. 195

State space models 200

5.1 Introduction . . . . . . . . . L 200

5.2 The state space model . . . . . . . . ... e 200



CONTENTS

5.3 The response of a state space model . . . . . . ... ... ... L. 203
5.3.1 Dynamic response . . . . . . . ..o e 203
5.3.2  Staticresponse . . . . . ... 204

5.4 Linear state space models . . . . . . ... L L L L oo 205
5.4.1 Standard model form of linear state space models . . . . . . . ... .. 205
5.4.2 Linearization of non-linear models . . . . . . .. ... ... ... .. 206

5.4.2.1 When do we have to linearize? . . . . . ... ... ... ... 206
5.4.2.2  Deriving the linearization formulas . . . . . . . . .. .. ... 207

5.5  Problems for Chapter 5 . . . . . . . . . 211

5.6  Solutions to problems for Chapter 5. . . . . . . . . . . ... 213

Simulation algorithms of state space models 215

6.1 Why simulate? . . . . . ... L 215

6.2 Simulation algorithm for state space models . . . . . ... ... ... ..... 216
6.2.1 Introduction . . . . . . ... 216
6.2.2 The simulation algorithm . . . . . ... ... ... ... ... ... 217
6.2.3 How to test the simulator . . . . .. ... ... ... ... ... .... 224

6.2.3.1  Static test of the simulator . . . . .. ... ... ... .... 224
6.2.3.2 Dynamic test of the simulator . . . ... ... ... ..... 226
6.2.3.3 Conclusion of static and dynamic testss . . . . . .. .. ... 228
6.2.4 How to choose the simulation time step, dt? . . . . . . . .. ... ... 228
6.2.5 Simulation along real time or scaled real time? . . ... ... ... .. 231
6.2.6  Why predict? . . . . . ... 232
6.2.7 Euler Forward vs. Euler Backward . . . . .. ... ... .. ...... 233

6.3 Simulation of second order differential equation models . . . . . . .. ... .. 233

6.4 Simulation algorithm of time delays . . . . .. . ... ... ... ... ... 237

6.5 Problems for Chapter 6 . . . . . . . . . . 242



CONTENTS

6.6  Solutions to problems for Chapter 6. . . . . . . . . . . ... .. ... ..... 244
Block diagram models 258
7.1 Introduction . . . . . . . . .. 258
7.2 How to draw block diagrams . . . . . . .. .. .. ... 258
7.3 Simulation with block diagram models . . . . . . ... ... 261
7.4  Problems for Chapter 7 . . . . . . . . . e e e e 263
7.5 Solutions to problems for Chapter 7. . . . . . . . . . . .. . .. .. ... 264
Transfer functions 266
8.1 Imtroduction . . . . . . . . . e 266
8.2 Definition of the transfer function . . . . . . . . ... ... ... 267
8.3 Characteristics of transfer functions . . . . . . . ... ... .. 0L 269
8.4 Combining transfer functions blocks in block diagrams . . . . . . .. ... .. 269
8.5 How to calculate responses from transfer function models . . . . . ... ... 269
8.6 Static transfer function and static response . . . . .. ... Lo 271
8.7 Simulation with transfer functions . . . .. .. .. ... 0000, 272

8.7.1 Imntroduction . . . . . .. . . e 272

8.7.2  Simulation with Python Control Package . . . .. ... .. ... ... 272

8.7.3 Simulation with OpenModelica. . . . . . . . ... ... ... ...... 273
8.8 From transfer function to differential equation . . . . . . . . ... ... . ... 273
8.9 From transfer function to state space model . . . . . . . ... ... ... ... 273
8.10 From state space model to transfer function . . . . . ... ... ... ..... 275
8.11 Problems for Chapter 8 . . . . . . . . . . . e e e 277
8.12 Solutions to problems for Chapter 8 . . . . . . . . . . ... .. ... ..... 280
Process dynamics 285
9.1 Imtroduction . . . . . . . . . e 285



CONTENTS

9.2 Integrators . . . . . . . . 285
9.2.1 Imtegrator model . . . . . . ... L Lo 285
9.2.1.1 Differential equation . . . . . . . ... L oo 285

9.2.1.2 Block diagram . . . . ... ... Lo oo 285

9.2.1.3 Transfer function . . . . . . .. .. Lo oo 286

9.21.4 Pole . . . ... 286

9.2.2 Dynamics in terms of step response . . . . . . ... ... ... 286

9.3 Time constant systems . . . . . . . . ..o 289
9.3.1 The standard model of time constant systems . . . . . . .. ... ... 289
9.3.1.1 Differential equation . . . . . . . .. ... 289

9.3.1.2 Block diagram . . . . ... ... L o oL 290

9.3.1.3 Transfer function . . . . . . . .. ... oL 290

9.3.1.4 Pole . . . . .. 291

9.3.1.5  Dynamics in terms of step response . . . . . .. .. .. ... 291

9.3.1.6  Step response of time constant systems when initial state is

NON-ZETO  + v v v v e v e e e e e e e e e e 294

9.3.2 Time constant model expanded with process disturbance as input . . 295

9.4 Second order systems . . . . . . ... e e e e e e e 298
9.4.1 Mathematical model . . . . . . ... ... o 298
9.4.1.1 Transfer function model . . . . . . .. ... L Lo 298

9.4.1.2 Differential equation . . . . . .. ... oo 299

9.4.1.3 Statespace model . . . .. ... Lo Lo 299

9.4.2 Classification of second order systems . . . ... .. ... ... .... 301
9.4.2.1 Overdamped systems . . . . .. ... .. ... .. ...... 302

9.4.2.2 Underdamped system . . . . .. .. ... ... ... ..., 304

9.4.2.3 Undamped system . . . . . .. .. ... oL 306

9.5 Timedelays . . . . . . . o 307



CONTENTS

9.5.1 Approximation of time delay by Padé approximation . . . . . ... .. 308

9.6 Higher order systems . . . . . . . . .. L e 308
9.7 Problems for Chapter 9 . . . . . . . . 311
9.8 Solutions to problems for Chapter 9. . . . . . . . . .. .. 317
10 Adaptation of models to data 325
10.1 Introduction . . . . . . . . .. L 325
10.2 Model adaptation as an optimization problem . . . . . . ... ... ... ... 326
10.2.1 How to find the best model . . . . . .. .. .. ... 326
10.2.2 Good excitation is necessary! . . . . . . . ... L L. 328

10.3 Adaptation of static models todata . . . . . . ... ... L. 329
10.3.1 Adaptation using grid optimization . . . . . . . ... ... 329
10.3.1.1 Introduction . . . . . . .. ... Lo 329

10.3.1.2 Model adaptation of static models using native grid optimiza-
tion . . . . . e 330

10.3.1.3 Model adaptation of static models with Python’s brute() func-

tlon . . . . L 334

10.3.2 Adaptation of static models using nonlinear programming (NLP) . . . 339
10.3.3 Adaptation of static models using standard least squares method . . . 341
10.3.3.1 The standard regression model . . . . . . . ... .. ... .. 341
10.3.3.2 The LS problem . . . . .. .. ... ... . L. 342
10.3.3.3 The LS solution . . . . . . .. .. .. ... .. 343
10.3.3.4 Properties of the LS estimate . . . . . . . .. .. .. ... .. 347

10.3.3.5 Criterion for convergence of estimate towards the true value 347

10.4 Adaptation of dynamic models todata . . . . . .. ... ... L. 348
10.4.1 Adaptation of dynamic models using grid optimization . . . . . . . . . 348
10.4.1.1 Introduction . . . .. . ... .. .. ... ... 348

10.4.1.2 Adaptation of dynamic models using grid optimization . . . 348

10



CONTENTS

10.4.1.3 Model adaptation of dynamic models with Python’s brute()
function . . . . ..o Lo 353

10.4.2 Adaptation of dynamic models using nonlinear programming (NLP) . 356

10.4.3 Adaptation of dynamic models using the least squares method . . . . 359

10.5 Recursive (real-time) model adaptation . . . .. ... ... ... ... .... 360
10.6 Problems for Chapter 10 . . . . . . . . . . . . e 362
10.7 Solutions to problems for Chapter 10 . . . . . . . . . . . .. ... ... .... 367
IV . BASIC CONTROL METHODS 375
11 PID control (continued) 376
11.1 Introduction . . . . . . . . . L 376
11.2 Transfer function of the PID controller . . . . . . .. ... ... ... .. ... 376
11.3 Practical aspects of the PID controller . . . . . . . . ... ... ... ..... 377
11.3.1 Reverse or direct controller action? . . . . . . . . ... ... ... ... 377

11.3.1.1 What is meant by reverse action and direct action? . . . . . 377

11.3.1.2 How to select between reverse action and direct action modes? 378

11.3.2 Reducing P-kick and D-kick caused by setpoint changes . . . .. . .. 380

11.3.3 Integrator anti wind-up . . . . . . . . .. ... 0. 382

11.3.4 Bumpless transfer between manual and auto modes . . . . . .. ... 385

11.4 Problems for Chapter 11 . . . . . . . . . . o i i i ittt 387
11.5 Solutions to problems for Chapter 11 . . . . . . .. .. . . . ... .. 389

12 Transfer functions of feedback control systems 391
12.1 Introduction . . . . . . . . . . . e e e 391
12.2 Definition of setpoint tracking and disturbance compensation . . . . .. . .. 391
12.3 Sensitivity transfer function . . . . . . ... Lo 392
12.3.1 Definition of Sensitivity transfer function . . . ... ... .. .. ... 392

11



CONTENTS

12.3.2 Calculation of response in control error . . . . . . ... ... ... .. 393
12.3.2.1 Response in error due to setpoint . . . . .. ... ... ... 393

12.3.2.2 Response in error due to disturbance . . . .. ... .. ... 394

12.4 Tracking transfer function . . . . . . . . .. .o 394
12.4.1 Definition of Tracking transfer function . . . ... ... ... .. ... 394
12.4.2 Calculation of response in control error . . . . .. ... ... ... .. 395

12.5 Analytical calculation of responses with transfer functions . . . . . . ... .. 395
12.6 Problems for Chapter 12. . . . . . . . . . . i i it it e 396
12.7 Solutions to problems for Chapter 12 . . . . . . . . . . . .. .. ... .... 397
13 Simulation of PID control systems 399
13.1 Introduction . . . . . . . .. L 399
13.2 Simulation with elementary code in Python . . . . . . ... ... ... .... 399
13.3 Simulation of transfer function model with Python Control package . . . . . . 400
13.4 Simulation of block-diagram model with OpenModelica . . . . . ... .. .. 401
13.5 Problems for Chapter 13 . . . . . . . . . . o i i 402
13.6 Solutions to problems for Chapter 13 . . . . . . . . . . . . . .. ... .... 402
14 Tuning of PID controllers 404
14.1 Introduction . . . . . . . .. 404
14.2 Ziegler-Nichols closed loop method . . . . . .. .. .. ... ... ... 406
14.3 Relaxed Ziegler-Nichols PI settings . . . . . . . .. ... ... .. .. .. 410
14.4 Quasi Ziegler-Nichols tuning . . . . . . . . .. . ... L oL 412
14.5 Astrgm-Higglund Relay tuning method . . . . ... ... .. ... ...... 413
14.6 Auto-tuning . . . . . . . L 417
14.7 Good Gain method . . . . . . . ..o 417
14.8 Skogestad controller tuning method . . . . . . . .. ..o Lo Lo 420
14.8.1 Background of the Skogestad method . . . . ... .. ... ... ... 420

12



CONTENTS

14.8.2 Controller tuning for “integrator with time delay” processes . . . . . . 423
14.8.2.1 Mathematical model and dynamics . . ... ... ... ... 423
14.8.2.2 Controller settings . . . . . . . . . .. oL 423

14.8.2.3 PI tuning for pretended “integrator with time delay” processes426

14.8.2.4 Tuning for integrator without time delay . . . . .. .. ... 430

14.8.3 Controller tuning for “time constant with time delay” processes . . . . 430
14.8.3.1 Mathematical model and dynamics . . .. .. ... ... .. 430

14.8.3.2 Controller settings . . . . . . . . . . .. 431

14.8.4 Controller tuning for “double integrator” processes . . . . . . . . . .. 432
14.8.4.1 Mathematical model . . . . . . . . ... ... L. 432

14.8.4.2 Controller settings . . . . . . .. . ... 433

14.9 Ziegler-Nichols open loop method . . . . . . . .. .. .. ... oL 435
14.10PID tuning when process dynamics varies . . . . . . . . . ... ... ... .. 436
14.10.1Introduction . . . . . . oL 436

14.10.2 PID parameter adjustment based on the Skogestad PID tuning method 437

14.10.3 Gain scheduling of PID parameters . . . . . . . .. .. ... ... ... 438

14.10.4 Adaptive controller . . . . . . . .. ... 443

14.11 Problems for Chapter 14 . . . . . . . . . . o i i i i et e 445
14.12Solutions to problems for Chapter 14 . . . . . . . . . . . .. ... 450

15 Control loop stability 455
15.1 Heuristic stability analysis . . . . . . .. .. .. Lo oo 455
15.2 Experimental gain margin (GM) and phase margin (PM) . . ... ... ... 459
15.3 Problems for Chapter 15 . . . . . . . . . . . o 465
15.4 Solutions to problems for Chapter 15 . . . . . . . . . . . . . ... ... 467

16 Control structures based on the PID control loop 468
16.1 Cascade control . . . . . . . . . L 468



CONTENTS

16.1.1 The principle of cascade control . . . . . . . .. .. ... ... ... .. 468
16.1.2 Benefits of cascade control . . . . . . ... oo 469
16.1.3 Selection of control functions . . . . . .. .. ... o Lo 475
16.1.4 Controller tuning . . . . . . . . . . . L 476
16.1.5 Cascade control and state feedback . . . . . . ... ... ... ... .. 476

16.2 Ratio control . . . . . . . . L 477
16.3 Split-range control . . . . . . ... 478
16.4 Averaging level control . . . . . . . . . . . ... 479
16.4.1 What is averaging level control? . . . .. .. ... ... ... ... .. 479
16.4.2 Tuning of the PI controller for averaging level control . . . . ... .. 483

16.5 Plantwide control . . . . . . . . .. Lo 488
16.6 Problems for Chapter 16 . . . . . . . . . . . i i 494
16.7 Solutions to problems for Chapter 16 . . . . . . . . . . .. ... ... ... .. 500
17 Feedforward control 508
17.1 Introduction . . . . . . . . L L 508
17.2 Designing feedforward control from differential equation models . . . . . . . . 509
17.3 Designing feedforward control from experimental data . . . . . ... .. ... 513
17.4 Problems for Chapter 17 . . . . . . . . . . i i i 516
17.5 Solutions to problems for Chapter 17 . . . . . . . . . . . ... .. 519
18 Sequential control 521
18.1 Problems for Chapter 18 . . . . . . . . . . o i i i 525
18.2 Solutions to problems for Chapter 18 . . . . . . . . . . . . . . . .. .... 526

V ANALYSIS OF CONTINUOUS-TIME FEEDBACK SYSTEMS 527

19 Stability analysis using poles 528

14



CONTENTS

19.1 Introduction . . . . . . . . .. Lo
19.2 Stability properties and impulse response . . . . . ... ... ... ..
19.3 Stability properties and poles . . . . . . . . ... oL
19.4 Stability analysis of state space models . . . . . .. .. ... ... ...
19.5 Problems for Chapter 19 . . . . . . . . . . .

19.6 Solutions to problems for Chapter 19 . . . . . . . . .. .. .. .. ...

20 Stability analysis of feedback systems using poles

20.1 Introduction . . . . . . . . . .. e
20.2 Stability analysis of feedback systems . . . . . . . ... ...

20.3 Problems for Chapter 20 . . . . . . . . .. .. . oo

21 Frequency response

21.1 Introduction . . . . . . . . . Lo
21.2 How to calculate frequency response from sinusoidal input and output . . . .
21.3 Bode diagram . . . . . . . ...
21.4 How to calculate frequency response from transfer function . .. . ..
21.5 Filters . . . o o o e

21.5.1 Filter types . . . . . . . .

21.5.2 First order lowpass filters . . . . . . . ... ... ... ... ..
21.6 Problems for Chapter 21 . . . . . . . . . . i i i

21.7 Solutions to problems for Chapter 21 . . . . . . . . . . .. . ... ...

22 Frequency response analysis of feedback systems

22.1 Introduction . . . . . . . . ..
22.2 Analysis of setpoint tracking and disturbance compensation . . . . . .
22.2.1 Introduction . . . . . . . ... L L

22.2.2 Frequency response analysis of setpoint tracking . . . ... ..

15

543

... H43

s ]

N Y Y

550

.. .. 550

551

.. .. 9h3

... 5d4

R 1V

R 1 Y

... 538

. ... 562

.... 564

568



CONTENTS

22.2.3 Frequency response analysis of disturbance compensation . . . . . .. 573
22.3 Stability analysis of feedback systems . . . . . . . .. .00 577
22.3.1 Introduction . . . . . . . . .. ... 577
22.3.2 Nyquist’s stability criterion . . . . . ... .. ... ... ... 577
22.3.3 Stability margins . . . . ... 582

22.3.3.1 Stability margins in terms of gain margin and phase margin = 582

22.3.3.2 Stability margins in terms of maximum sensitivity amplitude 584

22.3.4 Stability analysis in a Bode diagram . . . . . ... ... ... ..... 584

22.3.5 Robustness in term of stability margins . . . . . . .. ... ... ... 587

22.4 Problems for Chapter 22 . . . . . . . . . e 589
22.5 Solutions to problems for Chapter 22 . . . . . . . . . . . . . . ... 595
VI ANALYSIS OF DISCRETE-TIME FEEDBACK SYSTEMS 601
23 Discrete-time signals 602
23.1 Problems for Chapter 23 . . . . . . . . . o i e 604
23.2 Solutions to problems for Chapter 23 . . . . . . . . . . . . i 605
24 Difference equations 607
24.1 Difference equation models . . . . . .. Lo oL 607
24.2 Calculating responses from difference equation models . . . . . .. .. .. .. 608
24.3 Problems for Chapter 24 . . . . . . . . . o e e 609
24.4 Solutions to problems for Chapter 24 . . . . . . . . . . . . ... ... .. 611

25 Discrete-time state space models 613
25.1 General form of discrete-time state space models . . . . . . ... ... ... 613
25.2 Linear discrete-time state space models . . . . . . . .. ..o 613
25.3 Discretization of continuous-time state space models . . . . . . ... ... .. 614

16



CONTENTS

25.4 Problems for Chapter 25 . . . . . . . . . . . o i

25.5 Solutions to problems for Chapter 25 . . . . . . . . . .. ... ...

26 The z-transform

26.1 Definition of the z-transform . . . . . .. ... ... ... ... ..
26.2 Properties of the z-transform . . . . ... ... ... ... .....
26.3 z-transform pairs . . . . ... ..o
26.4 Inverse z-transform . . . . .. . ... oo oo
26.5 Problems for Chapter 26 . . . . . . . . . . .

26.6 Solutions to problems for Chapter 26 . . . . . . . .. .. ... ...

27 Discrete-time (or z-) transfer functions

27.1 Introduction . . . . . . . ..
27.2 From difference equation to transfer function . ... ... ... ..

27.3 From transfer function to difference equation . . . . ... ... ..

27.4 Calculating time responses for discrete-time transfer functions

27.5 Static transfer function and static response . . . . ... ...
27.6 Poles and zeros . . . . .. ... Lo
27.7 From s-transfer functions to z-transfer functions . .. ... .. ..
27.8 Problems for Chapter 27 . . . . . . . . . . . . . e

27.9 Solutions to problems for Chapter 27 . . . . . . . . . . . ... ...

28 Frequency response of discrete-time systems

28.1 Problems for Chapter 28 . . . . . . . . . i

28.2 Solutions to problems for Chapter 28 . . . . . . . . . . .. .. ...

29 Stability analysis of discrete-time dynamic systems

29.1 Definition of stability properties. . . . . . . . .. ...

29.2 Stability analysis of transfer function models . . . . . ... .. ..

17



CONTENTS

29.3 Stability analysis of state space models . . . . . . .. ... ... .. ... ... 644
29.4 Problems for Chapter 29 . . . . . . . . . e e e 646
29.5 Solutions to problems for Chapter 29 . . . . . . . . . . . .. 648
30 Stability analysis of discrete-time feedback systems 651
30.1 Problems for Chapter 30 . . . . . . . . . . i 655
30.2 Solutions to problems for Chapter 30 . . . . . . . . . . ... .. ... ..... 656
VII STATE ESTIMATION 658
31 Stochastic signals 659
31.1 Introduction . . . . . . . oL 659
31.2 How to characterize stochastic signals . . . . ... ... .. ... ... .... 659
31.2.1 Realizations of stochastic processes . . . . . . . . . . . ... ... ... 659

31.2.2 Probability distribution of a stochastic variable . . . . . . ... .. .. 660

31.2.3 The expectation value and the mean value. . . . . . . ... ... ... 660

31.2.4 Variance. Standard deviation . . . . . .. ... ... .. ... .. 661

31.2.5 Auto-covariance. Cross-covariance . . . . . . . . . . . . . . . .. ... 662

31.3 White and coloured noise . . . . . . . ... Lo 664
31.3.1 White noise . . . . . . . . . e e 664

31.3.2 Coloured noise . . . . . . . . . e e e 665

31.4 Propagation of mean value and co-variance through static systems . . . . .. 668
31.5 Problems for Chapter S1 . . . . . . . . . i 670
31.6 Solutions to problems for Chapter 31 . . . . . . . . . .. . . . ... ... 672
32 State estimation with Kalman Filter 678
32.1 Introduction . . . . . . o oo 678
32.2 Observability of discrete-time systems . . . . . .. .. ... .00, 680

18



CONTENTS

32.3 The Kalman Filter algorithm . . . . . ... .. .. .. . . ... 683
32.3.1 The assumed process model . . . . . . . . .. ... L. 683

32.3.2 The result of Kalman Filtering: an optimal state estimate . . . . . . . 686

32.3.3 The Kalman Filter algorithm — step by step . . . . . . . ... ... .. 686

32.3.4 Features of the Kalman Filter . . . . . .. .. .. .. ... ... ... 691

32.3.4.1 The error-model . . . . .. ..o oo 691

32.3.4.2 The dynamics of the Kalman Filter . . . ... ... ... .. 691

32.3.4.3 The stability of the Kalman Filter . . . . . .. ... .. ... 692

32.4 Tuning the Kalman Filter . . . . . . .. ... 0 oL 692
32.5 Estimating parameters and disturbances with Kalman Filter . . . . .. . .. 693
32.5.1 Imtroduction . . . . . . .. L 693

32.5.2 The augmentative state (x,) is constant . . . . . .. .. ... .. ... 693

32.5.3 The augmentative state (x,) has constant rate . . . . ... ... ... 694

32.6 Kalman Filtering when process measurement is absent . . . . .. .. .. ... 700
32.7 Problems for Chapter 32 . . . . . . . . . i 703
32.8 Solutions to problems for Chapter 32 . . . . . . . . .. ... ... 704
VIII MODEL-BASED CONTROL 707
33 How to test robustness with simulations 708
33.1 Problems for Chapter 33 . . . . . . . . . . . e e e 710
33.2 Solutions to problems for Chapter 33 . . . . . . . . . . . .. .. ... ..... 712
34 Linear Quadratic (LQ) optimal control 713
34.1 Introduction . . . . . . . L 713
34.2 The basic LQ controller . . . . . . . . ... 714
34.3 LQ controller with integral action . . . . . . ... ... ... 0L 721
34.3.1 Imtroduction . . . . . . . . L 721



CONTENTS

34.3.2 Including integrators in the controller . . . . . . .. ..

34.3.3 Discrete-time implementation of the LQ controller

34.4 Problems for Chapter 34 . . . . . . . . .. ..

34.5 Solutions to problems for Chapter 34 . . . . . . . .. ... ...

35 Model Predictive Control (MPC)

35.1 Introduction . . . . . . . ..o Lo
35.2 The MPC method . . . . .. .. ... ... ... ... ...
35.2.1 The principle of MPC . . . . . ... ... ... .. ..
35.2.2 The optimization objective function of MPC . . . . . .
35.2.3 Control signal blocking . . . ... ... ... .. ....
35.2.4 Tuning factors of MPC . . . . .. ... ... ... ...
35.2.5 The need for a state estimator . . . .. ... ... ...
35.3 Problems for Chapter 35 . . . . . . . . . . .. .. ... .....

35.4 Solutions to problems for Chapter 35 . . . . . . . .. ... ...

36 Inverse dynamics control

36.1 Introduction . . . . . . . ..o
36.2 Inverse dynamics control of first order processes . . . . . . . ..
36.2.1 The processmodel . . . . .. ... ... ... ......
36.2.2 Pltuning . . . . . ... .. . ..
36.2.3 Feedforward controller . . . . . ... ... ... .....
36.2.4 The resulting control signal . . . . . .. ... ... ...
36.2.5 About the resulting control system . . . . .. ... ...
36.3 Inverse dynamics control of second order prosesses . . .. . ..
36.3.1 The process model . . . . . ... ... ... .. .....
36.3.2 PID tuning . . . . .. ... oo

36.3.3 Feedforward controller . . . . . . . .. .. ... .....



CONTENTS

36.3.4 The resulting control signal . . . . . . ... ... ... ... ... 747

36.3.5 About the resulting control system . . . . . . ... ... ... ... .. 747

36.3.6 Computed torque control . . . . . . ... ... oL, 748

36.4 Problems for Chapter 36 . . . . . . . . . . 750
36.5 Solutions to problems for Chapter 36 . . . . . . . . .. .. ... .. ... ... 754
IX APPENDICES 757
37 Some good control questions 758
38 Selected process models 761
38.1 Wood chipstank . . . . . . . .. ... 761
38.1.1 System description . . . . . . . . . . ... 761

38.1.2 Variables and parameters . . . . . . . ... ... 762

38.1.3 Overall block diagram . . . . . .. ... ... .. 0L 762

38.1.4 Mathematical model . . . . . . . ... oL Lo 763

38.2 Ship . . . . o e 763
38.2.1 System description . . . . . . . ... Lo L e 763

38.2.2 Variables and parameters . . . . . . ... ... oo 763

38.2.3 Overall block diagram . . . . . ... ... ... .o, 764

38.2.4 Mathematical model . . . . . . .. ... ... oL 764

38.3 Buffer tank . . . ..o 765
38.3.1 System description . . . . . . ... Lo e 765

38.3.2 Variables and parameters . . . . . . . .. ... ... ... 765

38.3.3 Overall block diagram . . . . ... ... ... L 0L 766

38.3.4 Mathematical model . . . . . . . ... oo oL 766

38.4 Heated liquid tank . . . . . . .. .o Lo 767
38.4.1 System description . . . . . . .. ..o 767



CONTENTS

38.5

38.6

38.7

38.8

38.9

38.4.2 Variables and parameters . . . . . . ... ... L Lo 767
38.4.3 Overall block diagram . . . . . ... ... ... .. ... 767
38.4.4 Mathematical model . . . . . ... .. o Lo 768
Air heater . . . . . . . L. 769
38.5.1 System description . . . . . . ... Lo L 769
38.5.2 Variables and parameters . . . . . . . ... ... ... 769
38.5.3 Overall block diagram . . . . . . . ... ... ... ... ... ..., 769
38.5.4 Mathematical model . . . . . . ... o oo 770
38.5.5 Datafile. . . . . . . L 770
Kettle . . . o o e 771
38.6.1 System description . . . . . . . ... L e 771
38.6.2 Parameters and variables . . . . .. ... ..o 772
38.6.3 Overall block diagram . . . . . ... ... ... . ... 773
38.6.4 Mathematical model . . . . . . .. .. oo 773
DC-motor . . . . . . 774
38.7.1 System description . . . . . . ... Lo 774
38.7.2 Overall block diagram . . . . . . .. ... ... . 774
38.7.3 Variables and parameters . . . . . . . .. .. ... .. ... 775
38.7.4 Mathematical model . . . . . . ... oo oo 775
38.7.5 Datafile . . . . . .. 775
Biogas reactor. . . . . .. .. L L e 776
38.8.1 System description . . . . . . . ... L L L e 776
38.8.2 Variables and parameters . . . . . . ... ... Lo e
38.8.3 Overall block diagram . . . . . ... ... ... ... ... e
38.8.4 Mathematical model . . . . . . .. .. oo 778
38.8.5 Operating point . . . . . . . . . . e 781
Pendulumon cart . . . . .. ... . 781



CONTENTS

38.9.1 System description . . . . . .. ..o
38.9.2 Variables and parameters . . . . . ... ... ... ... ..
38.9.3 Overall block diagram . . . . . ... ... ... ... ....

38.9.4 Mathematical model . . . . . . . . . . ... ... .. ...,

39 The Laplace transform

39.1

39.2

39.3

39.4 Laplace transform properties

Introduction . . . . . ... Lo
Definition of the Laplace transform . . . . . . .. .. ... ... ..

Laplace transform pairs . . . . . . ... ... .. ... ... ...,

40 Introduction to optimization

40.1

40.2

The optimization problem . . . . . .. ... ... ... ... ...

40.1.1 Introduction . . . . . . . . . . ...

40.1.2 Mathematical formulation of the optimization problem

40.1.3 Feasibility region . . . . .. ... Lo o oL
40.1.4 Some characteristics of the optimal solution . . . . . . . ..
40.1.5 What about maximization problems? . . .. ... ... ..
How to solve optimization problems . . . . ... ... .......
40.2.1 Introduction . . . .. .. ... Lo oo
40.2.2 Analytical solution . . . . . .. ... oL oL
40.2.3 The brute force method of optimization . . .. .. .. ...
40.2.4 Tterative methods of optimization . . . . . . . .. ... ...

40.2.4.1 Steepest decent optimization method . . ... ..

40.2.4.2 The Newton optimization method . . . . ... ..
40.2.5 Global optimization . . . ... ... ... ... 000

40.2.6 Testing: Have you actually found the minimum? . . . . . .

23



CONTENTS

41 Python 819
41.1 About Python . . . . . . . o 819
41.2 Installing Python . . . . . . . . . .o L 819
41.3 Learning Python . . . . . . . . . .. L 820

42 Python Control package 821
42.1 Introduction . . . . . . . Lo 821

42.1.1 What is the Python Control package? . . . .. .. .. ... ... ... 821
42.1.2 About thisguide . . . . . . . . . ... 821
42.1.3 Installing the Python Control package . . . . . .. .. ... ... ... 822
42.1.4 Importing the Python Control package into Python . . . .. .. ... 822
42.1.5 Using arrays for numerical data . . . . . . . .. ... o0 822

42.2 Transfer functions . . . . . . .. .o Lo 823
42.2.1 How to create transfer functions . . . . . . .. ... ... ... ... 823
42.2.1.1 Creating transfer functions using the Laplace variable . . . . 823

42.3

42.2.1.2 Creating transfer functions using coefficient arrays of numer-

ator and denominator . . . . ... .. L oL 824

42.2.2 Combinations of transfer functions . . . . . .. .. .. ... ... ... 826
42.2.2.1 Series combination . . . . .. ... oL 826
42.2.2.2 Parallel combination . . . . . . .. ..o oo 827
42.2.2.3 Feedback combination . . . . . .. .. ..o 829

42.2.3 How to get the numerator and denominator of a transfer function . . 831
42.2.4 Simulation with transfer functions . . . . ... .. ... ... 833
42.2.5 Poles and zeros of transfer functions . . . . . ... .. ... L. 836
42.2.6 The Padé-approximation of a time delay . . . . . . ... .. ... ... 837
Frequency response . . . . . . . .. L Lo 838
42.3.1 Frequency response of transfer functions . . . . . . . .. ... ... .. 838
42.3.2 Frequency response and stability analysis of feedback loops . . . . . . 840

24



CONTENTS

42.4 State space models . . . ... 843
42.4.1 How to create state space models . . . . . . . ... ... ... ..... 843
42.4.2 How to get the model matrices of a state space model . . . . .. ... 846
42.4.3 Simulation with state space models . . . . . . ... ..o 847
42.4.4 From state space model to transfer function . . . . . . .. .. ... .. 849

42.5 Discrete-time models . . . . . . . ..o 852
42.5.1 Transfer functions . . . . . . .. . Lo 852

42.5.1.1 Introduction . . . . .. .. ... o oo 852
42.5.1.2 How to create transfer functions . . . ... ... ... .... 852
42.5.1.3 Discretizing an s-transfer function . . . . . . .. .. ... .. 853

42.5.1.4 Exact representation of a time delay with a z-transfer function 855

42.5.2 Frequency response . . . . . . v v v v vt vt e e e e e e e 857

42.5.3 Statespacemodels . . . . ..o L 857

43 OpenModelica 858
44 SimView 860
45 Selected mathematical formulas 862
45.1 Differentiation of vector functions . . . . . . . . .. ... Lo L. 862
Bibliography 862
Index 864

25



Preface

The main topic of this book is automatic control — how to use a computer to automatically
manipulate mechanical, thermal, chemical, eletrical, process so that they behave as you
want. Obviously, automatic control is of crucial importance in industrial and other kinds of
technical systems.

In my own practical control projects, I have had great use of mathematical models, mainly
as the basis for building (programming) simulators. With a simulator you can design,
analyse, and test your systems without exhaustive and perhaps dangerous experimentation
on the physical system; the physical system may even not exist! Furthermore, with models
you can implement methods for monitoring (state and parameter estimation), you can
design advanced, model-based controllers, and you can carry out model-based tuning of
standard PID controllers'. Models and simulators are simply great engineering tools for
control. So, I decided to name this book “Modeling, simulation and control”.

The book may serve as a textbook in pertinent bachelor courses and in master courses, and
as a reference book for professionals.

Problems with detailed solutions are at the end of (most of) the chapters.

The book contains simulated plots from Python programs, OpenModelica models, and
SimView simulators. Python and OpenModelica are open software. SimView is a collection
of executables (exe files) which I have developed in LabVIEW. All this software is free, and
they are introduced in respective appendices in the book.

If you see errors or have suggestions or other comments about the book, you are welcome to
send them to me in email.

The book exists only in pdf file format.
The home page of the book is on techteach.no/control.

While this edition of the book is available for free, a future edition will be for sale. I will
give pertinent information on the home page of the book.

A few words about my background: I have a MSc degree from former Norwegian Institute
of Technology (Norwegian: Norges tekniske hggskole) and a PhD degree from former
Telemark University College (Norwegian: Hggskolen i Telemark). I have experience as

!Proportional-Integral-Derivative controllers — the standard automatic control function in industry
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university teacher and researcher, textbook author, and participant in industrial and
research projects about modeling, simulation and control. At present, I am employed as
professor? at the University of South-Eastern Norway, and I have my one-person firm
TechTeach. I am also teaching at OsloMet (Oslo Metropolitan University), in vocational
education, and I teach courses for the industry.

I enjoy the field of modeling, simulation and control, and the programming needed to
implement theoretical methods on practical systems. Without that enjoyment, there would
not be a book.

Finn Aakre Haugen
http://techteach.no/fh
finn@techteach.no

2Norwegian title: dosent
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Chapter 1

Flash course in automatic control

1.1 Introduction

This chapter presents the basic principles, and practical methods, of automatic control. The
principles are:

e Feedback control

e Feedforward control

After you have read this chapter, you should be well prepared to apply automatic control
methods in practice!

The remainder of the book presents mainly theoretical methods for automatic control, for
example how to develop a mathematical model of the process to be controlled, and how to
program a simulator of the control system of the process. Although theoretical, these
methods can be very useful in practice.

1.2 What can be obtained with control?

Figure 1.1 compares typical results of “passive” control with “active” control. In the figure,
the term control error is defined as follows:

Control error (e) = Difference between reference value (r) and actual value of the process
variable (y)

Or, briefly:

Figure 1.1 illustrates the following:
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e Passive control, i.e. the process is excited with a fixed or constant control signal.
With passive control, the control error may be too large.

e Active control, i.e. the process is manipulated actively with either a manual control
signal generated by a human or an automatic control signal generated by an
automation device — typically a computer. With active control, the control error may
be kept within specified limits — ideally zero.

Passive control: Active control:

A
Process variable, y

Reference

or setpoint), r
( point) Control error, The control error is small enough

e=r-y all the time!
Too large control error
in this time interval

\/
\j

Control signal, u Control signal, u

A A
u is adjusted actively by the

controller (manual or automatic)

o o~ —

Constant u

\
\

Figure 1.1: Active control can ensure that the control error is small enough.

Automatic control is important in a large number of practical industrial and technical
systems. With automatic control we may obtain:

e Good product quality: A product will have acceptable quality only if certain
process variables are sufficiently close to their setpoints. One example: In artifical
(chemical) fertilizers the pH value and the composition of Nitrogen, Phosphate and
Potassium are factors which express the quality of the fertilizer (for example, too low
pH value is not good for the soil). Therefore the pH value and the compositions must
be controlled.

e Good production economy: The production economy will become worse if part of
the products has unacceptable quality so that it can not be sold. Good control may
maintain the good product quality, and hence, contribute to good production
economy. Further, by good control it may be possible to tighten the limits of the
quality so that a higher price may be taken for the product!

e Safety: To guarantee the security both for humans and equipment, it may be
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required to keep variables like pressure, temperature, level, and others within certain
limits— that is, these variables must be controlled. Some examples:

— An aircraft with an autopilot (an autopilot is a positional control system).

— A chemical reactor where pressure and temperature must be controlled.

e Environmental care: The amount of poisons to be emitted from a factory is
regulated through laws and directions. The application of control engineering may
help to keep the limits. Some examples:

— In a wood chip tank in a paper pulp factory, hydrogene sulfate gas from the pulp
process is used to preheat the wood chip. If the chip level in the tank is too low,
too much (stinking) gas is emitted to the atmosphere, causing pollution. With
level control the level is kept close to a desired value (set-point) at which only a
small amount of gas is expired.

— In the so-called washing tower nitric acid is added to the intermediate product to
neutralize exhaust gases from the production. This is accomplished by
controlling the pH value of the product by means of a pH control system. Hence,
the pH control system ensures that the amount of emitted ammonia is between
specified limits.

— Automatically controlled spray painting robots avoid humans working in
dangerous areas.

e Comfort:
— The automatic positional control which is performed by the autopilot of an

aircraft to keep a steady course contributes to the comfort of the journey.

— Automatic control of indoor temperature may give better comfort.

e Feasibility: Numerous technical systems could not work or would even not be
possible without the use of control engineering. Some examples:

— An exothermal reactor operating in an unstable (but optimal) operating point

— Launching a space vessel (the course is stabilized)

— A dynamic positioning system holds a ship at a given position without an anchor
despite the influence of waves, wind and current on the ship. The heart of a
dynamic positioning system is the positional control system which controls the
thrusters which are capable of moving the ship in all directions.

e Automation: Computers and other kinds of hardware and software implementing
control solutions can accomplish tedious and dangerous operations for the benefit of
human operators. Also, automation may reduce costs in a factory, thereby indirectly
reducing product prices, to customer’s benefit.

1.3 Process variables that are typically controlled

Below is a list of process variables which typically are controlled to follow their references
(or setpoints):
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e Level (in a storage tank)

e Temperature (in a room; in the fluid passing a heat exchanger; in a reactor; in a
greenhouse)

e Flow (of feeds into a reactor)

e Pressure (of gas in an oil-water-gas separator)

e Chemical composition (of nitric acid; fertilizers)

e Position (of a ship; a painting robot arm; the tool of a cutting machine; a rocket)

e Speed (of a motor; a car; a fan)

1.4 Feedback control

1.4.1 Manual feedback control

Let’s start with a shower!

Imagine that you are to take a shower, and you want to have the temperature of the shower
water as you desire, see Figure 1.2. The figure also shows responses, as explained below.

A T
Shower * e=0 T
Room temperature Process E’c_] e b
Process disturbance or - ) Th—= T\,
environmental variable .7 RN
-— Control loop \
I Feedback loop ! 1 5
N // 4 y —>

N Sw_ - t t
I
I 1\
LT w Up
I

Water temperature 11|11 J

Process variable : T u Ua
T I1111Sensor Hand + valve
(RN Actuator ( N
I — ] H
L to t t
i TS '
1 CONSTANT TEEDBAK
CoNTROL CONTROL.

Figure 1.2: Controlling the water temperature of a shower. (HW = hot water. CW = cold
water.)

In control terminology, the shower is here the process. The water temperature, T, is the
process variable which we want to follow its desired temperature — the temperature
reference or setpoint, . The room temperature, T,., makes an impact on 7', and we can
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therefore say that T, is a process disturbance. To control T', you can use your hand to
manipulate a mixing valve which sets the ratio between the hot and cold water flows. The
hand and the valve constitute the actuator. Let u be the setting of the mixing value.

In the shower example, the control error is
control error = temperature reference — actual temperature (1.2)

or, using symbols,
e=r—T (1.3)

Typically, the aim of control is e = 0, or e &~ 0 in practice as e will inevitably vary
somewhat. !

Let us consider the following two alternative temperature control strategies:

e Passive control: Consider the time interval between ¢y and ¢; in Figure 1.2.
Assume you took a shower yesterday. The shower temperature was as you desired, i.e.
T = rp. Say that a valve setting of u = u, gave the desired temperature. At time
(today) you enter the shower. Naturally, you try the successful setting u = u, also
today. If 7). is the same as yesterday, using u = u, gives T' = rp also today. But
assume that 7, is actually lower today than yesterday, maybe because you take the
shower with an open window today while the window was closed yesterday.
Consequently, u = u, gives T' = T, which is less than rp, or in other terms: e > 0.
Assume that keeping u = u, = constant makes you freeze, and that you conclude that
constant control is not a good control strategy. This makes you step aside of the cold
water for a moment to think about a better strategy.

e Active, error-driven control, or feedback control: At time t;, while freezing,
you decide to improve the control to make T' reach r, or in other terms, to obtain
e = 0. How would you improve the control? I guess you decide to measure the
temperature with say your right hand, which is a sensor. That measurement, also
denoted T here as we assume it represents the actual temperature, is detected in your
brain. Your brain — the controller — then adjust the nerve signal to the left hand to
change the setting, u, of the mixing valve until e ~ 0, and then you are ready to take
the shower — with the desired temperature. Since it the control error that “drives” the
control, we can denote this control strategy as error-driven control. However, a more
common term is feedback control, which is explained below. Also, the term closed
loop control is used, and for constant control, open loop control is an alternative term.

This excellent temperature control system is a manual control system since you (a human
being) are the controller. In an automatic control system you are replaced by a computer
which can generate e.g. an electric control signal to the valve, and the sensor with an
industrial temperature sensor, for example a Pt100 sensor which sends an electric signal to
the controller. More details about an automatic control system for the shower are given in
Section 1.4.2.

'However, in so-called averaging level control of buffer tanks, we actually want a relatively large e for the
level, as this makes the tank compliant to inflow variations. Averaging level control is described in Ch. 16.4.
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In Figure 1.2, I have indicated the control loop. It consist of the following three main
components needed to control the process. These are the main components also in purely
technical control loops.

e Sensor
e Controller

e Actuator

Sometimes also a measurement filter, which attentuates measurement noise, is included as
component (following the sensor) in the control loop. Alternatively, the filter can also be
regarded as a part of (included in) the sensor.

As T mentioned above, control loops are also denoted feedback (control) loops. The reason
for this name is that there is a connection from the process output, which is the water
temperature, back to the process input, which is the control signal to the valve, via the
sensor and the controller.

An alternative term to feedback control, is error-driven control as it is the control error that
“drives” the control action.”? It is tempting to use the term “measurement-driven control”.
However, that term is ambiguous because also feedforward control, cf. Section 1.5, and not
only feedback control is driven by measurements.

1.4.2 Automatic feedback control

Maybe you dream about an automatic temperature control system of your shower. In that
system, you only need to specify the reference (setpoint) of shower outlet temperature, and
a controller manipulates the valve automatically to make the actual (real) temperature
become equal to the reference. Figure 1.3 shows a possible implementation of such an
automatic temperature control system.

The components shown in Figure 1.3 are presented briefly below.

Actuator

The actuator is an electronically controlled three-way valve with two inlets, namely hot
water and cold water, and one outlet, namely mixed water. Generally, it is typical that the
actuator is manipulated by the controller with an electrical current in the range 0-20 mA
generated by the controller.

2Personally, I like the term error-driven control better than the term feedback control since it expresses
better the principle of control systems.
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Process

Actuator

Controller

Sensor

Figure 1.3: The shower water temperature control system implemented with only technical
components. (Sensor: Autek. Controller: Fuji. Valve: Taco.)

Sensor

In Figure 1.3, the temperature sensor, which measures the water temperature out of the
shower, is a Pt100 sensor. The measuring principle of a Pt100 sensor is that the resistance
value of the electric resistor, which is made of Platinum, varies in a known way with the
temperature. Included in the sensor is a temperature transmitter. The transmitter detects
the resistance value, and generates typically either an electrical current or a voltage
representing the temperature.

Controller

The controller in 1.3 is an industrial process controller containing a computer which
executes a program implementing the control function. The measurement signal from the
sensor is connected to the controller. You can set the temperature reference, r, using
buttons on the front panel of the controller. The controller adjusts the control signal, u, to
the valve automatically to make the measured temperature, y, become equal to r — without
any human interaction. Thus, the control system shown in Figure 1.3 is an automatic
temperature control system.

Piping & Instrumentation Diagram — P&ID

In the industry, it is common to document the structure of control systems with Piping &
Instrumentation Diagrams (P&I Ds). Figure 1.4 shows a Piping & Instrumentation
Diagram (P&I D) of the shower water temperature control system. P&I Ds are described in
more detail in Appendix 2.

In Figure 1.4:

35



CHAPTER 1. FLASH COURSE IN AUTOMATIC CONTROL

\

Process

Setpoint

Actuator

Sensor | Controller

Measurement  Control
signal signal

Figure 1.4: Piping & Instrumentation Diagram (P&I D) of the temperature control system
of the shower.

e TT = Temperature Transmitter, which is the standard letters of temperature sensors.
A transmitter is actually not a sensor, but a device which sends the measurement
signal, which in general may be electric or pneumatic or hydraulic or digital, to the
controller. Still, TT here represents the temperature sensor.

e TC = Temperature Controller.

e The actuator — a mixing valve — is shown with a representative symbol. There is no
general symbol for actuator. If the actuator were a pump, a pump symbols should be
shown.

e Process flows in e.g. pipelines are drawn with relatively thick lines.

e Signals, as measurement signals and control signals, are drawn with relatively thin
lines. If necessary, you can use special dashes to indicate the signal type, i.e. electric,
digital, etc. A line without dashes does not indicate any special signal type — it is just
a signal.

e Strictly, signal lines are not drawn with arrow heads, just pure lines. I draw with
arrow heads in this book because it makes the diagram easier to read, although it
breaks with the standards of P&I Ds.

Block diagram of feedback control loop

In many contexts, e.g. in teaching, it is useful to draw a block diagram of a control system.
Block diagrams are useful for showing the various variables (signals) and the components of
a control system. The level of detail of block diagrams may vary, depending on what to
show in the diagram. There are no specific standards for block diagrams.
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Figure 1.5 shows a block diagram of the temperature control system of the shower. General
control-related terms are used, with terms specific to the temperature control system in
parenthesis. Note the three components needed to implement any feedback control system:
Controller, actuator and sensor.

Disturbance
Control equipment (room temp)
F—— —— ———— — — — - Actual valve T
| c setting ’ )
| Reference Control ontrol Process variable
| (desired temp.) error signal Actugtor (water temp.)
Controller > —
: rr g e : u (valve) y
e | e - \
Control loop )
Prosess measurement | S /
(temperature meas.)
Sensor | )
Pt100 -
Im ( ) Feedback

Figure 1.5: Block diagram of the temperature control system of the shower.

Some comments to Figure 1.5:

e The controller as a physical component is represented with a frame with a dashed
line, while the controller function is represented with the blue block inside the dasjed
frame. Often the dashed frame representing the (physical) controller is not drawn in
block diagrams.

e The circle to the left is an adder. The negative sign indicates the measurement enters
the adder with a negative sign. Therefore, the output of the adder is reference minus
measurement, i.e. the control error, e = r — y,,,.

e The symbol y,, represents the temperature measurement signal. However, if it is
assumed that the measurement gives a precise representation of the process variable,
1y, the same symbol, iy, may be used also for the measurement.

Let’s take a look at an industrial example of a control system.

Example 1.1 Level control of a wood chips tank

Figure 1.6 shows the front panel of a simulator of a real level control system of a wood chips
tank with feed screw and conveyor belt. The belt runs with constant speed. The tank is® in

3 Actually: was, since the factory in Norway — Sédra Cell at Tofte — has been shut down.
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Figure 1.6: Level control of wood chips tank: Simulated responses due to a step change of
the level setpoint and a step change of the outflow (disturbance).

the production line of a paper pulp producing factory. There is a continuous outflow of
wood-chips which constitutes a disturbance on the chips level in the tank. A level controller
(LC) manipulates the feed screw. The conveyor belt makes up a transport delay of 250 sec
(4.17min) of the chips from screw to tank. A model with parameter values is described in
Appendix 38.1.%

The simulator is in the SimView simulator library, and is available on:

http://techteach.no/simview /levelcontrol chiptank

Figure 1.7 shows a block diagram of the level control system.

Figure 1.6 shows simulated responses in the level controlled tank. The level reference (or
setpoint) is changed as a step from 10 to 12 m at ¢ = 220 min, and the outflow (level
disturbance) is changed as a step from 25 to 30 kg/s at ¢ = 320 min. We observe that the

4The model used in the simulator differs from the model in the appendix as some of the model parameters

are in different units.

38


http://techteach.no/simview/levelcontrol_chiptank

CHAPTER 1. FLASH COURSE IN AUTOMATIC CONTROL

u

r [m] e[ml [ controller | [ . | Feed screw
LC "] (Actuator)

hn [m] Sensor

LT

Figure 1.7: Block diagram of the temperature control system of the wood chip tank.

level control system is able to bring the level control error to zero in steady state after the
setpoint change and after the disturbance change.

[End of Example 1.1]
1.4.3 Brief presentation of components of general feedback control loops
1.4.3.1 Block diagram of a general control loop

Figure 1.8 shows a detailed block diagram of a general feedback control system where the
controller is realized with a computer.

Below are brief descriptions of each of the components of the control system

1.4.3.2 Process

The process is the physical system to be controlled, e.g. a tank where the level is to be
controlled, a ship where the position on the sea is to be controlled, a biogas reactor where
the temperature is to be controlled, etc.

1.4.3.3 Automation hardware

Automation hardware is the physical equipment where the control function is implemented,
and where signal processing of the measurement signal and the control signal takes place.
Nowadays it is common that automation hardware is computer-based. (More info in Section
3.2)
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Figure 1.8: A computer-based control system. (DAC = Digital-Analog Converter. ADC =
Analog-Digital Converter.)

1.4.3.4 Sensor

The sensor detects the process value, and generates typically either an electrical current or
a voltage. Typically the current signal is in the standard range of 4-20 mA (milliampere).
The voltage signal may be in the range 1-5 V, or some other range.

1.4.3.5 AD converter

AD converter (analog-digital converter, ADC) converts the process measurement signal —
typically a current signal (milliampere) or a voltage signal from the sensor into a digital
value that can be used by the computer. (More info in Section 3.4.3.)

1.4.3.6 Measurement signal scaling

The measurement signal scaling block scales the digital signal from the AD converter into a
digital value expressed with the relevant physical unit, e.g. meters, degrees C, or %. For the
shower temperature control system, assume that the measurement signal, m, is a voltage in
the range 1-5 V representing a temperature (y) in the range 0-100 °C, with a linear relation
between the ranges, see Figure 1.9. Then, the value of y can be calculated from any
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y[degC] 4

100

m [V]

Figure 1.9: Scaling of temperature measurement signal.

registered value of m with the following linear scaling formula:

y=a-m+b>b (1.4)
Slope a is
100°C — 0°C K
- 95— 1.
=S voiv PV (1.5)

Intercept or constant b can be calculated from the first point (alternatively from the second
point) by solving (1.4) for b:
b=y—a-m=0-25°C (1.6)

For example, a measurement value of m = 3.0 V indicates that the temperature is
y=25-3.0—-25=250°C.

With industrial controllers, you can assume that transformation formulas like (1.4) are
already implemented, and in such cases you only have to specify on the controller the
temperature range that the measurement range (in mA or V) represents. While if you build
a computer-based measurement and control system yourself (based on e.g. Python or
LabVIEW), you will implement the transformation formula (1.4) in computer code. More
information about sensors is given in Ch. 3.3.

1.4.3.7 Measurement signal filter

The measurement signal filter — or just measurement filter — shown in Figure 1.8 is an
important part of the feedback control loop. The purpose of the filter is to filter out, or
attenuate, the more or less random measurement noise from the measurement signal, so
that the measurement signal used by the controller is more smooth, in turn causing a
smoother control signal.
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For illustration, Figure 1.10 shows the response of a lowpass filter output due to the
following input signals:

2.0 Input, u [
| Output, v

k[sec]

Figure 1.10: Response in a lowpass filter output due to a input step change at time 6 sec and
random noise at the input from time 18 s.

e 0 <t<6s: Zero input (no noise).
e t =06 s: A step change of the input.

e { > 18 s: Random noise at the input

Comments to the responses shown in Figure 1.10:

e The filter attenuates the noise, as we want it to do.

e The filter has a sluggish response to the step change at the input. If this step
represents the real changes of the process variable (although in practice such step
changes would probably not appear), the filter actually have removed some
information about the behaviour of the process variable, which may be unfortunate in
an application.

e From the above two points, we can conclude that it is important to tune a filter for
good noise attenuation while avoiding attenuation of variations in the process
variables.

There are various types of measurement filters. The most relevant filters for use in control
systems are:

e The moving average (MA) filter, which is presented in Section 3.4.6.1.

e The time constant filter, which is presented in Section 3.4.6.
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It turns out that the discrete time filter algorithm ready for programming is identical for
these two filters. Since the MA filter is simpler to describe, let’s here take a brief look the
MA filter.

The MA calculates the filtered value, ymt,as the average of a number, Ny, of the most
recent measurement samples. Ny is the length of the filter. The time window of the filter
moves as time goes. Assume as an example that Ny = 5. Figure 1.11 shows unfiltered
measurement values (white circles) and the filtered value (black circle). The filtered

Time window, T,

f~—————
A
Ym,k
O O A
Q_________$%
o O o) Ymfk
7
Ymk-1 Average =
Filter output
1 1 1 B

k-4 k-3 k-2 k-1 k

Figure 1.11: Moving average filter with length Ny = 5.

measurement is calculated as the average of the present and the last four measurement
samples — totally five samples:

1

Ymfk = 5 (Ym,k + Ymk—1 + Ymk—2 + Ymk—3 + Ym k—1)

1 4
= gzym,k—i (17)
=0

Obviously, this averaging will smooth — i.e. filter — the measurement signal.

The general formula for v, is

L N
Ymfhk = Y fi—i (1.8)

For a given filter time window T, the filter length is

T
Np=—2+1 (1.9)

For example, with dt = 0.1 and T,, =4 s, Ny =5 (as in Figure 1.11).
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In Section 3.4.6.1 it is shown that (1.10) shown below is a recursive — or online — realization
of (1.8). (1.10) is a MA filter algorithm — ready for programming.

MA filter algorithm

Ympk = (1 = ) Ymph—1 + Y,k (1.10)

which is a filter algorithm ready for programming.

In (1.10), the filter parameter a is

1 dt
= — = — 1.11
a Nf Tw + dt ( )

For example, with dt = 0.1 and T, = 0.4 s (as in Figure 1.11), and a = 0.2.

1.4.3.8 Controller

The controller calculates the control signal manipulating the actuator. Note: The terms
“controller” here denote the control functions, and not the physical realization of the
control function. The controller shown in Figure 1.3 is one realization of the control
functions. Other realizations, i.e. physical controllers, are presented in Ch. 3.2.

The two most common control functions are the PID controller
(proportional-integral-derivative) and the On-off controller. They are presented in detail in
Sections 1.4.4 and 1.4.5, respectively.

Note: In Figure 1.8 the subtraction point for calculating the control error is shown ahead of
the controller block. This is a common way to draw block diagrams of control systems, but
in practice, the subtraction is calculated in the program code in the block.

1.4.3.9 Auto/man-switch

Industrial controllers can be switched between automatic mode (auto) and manual mode
(man):

e Auto: The control signal is generated automatically by the controller function
(algorithm) programmed in the built-in computer in the controller.

e Man: The built-in controller function is deactivated, and the control signal can be
adjusted by a human via the user interface of the controller.
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1.4.3.10 Control signal scaling

The control signal scaling block converts the calculated control signal, which may in units of
e.g. % or kg/min, to a digital value of the signal to be applied to the actuator. The digital
value may be in units of e.g. 0-20 mA for current signals, and e.g. 0.5 V for voltage signals.
(More information is in Section 3.6.1.)

1.4.3.11 DA converter

The DA converter (digital-analog converter, DAC) converts the digital control signal into a
physical control signal manipulating the actuator — typically a current signal in mA, but
possibly a voltage signal. (More info is in Section 3.6.2.)

1.4.3.12 Actuator

The actuator manipulates the process based on the control signal generated by the
controller. Examples of actuators are control valves, pumps, heating elements, motors, etc.
(A number of actuators are described in Section 3.5.)

1.4.4 PID controller
1.4.4.1 Continuous-time PID controller

In Section 1.4.4.3 we shall develop a discrete-time PID controller — or a PID algorithm —
ready for programming. This is the contents of the controller block in Figure 1.8. In the
present section, I present the continuous-time, or analog, PID controller since it is the basis
of the discrete-time PID controller.

The continuous-time PID controller is:

K t
u = uman+Kce+c/edT+Kchef’ (1.12)
~— T Jo —_——
uP Ud

Us

= Upan FP+TI+D

where e is the control error:
e=T—"Ynsf (1.13)

where ¥, ¢ is the filtered (smoothed) process measurement signal.
The parameters in (1.12) are defined in Section 1.4.4.2.

In (1.12),

® Uman is the nominal value of the control variable. It is the control signal available for
adjustment by the operator while the controller is in manual mode. While the
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controller is in automatic mode, un,, can usually not be adjusted. uman provides a
reasonable initial value of the control signal at the moment of switching from manual
to automatic mode. When the controller is switched from automatic to manual mode,
Uman can be given the value of u just before the switching thereby providing the
actuator with an assumeably appropriate control signal value.

e u, is the P term. It is proportional to the control error.

e u; is the I term, with time ¢ = 0 being the latest time when the controller was set to
automatic mode. The I term is the time integral of the control error. The integration
starts when the control is set to automatic mode.

e uy is the D term. The D term takes the time derivative, i.e. the rate of change, of the
control error,

e ¢y used in the D term is the lowpass filtered (smoothed) control error e. The filter is
denoted the D filter. The filter is used to smooth the abrupt noise in the control error.
This noise is due to the measurement noise present in any practical measurement
signal. There is remaining noise even in after the measurement signal has been filtered
with the measurement filter block shown in Figure 1.8. The D term takes the time
derivative, i.e. the rate of change, of the control error. Since noise vary abruptly, the
derivative can get large amplitudes. These amplitudes cause unfortunate variations in
the D term, and consequently in the total control signal generated by the PID
controller in which the D term is a part. To reduce the problem of the “noisy” D
term, a lowpass filter is used.

The PID controller (1.12) is denoted the parallel PID controller since the terms appear in
parallel in a mathematical block diagram of the controller, see Figure 1.12. It is sometimes

\
o

\

ef

Figure 1.12: A block diagram illustrating why the PID controller (1.12) is denoted the parallel
PID controller. (“F” is filter.)

denoted the academic controller.” There is also a serial form, which is discussed in Section
14.8.4.2.

To a non-academic this name may indicate that the form is not useful in practice. However, it is indeed
useful in practice!
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1.4.4.2 PID parameters

The controller parameters in (1.12) are commented in detail below.

Proportional gain

K, is the controller gain. An alternative symbol of this gain is K, (p for proportional).

K, is in unit of [unit of u/unit of y,¢]. Example: If w is in unit of W and yy¢ is in unit of
°C, K, is in unit of W/°C, or strictly speaking, unit of W/K.

Several commercial controllers use the proportional band Pg, denoted just P in some
industrial controllers, as a parameter instead of the proportional gain, K.. The relation

between Pp and K., is
~100%

K.

where K. is the controller gain, which here is assumed to be dimensionless. (It will be
dimensionless if the control error e and the control variable u have the same unit, typically
percent). It is typical that Pp has a value in the range of 10% < Pp < 500%, which
corresponds to K. being in the range of 0.2 < K. < 10. It is important to note that Pp is
inversely proportional to K.. Thus, a small Pg corresponds to a large K., and vice versa.

Pg (1.14)

Why the term proportional band? One explanation is that Pp is the change of the control
error interval Ae (or the size of the measurement signal interval) which gives a change of
the control signal interval Au equal to 100% (i.e. a full range change of u): From the
P-term u = K e we see that Ae = Au/K. = 100%/K. = Pp.

Integral time

T; [s] (or som other time unit, e.g. minutes) is the integral time.

In some controllers the value of 1/T; is used instead of the value of T;. The unit of 1/T7; is
repeats per minute. For example, 5 repeats per minute means that 7; = 1/5 = 0.2 min. The
background of the term repeats per minute is as follows: Assume that the control error e is
constant, say E. The P-term has value u, = K.F. During a time interval of 1 minute, the
I-term equals % 01 Edr = K.E - 1min]/T; = u, - 1/T;. Thus, the I-term has repeated the
P-term 1/T; times.

Derivative time

Ty [s] is the derivative time.
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P controller and PI controller

A P controller (proportional controller) is achieved by setting 7; = co (or to a very large
value) and Ty = 0. In some industrial controllers, you set T; to 0 (zero) to deactivate the
integral term, although this is an “unacceptable” numerical value of T; because division by
zero is not acceptable mathematically, cf. (1.12).

A PI controller (proportional-integral controller) is obtained by setting Ty = 0.

Alternative parameterization

Some controllers use the following alternative parameterization of the PID control function:

o Integral gain:

K.
Ki=— 1.15
e Derivative gain:
K;=K/1y (1.16)

1.4.4.3 Discrete-time PID algorithm

Using the continuous-time PID controller, (1.12), as the basis, we will now develop a
discrete-time PID controller — or a PID algorithm — ready for programming. The PID
algorithm has the same basic form as (1.12), i.e.

Uk = Uman k + Upk + Uik + Udk (1.17)

where each of the terms are discretized version of their corresponding continuous-time
terms.

In the following, the discrete-time control error is calculated as

€k = Tk — Ymfk (1.18)

In the following, dt is the sampling time (or time step, or cycle time) of the controller. In
industrial PID controllers, a typical value of dt is 0.1 s.

The manual term

Uman 18 & constant set by the operator (you?) when the controller is in manual mode. upan,
is “passive” when the controller is in automatic mode.
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The P term

It is straightforward to discretize the P term:
upr = Keey, (1.19)

The I term

The continuous-time I term is .
K,
ui(t) = C/ e(r)dr (1.20)
Ti Jo

It has become a tradition to discretize this integral with the Euler Backward method, which

gives
K, [t
Ui = / edr
Ti Jo

K. dt
— jc_‘ (61 + ...+ €p_1+ ek) (121)
(]
K. dt R )+ K. dt
= e1+...+ e, e
T 1 k—1 T k
Ui, k—1
K. dt
= U1+ ek (1.22)
T,

which is a recursive version of the I term algorithm, which I repeated here for easier
reference:

K.dt
T;

It is much more practical to implement (1.23), which is a recursive or online algorithm,

than the batch algorithm (1.21), although they are equivalent. In (1.23), the only term that

we have to store is u; ;—1, while in (1.21) we have to store all older control errors, from

t =0 (i.e. the last time when the controller was set to automatic mode), whenever back in

time that is (years maybe).

Uiy = Ui j—1 + er (1.23)

The D term

The continuous-time D term is, cf. (1.12),
Uq = KCTd ef/ (1.24)

It has become a tradition in the control community to discretize ey’ with the Euler
Backward method, which gives the following discrete-time D term:

€Cfk — €Efk—
Ud k= Kﬂb% (1.25)
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Above, ey is lowpass filtered (smoothed) control error e, filtered with the D term filter. The
filter is commonly either a moving average (MA) filter with filter parameter T, (cf. Section
3.4.6.1) or a time constant filter with filter time constant T (cf. Section 3.4.6. As shown in
Section 3.4.6, the discrete time algorithms of both these filters are identical. With any of
these filters, the D term filter algorithm is

efk = (1-— a)eﬂk_l + aeg, (1.26)
Filter parameter a is
dt dt
= pr— ]..27
R S A (1.27)
It is common to set T}, or Tt as a fraction of the derivative time, Ty, of the controller:
Tw =T =Ty (1.28)
with the following typically setting:
a=0.1 (1.29)

Obviously, the D term filter is needed only if the controller has an active D term, i.e. if Ty
is different from zero. If you are to implement a P controller or a PI controller, you can just
forget about both the D term and the D term filter.

The total control signal

Just a repeat: Once the P, I, and D terms are calculated as described above, the total
control signal must be calculated with (1.17), which I repeat here for convenience:

Uk = Uman k + Up k + Uik + Udk (1.30)

The PI algorithm

Assume you are to program a PI controller yourself. Below is a PI control algorithm that
you can use, expressed in pseudo code. Upi, and upaxare minimum and maximum values of
the control signal, respectively. For example: upimmay be 0 % or 0 V or 0 mA, and
Umaxmay be 100 % or 5 V or 20 mA, depending on the application.

PI control algorithm

e Initialization of the I term: Typically, you can set u; o = 0.

e In a for loop or a while loop running with cycle time (time step) dt [s], which is
the real time between each loop iteration:

— Read the process measurement from the sensor: ¥y, .
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— Filter (smooth) the measurement y,,  to obtain y,, .
— Calculate the control error: ey = ry — Ymf k-

— Calculate the P term: u,, = K ej.

— Update the I term: w;j, = u; y—1 + dt - (K./T;) ek.

— Optional (may be dropped in a quick & dirty implementation): Implement
anti integral windup by limiting the I term, cf. Ch. 1.4.4.3 for details.

— Calculate the total control signal: uy = Uman i + Up k + Uj k-
— Limit the control signal between upi, and wyax-
— Write (apply) ug to the actuator.

— Time index shift (to prepare for the next iteration of the loop): Set
u; —1 equal to u; k.

Practical modifications of the PID controller

The PID controller presented above can be used in “quick & dirty” implementations of the
controller. To make a full-fledged implementation, you should consider the following
practical modifications of the PID controller:

e Integral anti windup
e Reducing P kick and D kick

e Bumpless transfer between manual and automatic modes

These modifications are described in Section 11.3.

1.4.4.4 How does the PID controller work?

The manual term, un,y, is constant, and hence “passive” when the controller is in
automatic mode. Its contribution in automatic mode is to provide kind of a reasonable
initial value at the moment of switching from manual to automatic mode.

The P term, u,, contributes with a term in the total control signal, u, which is
proportional to the control error, e. It brings some speed to the control. However, assuming
Uman 18 Not “perfect” to give zero control error, i.e. e = 0, the P term by itself can not
ensure e = 0 either This is because, with e = 0, u, = 0, which mean no contribution from
the P term. In other words, P controller can not ensure zero error in steady state.

The I term is the most important part of the PID controller because it ensures zero
steady state control error, i.e. e = 0. How? Look at the I term, (1.23). As long as e is
different from zero, u; will change. In other words, e is an “improvement term”. Or, e
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drives the control. This change keeps on until e has become zero, and then u;,and u, are
kept constant, until some disturbance or setpoint change causes e again to become nonzero,
but then the improvement starts again.

The D term

e Assume that, for some reason, the control error, e, is increasing, i.e. the measurement
is moving away from (lower than) the setpoint. The difference ef ) —ef 1 in 1.25) is
then positive, making w4 positive. So, the D term contributes positively to the total
control signal, uy, and we can expect faster control with the D term (PID control)
comparing with no D term (only PI control).

e Now, assume that e is decreasing, i.e. the measurement is getting closer to the
setpoint. The difference in 1.25) is now negative, making w4 negative. So, the D
term contributes negatively to the total control signal, u, and we can expect a
breaking or stabilizing control with the D term (PID control) comparing with no D
term (only PI control).

So, the D term may “press the gas pedal” when appropriate, and “press the break pedal”
when appropriate.

One implication of the above is that the D term may stabilize a control system which
otherwise can not be stabilized with a P or a PI controller. This is the case with dynamic
positioning of ships. With a PI controller the control system is deemed to be unstable,
while it is stable with a properly tuned PID controller.

There is one serious practical problem with the D-term: It amplifies the random
measurement noise, causing large variations in the control signal. These variations will be
reduced with a lowpass (smoothing) filter acting on the process measurement, cf. Section
1.4.3.7.

Example 1.2 Temperature control of a liquid tank

Figure 1.13 shows a simulation of a temperature control system of a liquid tank.

The tank can be e.g. a biogas reactor where the temperature in the tank is maintained at a
temperature reference which is favourable to the microorganisms that form biogas (mainly
methane gas) of the biological raw material. The temperature control, which is made by the
controller TC (Temperature Controller) is based on feedback from the measured
temperature in the tank provided by the sensor TT (Temperatuere Transmitter). The
controller manipulates the tank temperature by adjusting the control signal to the heating
element in the tank. A significant process disturbance, or environmental variable, is the
varying inlet temperature T;,. The temperature setpoint, r7, i.e. the desired temperature,
is 40°C.

Figure 1.14 shows a block diagram of the temperature control system.

As seen in the simulation:
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Figure 1.13: Temperature control with P, PI, PID controller without meas. filter, and PID
with filter.

e The steady state control error is non-zero with the P controller. The non-zero error is
due to the lack of the integral term of the PI controller.

e The steady state control error is zero with the PI controller. The zero error is due to
the integral term of the PI controller.

e The control signal is very noisy when the PID controller is used. (The large transient
response in the temperature around ¢ = 210 s is due to the D term suddenly being
activated, causing a jump in the control signal and hence in the temperature.)

e The measurement filter attenuates the noise, thereby reducing the noise in the control
signal.

The simulations in this example are made with this SimView simulator:
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Figure 1.14: Block diagram of the temperature control system of the liquid tank

http://techteach.no/simview/temp_control_pid_onoff

[End of Example 1.2]

Summing up the PID controller

From the above it can be concluded that the controller should definitely have an I-term, i.e.
the controller should be either a PID controller or a PI controller, to ensure zero
steady-state control error. The D-term should be omitted if the control signal is too noisy
even with a measurement lowpass filter. However there are processes where the D-term is
essential for obtaining a stable control system (as in position control of ships and other
“free-body” mechanical systems). In fact, the PI controller is by far the most used feedback
controller in the industry. I have heard that more than 90% of PID controllers runs as PI
controllers.

1.4.5 On-off controller
1.4.5.1 The basic On-off controller

The On-off controller is probably the simplest controller there is. On-off controllers may be
an alternative to PID controllers, especially in temperature control. For example, room
temperature is commonly controlled with a thermostat, which is an On-off controller.

Figure 1.15 illustrates the On-off controller function.

In Figure 1.15, umipnmay be 0 % or 0 V or 0 mA, and upmaxmay be 100 % or 5 V or 20 mA,
depending on the application.

Alternatively, the On-off controller can be presented as an algorithm as follows.
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uaA

umax

Unmin

i 4

Figure 1.15: On-off controller.

e In a for loop or a while loop running with cycle time (time step) dt [s], which is the
real time between each loop iteration:

Read the process measurement from the sensor: ¥, .

— Optional (may be dropped in a quick & dirty implementation): Filter (smooth)
the measurement yy, , to obtain ym¢y, cf. Ch. 1.4.3.7.

— Calculate the control error: ey = rg — Ym k. If ym is filtered: er = 1y — Ytk

If e, >0, set up, = Umin.

— Else (i.e. if e, < 0), set ur = Umax-

Write (apply) ug to the actuator.

The On-off controller works as follows: When the control error, e, is positive, i.e. when y is
below 7, u is umax, causing y to increase. Eventually y becomes larger than r, so that e
becomes negative, which sets u to umin, causing y to decrease. Eventually y becomes less
than r, so that e becomes positive, and then the scenario repeats. Hence, the On-off
controller causes the control system to oscillate.

The period of the oscillations is given by the dynamic properties of the process. The
amplitude of the oscillations in u and in y are also given by the dynamic properties of the
process. We can reduce the amplitudes by reducing the difference between umax and wUmin,
but with the danger of limiting the control signal so that it will stay at either umax OF Umin
in case of large process disturbances.

The benefits of the On-off controller are:

e It is a very “quick” controller. It compensates quickly for process disturbances —
quicker than a PID controller.

e [t is tuned very easily. In principle, the only tuning is selecting the values of umay and

Umin-
The main drawbacks about the On-off controller are:
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e The control loop has inavoidable oscillations, cf. Figure 1.16.

e The average value of the control error is non-zero, cf. Figure 1.16.

Example 1.3 Temperature control with On-off controller

In this example, the simulations are made with the following SimView simulator:

http://techteach.no/simview/temp_control_pid_onoff

Figure 1.16 shows a simulation of a temperature control system. umax = 80 kW, and upin =
0 kW. The oscillatory behaviour is clear. Note that the mean value of the control error is
different from zero (the mean temperature is slightly below its setpoint), which is typical for
On-off control.
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Figure 1.16: Simulation of a temperature control system with an On-off controller.

[End of Example 1.3]

1.4.5.2 On-off controller for processes with negative process gain

Actually, the On-off controller shown in Section (1.4.5.1) applies only to processes which
have a so-called positive process gain, i.e. the process measurement increases when the
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control signal increases (like in a “heating” thermal process where an increase of the control
signal to the heater makes the process temperature increase).

If the process has a negative gain, i.e. the process measurement decreases when the control
signal increases (like in a “cooling” thermal process where an increase of the control signal
to the cooler makes the process temperature decrease), the On-off controller is “flipped” as
shown in Figure 1.17.

uaA

Umax

Unmin

L

Figure 1.17: On-off controller for processes with negative process gain.

The corresponding psuedo-code is the core of the On-off control algorithm:

On-off control algorithm

o If e, >0, set up = Umax-

e Else (i.e. if ex < 0), set ug = Umin.

1.4.5.3 On-off controller with deadband

There is a practical problem with the On-off controller presented in Sections 1.4.5.1: If the
process measurement, y, is noisy, also the controller error, e, is noisy. A noisy e may make
the control signal, u, switch abruptly between wuyi, and uymayx. This is unfortunate,
especially if the actuator is mechanical.

Example 1.4 Temperature control with On-off controller with noisy measurement

Figure 1.18 shows a simulation of the same temperature control system as in Example 1.3,
but where uniformly distributed random noise between £1.0 °C has been added to the
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Figure 1.18: Simulation of a temperature control system where uniformly distributed random
noise between +1.0 °C of has been added to the temperature measurement.

temperature measurement. We can see that the control signal varies abruptly when the
error is around zero.

[End of Example 1.4]

In Example 1.4 we saw that measurement noise caused the On-off controller output to
change abruptly between umin and umax When the control error varied around zero. Such
abrupt changes are unfortunate, and should be avoided, particularly if the actuator is
mechanical, like a mechanical relay, or a pump, or a valve, or a motor.

How can we avoid such abrupt changes? We can include a deadband in the On-off
controller! The deadband should be larger than the maximum amplitude of the
measurement noise. This solution is shown in Figure 1.19.

uA
T <> Umax
De
L

Umin <

i 4

Figure 1.19: On-off controller with deadband.
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A drawback about including the deadband is that the amplitude of the oscillations in y will
be somewhat larger than without deadband. Furthermore, the period of the oscillations will

increase, but this is hardly a drawback.
Example 1.5 On-off controller with deadband

Figure 1.18 in Example 1.4 shows a simulation of a temperature control system where
uniformly distributed random noise between +1.0 °C was added to the temperature
measurement, causing u to change abruptly when e is around zero. Now we include a
deadband with D, = 2 °C in the On-off controller. Figure 1.20 shows the results of a
simulation. As expected, the abrupt changes in u are now eliminated. The period of the
oscillations is somewhat larger than without deadband, cf. Figure 1.18.
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Figure 1.20: Temperature control with On-off controller with deadband.

[End of Example 1.5]

1.5 Feedforward control

By now, we know that feedback control — or error-driven control — can bring the process
output variable to or close to the setpoint in steady state (strictly: when time goes to
infinity). Feedback control is in most cases a sufficiently good control method. But
sometimes you want more. The “problem” with feedback is that there has to exist a control
error different from zero for any change of the control signal to take place, since the control
variable is adjusted as a function of the control error. Here, feedforward control come to
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help. Feedforward control is based on the following information about the process to be
controlled:

e Desired behaviour of the process in terms of the setpoint. This is always known, and is
needed also in feedback control.

o Measurements of the process disturbances

o A mathematical model of the process. A model is an abstract, mathematical
representation of process, and expresses how the process behaves.

Using all this information to calculate the control signal, we may obtain excellent (accurate)
control, i.e. very good setpoint tracking. However, the information is certainly more or less
imprecise, causing the control to be more or less imperfect so that the control error becomes
somewhat different from zero. But here comes feedback control to help: It reduces the
control error which exist due to the inevitable imperfect feedforward control. Hence, when
feedforward control is used, it is typically used together with feedback control.

Let’s take a brief look at an interesting real application of feedforward control, see Example
1.6. Feedforwad control is presented more systematically and in more detail in Chapter 17.

Example 1.6 Dynamic positioning of a ship

Dynamic Positioning (DP) of ships is automatic position control through the manipulation
of the actuators which are the main propeller, maneuvering thrusters, and the rudder. DP
systems are very important in various marine operations. DP systems make ships stay
sufficiently close to e.g. platforms and other ships, and make ships follow a given position
trajectory accurately. Obviously, DP systems increase the level of safety largely.

Let us see how feedforward control can be used in the dynamic positioning system of a ship.
The main disturbances are:

e Wind, represented with the wind speed, V,, [m/s], causing a disturbing force, F,, [N],
on the ship.

e Water current, represented with the water current speed, u. [m/s], causing a
disturbing hydraulic force, F}, on the ship.

Assume that we can measure or estimate V,, and u, and calculate F,, and Fj,, respectively.
This can actually be done with a wind force model and a water current model. Such models
are presented in Ch. 38.2, but we skip details about how to design the feedforward
controller using these models until Ch. 17. Assuming that we know F;, and F} from
measurements of V,, and u. and the mentioned models. To compensate for these disturbing
forces, we can increase the propeller force, F},, with an amount which is equal to the
negative sum of F,, and F}, thereby cancelling out their impacts on the ship motion! In
other words, we establish a technical coupling — a feedforward controller — that cancels out
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the natural coupling that the disturbances has on the ship (the process). The feedforward
controller also uses the position reference, y,, to calculate the feedforward control signal.

The resulting control signal (which is a propeller force demand) is the sum of the feedback
control signal and the feedforward control signal:

Fp = Fp7fb + Fpﬁ (1.31)
Figure 1.21 shows the dynamic positioning system with feedforward control, which is added

to the feedback control based on position measurement from GPS sensors, but other
position sensors may be used also depending on the operation conditions.
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Tunnel Main

Thruster Propeller
and Rudder

y Position

reference

Feedback | . ¥
controller |~

Feedforward
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Uc ] TVw

Figure 1.21: Dynamic positioning system with feedforward control added to the feedback
control. (The drawing is based on a drawing originally made by Kongberg Maritime AS.)

Feedback control

Let’s first see how the DP system works without feedforward control — but with the
compulsory feedback control. The feedback controller is a PID controller.

I have programmed a simulator in Python of the longitudinal or surge motion of a ship,
using model parameter values provided by the company Kongsberg Maritime AS, Norway.
The mathematical model is presented in Ch. 38.2. Figure 1.22 shows simulated responses
where:

e The position reference (setpoint) r is changed softly (as a sinusoid) from 0 to 20 m
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from £t = 0 s and 200 s, and is kept constant at 20 m between ¢ = 200 s and 600 s, see
the upper subplot of Figure 1.22.

e The speed, V,,, of the wind acting on the ship is changed from 0 to —30 m/s at time
t = 600 5.9 The wind speed causes a wind force, F,, which is a disturbance on the DP
system. F, is plotted in the lower subplot of Figure 1.22.

20 1T T \/_-7
-y
E 101
0 ] T T T T T T T
0 200 400 600 800 1000 1200
200 A
= 0 [~ — Fp
i — Fw
—200 A
0 200 400 600 800 1000 1200
t[s]

Figure 1.22: Simulation of position control of a ship (dynamic positioning).

Based on the control error, i.e. the difference between the position reference and the
measured position, the controller generates a propeller force F}, in an attempt to keep the
ship at the reference, see the lower plot in Figure 1.22. The ship tracks the varying setpoint
with a maximum control error of a few meters, and the wind gust drives the ship off the
setpoint with approximately 2.5 m. In steady state, the control error is zero.

Now, let’s see if feedforward control can reduce the control error.

Feedforward control

Figure 1.23 shows a simulation of the ship with position control based on feedforward
control combined with feedback control. The control system behaves excellently:

5You may say that this wind gust is unrealistically large. But keep in mind that this change may be due to
the ship being in harsh weather with a strong side wind, and when the ship turns for some reason, the wind
force suddenly changes direction and force relative to the ship.
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Figure 1.23: Simulation of the ship with position control based on feedforward control com-
bined with feedback control.

e The position reference is tracked precisely (the position reference and the position
measurement can hardly be distinguished).

e The wind disturbance (there is a wind gust at ¢ = 600 s) is compensated for
effectively. Notice that the propeller force counteracts exactly the wind force, causing
the ship to stay still despite the heavy wind gust. This demonstrates very well the
behaviour of the feedforward controller.

In practice, we can not expect such an excellent behaviour of the controlled ship because we
can not (never) implement a perfect feedforward controller due to modeling and/or
measurement errors. However, we can expect a large improvement of the control with a
well-designed feedforward controller.

The simulated responses shown in Figure 1.23 are produced with the following Python
simulator:

http://techteach.no/control /python/prog_sim_dynpos_feedforward.py

A SimView simulator of this position control system is available on:
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http://techteach.no/simview/dynpos

[End of Example 1.6]

1.6 Performance measures of control systems

Some times it is useful to evaluate the performance of a control system with a numerical
measure or index. There are several alternative measures:

e Control error based measures, which can be found experimentally.

e Stability margins, which can be found experimentally or from the frequency response
of the control system.

e Bandwidth, which can be found from the frequency response of the control system.
Performance measures based on the control error are defined below. Stability margins are

defined later in the book; in Sections 15.2 and 22.3, while bandwidth is defined in Section
22.3.

Figure 1.24 shows three common quantitative measures of the performance of control
systems. These measures are based on the observed control error:

e=r—y (1.32)
where r is the reference (or setpoint), and y is the (measured) process output.

Below are comments to each of the three performance measures.

Maximum control error

The smaller the |e] the better performance.

max’

Example 1.7 Mazimum control error in a level control system

See Figure 1.6. Assume that the change of wgy from 1500 to 1800 kg/min, which is a
change of 300 kg/min, is the worst outflow change that can occur during normal
production. From the plot of the wood chips level, we see that the maximum control error

due to this change is e, = 1.3 m.

[End of Example 1.7]
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[End of Example 1.8]

tstart

IAE (integral or area of
absolute value of error)

Figure 1.24: Three common quantitative measures of the performance of control systems.

Steady state control error

The steady state control error, e, is the error when the error is approximately constant
(when you disregard the variations due to measurement noise). The steady state control
error can also be denoted the static control error.

The smaller the ey, the better performance.

Example 1.8 Steady state control error in a level control system

See Figure 1.6. From the plot of the wood chips level, we see that the steady state control
error when the level reference and the process disturbance (the outflow) are contants is
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IAE

TAE is short for integral of absolute value of control error. The IAE performance index is
widely used in literature (books and articles) where the performance of control systems is
compared, but you will not find any IAE indicator in an industrial controller.

TAE is defined as

tsto
TAE — / "le(t)| dt (1.33)
tstart
The TAE can be calculated numerically as
tN—1=tend
TAE = dt - [le (to)| + [e (t)| + -+ e (1) + e @) =dt > [e(tr)] (1.34)
to=tstart

where dt is the sampling time. tgqr+ and t.,q are specified by the user. k is the time index
(an integer). If you disregard the factor dt (i.e. assume it 1), the TAE is the sum of the
absolute errors.

The smaller the IAE index, the better performance.

The TAE value from an experiment does not tell that much, but it is useful when it is
compared with the IAE values from other experiments.

The TAE index depends on the duration of the experiment, so you can compare IAE values
from different experiments only when the experiments have the same duration. If you want
an IAE index which is independent of the duration, you can use the following normalized
index:

1 tstop
TAE o = ———— / e(t)] dt (1.35)
tstart

tstop - tstart

which gives you the average absolute control error over the pertinent time interval.
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1.7 Problems for Chapter 1

Problem 1.1 Components of a speed control system

Figure 1.25 shows the different components of a speed control system of an electric motor.

Rotational
speed of
shaft
Tacho- | Voltage
9—» - —» Controller —»
meter
Subtractor

Meas_urement
filter

‘ Load torque
(disturbance)

Figure 1.25: Components of a motor servo mechanism.

1. “Construct” a speed control system by connecting the components (draw a block
diagram of the control system). Where is the control error in your block diagram?

2. How does the control system work? (Assume that the speed initially is equal to the
speed reference (setpoint), and that the load torque is increased so that the motor
speed is reduced.)

Problem 1.2 Automatic bartender
The weight control system shown in Figure 1.26 seems to be an automatic bartender.”
Explain how the control system works. (Explain the feedback control action.)

Do you know any other process of your daily life which uses the same principle of level
control?

Problem 1.3 FEwvaporator

Figure 1.27 shows an evaporator where the product is created by evaporating the feed. (As
an example, an evaporator is used to remove water from the half-finished fertilizer in a
fertilizer factory.)

"From the book ”Origins of Feedback Control” by O. Mayr.
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Figure 1.26: A weight control system from the Antics. An automatic bartender?

Feed

\

A

Steam

Proq/

Figure 1.27: Evaporator.

Suggest a control structure by drawing a Process & Instrumentation Diagram of the
evaporator according to the requirements listed below. (Process & Instrumentation
Diagrams are covered in detail in Ch. 2, but I assume you have enough information from
the examples in this chapter to draw such a diagram at this stage.)

e The feed flow is controlled to its setpoint. (Symbol of flow is F.)
e The liquid level is controlled to its setpoint. (Symbol of level is L.)

The liquid temperature is controlled to its setpoint. (Symbol of temperature is T.)

The vapour pressure is controlled to its setpoint. (Symbol of pressure is P.)

e You can use control valves as actuators. A symbol of a control valve is shown in
Figure 1.28.

Control signal

Flow

Figure 1.28: Symbol of a control valve.
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Problem 1.4 Examples of control systems

Below are mentioned three processes which are supposed to be controlled. The process
output variable is indicated in parenthesis. For each of the processes:

e What is the control (manipulating) variable?

e What are the disturbances or loads or environmental variables (these are alternative
names)?

Make your own assumptions. The processes are as follows:

1. Robot arm or manipulator driven by an electric motor (arm position).

2. Steam heated heat exchanger with some process fluid to be heated (temperature of
fluid outlet).

3. Ship positioned with thrusters (denoted a dynamic positioning system) (ship position).

Problem 1.5 Measurement scaling

Given a level sensor which represents the level, h, in the range [0 — 15 m] with a
measurement signal (current), m, in the range [4 — 20 mA], with a linear relation between
these ranges.

1. Find the scaling function with m as input and A as output, and express it as a linear
function on the standard form
h=a-m+b (1.36)

where a is the slope and b is the intercept (or constant term).

2. What is h if 8 mA?

Problem 1.6 Manual calculation of filter output

Given the following measurement signals, ¥,,, for the times %g, t1,t2, respectively:
9.11

10.48

9.54

(The ideal (noise-free) measurement value is 10.)

Suppose the filter’s initial value is 10. Manually calculate the filter output for times tg, 1,
to for a time constant filter. The filter parameter is a = 0.1.

Can you see from the results that the filter output is smoother (varies less) than the filter
input?
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Problem 1.7 Static response of MA filter

The MA filter algorithm is given by (3.48). Assume that the filter input is constant, say
Y,,. We would like the corresponding static response, Y},,,to be equal to Y,,,. Show that
this is fortunately the case.

Problem 1.8 Filter length of an MA filter

Given an MA filter with T3, = 5.0 s and dt = 0.05 s. What is the filter length Ny of the
filter? What is the filter parameter a?

Problem 1.9 Temperature response with various controllers

Figure 1.29 shows an air heater. A fan with fixed speed blows air through the pipe. The fan
opening can be varied manually. The air is heated by a electric heater. The control signal u
is the voltage signal which controls (adjusts) the power supplied to the heater. The
temperature is measured with a thermistor which is a temperature-dependent resistance. In
the experiments described below the controller is implemented in a PC with I/O-device
(Input/Output-device). (In general, a control system should contain a measurement filter,
but in this particular system a filter was not used.)

Temperature
Potensiometer for measuring Sensor

the fan opening [V] Heater

Fan opening

Measurement signal

Control signal (to external controller)
(from external [V]

controller) [V]

Figure 1.29: Process trainer

1. Draw a block diagram of the control system, including a measurement filter.

2. Figure 1.30 shows the response in the temperature y after a step in the temperature
reference (setpoint) and after a step in the air inflow due to an increase of the fan
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opening. The air inflow or — equivalently the fan opening — can be regarded as a
disturbance. In this experiment the control signal is constant, hence there is no
feedback (no measurement-based or error-driven) control. Explain why there is no
response in the temperature due to the reference change. And explain why there is a
response after the disturbance (fan opening) change.

3. Assume that the temperature is controlled with a PID-controller (with proper
parameter settings). Draw the principal temperature response after a reference step
and after a disturbance step. You can “add” your curves to 1.30.)

°C 45 . r ; y
#
40 K ~
Increased fan
20 opening ;
!

B s 10 15 20 25 t[s]

Figure 1.30: Temperature response with constant control signal

Problem 1.10 Gain and PB

What is the value of the controller gain K. corresponding to proportional band PB = 250
%7

Problem 1.11 Manual calculation of PI controller output
In this problem, you will act as a discrete time PI controller.

Assume the following;:

e Reference: r, = 60.
e Filtered process measurement: y,,rr = 59.4.
e Integral term from previous time-step: w; ;1 = 0.5.

e Manual control signal: uy., = 50.
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e Controller gain: K, = 2.
e Integral time: 7; = 10 s.

e Time step of the controller: dt = 0.1 s.

Calculate the control signal uy according to the discrete time PI control agorithm.

Problem 1.12 Step response of PI controller

Suppose you want to verify that a PI controller works correctly according to the
mathematical PI controller function. This can be done with a step response test, where a
step is applied to the setpoint r input to the controller while the measurement input ¥, is

kept constant. Assume that
ym(t) = A (1.37)

and that the setpoint is increased from A to
r(t)=A+FE (1.38)
This implies that the control error e is increased as a step from zero to
e(t)=r(t) —ym({t) =(A+E)—A=EFE (1.39)

By comparing the observed (experimental) step response in the controller output u with the
theoretical output, you can (hopefully) confirm that the mathematical operation of the
controller is correct.

The PI controller function is .
K,
u= K.+ / edt (1.40)
T Jo

1. Calculate the step response in u (as a function of time) assuming that the control
error is a step of amplitude E, and plot wu(t).

2. Figure 1.31 shows the step response in u for a given PI controller. The step amplitude
of the control error was
E=1 (1.41)

Calculate K. and T; from the step response.

Problem 1.13 Filter time constant in D-term

Given a PID controller with a lowpass filter acting on the derivative term. Assume that the
derivative time T} is 2.0 sec. Suggest a proper value of the filter time constant T'.
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0 | | | | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t [sec]

Figure 1.31: Step response in PI controller output.

Problem 1.14 On-off control

See Figure 1.16.

1. What is the period of the oscillations?

2. What is the average control error? Is it zero?

Problem 1.15 IAFE

Assume that an experiment with control system number 1 has an IAE index of 148
calculated over the time interval 20-30 min after a step in the reference at time ¢t = 20 min.
The same experiment with another control system, number 2, has an IAE index of 97 over
the same time interval, and the same experiment with control system no. 3 gives [AE index
of 123 calculated over the time interval 20-40 min.

1. Can the TAE indexes of the control systems 1, 2 and 3 be compared to each other?

2. Which of the control systems has the best performance in terms of TAE?
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1.8 Solutions to problems for Chapter 1

Solution to Problem 1.1
1. Figure 1.32 shows the speed control system. The control error, e, is the output of the

Subtractor Load torque
Speed (disturbance

reference € Tacho-
»(P Controller )' meter

/

Y

Measurement | _
filter

Figure 1.32: Speed control system.

subtractor.

2. When the speed is reduced due to the increased load torque, the control error
becomes different from zero, and positive. This non-zero, positive control error causes
the controller to increase the control signal acting on the motor, so that the speed is
increased. If the controller is properly chosen (it must have integral action, actually),
the controller is able to adjust the control signal to exactly the new value that is
needed to compensate for the load torque, and consequently the control error become
zero — in steady state.

Solution to Problem 1.2

The purpose of the system is to fill just the right amount of liquid into the cup, i.e. level
control. The system works as follows: As long as the level is low the inlet is open and the
cup is being filled. The more liquid in the cup, the less opening in the inlet. Eventually,
when the cup is full, the inlet is closed ands hence, the desired level (the level setpoint) is
reached.

Another system: Water toilet.

Solution to Problem 1.3

The control structure is shown in Figure 1.33.

Solution to Problem 1.4

1. Robot arm: Control signal manipulates the motor. Disturbances: Torques due to the
gravity and due to mechanical couplings to other links.
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Steam

Tsp
Product

Figure 1.33: Control structure of an evaporator.

2. Heat exchanger: Control signal manipulates the valve. Disturbances: Temperature
and pressure of inlet steam.

3. Ship: Control signal manipulates the propellers (thrusters). Disturbances: Wind,
current, waves.

Solution to Problem 1.5

1. The slope becomes

15m—-—0m 15 m m
= mA—dmA 16 ma  UPBT LA (142)

The constant term becomes

15 m
b=0m- & —-4mA=-375m (1.43)
2. With m =8 mA, (1.36) gives
15 m
p—a-m—l—b—l—(jm-SmA—3.75m—3.75m (1.44)

Solution to Problem 1.6

The filter function is given by (3.48), which with a = 0.1 becomes

Yms (k) = 0.9Ymy(tk—1) + 0.1ym (k)
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At time £g:
Ymf(to) = 0.9Ymr(t—1) + 0.1ym(to) =0.9-1040.1-9.11 = 9.911
At time t1:
Ymf(t1) = 0.9Ymr(to) + 0.1y (t1) = 0.9 -9.911 + 0.1 - 10.48 = 9.968
At time t9:

Ymf (t2) = 0.9Ym 7 (t1) + 0.1y, (t2) = 0.9 - 9.968 + 0.1 - 9.54 = 9.925

Yes, it is quite clear that these values of the filter output vary less than the filter inputs.

Solution to Problem 1.7

In (3.48): We set Ym, i = Ym. Assuming a the static response, both Ymfk = Yy and
Ymfk—1 = Ymyp. This gives

me = (1 — a)me + aYn, (1.45)

which, fortunately, gives
Yoy =Yn (1.46)

i.e., the static response is equal to the constant input.

Solution to Problem 1.8

From (1.9):
Tw 5.0
N=—+4+1=—-+1=101 1.47
= T T oos T (1.47)
From (1.11):
~ L L 00990 (1.48)
TN, T 1010 ‘

Solution to Problem 1.9

1. The block diagram is shown in Figure 1.34.

2. Since ug is not influenced by the temperature reference (setpoint), the control signal
remains constant. Therefore, the reference does not influence the actual temperature.
However, an increase of the fan opening will influence (reduce) the temperature
because more cold air is blown into the pipe.

3. The PID-controller gives zero control error (in average), see Figure 1.35.
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Air inflow
Control (Disturbance)
Temp.- -On Iro ¢ Temperature
setpoint Slr?enaieto (Process
i Controller —»u Alr heater 4 OlipUt)
(Process)
Temperature
measurement
Meas. Ym Temp.-
filter sensor

Figure 1.34: Block diagram of temperature control system

Solution to Problem 1.10

100 100

=_—— =_"=04 14
PB 250 0 (1.49)

Solution to Problem 1.11

Control error:
€L =Tk — Ymfk = 60.0 —59.4 =0.6

P term:
upr = Keep, =2-0.6 =12

I term:
Uik = Ui p—1 +dt - (K./T;) e =0.54+0.1-(2/10) - 0.6 = 0.512
Total control signal:

Ul = Umank T Upk + Uik = 50+ 1.2 +0.512 = 51.712

Solution to Problem 1.12

1. Setting e = E in the controller function gives

K, [? K.
u(t)= K.E+ =5 | Edt=K.E+ —Et (1.50)
T Jo T

7 A

which is “constant plus ramp”. Figure 1.36 shows this step response.
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°C 45

r Increased fan
35t y ) )
opening

i
b
§

30 prmmiey o .-\rrf,,rv

B s 10 15 20 25 t[s]

Figure 1.35: Temperature response with PID controller

uA
Slope
KoE/T;
KoE
0 >

Figure 1.36: Step response of PI controller.

2. From Figure 1.31 we see that
u0y)=2=K.FE=K.- 1=K,
And we see that the slope is

K
Slope=4=—F=—-1
T; i
which gives
T; = 0.5 sec

Solution to Problem 1.13

Ty =0173=0.1-2=02s
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Solution to Problem 1.14

From Figure 1.20:

1. The period is approximately 7.5 min.

2. The max and min values of the the temperature is approximately 43.0 and 35.5 deg C.
Then the average temperature is approximately (43.0 + 35.5)/2 = 39.25. And the
average control error is 40.0 — 39.25 = 0.75 deg C, which is non-zero.

Solution to Problem 1.15

1. Only the IAE indexes of control systems 1 and 2 can be compared to each other since
their IAE values are calculated over the same time interval.

2. Among control system 1 and 2, system 2 has best performance since it has smaller
TAE value than system 1 has.
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Chapter 2

Piping & Instrumentation Diagrams

In the industry, Process & Instrumentation Diagrams — P&I Ds are widely used as
documentation of control systems. A P&I D shows the structure of the control system. It
contains easily recognizable drawings of the processes to be controller, e.g. tanks and heat
exchangers, together with symbols for instrumentation equipment as sensors, controllers
and actuators, e.g. valves and pumps. We have already seen examples of simple P&I Ds in
the previous sections

This section gives a brief overview over codes and symbols used in the P&I D standard
ISA-5.1 by International Society of Automation. There are other similar standars, both
international, national and internal standards in factories.

2.1 Instrument codes

Instrument tags are used to give the instrument a unique name. The instrument code
contains a letter code that expresses the function of the instrument (i.e. what it does), and
a number code. For example, LC-102 is a Level Controller, while the LT-103 is a Level
Transmitter (sensor). When we refer to the instrument code, we use a hyphen between the
letter code and the numeric code, but when the instrument code is written in a P&I D, the
hyphen is not included.

2.1.1 Letter codes

Table 2.1 shows the most commonly used letter codes used in Process & Instrumentation
Diagrams.

Some examples:

e LLC = Level Controller

e LIC = Level Indicator Controller = level controller with level indicator
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Table 2.1: Common letter codes (identifiers) for instrument symbols in the ISA 5.1 standard

Letter | 1. letter Subsequent Subsequent
code modificator letter
to 1. letter
A Analysis Alarm
B Burner, Combustion
C User’s choice Control
D User’s choice Differential
E Voltage Sensor, Primary element
F Flow rate Ratio
G User’s choice Glass, Gauge
H Hand High
I Current (electric) Indicate
J Power
L Level Low
P Pressure
Q Quantity Integrate, Totalize
R Radiation Record
S Speed, Frequency Switch
T Temperature Transmit
A% Vibration Valve
W Weight, Force
Y Computation
7 Position Safety Instrumented
System (Interlock)
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e LE = Level Element = transducer; the primary device used to detect the process
variable to be measured, e.g. an ultrasound level sensor. Note: In P&I Ds, we will use
the letter code LT, not LE, to represent the level sensor.

e TT = Temperature Transmitter = temperature sensor
e PDT = Pressure Differential Transmitter

e TY = Temperature computation = some formula related to temperature
measurement or regulation, e.g. a feedforward controller based on temperature
measurement. The formula must be indicated on an appropriate place in the P&I D.

It is the function that determins which letter symbol to be used. Example: If a differential
pressure (dp) cell is used to measure fluid flow in a pipeline, the letter symbol FT — not PT
— must be used.

In P&I Ds where emphasis is placed on documenting control structures, and with little
emphasis on details such as whether the controller contains a display for showing the
process value, you can use the simplest letter code, e.g. LC instead of LIC.

2.1.2 Numeric codes

Numeric codes are used to number the instruments. The ISA 5.1 standard does not define
any specific standard for numbering instruments (such as controllers and sensors), but still
recommends choosing between so-called parallel and serial numbering:

e Parallel numbering: New numbering is started for each new first letter, with 1
being the lowest number.
Examples: FIC-101. FT-102. LIC-101.

e Serial numbering: The numbering is continuous, regardless of letter.
Examples: FIC-101. FT-102. LIC-103. LIC-104.

Serial numbering is used in the P&I Ds in this book.

The first digit of the number code may represent e.g.

o Area or field
e Unit

e Plant (factory)

The number of digits is not defined by the standard. It must be chosen so that all elements
can have their unique instrument code.
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2.1.3 Localization

You can use various symbols to indicate the localization of the instrument, so the user
knows where she/he can find it (this can be important information particularly in
emergency situations). Three different localizations are shown in Figure 2.1.

Instrument mounted locally
/£c)\ Instrument mounted in a central
\123/ (control room)

e Instrument available on screen in a

N123/ central

Figure 2.1: Main instrument symbols (FC123 is one example of instrument code)

If it is not important to show the location in a P&I D, you can use the simplest symbol,
which is a circle with only the instrument code inside (the upper symbol in Figure 2.1).

2.2 Signals

Figure 2.2 shows various signal symbols.

General (undefined) signal:

or

Electrical signal:

——————————————— or

Digital signal:

—0—0—0——

Pneumatic signal:

Figure 2.2: Signal symbols

2.3 Material flows

Figure 2.3 shows how material flows (process flows) can be drawn in a P&I D. Material
flows should be drawn with lines that are clearly thicker than signal lines. If the plant is so
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extensive that more than one flowchart is needed for all of the units, references to the
adjacent diagrams are indicated, as shown in Figure 2.3.

T@
(From) |
.

T-1
/
[

LT\A )

&

(To)

Material flows

@ @ 04 D

Water/oillgas Water Oil Gas

Figure 2.3: Drawing of material flows in a P&I D. (The example is a water/oil/gas separator.
The vertical line inside the separator is a so-called weir that is used to separate the oil and
water. The oil flows over the weir.)

In Figure 2.3, the material flows are identified with labels on the pipelines, and the flows
are defined at the bottom of the diagram. However, it is not required in the ISA 5.1
standard to label material flows in P&I Ds. Instead, material flows can be labelled in
so-called Process Flow Diagrams (PFDs), which are diagrams similar to technical flow
charts, but which show fewer details of the instrumentation. ISA’s documentation
guidelines encourages to avoid giving the same information in different diagrams. However,
this rule is not absolute, and control structures may appear both in P&I Ds and PFDs, and
you may define material flows in P&I Ds if you find it appropriate.

Note: In Figure 2.3, I have drawn arrow heads on the signal lines pertaining to the level
control loop. In the ISA 5.1 standard, arrow heads are generally not used on signal lines,
only ordinary lines. However, in this book I will still draw arrow heads to make the
direction of the signal flow completely clear. In comprehensive P&I Ds it may cause extra
stress to understand the signal direction from the symbols, although the direction is
obvious, but implicit. For example, the signal direction between a LT and a LC is obvious —
the signal goes from the LT to the LC.

2.4 Process equipment

2.4.1 Codes of process equipment

P&I Ds contain drawings of process equipment such as tanks, heat exchangers, pumps,
valves, etc. These can also be represented by letter and number codes, e.g. H-1 for Heat
Exchanger number 1. The ISA 5.1 standard does not define process equipment letters, but
some common letter codes are shown in Table . The numbering is usually serial.
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Table 2.2: Letter codes of process equipment

’ Code ‘ Equipment

Column

Drum

Furnace

Heat exchanger

Compressor
Motor
Pump

Reactor
Tank
Valve. Vessel

<\ EIRZH O Q

2.4.2 Valves

Some common valve symbols are shown in Figure 2.4.

Valve with membrane actuator:

Also a general symbol FO-valve
of control valve (Fail Open)
L I
FO
Valve with
. FC-valve
electrical actuator: )
(Falil Closed)
=5 ¥ o ok
FC
On/off magnetic Hand operated Valve with

valve (solenoid):  (manual) valve:  fixed opening:

>k <]

Safety valve Valve with Non-return
(at over-pressure): positioner: valve:

LN\
Atm P
o~ e
Figure 2.4: Valve symbols.

One comment:

e There are symbols for a Fail Open (FO) valve and a Fail Closed (FC) valve. The
“fail” situation means that the power, e.g. air pressure, needed to operate the valve
fails. So, a FC valve closes if the air pressure vanish.
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2.4.3 Rotational low components

Figure 2.5 shows various rotational flow components.

- O &

Pump

(general symbol) Sentrifugal Displacement

pump pump

Compressor Turbine

Figure 2.5: Symbols of pumps, compressors and turbines

2.4.4 Heat exchangers

Figure 2.6 shows symbols of heat exchangers.

Heat exchanger
(general symbol)

Tube fluid Shell-and-tube
heat exchanger

Shell fluid

Figure 2.6: Symbols of heat exchangers

2.4.5 Vessels

Figure 2.7 shows symbols of various types of vessels.

2.4.6 Mathematical functions

Figure 2.8 shows two alternative ways of including mathematical functions in P&I Ds. In
the example, the control signal ug is from a feedforward controller, to be added to the
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|

Open tank Closed tank
Vessel Reactor Absorber/  Destillation
stripping column
column

Figure 2.7: Symbols of various types of vessels

Alternative 1: Alternative 2:
uy | Control signal
from feedforward | Steam Ue Steam
controller
Upip U=Upp + Us Upip e u ( \/

Process Heater | Process | Heater

\ TY3:u=Upp + Us \/

Figure 2.8: Two alternative ways of including mathematical functions in P&I Ds.

control signal upip generated by a feedback temperature controller (PID controller). The
total control signal is u = upp + ug. Two alternatives are shown:

e Alternative 1: The mathematical function is specified directly with a suitable
mathematical symbol.

e Alternative 2: A general letter symbol is used, here TY, where Y stands for
“computation”, cf. Table 2.1. In this alternative, the mathematical function must be
specified at a suitable location in the P&I D.

2.4.7 Logical functions

In addition to arithmetic functions as discussed above, one can enter logical functions into
the diagram e.g. to express that a valve should be opened if the temperature in a tank is
above a certain limit. Such logical functions are used to implement safety actions, i.e.
interlocks, which are activated in critical situations.

A special diagram type denoted System and Control Diagram (SCD) has been developed in
Norway for the oil and gas industry. SCDs defines a uniform documentation of both logical
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control for safety, i.e. interlocks, and process control.

2.5 Problems for Chapter 2

Problem 2.1 Pé1I D of a level control system

Given a level control system for a water tank with inlet and outlet. The level control is
based on manipulation of a pump in the inlet. The controller is accessible via a computer
screen in a control room. Both the control signal and the measuring signal are electric.
Draw a Piping & Instrumentation Diagram of the control system.

Problem 2.2 Pé1 D of a temperature control system

Draw a Piping & Instrumentation Diagram of a temperature control system of a process.
You can select by yourself the process to be temperature controlled. It is assumed that the
controller is accessible in the field. The instruments are numbered with parallell numbering
with three digits. Both the control signal and the measurement signal are digital.

Problem 2.3 PéI1 D of a separator

Figure 2.9 shows an oil/water/gas separator. (The separation takes place by a sufficient
retention time.) The vertical line inside the separator is a so-called weir that is used to
separate the oil and water. The oil flows over the weir.

Water/oil/gas
from reservoir

Gas
/ Qil surfa{ce \
Water surface )
Separator
Water Oil
_’

Figure 2.9: Oil/water/gas separator.

Draw a Process & Instrumentation Diagram for the separator according to the following
requirements:

e The oil and water levels and the gas pressure in the separator are controlled to their
setpoints.
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The setpoints can be shown explicitly with arrows.

Signal lines may be drawn with arrows (although arrows are not normally used in P&I
D standards).

Control valves are used as actuators, and should be labeled.

The separator should be labeled.

Parallel numbering is used.

2.6 Solutions to problems for Chapter 2

Solution to Problem 2.1

See Figure 2.10.

7T
\ 1/

-+

®7

’

Figure 2.10: P&I Diagram of level control system.

Solution to Problem 2.2

See Figure 2.11.

Solution to Problem 2.3

The P&I D of the separator is shown in Figure 2.12.
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v Heating
medium

Figure 2.11: P&I Diagram of temperature control system.

A

Gas
pressure
setpoint
V-3 X
Water/oil/gas
from reservoir @
* Gas
/ Oil surface \ LT
Water surface 3
Qil level
) 6 setpoint
T-1 :
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Figure 2.12: Control structure of an oil/water/gas separator.
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Chapter 3

Components of control systems

3.1 Introduction

Section 1.4.3 provided a brief description of the components of such control systems. In the
present chapter, we will take a more detailed look at these component. Figure 3.1 shows a
block diagram of a general feedback control system. The diagram is the same as Figure 1.8,
but repeated here for convenience.
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: Ymf Meas Measurement : Ym
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L

Computer-based Measurement
control device noise

filter scaling dt
S T ! f E,
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Figure 3.1: Block diagram of a control system.
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3.2 Automation hardware

3.2.1 Introduction

The following sections presents various equipment implementing the component denoted
automation hardware in Figure 3.1.

3.2.2 Process controllers

The term process controller is often used for standalone automation units that implement a
small number of — typically one — PID control loops. Figure 3.2 shows an example of a
process controller, namely the ABB CM50 '. Values of setpoint, process variable, and
control signal are displayed on the front panel.

[ e ——————

!

Figure 3.2: The process controller ABB CM50 (height 14.4 cm, width 7.6 cm).

Figure 3.3 shows the backplane of the controller. Sensors and actuators are connected with
cables to terminals on the backplane.

LControl Master 50
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Figure 3.3: Backplane of the process controller ABB CM50.

Below is a list of some of the features of the ABB CM50 controller. The list is
representative of process controllers, although this controller is quite advanced.

e Control functions:

— PID controller with adjustable parameters:

« Proportional band P in range 0-999%. (The relationship between the P and

controller gain K. is P = 100/ K..)

* Integral time 7; in range 0-10000 s.

x Derivative time Ty in range 0-999.9 s.

— Manual control with control signal adjustable in range 0-100%.
— On/off controller, cf. Ch. 1.4.5.

e Control tuning:

— Autotuner with the “relay method”, cf. Ch. 14.6.
— Gain scheduling, cf. Ch. 14.10.3.
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— Adaptive PID setting, i.e. continuous updating of the PID parameters on the
basis of an estimated transfer function process model.

Sampling time (time step): 0.125 s.

Measurement filter: Moving average filter with averaging interval adjustable in the
range 0-60 s, cf. Ch. 3.4.6.1.

Setpoint (reference): Can be set locally on the controller, or received externally, e.g.
from another controller or from a sensor. The setpoint can be given a ramp-shaped
change between two different values to obtain a smooth shift from one setpoint value
to another.

Analog inputs: Measurement signals (from sensors), cf. Ch. 3.3:

— Current in the range 0-50 mA (which covers the standard range 4-20 mA)
Voltage in the range 0-25 V
— Millivolt signals in the range 0-150 mV

Resistance values in the range 0-55 €2
— Thermocouples (eng.: thermocouples = TC) of many types: J, K, L, etc.
— Resistance thermometer: Pt100 elements within the range —200 - 4600 °C.

Analogue output signals (control signals to actuators):

— mA in the range 4-20 mA or 0-20 mA
— Pulse-width modulated control signal, c¢f. Ch. 3.6.3
— Split-range control, cf. Ch. 16.3.

Digital inputs from e.g. limit switches and push buttons.

Digital outputs for controlling e.g. lamps, relays and motors.

Logical control with logical operators as AND, OR, etc.

Data communication: Connection to external devices with Modbus or Ethernet.

Alarms: A warning can be given on the front panel if the process value exceeds alarm
limits.

Programming: From the front panel or from a computer (PC) using a wireless
connection.

Power supply to the regulator: Mains voltage or 24 VDC.

Control structures: The CMb50 controller contains ready-made templates for the
following structures, see Example 3.1.

— Single-loop control, cf. Ch. 1.4.2. (However, two independent regulation loops can
be implemented.)

— Cascade control, cf. Ch. 16.1.
— Ratio control, cf. Ch. 16.2.
— Feedforward control, c¢f. Ch. 17.
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Example 3.1 Control structure template in process controller CM50

Figure 3.4 shows an example from the control structure templates, namely level control of a
boiler. The process variable to be controlled to a setpoint is the water level in the boiler.
The control signal from the controller is the control signal for the air-actuated valve. The
control structure is cascade control. The primary loop is based on feedback from sensor LT.
The secondary loop is based on feedback from flow sensor FT for the feedwater.
Feedforward control is based on sensor FT of the steam flow.

» Steam
Steam W
A O I,

Feedforward

Drum Level Disturbance

Transmitter
Water Steam Interface —s T Master PV
Slave PV

Water with Steam Bubbles

O/P | YFimw»
7
Boiler Drum

! - Feedwater

Feedwater Control Valve

Figure 3.4: From the control structure templates of ABB CM50: Level control of a boiler.

[End of Example 3.1]

3.2.3 Programmable logic controllers (PLCs)

Programmable logical controllers (PLCs) is a type of automation equipment that is widely
used — in process industry, discrete processes, building automation, water resource recover
plants?, motor control, traffic control, etc.

PLCs are available both as relatively small compact units, and as modular systems where
special modules can be added as required. Figure 3.5 shows a PLC.

The name PLC suggests that PLCs are meant for logical control of valves, motors, lamps,
etc., but typically modern PLCs can also run PID control.

Figure 3.6 shows the principle structure of a PLC. Program development usually takes place
on a PC, possibly on a hand-held programming tool, and the finished program is then
downloaded to the PLC where it runs on the microprosessor (see Figure 3.6), independently
of the PC.

PLCs can be programmed in different types of programming languages. The open standard
IEC 61131-3 standard (IEC = International Electrotechnical Commission) defines the
following languages:

20lder term: Wasterwater treatment plants.
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SIEMENS|
|

o
|

Figure 3.5: A Simatic PLC. (Public domain. https://en.wikipedia.org/wiki/Programmable_logic_controller.)

e Ladder diagram (LD), graphical programming

Function block diagram (FBD), graphical programming

Structured text (ST), textual programming

Instruction list (IL), textual programming

Sequential function chart (SFC), which is not really a separate language, but instead
a standard for organizing the program in serial and parallel sequences.

Different vendors of PL.Cs may offer their own variation of the above languages.

3.2.4 Programmable automation controllers

Programmable automation controllers (PACs) can be considered as an alternative to a PLC.
A PAC is a modular system for e.g. logical and sequential control and continuous PID
control. In some ways, PACs are more manufacturer-specific than PLCs as they typically
have their own “proprietary” programming languages. These languages may be flexible and
powerful than PLC languages, and can therefore give PACs greater functionality than PLCs.
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Figure 3.6: The structure of a PLC. (AD = analog-digital. DA = digital-analog.)

Figure 3.7 shows an example of a PAC, namely Compact FieldPoint (National
Instruments). The control program is developed in LabVIEW on a PC and then
downloaded to the PAC equipment where it runs independently of the PC.

National Instruments presents the CompactRIO as follows: “The CompactRIO platform
features a range of embedded controllers with two processing targets: (1) a real-time
processor for communication and signal processing and (2) a user-programmable FPGA to
implement high-speed control and custom timing and triggering directly in hardware.
Eliminate the need for separate subsystems by connecting directly to sensors, displays,
cameras, and motors and take advantage of powerful development and run-time software.

3.2.5 Plantwide control systems

In modern factories, the control (or automation) systems are implemented in complex,
structured computer-based systems.

In the past, when computer performance was generally far weaker than it is today, the
control system was implemented using one central computer, possibly with one additional,
redundant computer to increase security. These days, control systems instead have a
distributed structure. This means that the implementation of the control system is
distributed on a number of computers. These computers can be process controllers, PLCs,
PACs and/or other types of automation devices.
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Figure 3.7: CompactRIO (National Instruments).

Plantwide control systems are modular and scalable. This implies that the existing system
can be modified and expanded with new control devices modules to obtain the desired
functionality of the system.

Figure 3.8 shows an example of a plantwide control system. The system consists of a
number of levels:

e Field level. Here, the control system interacts with the physical process via sensors
and actuators. In Figure 3.8, motors are the physical processes.

e Control level. This level includes the PLCs, PACs, process controllers and process
stations. Different types of automation devices can communicate with each other
using digital communication based on standardized communication protocols. It is
common for control systems to consist of equipment from several different suppliers.

e Operator level. This level includes process operators and computers — operator
stations -- which are used for process monitoring and possibly control in e.g. control
room. The operator stations display process images with tanks, containers, valves,
etc., as well as dashboards, alarm indicators (for example too high a level in a tank)
and diagrams with plots of process data (for example the time course of a level in a
tank).

e Management level. This level includes operations and company management and
computers that are used there for overall monitoring and operational planning. This
kind of planning is called ERP (enterprise resource planning). ERP software is a
software tool for the overall management of business areas such as production,
storage, sales, purchasing and finance.
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Figure 3.8: Example of a plantwide control system (PCS7, Siemens).
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Between the various levels, data is exchanged digitally using standardized communication
techniques. Analog signals (current or voltage) are only used at the field level, but also
digital communication is common at field level.

Process data, which are logged values (time series) of process measurements, control signals,
set points, alarm signals etc., are stored in a process database. Historical process data can
later be retrieved for presentation and analysis on computers at the operator level and
management level.

DCS and SCADA

A distinction is often made between DCS control systems and SCADA control systems,
although there are not very clear lines between them. DCS is short for Distributed Control
Systems; SCADA for Supervisory Control and Data Acquisition. Here are some special
features of the two types of control systems:
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e DCS systems consist of equipment and software which mainly originates from one
total supplier where equipment, functionality and data communication are integrated
and optimized.

e DCS systems can have special processing stations which are powerful computers in
control cabinets. These computers can run advanced, computationally demanding
algorithms for e.g. model-based control and simulation.

e A DCS system often has its own, proprietary function block-based language for
developing control programs. Some of the function blocks may be advanced. For
example, Emerson’s DeltaV system has its own functions for MPC control
(Model-based Predictive Control) and functions for process modeling with neural
network models.

e SCADA systems use PLCs and/or RTUs (RTU = Remote Terminal Unit). An RTU is
an I/O unit that can send out analogue and digital data to actuators and receive such
data from sensors. The SCADA software running on operator-level PCs, may come
from a different supplier than the PLC and RTU supplier(s).

Examples of DCS/SCADA suppliers/products are: Siemens/PCS7, Rockwell
Automation/PlantPAX, Honeywell /Experion, ABB/System 800xA and Emerson/DeltaV,
Schneider Electric/ AVEVA.

3.2.6 Platforms for home-made automation systems

In the sections above, we took a look at various platforms industrial automation systems.
The following sections gives a brief presentation of some platforms for home-made
automation systems.

3.2.6.1 Standard PC with I/O device

In facilities where there are no strict industrial requirements for regularity and safety, a
standard PC with an I/O device may be used to create a powerful and flexible
computer-based control and monitoring system. The application program runs on the PC.
Examples of such facilities are experimental setups for research and teaching which are used
for a limited period of time, and which are not damaged if the PC hangs up. Such PCs are
often used for things other than control and measurement, e.g. editing documents,
calculations, internet searches, etc., and there is indeed a chance that the PC will hang or
be disturbed in some other way.

The PC may be programmed with tools such as LabVIEW or Matlab/Simulink. Relatively
inexpensive I/O may be purchased for reading measurement signals and generating control
signals, typically in the form of voltage signals. The I/O device may communicate with the
PC via USB. If the PC or the program stops, the I/O device may hold the last control
signal, which prevents the system from a shut down.
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Figure 3.9 shows an example of a PC-based control and monitoring system for an
experimental facility of a biogas reactor. The PC runs a LabVIEW program. An I/O device

Internet

1/O-device
(in electronics cabinet)

PC running LabVIEW Process (biogas reactor)

Figure 3.9: PC-based control and monitoring system for an experimental setup for a biogas
reactor (University of South-Eastern Norway).

with USB communication with the PC is mounted in a electronics cabinet. From the
cabinet there are cables for transmitting voltage signals to actuators (here: pumps) and
from sensors (here: sensors for temperatures, gas flow and gas concentration). The PC is
connected to the internet. With suitable software, remote login can be carried out on the
PC via any other PC on the Internet, to run and maintain the LabVIEW program and to
download files with timeseries of data.

Alternatives to standard PCs are industrial PCs, which are PCs designed to be far more
robust than normal PCs.

3.2.6.2 Raspberry Pi

Raspberry Pi is a an electronics board with a programmable microcontroller and various
types of inputs and outputs. Figure 3.10 shows a Raspberry Pi 3. It can be connected to
various kinds of extention equipment, e.g. electronic breadboards where various components
like motors, switches, LEDs, etc. can be mounted and interconnected, displays (both
standard monitors and small displays), and a keyboard.

Essential features of the Raspberry Pi:
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Figure 3.10: Raspberry PI 3.

e Physical dimensions: 8.6 x 5.7 cm.
e Digital inputs and outputs (I/0).
e Analog voltage inputs, to read measurement signals from sensors.

e No analog outputs! However, some of the digital outputs can be used for approximate
analog output based on pulse-width modulation, cf. Section 3.6.3.

e The standard operating system is Raspberry Pi OS (formerly denoted Raspbian)
which is based on Linux.

e The microcontroller can be programmed with Python code.

e Of course, any algorithm, e.g. a PID controller, a signal filter, etc. can be
programmed on the Raspberry Pi.

The home page of Raspberry Pi is on

https://www.raspberrypi.org/
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Raspberry Pi Pico

Raspberry Pi Pico is a very small electronics board with a programmable microcontroller
and various types of inputs and outputs. Figure 3.11 shows a Raspberry Pi Pico with
pre-solded headers (pins) mounted on a breakout board for connecting wires to external
equipment. The Raspberry Pi Pico can also be mounted directly on electronics breadboards
(a breadboard is shown in Figure 3.12).

Breakout board:

Wifi +
Bluetooth

1/0 pins
(pre-solded headers)

Figure 3.11: Raspberry Pi Pico with breakout board.

Essential features of the Raspberry Pi Pico:

Physical dimensions: 5.1 x 2.1 cm.

Digital inputs and outputs (I/0).

Analog voltage inputs, to read measurement signals from sensors.

No analog outputs! However, some of the digital outputs can be used for approximate
analog output based on pulse-width modulation, cf. Section 3.6.3.

e The microcontroller can be programmed with MicroPython code — not full-fledged
Python.
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e Algorithm for PID control, signal filtering, etc. can be programmed.

3.2.6.3 Arduino

Arduino® is a an electronics board with a programmable microcontroller and various types
of inputs and outputs. There are various versions of Arduino hardware. Figure 3.12 shows
an Arduino UNO R3 with an electronics breadboard where various components like motors,
switches, LEDs, etc. can be mounted and interconnected.

Digital I/0
erminals marked "~" can be used for analog output with PWM

supply
to Arduing

Power from Arduino

Figure 3.12: Arduino Uno R3 with electronics breadboard.

Essential features of the Ardunio:

e Digital inputs and outputs (I/0).

3 According to Wikipedia, the name Arduino stems from the bar Arduino in Ivrea, Italy where the founders
of the project used to meet.
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e Analog voltage inputs, to read measurement signals from sensors.

e No analog outputs! However, some of the digital outputs can be used for approximate
analog output based on pulse-width modulation, cf. Section 3.6.3.

e The microcontroller can be programmed with the Arduino programming language,
which is based on the C language. Both C and C++ code can be used in the
programming.

e Algorithm for PID control, signal filtering, etc. can be programmed.

The home page of Arduino is on

https://www.arduino.cc/

3.3 Sensors

3.3.1 Introduction

This chapter describes examples of sensors for measuring the following common process
variables:

Temperature

Pressure

e Level

Liquid and gas flow
e Gas concentration

Position

Speed

In one of the problems at the end of this chapter, you are asked to find additional sensors.

3.3.2 Temperature sensors

The two most common temperature sensors — or thermometers — are thermocouple
thermometers and resistance thermometers. Figure 3.13 shows some industrial temperature
sensors including the transmitter, which is the “head” of the components shown in Figure
3.13. The transmitter typically outputs a current signal in the standard range of 4-20 mA
and/or a digital measurement signal representing the temperature.
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\ b :
. d

Figure 3.13: Industrial temperature sensors including transmitters (the “head” of the com-
ponents). [Autek AS]

3.3.2.1 Resistance thermometer

Resistance thermometers — also denoted resistance temperature detectors — (RTD) are
perhaps the most commonly used type of temperature sensor. Figure 3.14 shows the
principal construction of an RTD.

Power supply
24 \VVDC

[ |

Electronics |— o
T %R with Measurement signal
Wheatstone's 4-20 mA
bridge —©°

Resistor at the
measurement spot

Figure 3.14: Principal construction of a resistance temperature detector (RTD).
The temperature is detected using a resistor placed at the measurement spot. The
resistance R [2] vary with the temperature 7' [°C] in a known way:
R(T) = Ro(1 +aT) (3.1)

where Ry is the resistance value at 0°C, and a is a constant that depends on which metal is
used as resistance. R is found with a special electrical circuit called Wheatstone’s bridge
which is generally used for precise calculation of an unknown resistance value.

Pt100 sensors are the most commonly used type of RT'Ds. Pt is short for platinum. For
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Pt100 sensors,
Ry =100 Q (3.2)

a=3.9083-1073°C! (3.3)

Once, R is detected (with the Wheatstone’s bridge), 7" can be calculated from (3.1):

(R/Ro) — 1

T= (3.4)

Since the measurement principle is based on an accurate measurement of the resistance R,
variable resistance value in the signal lines due to e.g. temperature changes and aging can
give an inaccurate temperature measurement. To increase the accuracy, one or two
additional conductors can be connected between the bridge connection and the resistance at
the measuring point. Two-wire sensors as in Figure 3.14 are the least accurate, while
four-wire are the most accurate.

Resistance thermometers have an accuracy of approx. 0.2 °C. They can be used for
measuring temperatures in the range of approximately [—100,500] °C, but for a given
sensor the range will be smaller, e.g. [0,100] °C.

As an alternative to a Pt100 sensor, you can use a Pt1000 sensor”, cf. Example .

Example 3.2 Temperature sensor and transmitter

Figure 3.15 shows an electronics box including a Pt1000 sensor and a transmitter. (The box
is used in a temperature control application of a kettle, but the kettle is not shown in the
figure.) The Pt1000 sensor is connected to the transmitter, which generates a current
measurement signal in the range 4-10 mA representing the temperature in the range 0-100
°C, with a linear relation between the ranges:

4-10 mA <= 0-100°C (3.5)

A precision resistor of 250 2 is mounted between the current signal terminals to convert the
current signal into a voltage signal. The reason for this transformation is that the data
acquisition device (not shown in Figure 3.15) can only read voltage signals, not current
signals. According to Ohm’s Law, the current signal and voltage signal ranges relate as

follows:
4-10 mA < 1-5V (3.6)

Then we have,
1-5 V <= 0-100°C (3.7)

[End of example 3.2]

1 think you can guess what the number 1000 means here.
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Figure 3.15: Electronics box including a Pt1000 sensor and a transmitter.

3.3.2.2 Thermocouple thermometers

The measuring principle for thermocouple thermometers is based on the Seebeck effect: An
electromotive force (EMF) exists between two points of a metallic electric conductor if the
points are at different temperatures. Some metals have greater EMF per temperature
difference than others, i.e. different metals have different Seebeck constants, also denoted
thermoelectric sensitivity, in unit ¢V /K. It is this phenomenon, i.e. that different metallic
conductors have different Seebeck constants, that is exploited in thermocouples.

Figure 3.16 illustrates the principle of thermocouple thermometers. T, is the temperature
that the thermocouple thermometer is to be measured. Two conductors, which must be
different metals, are connected together at the measuring point, also denoted the “hot
junction”. An expansion cable of the same metal type as the measurement lead wires
themselves can be used to connect the measurement element, which is in or near the
process, to a voltage measurement meter that is typically at a distance off the measurement
point, e.g. in a room. The place where the generated voltage v is detected, is called the
reference point, or the “cold junction”. The temperature T, at the reference point is
assumed known. In modern thermocouples, T is measured with a temperature-sensitive
semiconductor component, e.g. a thermistor, which is built into the thermocouple. T, can
now be found from the detected voltage v for a given thermocouple. However, we will not
go into more details about how to get T}, from v.
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Figure 3.16: The principle of thermocouple thermometers.

The accuracy of thermocouple thermometers is approximately 2 Kelvin.

Thermocouple thermometers will of course not react instantaneously to temperature
changes. A typical time constant (or response time, cf. Section 9.3) of thermocouples
without encapsulation is 10-20 ms, while the time constant with solid encapsulation can be
in the region of 10-20 s ( )

Thermocouple thermometers come in different versions, each having a unique combination
of metallic conductors. The different types are identified by a letter code: K, E, J, N, etc.
The different types have different thermoelectric sensitivities, different measurement ranges,
and different robustness against environmental effects. Here are some data of a type K
thermocouple, which is a widely used type®:

o Metal conductors: Cromel + Alumel (both are alloys with mainly nickel).

e Sensitivity: It varies with temperature. As an example, for the range [100,110] °C,
the thermoelectric sensitivities is 41.3 pV/K.

e Temperature range of application: [—35,1260] °C.

3.3.3 Pressure sensors

There are many types of pressure sensors. Here we will only look at the sensor type denoted
dp (differential pressure) cells.

Dp cell pressure sensors are widely used as pressure sensors. They can be used also for
measuring other process variables, such as

SInformation by Autek AS, Norway
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e Level, cf. Section 3.3.4

e Flow of liquid and gas, cf. Section 3.3.5

Figure 3.17 illustrates that one type of dp cell can be used for measuring feed water flow,
liquid level and steam pressure.

Pressure
measurement
-
Level
Steam measurement
Boiler
Flow
measurement
(1 7 ¥ LD302
r )<
Feedwater

Figure 3.17: One type of dp cell is used for measuring feed water flow, liquid level and steam
pressure in a boiler.

Figure 3.18 shows an example of the construction of a dP cell. The left part of the figure
shows the structure of sensor or transducer itself. Py is the pressure on the high pressure
side, Pr, on the low pressure side. When these two pressures are different, the pressure
difference will cause the diaphragm, which is a plate that can hold an electric charge, to be
displaced and to have a changed position in relation to two fixed metallized plates. The
plates and diaphragm form an electrical capacitance. The displacement causes the
capacitance value to change. This change is detected by an electronic circuit. From the
measurement of the capacitance change, the differential pressure is calculated and presented
on a display in the part that makes up the transmitter of the dp-cell. The dp value is
available as a current signal in the standard range of 4-20 mA and as a digital measurement
signal in various formats.
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Figure 3.18: Example of construction of a dP cell. (Smar Pressure Transmitter. LD300
Series. Autek AS.)

3.3.4 Level sensors

There are many different types of level sensors. Here we will look at two types:

e Ultrasonic level sensor, cf. Section 3.3.4.1.

e Dp cell-based level sensor, cf. Section 3.3.4.2.

3.3.4.1 Ultrasonic level sensor

Figure 3.19 shows an example of an ultrasonic level sensor and an application to measure
the level of water in a tank. Also, the specifications of the sensor is shown in the figure.

The operating principle is that ultrasonic pulses are sent towards the surface of the liquid
(or other material) of which the level is to be measured. The reflection time T, [s], i.e. the
time from emission to reception of the ultrasonic pulse, is detected. The speed of sound v
[m/s] is known (330 m/s in air). Then, the distance L [m] from the sensor to the liquid
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Figure 3.19: Ultrasonic level sensor. (Microflex, Autek AS.)

surface can be calculated:

(3.8)

Ultrasonic level sensors are relatively easy to install in the process. They can, however,
cause problems when mounted in too small containers as there may be unfavorable
reflections of the pulses.

3.3.4.2 Dp cells as level sensor

Dp cells as pressure sensors were described in Section 3.3.3. Dp cells can be used for level
measurement. The dp cell is then used to detect the hydrostatic liquid pressure at the
measuring point. Since this pressure is a function of the liquid level above the measuring
point, the level can be calculated from the pressure.

Figure 3.20 shows the principle of measuring the liquid level in a tank using a dp cell. The
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Figure 3.20: The principle of level measurement using a dp cell.

hydrostatic pressure p [Pa] at the measuring point, i.e. at the PH input of the dp-cell, is

p = pg(h+ ho) (3.9)

where h + hg [m] is the total liquid height, g [m/s?] is the gravity, p [kg/m3] is the density
of the liquid. From 3.9) we get the following formula for liquid level A:

h=2 ", (3.10)
Py

3.3.5 Flow rate sensors

We will look at different principles and sensors for measuring material flow rate, also
denoted flow velocity. Most of the principles presented can be applied to both liquid flows
and gas flows.

3.3.5.1 Flow rate measurement with orifice and dp cell

Figure 3.21 shows how flow rate in a pipeline can be measured with an orifice (an annular
constriction) mounted inside a pipline, and a dp cell. The flow rate is larger at the
constriction than ahead of the constriction. In general, the pressure in the liquid decreases
with increased flow rate. Therefore, the larger flow rate, the larger pressure drop at the
constriction. For an orifice with a fixed orifice opening, the following applies:

F =ky/Ap (3.11)
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Figure 3.21: Flow rate measurement with an orifice and dp cell.

where F is the flow rate in an appropriate unit, e.g. m®/s, and Ap is the pressure drop. k is
a constant. The pressure drop can be measured with a dp cell, cf. Section 3.3.3.

3.3.5.2 Ultrasonic flow rate measurement

Ultrasonic flow rate measurement can be used for liquids and gases. An advantage,
comparing with other methods, is that the sensor can be mounted “clamp-on”, so an
intervention on the pipeline is not necessary.

Figure 3.22 shows an industrial ultrasonic flow rate sensor and the basic structure of such a
sensor. The sensor consists of two sender-receiver pairs, S1-R1 and S9-Ro. The senders send
ultrasonic pulses regularly — for example several hundred times a second — and at the same
point of time. The receivers detect the transport time of the sound pulse it receives. In

Figure 3.22, 1 [s] is the transport time of a pulse sent downstream, i.e. from S; to Rg, while
to is the transport time of the pulse sent upstream, i.e. from So to Ry. ¢ is less than ¢1. The
flow velocity v [m/s] is proportional to the difference between these two transport times, i.e.

v==Fk(ts —t1) (3.12)
From v, the volumetric flow rate Q [m?3/s] can be calculated with
Q:’U-A:k(tg—tl)'A (313)

where A [m?] is the internal cross-sectional area of the pipe. (Of course, units other than
m?/h and m? may be used here.)
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Figure 3.22: Top: An industrial ultrasonic flow rate sensor. (The symbol Ex means that
this sensor is suitable for potentially explosive atmospheres.) (Fluxus, Flexim, Flow-Teknikk
AS.) Bottom: The principle structure of ultrasonic sensors.

In Figure 3.22 there is one reflection. More than one reflection may be used; the ultrasonic
pulse is then reflected in the pipe walls several times on its way from sender to receiver.
This may increase accuracy, but at the same time the receiver will receive weaker signals.
Ultrasonic sensors of the brand mentioned in Figure 3.22 are able to find the optimal
number of reflections, i.e. the optimal sound path.

As an example of characteristic data of ultrasonic flow rate sensors, below are data of the
ultrasonic flow rate sensor mentioned in Figure 3.22:

Update period of measurement signal: 1 s.

Measurement range: 0.01 ... 25 m/s.

Accuracy: Approx. 1% of read value £0.01 m/s.

Resolution: 0.025 cm/s.

116



CHAPTER 3. COMPONENTS OF CONTROL SYSTEMS

3.3.5.3 Coriolis flow rate sensor

Coriolis mass flow sensors are used to measure both mass flow rate and volume flow rate of
liquids and gases. Figure 3.23 shows an industrial Coriolis mass flow sensor.

Figure 3.23: Industrial Coriolis flow rate sensor. (Heinrich’s TMU. Flow-Teknikk AS.)

The principle of Coriolis flow rate sensors is as follows. See Figure 3.24. Inside the sensor,
the medium — liquid or gas — passes through two pipe loops. With two loops, the forces
arising due to the vibrations in the sensor, cancels each other, thereby prevening the sensor
from vibrating. The motion actuators ensures that the loops are in periodic oscillations at
the particular frequency being the natural or resonance frequency of the loops including the
medium. The actuator ensures that the oscillations are in opposite phase, i.e. one loop is
moved up when the other is moved down.

The two loops have a certain flexibility, i.e. they are twistable, as indicated in Figure 3.24.
When the medium flows through the moving loops, a Coriolis force arises on the flowing
medium. This force is due to the fluid being in a reference system that rotates around the
axis shown in Figure 3.24.

For each of the two loops, the Coriolis force causes the loop to twist, and the direction of
motion depends on whether the liquid moves towards the axis or away from the axis on its
way through the loop. The twist on each side of the loop is detected by respective motion
sensors, see Figure 3.24.

For Coriolis flow rate sensors the following applies:

e The mass flow rate F, [kg/s] is a function of the phase shift ¢ [degrees] between the
oscillations. This phase shift is equal to 360 degrees times the time shift dt [s] divided
by the period P [s].

e The density of the liquid p [kg/m’] is a function of the period P of the oscillations.

117



CHAPTER 3. COMPONENTS OF CONTROL SYSTEMS

Rotational axis

Flow in 2 / — Flow out

- = \. . —
P : .

Motion sensor A .
Motion sensor B

Motion actuator
(creating
oscillations
up-down)

Figure 3.24: The principle of Coriolis mass flow sensors. (The figure showing the sensor itself
can be found at http://en.wikipedia.org/wiki/Mass_flow_meter.

From the detected of mass flow rate and density, the volume flow rate F, [m3] can be
calculated with
F,=— (3.14)

It is common for Coriolis flow rate sensors to output also a temperature measurement.

Coriolis flow rate sensors can cover large areas and are relatively accurate, but they are also
relatively expensive. For example, the sensor shown in Figure 3.23 covers 0-2.2 tons/h with
an accuracy of 0.1% of measurement range (span).

3.3.5.4 Magnetic flow rate sensor

Magnetic flow rate sensors are based on Faraday’s law which expresses that an electromotive
force (emf - electromotoric force), i.e. an electric potential, or voltage, is induced in a
conductor that moves in a magnetic field. The voltage is proportional to the speed of the
conductor in the field, i.e. the greater the speed, the greater the voltage. In general, liquids
are electrical conductors. In magnetic flow rate meters, the fluid velocity , i.e. the flow rate,
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is measured with the voltage induced as the fluid moves in a magnetic field.

Figure 3.25 shows the basic structure of a magnetic current sensor and an image of an
industrial sensor. A magnetic field is generated inside the sensor. Usually, magnets are used

Voltage
measurement

Electric conducting liquid element
moving in the magnetic field.

Pipeline

Flow

Induced

) voltage
Sensor with g

Magnetic A
field non-conducting wall

Figure 3.25: Magnetic flow rate sensor for liquid flow (Flomid FX, Techfluid. Flow-Teknikk
AS.)

that are mounted outside the pipeline, and in that case the magnets must work through a
piece of pipe that is not conductive; Otherwise the magnetic field would not pass through
the liquid, but instead follow the pipe wall (like a Faraday cage). The sensor part of the
pipeline usually consists of a plastic material. In the figure you can see a shows a fluid
element that moves in the magnetic field. Remember that a fluid is an electric conductor.
Due to the motion, a voltage is induced in the liquid element. This voltage is detected by
electrodes. (An electrode is a piece of material that conducts electric current to or from a
liquid, a gas, a body part, etc., or to another electrode which is in contact with the liquid.)
Since the induced voltage is proportional to the velocity of the fluid element (conductor),
the voltage will indicate the fluid velocity.

To prevent electrostatic conditions in the liquid itself from causing a systematic error in the
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measurement, the direction of the magnetic field is changed with a fixed frequency. The
difference in induced voltage between periods with opposite field directions then forms the
basis for measuring the fluid velocity.

Magnetic flow rate sensor can measure liquids with particles.
The measured the volume flow rate F [m?/s] can be calculated with
F=Av (3.15)

where v [m/s] is the fluid velocity and A [m?] is the internal cross-sectional area of the
pipeline. A must be precisely known so that the volume flow can be measured accurately.

Here are some data given in the data sheet for the sensor depicted in Figure 3.25:

o Accuracy: +£0.5 % of displayed flow rate value.

e Recommended flow velocity: Approx. 0.5-4 m/s. If the volume flow rate range of what
is to be read is known, you can then use ([eq_qdv]) to calculate the appropriate pipe
diameter in the sensor. (If the calculated sensor diameter is smaller than the diameter
of the pipeline, narrowings are fitted on each side of the sensor. Guidelines are given
for the narrowings’ slope and distance from the sensor.)

3.3.5.5 Thermal flow rate sensor

Figure 3.26 shows an example of a thermal mass flow rate sensor. The shown sensor is for
gases, e.g. biogas, but there are thermal flow rate sensors also for liquids. The device shown
in Figure 3.26 also has a built-in control valve (see right part of the figure), as well as a
controller, and therefore implements a control system for mass flow rate.

Figure 3.27 shows the principle of thermal mass flow rate measurement. A part of the flow
of the medium (gas or liquid) is heated using heating coils in two subsequent heating
sections. The temperature in each of the two sections, i.e. T7 and 715, is detected, see
“sensor bridge” in the figure. The temperature difference between the two sections is
proportional to the mass flow rate F' [kg/s], see the diagram in the figure:

AT =Ty — Ty = kF (3.16)

So, assuming AT and k are known, F' can be calculated with

_ar

F
k

(3.17)

3.3.5.6 Vortex flow rate sensor

When you see the flag flapping in the wind, you see the vortex principle in free dressage.
The greater the wind speed, the higher the frequency in the flutter ring. The frequency
basically gives an expression of the wind speed.
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Figure 3.26: Example of thermal mass flow sensor for gas. The unit also has a built-in control

valve and a regulator and therefore implements a mass flow control system. (Bronkhorst.
Flow-Teknikk AS.)

A vortex sensor is based on the fact that a restriction in a pipeline creates regular vortices,
and the frequency of these vortices is proportional to the flow rate. By detecting the

frequency, the flow rate can be measured. This principle applies to both liquid flow and gas
flow.

Figure 3.28 illustrates the principle and shows an industrial vortex sensor. The frequency in
the pressure vortices is usually detected with e.g. piezoelectric crystals, which are crystals

where charges are produced when they are exposed to pressure.

The measurement accuracy for vortex sensors is around 1 % of the maximum measurement
value.
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Figure 3.27: The principle of thermal mass flow rate measurement. (Bronkhorst. Flow-
Teknikk AS.)

3.3.6 Sensors for gas concentration

Figure 3.29 shows an example where you need to measure gas concentration, namely a
biogas reactor which converts various types of biological material, e.g. food waste, slaughter
waste, manure, etc., into biogas, which mainly consists of methane and carbondioxide. The
energy content of the biogas for combustion is the methane. Therefore, biogas reactors are
usually equipped with methane gas flow rate sensors to indirectly measure the power
production by the reactor. The methane gas flow rate can be calculated as the product of
the total biogas flow rate using e.g. a thermal gas fom rate sensor, cf. Section 3.3.5.5, and
the methane concentration.

The methane concentration can be detected with e.g. a spectroscopic concentration sensor
where the concentration in percent is detected by measuring the intensity of light with a
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Figure 3.28: The principle of vortex sensor for measuring gas or liquid flow and an industrial
vortex sensor. (Racine. Flow-Teknikk AS.)

specific wavelength — typically infrared (IR) light — is absorbed by the gas, see Figure 3.30.

The measuring accuracy of one example of a spectroscopic sensor is approximately 2 % of
the upper limit of the measurement range.

3.3.7 Position sensors

There are several types of position sensors. Here, I will present only the encoder.

3.3.7.1 Encoder

Encoders are popular for measuring of angular position. Figure 3.31 shows a principle
sketch of an encoder. The encoder is attached to the object whose angular position is to be
measured. The encoder has a number of evenly spaced slits that can let the light from the
light source through. As the encoder disc rotates, light pulses are generated for each of
channels A and B. These channels are 90 degrees (a quarter period) offset from each other
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Figure 3.29: Methane concentration measurement used to calculate the methane gas flow
rate out of a biogas reactor.

to enable detecting an increasing as well as a decreasing position. The counter is a logic
circuit that counts the pulses for channels A and B. If the direction of rotation is positive,
the counter counts up. If it is negative, it counts down.

A typical number of pulses, n, also denoted bits, for each of the channels for one full
rotation is 1024. This gives a resolution, angle change per pulse, of

r= 360 degrees [degrees/pulse] (3.18)
n

For example, if n = 1024,the resolution is r = 360 degrees/1024 pulses = 0.3516 degrees per
pulse.

In addition to channels A and B, encoders often also have a Z channel, which gives one
pulse for each time the code disc has rotated once. The Z channel can be used to define a
reference position, so that for example position zero corresponds to a lifting arm standing in
a vertical position.

Encoders can be used together with suitable data acquisition equipment from various
suppliers. Figure 3.32 shows an example with equipment from National Instruments. The
I/O module shown to the left can be connected to a encoder. The programming tool
LabVIEW has functions for recording the position measurement signals from the encoder
which, via the NI-9401 module, are read by LabVIEW running on a PC.
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Figure 3.30: Spectroscopic measurement of gas concentration using IR lamp and detector.
(IR = Infrared.)

3.3.8 Speed sensors

There are several types of speed sensors. Below I will present the encoder and the
tachogenerator as sensors for rotational speed.

3.3.8.1 Encoder

Figure 3.31 shows an encoder. Assuming only one-directional rotation, the absolute value of
the speed v [rpm]| can be calculated from the detected frequency f [# pulses/s] of either
pulse train A or B:

v=1 (3.19)

n
where n is the number of pulses or bits of the encoder for one full rotation, i.e. 1024.

If the rotation is bi-directional, the speed can be calculated as the time derivative of the
position measurement:

v(t) = §'(t) (3.20)

which in discrete-time form can be approximated with

S (tk) — S (tkfl)
dt

u(ty) ~ (3.21)

where s(j) is the position value at the current point of time and s(tx_1) is the position
value at the previous point of time. dt [s] is the sampling time of the position measurements.
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Figure 3.31: Encoder for position measurement.

3.3.8.2 Tachogenerator

A tachogenerator® is an electrical machine generating a DC voltage that is proportional to
the rotational speed of the machine. When a tachogenerator is connected (fixed) to the
shaft of some rotating device, e.g. a motor, the tachogenerator acts as a rotational speed
sensor for that device. The generated voltage u; [V] is approximately proportional to the
rotational speed v [rpm = revolutions per minute]:

up = Kv (3.22)

where K [V/rpm] is the tachogenerator constant. Figure 3.33 shows an application of a
tachogenerator as speed sensor of a DC motor.

3.4 Signal conditioning of measurement signals

3.4.1 Analog measurement signals

Sensors output the measurement signal as an analog signal or a digital signal, and some
sensors output both analog and digital signals. Below is a brief description of analog

5Tacho means speed in Greek.
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Figure 3.32: Example of equipment that can measure position measurement signals from an
encoder. (National Instruments)

signals. There are many forms or standards for digital signals (RS-232/serial,
RS-485/Modbus, HART, etc.), but these are not described in this book.

Current signals

A common process measurement signal form is electric current in the range of 4-20 mA
(milliamperes), but 0-20 mA is also used.

Voltage signals

Although not as common as current signals, measurement signals can be in the form of
electrical voltages, typically in the range 0-5 V or 1-5 V.

3.4.2 Current loop

In process instrumentation, current loops are common. Figure 3.34 shows a current loop.
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Figure 3.33: A tachogenerator connected to the shaft of a DC motor for speed measurement.
(Electro-Craft S-19-3AT.)

Current loops comprise the following:

e A power supply delivering typically 24 VDC.
e A sensor supplied with 24 VDC from the power supply.

e The sensor generates a measurement signal in the form of an electrical current in the
typical range of 4-20 mA, representing the value of the pertinent process variable, e.g.
temperature, level, pressure, etc.

e A device registering a measurement signal in the form of an electrical voltage with a
specified range, e.g. 1-5 V. Examples of devices are data acquisition devices, and
controllers. Actually, there can be several devices in series in the current loop,
although only one device is shown in Figure 3.34.

e A resistor for converting the current signal into a proportional voltage signal. The
resistance needed can be found with Ohm’s Law:

U
R=— (0] (3.23)

As an example, assume the signal ranges given above, the resistance is 5 V/20 mA =
250 Q.

3.4.3 Analog-digital (AD) conversion

Figure 3.35 illustrates the operation of analog-digital converters (ADC). ADCs are included
in automation hardward, but they are also available as separate electronic components.
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Figure 3.34: Current loop.

In process control applications, the sampling time dt of an ADC is typically less than 1 sec,
eg. 0.1s.

The AD converter will use a certain number of bits, n pieces, each with value either 0 or 1,
to represent the analog signal. n = 12 is a typical value for AD converters. What is the
meaning of these bits? They are coefficients for the digital value expressed in the total
system. As an example, let’s assume that n = 12. Assume that the AD converter will be
used to convert analog values y, which are in the range [ya,.., Yar.e)s €-8- [4, 20] mA. It can
be shown that the digital value can be expressed as a function of these bits as:

b2 4+ 510210 + ... 4 512" 4 by2°
Yd = 212 _ 1

(yamaks - yamin) + yamin (324)

where the numerator is actually the representation of the number in the total system. Since
it is the values of the bits that vary as y, varies, the digital signal can be represented in a
more compact way as a set of bits:

Yda ~ bi1bio...biboo (3.25)

where subindex 2 means that this set of bits is actually a binary number in the binary
number system.
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Figure 3.35: Analog-digital converter (ADC).

Bit b,—1 = b1y is called MSB (most significant bit), while bit by is called LSB (least
significant bit).

Example 3.3 Digital representation of analog value

Assume that the bit set is
ya ~ 010...005 (3.26)

Inserting into (3.24) gir

0-214+1.21040.29. . 4+0-2140-20

Ya = 212 —1 (yamaks - yamin) + Yamin (327)

10

[End of Example 3.3]

ADC resolution

AD converters are of course very useful since they make analog signals available as digital
numbers for computers. But not all information is retained in the digital numers. The finite
number of bits limits how accurately the digital signal can represent the analog signal. This
accuracy is in terms of the resolution of the ADC. From the specified resolution you select
an appropriate ADC.

From (3.24) we can calculate the smallest change in y, that y; can detect. Assume that
only the least significant bit in the digital signal, i.e. bit by (LSB), changes value from 0 to
1. This change is Aby = 1. From (3.24), where n is the number of bits, we see that the
corresponding change in y4 becomes

Ab(] = 1 yamax - yamin
Ayg = o _ 1 (Yamax — Yamin) = Ton_1 R (3.29)
So, the resolution is
Ya — Yan;
R — max min 3‘30
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Figure 3.36 illustrates the resolution R.
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Figure 3.36: The resolution R.

The relative resolution calculated as a fraction of the analog signal range is
1

Reol= —— 3.31
7o (3:31)

Example 3.4 Resolution

Given a 12-bit AD converter which covers the analog signal range from y,_, =4 mA to
Yamax = 20 mA. The resolution is then

Yamax ~ Yami 20—4
R — max 1111 —
2n —1 212 1

= 0.0039 mA (3.32)

The relative resolution is

1 1
R p— p— p—
07 on 1~ 2121 4095

In the old times 8-bit AD converters were common. They had a relative resolution of

1 1

=0.24-1072=0.024 % (3.33)

Ry =

[End of Example 3.4]

Example 3.5 Simulation of analog-digital conversion

The simulations in this example are made with the following SimView simulator:

http://techteach.no/simview/signal_quantizer
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Figure 3.37 shows a signal, u, in range 0-100 % and the corresponding quantized signal,
with just n = 4 bits ADC conversion.

[suwer v /]
Signal Quantizer o Quentizedu [N

Settings | About |

Number of bits, n 80-
(min 4, max 15) z
o4 70-
60°
Quantization step (resolution) Z'
=100%/(2*n-1) 50-
6,67 -
40-
30-
20-
10-
;J 54,0

Figure 3.37: n = 4 bits ADC conversion.

Figure 3.38 shows the signals with n = 12 bits ADC conversion. The resolution is clearly

I : ]
H 2 %) .
Signal Quantizer o Quentized u [0NG

Settings | About |

Number of bits, n
(min 4, max 15)

o2

Quantization step (resolution)
=100%/(2*n-1)
0,02

G496 t[sec]

Figure 3.38: n = 12 bits ADC conversion.
better with more bits.

[End of Example 3.5]

3.4.4 Scaling of measurement signals

We have already, in Section , seen how to scale a measurement signal with a linear scaling
function. I will not repeat it here. Instead, I will present some new terms which are relevant
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to measurement scaling. Figure 3.39 shows an assumed linear measurement characteristic
which expresses the process value p as a function of the measurement signal m:

p=a-m+b (3.35)
with slope
N (3.36)
mo — My

and intercept or constant (calculated from point 1; alternatively point 2 could have been
used) is
b=p1—a-m (3.37)

Process value, p (m2,p2)

Upper process value (p2) — %

Measurement range Measurement
I characteristic

Measurement span
=p2-pl

Lower process value (p1)__ Y

—p

= measurement zero 1
/4 mA 20 mA

(m1,p1) Measurement value, m

Figure 3.39: Measurement characteristic.

In Figure 3.39, several measurement parameters are defined: Span, zero, and range. These
parameters may be adjustable on the transmitter of the sensor.

3.4.5 Accuracy of measurement signals

Measurement accuracy is the largest difference — as an absolute value — between the
measurement and the real process value, see Figure 3.40.
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Measurement signal
expressed in units of
process variable

(e.g. deg C)
A
a
~N
Accuracy
Ideal
measurement
curve S
Real
measurement curve
(exaggerated)

Process value
(e.g. deg C)

Figure 3.40: Measurement accuracy.

The accuracy of a sensor can be found in the data sheet. The accuracy is usually expressed
either as a fraction of the maximum measurement value (Upper Range Limit — URL), or of
the full scale (FS) value to which the sensor has been adjusted to measure.

Example 3.6 Measurement accuracy

Given a gas flow rate sensor with URL = 600 L/d (liters per day). The sensor has an
accuracy of 1.5 % of URL, i.e. 600-1.5/100 =9 L/d. So you must assume that any
measurement value has an error of 9 L/d.

[End of Example 3.6]

A couple of other types of accuracy terms are:

o Temperature drift. For example, the zero point (the lowest point) of the measurement
range may change with temperature with an amount equal to the temperature drift.

e Age drift. For example, the zero point of the measurement range may change during 2
years with an amount equal to the age drift.
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3.4.6 Measurement filters

A measurement lowpass filter is used to attenuate noise in the process measurement signal.
In control systems, the following two lowpass filter types are common:

e Moving average (MA) filter, which you met in Section 1.4.3.

e Time constant filter
These two filters can be realized with the same discrete time filter algorithm, so it does not

matter much which one you use. Still, I like to present both filters since both are popular.
They are presented in the following sections.

3.4.6.1 Moving averaging (MA) measurement filter (revisited)
The MA filter algorithm

The MA filter algorithm was already presented in Section 1.4.3, but is repeated here for

convenience:
Ny—1

1
= — ; 3.38
Ymf,k Nf g Ym,k—i ( )

Recursive implementation

To implement (3.38) we need to store Ny — 1 old samples. Although computers are powerful
nowadays, it is regarded a good habit to minimize data storage. To this end, let’s develop a
recursive version of (3.38) which requires storage of only one variable.

(3.38) can be written as

Ny-1
Nf -1 1 1
= i — 3.39
Ymfk Nf Nf 1 Zz; Ymk—i | + Nf Ym,k ( )
Nf —1 1
= _ — 3.40
Nf Ymf,k—1 + Nf Ym,k ( )

where yp, ¢ x—1 is the filter output from the previous time step. In (3.40) the previous filter
output is updated with the present “raw” filter input.

(3.40) can be written as
Ympk = (1= @) Ympr—1 + aYmk (3.41)

where the filter parameter a is

(3.42)
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How to tune an MA filter

The tuning factor of the filter is the filter length, Ny. From (1.8) we can conclude:

e The larger Ny, the more samples are averaged, giving stronger filtering. Another way
to see this, is that a large Ny gives a small a (closer to 0), which gives stronger
filtering, cf. (3.41).

e The smaller Ny, the larger a (closer to 1), and the weaker filtering.

Thus, Ny should be as large as possible, to obtain strong noise filtering. But, it must not be
set so large that also relevant process (e.g. temperature) information is filtered. In practice,
various values of Ny can be tried until an ok value is found. Think in terms of the filter time
window (7,), in the process industries, an appropriate T;, may be some seconds. As an
example, assume that T, = 2.0 s and that the sampling time of the filter is dt = 0.1 s, then
T, . 20

=Y i1=""41=21 3.43
i + (3.43)

Ny 01

Example 3.7 MA filter implemented in Python

Figure 3.41 shows a noisy sinusoidal input (blue curve) and the filter output (red curve)
with an MA filter. The measurement noise is filtered effectively (the red curve is much
smoother than the blue curve).

Comments to the simulations:

e The noise-free measurement, or “pure process signal, is
yp(t) = Acos(27t/t,) (3.44)
with amplitude A = 1 and period ¢, = 100 s.

e Measurement noise is added to the noise-free measurement. This noise is random and
uniformly distributed between +A,, where A, = 0.05.

e Filter time step is dt = 0.1 s.
e Filter time window is T;, = 2.0 s.

e There is a small lag between the input signal and the output signal. A lag is
inavoidable for online or real-time filters where the filter acts on new samples as they
come. (For offline or batch filters the lag can be eliminated.)

e The initial value of the filter output, yy, (red) is the same as the unfiltered input, or
noisy measurement, y,, (blue) — namely approximately 1.0. Hence, the filter is
“bumpless”. In general, filters in control system should be bumpless, since the
controller acts upon the filter output. Setting the initial filter output to e.g. zero
would give an unfortunate control signal behaviour.
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Figure 3.41: Input and output of an MA filter.
The MA filter is implemented in program 3.1.

http://techteach.no/python /files/ma_filter.py

Listing 3.1: ma_filter.py

Moving average filter
Finn Aakre Haugen, TechTeach. finn@techteach.no
2022 12 28

# %% Import

import matplotlib.pyplot as plt
import numpy as np

# %% Filter function
def fun_ma_filter(ym_k, yf_kml, Nf):

a = 1/Nf
yEf_k = (1 - a)*yf_kml + a*ym_k

return yf_k
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# %% Simulation time settings

dt = 0.1 # [s]

t_start = 0 # [s]

t_stop = 150 # [s]

N_sim = int((t_stop - t_start)/dt) + 1 # Num time-steps

# %% Preallocation of arrays for plotting

t_array = np.zeros(N_sim)
ym_array = np.zeros(N_sim)
ymf _array = np.zeros(N_sim)

# %% Params of signals

A =1 # Amplitude of cosine

tp = 100 # [s] Period of cosine

An = 0.05 # Ampl of uniformly distributed random noise
num_samples = 1 # Number of samples from random generator
# %% Filter param

Nf = 21 # Filter length

# %% Simulation loop

for k in range(0, N_sim):

t_k = kxdt # Time

# Signals:

yp_k = A*np.cos(2*np.pi*xt_k/tp) # Noise free measurement

n_k = np.random.uniform(-An, An, num_samples)[0] # Meas noise
ym_k = yp_k + n_k # Noisy measurement

# MA filter:
if k == 0: ymf_kml = ym_k # Initially, filter out = filter in
ymf_k = fun_ma_filter(ym_k, ymf_kml, Nf)

# Arrays for plotting:
t_array[k] = t_k
ym_array [k] = ym_k
ymf_array[k] = ymf_k

# Time index shift:
ymf_kml = ymf_k

# %% Plotting

plt.close(’all’)
plt.figure (1)

plt.plot(t_array, ym_array, °’b’, label=’ym’)
plt.plot(t_array, ymf_array, ’r’, label=’ymf’)
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plt.legend ()
plt.xlabel (’t_k [s]’)
plt.grid O

plt.savefig(’response_ma_filt.pdf’)
plt.show ()

[End of Example 3.7]

3.4.6.2 Time constant filter
3.4.6.3 Continuous-time filter function

The time constant filter can be represented by the following differential equation:

Yrnf = Wm — Ymy) [Ty (3.45)

where:T} [s] is the filter time constant. ¥, is the unfiltered (raw) measurement signal, and
Ymy is the filtered measurement signal.

Sometimes, the filter is represented by a transfer function corresponding to (3.45):

Ymy () oo 1
Tfs +1

(3.46)

(In (3.46), s is the Laplace variable. Transfer functions are described in Ch. 8.)

The tuning parameter of the filter is the filter time constant, 7. How to set T? That
depends on how much noise smoothing you want and the dynamic properties of the process.
If you do not have any other requirements, you can initially set it equal to one tenth of the
time constant of the process to be controlled to avoid the filter adding too much
sluggishness to the control loop. It turns out that a time constant of a few seconds is a
typical value in industrial control loops (of e.g. temperature loops).”

A SimView simulator of a time constant filter is available on:

http://techteach.no/simview /lowpass_filter

Discrete-time time constant filter

In computer-based automation systems the filter is available as a function block containing
program code that implements the filter algorithm. We will derive a filter algorithm with
(3.45) as the basis. Let us assume that the time step of the filter algorithm is dt [s]. It is

"In one of the Fuji PID temperature controllers the preset value of the filter time constant is 5 sec.
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tradition to discretize a time constant filter using the Euler Backward method.
Approximating the time derivative in (3.45) with Euler Backward approximation, gives

Ymfk = Ymf k-1
dt

Ty + Ymfk = Ymk (3.47)

We need a formula for the filter output at time index k. Solving (3.47) with respect to ¥, sk
gives the filter algorithm:

Ympe = (1= a)ympr—1+ aym (3.48)

with 0
= 3.49
T Tyt (3.49)

The filter algorithm (3.48) is sometimes denoted the exponentially weighted moving average
(EWMA) filter.

Comparing time constant filter with moving average filter

Filter algorithm (3.48) is identical to the MA filter algorithm (3.41) if
Ty =T, (3.50)

and the time step dt of each of the filters is the same. Therefore, as long as you implement
(3.48), or (3.41), you can say that you implement an MA filter or (equally correct) a time
constant filter.

How to tune a time constant filter

The tuning factor of the filter is the time constant T¢. From (3.48) and (3.49), we can
conclude:

e The larger T the smaller a (closer to 0), giving stronger filtering.

e The smaller T the larger a (closer to 1), and the weaker filtering.

It is important that T is considerably larger than dt, or in other words, that dt is
considerably smaller than Ty. Otherwise, the filter algorithm (3.48) may behave quite
differently from the continuous-time filter (3.45) from which it is derived. We may set the
lower bound on Ty as 10 - dt, i.e.

Ty > 10dt (3.51)

How can we choose an appropriate value of T? It should be as large as possible, to obtain
noise filtering. But, it must not be set so large that also relevant process (e.g. temperature)
information is filtered. In practice, various values of T’ should be tried until an ok value is
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found. In the process industries, typical T values are some seconds. At one particular
industrial plant in Norway, the default value of T is 2 sec. And PID temperature
controllers by Fuji Electric have T = 5.0 s as default. On processes with very fast
dynamics, as motors, Ty should probably be set to a fraction of a second.

3.4.6.4 Analog RC circuit filter

Figure 3.42 shows an analog time constant filter implemented with a resistor and capacitor,
often denoted an RC filter.

R[]
+ o o +
Input Vi, [V] ClFl==  Vou[V] Output
~ 6 o —

Figure 3.42: RC filter.

It can be shown, cf. Example 4.5, that the filter model is
Uout/ = (Uin - Uout) / (RC) (352)
Comparing with (3.45) we see that the filter time constant is
Ty = RC (3.53)

So, you can obtain a specified filter time constant by chosing appropriate sizes of the
resistor and the capacitor.

3.5 Actuators

3.5.1 Introduction

The automation equipment uses actuators to operate or manipulate the process to be
controlled. In the following subsections, we will look at some of the most commonly used
actuators:

e Control valve

e Pumps

e Motors

e Heaters

141



CHAPTER 3. COMPONENTS OF CONTROL SYSTEMS

3.5.2 Valves

3.5.2.1 Structure and operation

Control valves control valves are used to manipulate liquid flow rates and gas flow rates.
Figure 3.43 shows a pneumatically controlled control valve. By manipulating the air
pressure, the diaphragm and thus the valve stem and plug are moved up or down. In this
way, the liquid or gas flow rate can be manipulated using air pressure.

Pressure supply Principal sketch:

11.2 bar Control signal
4-20 0.2-1.0 l
mA =3 bar =
EETEE—
Control ' _ I
signal  IP converter Diaphragm Air

Air

Stem
3 e Plug
~— — Seat
W -
Body
J tﬂ ")
\ \'—" A'
(] ’ /
Flow s
/’ s =
' =y

| 3
4 3
w
e}
=.
>
«
B

Figure 3.43: Pneumatically controlled control valve. (Valve image: Samson-Matek AS)

3.5.2.2 Valve equation and valve characteristics
Valve equation

The valve equation expresses the relationship between liquid flow rate ), valve opening z,
and pressure drop p, across a valve. (In this presentation, liquid is assumed; we do not go
into gas valves.) The valve equation can be written as

Do
Q=K,f(2) el (3.54)
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where:

e (Q [m3/h] is the liquid flow rate.

e p, [bar] is the pressure drop across the valve.

G is specific (relative) density in relation to water. For water, G = 1. For oil,
G ~ 0.85.

K, is the valve constant or the capacity index.

e 2 is normalized valve opening. z = 0 means fully closed valve. z = 1 means fully open
valve.

f(2) is the valve function which has a value between 0 and 1. f = 1 means maximum
flow rate for a given pressure drop p,. The valve function constitutes the valve
characteristics, see below.

Let’s assume f = 1, i.e. maximum flow rate. The valve equation (3.54) is then

Qmax = Ky % (3.55)
Therefore, the valve equation (3.54) can be written as
Q = Quaxf(2) (3.56)
which gives 0
) = e (3.7
In other words, f is the normalized flow rate.
Definition (or meaning) of valve constant K,
From (3.55) we see that
Ky = Qmax (3.58)

assuming the pressure drop p, is 1 bar, and water as medium. (3.58) defines K. It is
assumed that Qmax is observed at temperature 15.5 °C = 60 °F. In other words, K, is the
water flow through a fully open valve at the specific temperature 15.5 °C = 60 °F.

Valve size selection

When you are to select the valve size for a given application, you select K, = Qmax- A
capacity margin of e.g. 50 % should be taken into account.
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Inherent valve characteristics

The valve function (3.57) defines the inherent valve characteristics, which is the valve
characteristics when the valve is not connected to a process, i.e. when the valve “stands
alone”. For control valves, there are three relevant inherent characteristics, see below. They
are plotted in Figure 3.44.
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Figure 3.44: Various inherent valve characteristics (valve function).

Linear valve characteristics

The linear characteristic is given by

fz)== (3.59)

FEqual percentage valve characteristic

This is a logarithmic characteristic, and hence a nonlinear characteristic. The equal
percentage characteristic is given by

f(z) = R™* (3.60)
where R is the rangeability, which typically has a value of 50.
Square root valve characteristic

This is also a nonlinear characteristic, given by the square root function:

f(z) = V= (3.61)
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Valves with this valve characteristic are denoted “quick opening valves”. They are
particularly relevant for safety operations, and not so relevant for usual feedback control.

Installed valve characteristic

Figure 3.45 shows a feedback control system of a process with valve as actuator. The
control system may be e.g. a temperature control system or a level control system. The

Q Eij Q Q
Process —

Control
valve

Pv Pp

Ps

Figure 3.45: Feedback control system of a process with valve as actuator.

installed valve characteristic, finst(2), that expresses the relationship between valve opening
z and flow rate ( when the valve is connected to the process:

Q = Qmaxfinst (Z)

or

Fint (2) = QQ

finst(2z) may be different from f(z) if the pressure drop p, in the valve equation (3.54)
depends on the flow rate Q).

(3.62)

Example 3.8 Inherent and installed valve characterics

The difference between finst(z) and f(z) is illustrated with the application depicted in
Figure 3.46 where the temperature of a simulated heat exchanger is controlled with a control
valve (V-1 in the figure) as an actuator. The valve adjusts the hot water flow rate used to
heat the cold process fluid. Both the inherent characteristic and the installed characteristic
for both the linear valve and the equal percentage valve are shown in the valve characteric
diagram at the left side of the figure. This diagram is shown enlarged in Figure 3.47.
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Figure 3.46: Heat exchanger where a control valve manipulates the hot water flow rate into
the heat exchanger.

e The dashed curves are the inherent valve characteristics for both types of valves.
e The solid curves are the installed valve characteristics for both types of valves.

e The dots in the diagram represents the present operating point.

From the curves in Figure 3.47 we see that, in this application, the installed characteristic
of the nonlinear, equal percentage valve is more linear than the installed characteristic of
the linear valve! This is because the pressure drop over the heat exchanger — the process —
depends largely on the flow through the process. This is explained further after this
example.

[End of Example 3.8]

Selection of valve characteristic

I will here not go into a further, detailed analysis of how the installed versus differs from
the inherent valve characteristic, but present guidelines for selecting between a linear valve
and an equal percentage valve.

In general, it is advantageous for the control system that the installed characteristic is as
linear as possible. Below are some guidelines for selecting a proper valve characteristic:
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Valve characteristics = flow / max flow = Kv/Kv0 at pv = 1 bar:
Inherent valve char for linear valve -

Inherent valve char for equal percentage valve -
Installed valve char linear valve
Installed valve char for equal percentage valve

Kv/KvD

Flow / max flow

I
0 10 20 30 40 50 o0 70 80 9 10

Valve opening, z [%] 40 4

Figure 3.47: Inherent characteristic and the installed characteristic for both the linear valve
and the equal percentage valve used in a simulated heat exchanger.

e A wvalve with linear characteristic should be selected if the pressure drop across the
valve is approximately constant even if the flow rate varies. This is the case when the
pressures on each side of the valve are approximately constant. An example is when a
valve in the inlet is used to fill a tank with liquid.

o A wvalve with equal percentage characteristic should be selected if the pressure drop
across the valve varies significantly with the flow. This is the case when the pressure
after (downstream) the valve, or the “resistance pressure”, varies significantly with
the flow rate. Example 3.8 illustrates this case. There, flow resistance varies with flow
rate due to the pipes and/or plates inside the heat exchanger, and concequently, an
equal percentage characteristic should be chosen.
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3.5.3 Pumps
3.5.3.1 Centrifugal pumps

Centrifugal pumps, see Figure 3.48, are the most common pump type in industry, for both
liquids and gases. The pump is driven by a motor, typically an alternating current (AC)
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Figure 3.48: Centrifugal pump. (http://en.wikipedia.org/wiki/Pump).

motor. The flow through the pump is given by both the pump speed (pump engine speed),
and the pressure drop across the pump. This pressure drop again depends on the pressure
(flow resistance) from the plant itself. This pressure drop will increase with the flow
through the system and depend on e.g. of the valve opening etc. in the plant.

In pump operations, pressure is often expressed in terms of head H, which is the
hydrostatic pressure due to water column height, H:

p=pgH

where p [Pa] is pressure, H [mHyO = meter water column] is head, p [kg/m?3] is density, and
g [m/s?] is gravity.
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Flow control

The flow through centrifugal pumps is a function of both the speed of the impeller and the
pressure difference across the pump. The pressure difference changes if the pressure (flow
resistance) from the plant changes. Centrifugal pumps are therefore often flow controlled to
ensure that the pump delivers the desired flow despite such pressure variations, see Figure
3.49.

Flow
reference
(setpoint)

Control
signal

Figure 3.49: Centrifugal pump with flow rate control.

Select pump or valve?

Both control valves and pumps are actuators that are be used to manipulate the rate of
liquid or gas flow to a plant. Should you use valve or pump? The company Siemens has
made calculations that show that it is more economical to use a (speed-controlled) pump
rather than a control valve (a supply pump is assumed to provide a suitable supply pressure
for the valve). Using a pump can provide 50 % energy savings compared to using a valve.
This is not so surprising. Using a pump corresponds to controlling the speed of a car with
gas and brake, but never at the same time, while a supply pump plus a control valve is like
pressing the gas pedal fully in to have a high fuel supply to the engine, and using the brake
to obtain the desired speed, i.e.using gas and brake at the same time — which is obviously
not an optimal way to drive a car.

3.5.3.2 Displacement pumps

Displacement pumps provide a liquid flow that is proportional to the pump speed —
regardless of the pressure drop across the pump. Figure 3.50 shows a displacement pump —
a so-called peristaltic pump — for small liquid flows. A roller pushes the liquid forward
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through a flexible plastic tube. The speed can be controlled with a voltage or current
signal.

Figure 3.50: Peristaltic pump, which is a type of displacement pump.
(http://en.wikipedia.org/wiki/Pump)
Other examples of displacement pumps are gear pumps and piston pumps.

Particles in the fluid can cause greater problems for positive displacement pumps than for
centrifugal pumps. In general, positive displacement pumps can work at greater load
pressure (resistance pressure) than centrifugal pumps can.

3.5.4 Electrical motors
3.5.4.1 AC motors

AC motors (AC = alternating current) is the most used motor type in industrial
applications. AC motors are used for the operation of fans, pumps, screws, compressors, etc.

AC motors are manipulated by frequency converters, see Figure 3.51.
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Figure 3.51: Sinamics V-20 frequency converter and Simotics GP AC motor. (Simatic S7-
1200 PLC. Siemens AS.)

The frequency converter converts the alternating voltage from the fixed network (1- or
3-phase network, 230 V, 50 Hz) into an alternating voltage with variable voltage and
frequency suitable for controlling the speed of the AC motor. The frequency converters are
controlled by automation equipment such as PLCs.

3.5.4.2 DC motors

To appear

3.5.5 Electrical heaters

Electrical heating elements in the form of heaters and resistance wires are widely used to
manipulate the temperature in various types of processes. The heat is generated when an
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electric current passes through the resistor in the heating element. Figure 3.52 shows some
commercial products.

Heaters Resistance wire

Application of resistance wire

Figure 3.52: Heating elements. (Kanthal products. Sandvik AB, Sweden).

If the heating element is to be included as an actuator in a temperature control system, the
mains voltage may be switched on/off over the heating element using pulse width
modulation, cf. Section 3.6.3.

To select a proper heating element in terms of resistance value, you must first decide the
average power Piyerage [W] the component is required to emit, and then calculate the
resistance value R [Q]. If you are going to use the AC voltage from the mains as a voltage
source, you can use the effective value Ueg [V] of the AC voltage to calculate the resistance
value. The following fundamental formulas of electrical power apply:

U 2
Paverage = —;f; (363)
which gives
R e’ (3.64)
P, average ‘

For mains voltage in e.g. Norway, Ueg ~ 226 V.
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Resistance wires are characterized with their length-specific resistance value:

R

RS:Z

[Q/m] (3.65)

R, can be used to select the appropriate resistance wire, as demonstrated in Example 3.9.
Example 3.9 Calculating a proper resistance value

Given a biogas reactor which is to be heated with a heating wire wound around the reactor.
The heater must be able to emit 200 W when the mains voltage is switched on. Assume
that a length of L = 10 m is appropriate. What value of Rs; meets the specifications?

From (3.64) we get
Ug? (226 V)?

R= = = 255 Q2
Prean 200 W

which gives
R 255 Q Q
Be=T=90m =% n

[End of Example 3.9]

3.6 Signal conditioning of control signals

3.6.1 Scaling of control signals

We will now focus on the control signal scaling function (block) in Figure 3.1. This function
scales or transforms the control signal calculated by the controller into a control signal to be
applied to the actuator — typically a milliampere (mA) current signal.

Figure 3.53 plots a linear scaling function. The units and values used in the figure are just
examples. Other units and values may apply in other cases.

The linear scaling function in Figure 3.53 can be expressed mathematically as

v=a-u+b (3.66)
where the slope is
a=2"" (3.67)
Uz — U

and the constant (based on point 1; alternatively point 2 could have been used) is

b=v—a-wu (3.68)

Example 3.10 Control signal scaling
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(u2,uq2)
20 mA &
\%
Control signal
to actuator
0 mA >

/00/ u 100 %
()

Control signal
(u1,Uqz) from controller

Figure 3.53: Control signal scaling.

Assume a control system with control signal scaling as shown in Figure 3.53.
What are the values of a and b?

What is the control signal, v, to the actuator if the control signal, u, from the controller is
50 %?

(3.67) becomes

Vg — U1 20 mA — 0 mA 20 mA mA
= = =— — =02 — 3.69
Uy — U] 100 % — 0 % 100 % % (3.69)
(3.68) becomes
mA
b:vl—a-ulz()mA—O.QV-O%ZOIHA (3.70)
0
If w =50 %, (3.66) gives
mA
v=a-u+b=0.2—-50 %+ 0mA =10 mA (3.71)

%

[End of Example 3.10]
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3.6.2 Digital-analog (DA) conversion

Figure 3.1 shows the place of the DA converter (DA = digital-analog) in a feedback control
system. The DA converter is an electronic component that converts the digital control
signal into an analog (physical) control signal, which is typically a current signal in the
range of 0-20 mA, or 4-20 mA, or a voltage signal, e.g. 0-5 V, acting on the actuator.

Figure 3.54 illustrates DA conversion. The DA converter operates with a fixed time step, or

Time delay of

Digital signal Analo
g(t) 9 signa? approx. dt/2
Udig\ Tk
N . Un(®) 7
° DA converter with <
° hold cw_cwt _Wlth .747—
o sampling time
- dt [sec].
tx tx

Figure 3.54: DA (digital-analog) conversion.

sampling time, dt [sec], which is typically set equal to the sampling interval in the AD
converter, cf. Figure 3.1. The digital control signal is converted to an analog current or
voltage signal, and is held in an electronic component denoted the hold circuit until the
next digital control signal is available. This means that the analog output signal from the
DA converter is actually a staircase-shaped signal, see Figure 3.1. In practice, the actuator
controlled by this staircase-shaped signal is a slow system compared with the sampling time,
and the actuator can hardly “feel” the steps but instead an almost smooth control signal.

As illustrated in Figure 3.1, the holding results in the average analog signal being
approximately time-delayed by half the sampling time, i.e.

_dt

5 (3.72)

-
If dt, and therefore 7, is very small compared to the time constant, 7' (the time constant is
defined precisely in Ch. 9.3), of the actuator, this time delay makes no impact on the
performance of the control system. “Very small” may be interpreted as dt < T'/10.

3.6.3 Pulse-width modulation

Pulse-width modulation (PWM) is an “actuator” technique to obtain in average a specified
control signal with just an on/off signal, which we can denote upwm. This signal is typically
the closed/open state of a mechanical relay or a solid state relay (SSR), which is a
semiconductor-based relay without any mechanical parts.

155



CHAPTER 3. COMPONENTS OF CONTROL SYSTEMS

PWM is typically an option in industrial process controllers (Section 3.2.2). In
microcomputer systems as Raspberry Pi and Arduino, PWM is used implement “analog
output”.

The principle of PWM is to keep upwm at constant values U, and Uyg for such a duration
that the resulting average control signal, tmean, is as specified. PWM elements operates
with a given fixed period, t,, e.g. 1.0 sec, see Figure 3.55. (In the figure, Uyg is assumed 0,

tp l-Jon Uoff
o Ll
P — []]]

[%]
(Pulse Width Modulation)

Duty cycle: D [%] = ton/ty

Umean

Upwm 4 tn=D-tp =D-Ugn
Uon — — u — — —
~N
N ~
™ ~
~
~
~
~
~| -~ - -
~ - _ - -
Uoff=0 >
< > < » t
Period, t,
(constant)

Figure 3.55: The principle of pulse-width modulation (PWM).

but it can be set to a nonzero value.) The part of the period where upwm = Uon is denoted
the duty cycle, D, which is given in percent:

D= t? %] (3.73)

For a given (specified) D, the on-time is then
ton =D -t (3.74)

Note that D can have any value in terms of percentage, e.g. 12.3 %, or 45.6 %.

Figure 3.56 shows how PWM can be used in a temperature control system. In the figure,
the PID controller and the PWM element are shown as individual blocks. However, a PID
controller (as an automation components) may have the PWM and a mechanical relay or an
SSR. integrated.

Example 3.11 Simulation of control system with PWM

Figure 3.57 shows the front panel of a SimView simulator of a control system with PWM.

The simulator is available on:
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2;0\ Vv Process
Tp Uon Uoff SSR -
Temperature l l l (Sc;;islI aSt)ate N
reference y
] Upip =D [%
»| PID o =Dl ]> PWM - > Heater

¢

Figure 3.56: PWM in temperature control.

http://techteach.no/simview /pwm_control

[End of Example 3.11]

3.6.4 Converting current to voltage

Suppose you have a PID controller which generates a control signal in the form of a current
signal, and the controller will be used to control an actuator which requires a voltage
control signal. Then you need to convert the current signal into a voltage signal. How? By
letting the current pass through a resistor, and using the voltage drop across the resistor as
control signal, see Figure 3.58. You can find the resistance R with Ohm’s Law:

R==1[9] (3.75)

For example, the resistance to convert 0-20 mA into 0-5 V is 5 V/20 mA = 250 €.
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Figure 3.57: Control system with PWM.

3.7 Problems for Chapter 3

Problem 3.1 Control and monitoring equipment

A number of different control and motitoring applications are indicated below. What type
of equipment might be suitable for each?

1. A laboratory rig that requires an advanced program for control, measurement and
analysis. Standard Windows software must be able to be used on the system. It is
acceptable if the control system locks for a period as long as the last sent control
signals (e.g. the voltage signals) are maintained (“frozen”).

2. A relatively small facility that does not require particularly advanced control. There
will be little need for changes to the control program after start-up.

3. A relatively large plant that does not require particularly advanced monitoring and
control. It is neccessary to have effective data communication between different levels
in the company.

4. A small facility that requires fairly advanced, but still standard control. There is no
need to implement advanced mathematical functions.

5. A relatively small plant that must be controlled in a safe way, i.e. that it is not
acceptable for the control system to fail. There is a need to implement some advanced
mathematical functions.
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Analog

output
PID controller (AO)

Actuator

I[A] D RIQI | U[V]

~

Figure 3.58: Converting current from a controller to voltage for an actuator.

6. A relatively large facility that requires advanced monitoring and control using
pre-programmed functions. There is a need for effective data communication between
different levels in the company.

Problem 3.2 Pt100

Assume that the resistance value of a Pt100 element is measured as R = 161.4Q) (with a
Wheatstone’s bridge circuit). What is the measured temperature 77

Problem 3.3 Which thermometer?

Assume that the reference of a given temperature control system is 80 °C. Should you then
choose a thermocouple or resistance temperature sensor as sensor?

Problem 3.4 Level measurement with dp-cell

Assume a dp cell (differential pressure sensor) is used to measure the level of oil in an oil
tank where there is atmospheric pressure above the oil surface. The sensor measures the
static pressure at a point in a closed pipeline out of the bottom of the tank. The pressure
measurement point is located 0.5 meters below the bottom level of the oil. The density of
the oil is assumed to be 850 kg/m?. Assume that the measurement signal is 0.1 bar. What
is then the oil level, h?

Problem 3.5 Alternative pressure units

Pressure values can be represented in a number of alternative units. Assume that the gas
pressure, p, in a vessel is 0.5 bar above atmospheric pressure. Express p in the following
units (if you are unsure what some of the units below stand for, please try to find
information on the internet):
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1. bar, also denoted bara and bar(a)
2. barg, also denoted bar(g)
3. Pa (Pascal)

4. mmH50O, i.e. hydrostatic pressure as mm water column pressure

Problem 3.6 Selection of flow rate sensor

Which type of sensor(s) (you may specify one or more types in the answer) for measuring
liquid flow rate in a pipeline is (possibly) most relevant in each of these cases:

1. The volumetric flow rate is to be measured. It is not relevant \aa to make
interventions in the pipeline for \aa f\aa m\aa It the current.

2. The volumetric flow rate is to be measured. A very high accuracy in the measurement
is required, and you have a lot of money.

3. The volumetric flow rate is to be measured. Intervention in the pipeline is acceptable.
There is no requirement for very high accuracy.

4. The mass flow rate is to be measured (directly).

5. The density of the liquid is to be measured (directly), and also the mass flow is to be
measured.

Problem 3.7 Methane gas flow rate measurement

For a given experimental biogas reactor, assume that the produced biogas flow rate is 258
L/d (measured with a thermal sensor). The methane gas concentration in the biogas is
approximately 73 % (measured with a spectroscopic sensor). What is the methane gas flow
rate in unit L/d?

Problem 3.8 Encoder resolution

Assume that an encoder is used to measure the rotation d [mm] of a measuring point at the
end of a arm that can rotate (turn). The distance from the center of the arm — where the
encoder is mounted — to the measuring point is L = 1 m. Assume that the encoder has 1024
bits.

1. What is the resolution, r4 [mm/pulse| in the measurement of d?

2. If the resolution found in part task 1 is not sufficiently small, how can you change the
measurement system (but keep the encoder) to get an improved resolution?
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Problem 3.9 Calculation of speed from position measurements

Given the following two values of a position measurement: s(tp) = 1.235 m and
s(t1) = 1.238 m. The time interval between times ¢y and ¢; is 0.05 s. Calculate the speed
v(t1) from these position measurements.

Problem 3.10 Alternative sensors

Briefly describe two or three measurement principles — in addition to those in the book — for
the following process variables (you should use the internet if necessary):

Temperature

Pressure

Level

Liquid or gas flow

Position

Problem 3.11 Measurement parameters

Assume that a level sensor of a wood chips tank produces a measurement signal (m) in the
range 4-20 mA, corresponding to a process value (p) in the range 5-15 m with a linear
measurement characteristic.

1. What is the values of the following measurement parameters?

e Upper process value
e Lower process value
e Zero

e Span
2. What are the parameters a and b in the following linear measurement characteristic?

p=a-m+b (3.76)

3. What is p if m = 12 mA?

Problem 3.12 Sensor accuracy

Given a thermal gas flow sensor with measurement range 0-10 ml, /min. (The subindex n
means at the normal conditions, i.e. atmospheric pressure and temperature 20 °C. The
sensor accuracy is specified as +1 % FS. What is the accuracy in ml,/min? What
measurement error should you assume that every measurement reading has?
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Problem 3.13 ADC resolution
Given a 12 bit AD converter covering the analog signal range from y,_, =0V to
yamax = 10 V

1. What is the resolution in volt?

2. Assume that the sensor is a level sensor with a range of 0.5-5 m which corresponds to
a signal in the range of 0-10 V. What is the resolution in metres?

3. What is the relative resolution?

4. Assume that the 12 bit ADC is replaced by a 16 bit ADC. What is the relative
resolution of the 16 bit ADC?

Problem 3.14 Resistance for a current loop

In a specific current loop including data acquisition device, the sensor outputs a current
value in the range 4-20 mA. The data acquisition device can record voltage signals in the
range 0-10 V. Find an appropriate resistance value R for the current loop.

Problem 3.15 Dimensioning a control valve

Dimension a control valve for a pipeline with oil based on the following specifications:

e The pressure drop across the valve is mainly constant and equal to 0.5 bar.
e The temperature is about 15°C.

e The maximum oil flow rate through the valve is 15 L /min under normal conditions,
but there should be a capacity margin of 50 %, i.e. the valve should be sized for 50 %
greater flow than the assumed maximum flow rate.

Problem 3.16 Dimensioning an electrical heater

Assume that the water in a tank must be heated with a heating element. The heating
element must be able to emit 1 kW when the mains voltage is switched on. Find the
resistance value, R, of the heating element.

Problem 3.17 Scaling of control signal

Given a biogas reactor with a biogas flow rate control system. The biogas flow rate
controller adjusts the biological feed to the reactor using a feeding pump. The controller
calculates a flow rate in the range 0-80 L/d. The pump is controlled by a voltage signal in
the range 0-5 V covering the aforementioned feed flow range, with a linear relationship
between the ranges.

Assume that the controller at a given point of time demands a flow rate, u, of 43.5 L/d.
What is the corresponding control signal value, v, in volts?

162



CHAPTER 3. COMPONENTS OF CONTROL SYSTEMS

Problem 3.18 PWM

Given an electrical heater (resistor) controlled with PWM with period or cycle time period
0.5 s. When the PWM in the On state, the mains voltage is connected to heater which then
delivers 1 kW. When the PWM is in the Off state, the heater delivers zero power.

Assume that at the PWM is operated so that the heater delivers 400 W (in average).

1. What is then the duty cycle, D?

2. And what is the On time, to,7

Problem 3.19 Pump control: Analog or PWM?

Assume that a pump will used to generate a feed flow of biological material into a biogas
reactor, and that there are the following two alternative ways to control the pump:

e Analog control: The pump is controlled with an analog milliampere signal.
Unfortunately, it turns out to be practically difficult to obtain precise (repeatable)
small feed flow rates.

e Approximately analog control with PWM with period time 60 s, which is a very short
time compared to the slow response in biogas production in the biogas reactor. The
biogas reactor will therefore hardly “feel” that it is actually receiving the feed flow in
the form of flow pulses, but instead feel an approximately analog (smooth) flow.

The pump must be calibrated before it can be used. With analog control, it is necessary to
calibrate at, say, 5 points within the operating flow rate range of the pump.

1. How many operating points is it necessary to calibrate the pump for with PWM?

2. For the pump, would you recommend analog control or PWM?
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3.8 Solutions to problems for Chapter 3

Solution to Problem 3.1

1. PC-based control and monitoring system with a standard PC

2. PLC

w

. DCS/SCADA
4. Process controller

5. PAC

(=)

. DCS/DCS

Solution to Problem 3.2

From (3.4) we get

B _1q 161.4Q
T=F% — 100 £ - =157.1°C (3.77)
a 3.9083 - 10—3°C

Solution to Problem 3.3

A resistance thermometer, because it is (far) more accurate than a thermocouple
thermometer in the pertinent temperature range.

Solution to Problem 3.4

1-1 N/m?
LoD 0.1 - 100000 N /m

0= - 5 —0.5m=0.70m (3.78)
Py 850 kg/m"” - 9.81 m/s

Solution to Problem 3.5

1. bar is a unit of absolute pressure, i.e. zero pressure (as in vacuum) is the pressure
reference. 1 bar (approx.) is the atmospheric pressure. So, p = 1.513 bar.

2. barg stands for “bar gauge” where gauge represents any measuring sensor (e.g. a
Bourdon tube) which measures pressure with atmospheric pressure as pressure
reference. So, p = 0.5 barg.

3. 1 bar is per definition equal to 100000 Pa. So, p = 151300 Pa.

4. mmH>0 (mm water column) is the pertinent water height in mm. The hydrostatic

pressure is
p = pgh [Pal (3.79)
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where p = 1000 kg/m?, g = 9.81 m/s? and h is in meters. We get

151300 P
h [mm] = 2 p1300 Pa -1000 = 15423 mm (3.80)

pg 1000 kg/m> - 9,81 m/s2
So, p = 15423 mmH-0O.

Solution to Problem 3.6

1. Ultrasound.
Coriolis.

Orifice with dp cell; Thermal; Ultrasound; Magnetic; Vortex.

-~ W

Coriolis; Thermal.

5. Coriolis.

Solution to Problem 3.7

The methane gas flow rate is 0.73-251 L/d = 183 L/d.

Solution to Problem 3.8

1. The resolution is

360 deg
=—> .81
"~ 1024 pulse (3.81)
The relationship between the rotation b [m] and the angle a [deg] is given by
T
b=a—L 3.82
“180 (3.82)
which gives
b m s
-—— = Lm
adeg 180 deg
The resolution r; then becomes
b T 360 deg T m mm
=r—= = . -1 m = 0.0061359 = 6.1359
" ra r1800 1024 pulse 180 deg m pulse pulse
(3.83)
2. A gear can provide better resolution.
Solution to Problem 3.9
From (3.21) we get
t1) — s(t 1.238 m — 1.235
o(ty) ~ S0 = 50) _ = = = 0.06 m/s (3.84)

Ty 0.05 s
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Solution to Problem 3.10

e Temperature:

— Thermistor: A semiconductor component that has a temperature-sensitive
resistance value. The resistance decreases with temperature. A measurement of
the resistance indicates the temperature.

— Bimetal: Two different metals with different temperature-dependent expansions
are assembled (e.g. welded) together. The sensor will be bent more towards one
of the sides as the temperature increases, or decreases. A measurement of the
bend indicates the temperature.

— Pyrometer: The higher the temperature in an object, the greater the heat
radiation from that object. The pyrometer determines the temperature based on
a measurement of the radiation.

e Pressure:

— Bourdon tube: The expansion of a circular tube filled with gas or liquid varies
with the pressure. A pointer connected to the tube indicates the pressure.

— Manometer: The liquid level in each of the two tube legs of a U-shaped tube
varies with the pressure difference in the tube legs. The difference between the
level measurement of each of the levels indicates the pressure difference.

— Piezoelectric sensor: In certain crystals, such as quartz, an electrical charge is
generated that varies with the pressure the crystal is exposed to. (Piezoelectric
means “electrical charge generated by pressure”.) A voltage measurement
indicates the pressure.

e Level:

— Buoyancy: The buoyancy force of a partially submerged fixed body varies with
the liquid level. A measurement of this force indicates the liquid level.

— Radioactive radiation: An emitter on one side of a liquid tank emits radioactive
radiation. The radiation detected by a rod-shaped receiver on the other side of
the tank indicates the level of the liquid in the tank.

— Weight: The total weight of a tank with material is measured. The material
weight is equal to the measured total weight minus the weight of the tank itself.
The material weight indicates the level of the material.

e Liquid or gas flow rate:

— Turbine: A (small) turbine is mounted inside the pipe where the gas or liquid
flows. A measurement of the rotational speed of the turbine indicates the flow
rate.

— Rotameter: A free-floating plug is placed in a vertical section of the pipe where
the liquid to be read flows. The vertical position of the plug increases if the fluid
flow rate increases. A meassurement of the position indicates the flow rate.

— Clock: The time it takes to fill up a chamber of known volume is detected. When
the chamber is full it is automatically emptied, and a new filling starts. The
volumetric flow rate is calculated as the chamber volume divided by the time
between each time the chamber is emptied.
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e Position:

— Resolver: The position of a shaft is measured from the induced current/voltage
in electric coils which have a relative angular position depending on the angular
rotation of the shaft.

— Potentiometer: A variable resistor — a potensiometer — is fixed to the body
whose position is to be measured. The resistance varies with the position of the
body. The resistance can be detected with a small electrical circuit consisting of
interconnected resistors called a voltage divider. The output voltage of the
voltage divider indicates the position of the body.

Solution to Problem 3.11

1.

e Upper process value: 15 m.
e Lower process value: 5 m.

e Zero: b m.

Span: 15 m — 5 m = 10 m.

2. Measurement characteristic parameters:

P2 —P1 15m—-5m 10 m m
mo —mqp 20mA —4 mA 16 mA 065mA (3.85)
b:pl—a'ml:5m—0.625£-4mA:2.5m (3.86)
mA
3. With m =12 mA:
p:a-m+b=o.625%.12mA+2.5m:1om (3.87)

Solution to Problem 3.12

FS is 10 ml,,/min. The accuracy in ml,/min then becomes +1 % of 10 ml, /min which is
£0.1, which is the measurement error you have to assume for any measurement reading.

Solution to Problem 3.13

1. Resolution in volt:

ya - ya ; 10 V — 0 V
— Yamax ~ Yamin _ —0.0024 V = 2.4 .
R = Yo =W r = 00024 V =24 mV (3.88)
2. Resolution in meter:
5m—0,5m
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3. Relative resolution (12 bits ADC):

1
Riel = T 2.44-107% (3.90)
4. Relative resolution (16 bits ADC):
1 -5
Rrel = m =1.53-10 (391)
Solution to Problem 3.14
From (3.23) we get
U 10V
R= 7= 5o =500 0 (3.92)

Solution to Problem 3.15

The valve must be able to deliver a flow rate equal to @ = 15 L/min + 50 % of 15 L/min =
22.5 L/min. Oil has a relative density of G = 0.85. The valve equation (3.54) is solved with
respect to the valve constant to give

Q _ 225 [L/min] _ 22.5 [0.001 m?/(h/60)]

= 1.76 m®/h 3.93
pv 0.5 bar 0.5 bar m / ( )
\/ 085 \/ 085
Solution to Problem 3.16
From (3.64) we get
Uege? (226 V)?
R = = =51.10Q 3.94
Piyerage 1 kW = 1000 W ( )
Solution to Problem 3.17
(3.67) becomes
V2 — U1 5V-0V Vv
= = = 0.0625 — 3.95
T s —w  80L/d—0L/d L/d (3:95)
(3.68) becomes
b= OV —00625 0% =0V (3.96)
= U1 a-uy = . L/d d = .
If w=43.5L/d, (3.66) gives
v
v=a-u+b=00625 — -43.5L/d+0V =272V (3.97)

L/d
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Solution to Problem 3.18

1. Duty cycle:

Umean 400 W
D= = = 0.4 =40 3.98
Uon 1000 W % ( )
2. On-time:
ton=Dt, =04-055s=0.25s (3.99)

Solution to Problem 3.19

1. One operating point!

2. PWM. Reasons: (1) It is sufficient to calibrate the pump at only one operating point,
namely the feed flow rate when the pump is in the On state. (2) With PWM, the
pump may deliver more precise small feed flow rates (in average) than with analog
control.
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Chapter 4

Mechanistic modeling

4.1 Introduction

This chapter describes basic principles of mathematical modeling of dynamic systems. A
mathematical model is the set of equations which describes the behavior of the system. The
chapter focuses on how to develop dynamic models, and you will see that the models are
differential equations. The differential equations can be represented on various forms, for
example state space models (Ch. 5), mathematical block diagrams (Ch. 7), or transfer
functions (Ch. 8). One very important application of models is creating simulators (Ch. 6).

Unfortunately we can never make a completely precise model of a physical system. There
are always phenomena which we will not be able to model. Thus, there will always be
model errors or model uncertainties. But even if a model describes just a part of the reality
it can be very useful for analysis and design — if it describes the dominating dynamic
properties of the system. A saying is “All models are wrong, but some are useful.”

This chapter describes modeling based on physical principles. Such modeling has
alternative names:

e Mechanistic modeling

e First principles modeling

o White-box modeling, as opposed to black-box modeling where the models are just
mathematical expressions capable to represent the dynamic relation between the
output and input of the system, like transfer functions.

4.2 What is a dynamic system?

Dynamic means “which has to do with the movement and change”. Dynamic systems are
systems where the variables can vary or develop with time. We say that dynamic systems
have dynamic responses. Figure 4.1
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Input Output
variable variable
u(t) Dynamic ()
—> —
system
» >
t t

Figure 4.1: Dynamic systems are systems where the variables can vary or develop as functions
of time.

gives an illustration. The figure shows a block diagram of a dynamic system. The input
variable is here a step function, and the response in the output variable is dynamic since it
changes with time. In general, dynamic systems may have more than one input variable
and more than one output variable.

Here are some examples of dynamic systems:

e A liquid tank.

— Input (variable): Inflow.

— Output (variable): Level.
e A motor.

— Input: Motor control voltage.
— Output: Speed.

A heated water tank.

— Input: Supplied heat.

— Output: Temperature in the water in the tank.

A robot manipulator.

— Input: Control signal to motor.

— OQOutput: Arm position.

A ship.

— Input: Thruster force.

— OQOwutput: Ship position.

A signal filter:

— Input: Filter input to be filtered (smoothed).
— Qutput: Filter output signal.

A control system for a physical process:

— Input: Setpoint.

— Qutput: Process output variable.
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4.3 A procedure for mathematical modeling

Below is described a procedure for developing dynamic mathematical models for physical
systems:

1. Define systems boundaries. All physical systems works in interaction with other
systems. Therefore it is necessary to define the boundaries of the system before we
can begin developing a mathematical model for the system, but in most cases defining
the boundaries is done quite naturally.

2. Make simplifying assumptions. One example is to assume that the temperature
in a tank is the same everywhere in the tank, that is, there are homogeneous
conditions in the tank.

3. Use the Balance Law for the physical balances in the system. See Figure 4.2.

Accumulation
Inflow ( ACC) Outflow

Figure 4.2: Ilustration of the Balance Law.

In the figure, “Accumulation” is a general term. Specifically, it can be accumulated
mass, mole, energy, momentum, or electric charge in a physical system. “Inflow”
represents possibly several inflows. “Outflow” represents possibly several outflows.
“Generation” can be e.g. material generated by chemical reactions, or generated
energy in an exothermal reactor.

The accumulation in the system at time t is given by the following integral, where the
term Acc is used for short:

t
Acc(t) = Acc(0) —I—/ Acc’(0) do (4.1)
0
where t = 0 is the initial time. The integrand, Acc’, is the rate of change, or time

derivative, of the Acc, and is given by the following differential equation, which is
often termed the the Balance Law of the system:

Acc’ = Inflow — Outflow + Generation (4.2)

Usually, only the (4.2) is said to be the mathematical model of the system, although
(4.1) is also essential to calculate the Accumulation.
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4. Draw an overall block diagram showing inputs, outputs and parameters. A
block diagram makes the model appear more clearly. Figure 4.3 shows a general
overall block diagram. In the figure, the single lines can represent a number of
variables. The output variables are typically the accumulations, or accumulations

Environmental
variables
(disturbances)

Manipulating Y o
: utput
- » System >
variables y variables

Parameters
Figure 4.3: Overall block diagram.

multiplied by some constants. The input variables are of two kinds: (1) Manipulating
(adjustable) variables which you can use to manipulate or control the system (like
power from a heater), and (2) environmental variables which you can not manipulate
(like environmental temperature). In the context of control systems, environmental
variables are often denoted disturbance variables.

Mathematically, the input variables are independent variables, and the output
variables are dependent variables.

The parameters of the model are quantities in the model which typically (but not
necessarily) have constant values, like liquid density and spring constant. If a
parameter have a varying value, it may alternatively be regarded as an environmental
variable.

5. Present the model on a proper form. The choice of model form depends on the
application of the model. The most common model forms are:

(a) Differential equation with the highest order of the time derivative alone on the
left side of the equation. This is the model form used in examples and problems
in the present chapter.

(b) State space models (Ch. 5.2), which are just the differential equations written
with the time derivates alone on the left side of the equation. (If the model is a
differential equation of order two or higher, the state space model is an
equivalent set of first order differential equation.)

(¢) Mathematical block diagrams (Ch. 7).

(d) Transfer functions (Ch. 8) which applies only for linear differential equation
models.
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The following sections contain several examples of mathematical modeling. In those
examples, items 1 and 2 above are applied more or less implicitly.

Comments on notation

For simplicity, I write the time-varying variables without the time as argument. For
example, I write m instead of m(t). However, in cases where time delay is involved, it is
important to show the time argument explicitly, for example u(t — 7) where 7 is the time
delay. This is the case in Problem 4.2 at the end of this chapter, where there is a time delay
due to a conveyor belt.

4.4 Mathematical modeling of material systems

In a system where the mass may vary, mass is the “accumulation” in the (4.2) which now

becomes a mass balance:
m' =Y "F, (4.3)
i
where m [kg] is the mass, and F; [kg/s| is mass inflow (no. ).
Example 4.1 Mass balance of a liquid tank

Figure 4.4 shows a liquid tank with inflow and outflow. Assume that the inflow can be
manipulated with e.g. a pump. The outflow is due to some consumption which here is
regarded as an environmental variable.

I:in [kg/ S]
h [m] .
m[kg]l V[m?]
p [kg/m®]
. A[m?]
I:out [kg/ S]

Figure 4.4: Example 4.1: Liquid tank.

The tank has straight, vertical walls. F}, and Fyy are mass flows. h is liquid level. V is
liquid volume. m is mass. A is cross sectional area. The density of the liquid, p, is assumed
the same in the inlet, the outlet, and the tank.
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The mass balance for the mass in the tank is:
m = F,— Fou (4.4)

which is a differential equation for m. An additional condition for the differential equation
ism > 0.

Now, m is the integral of m/:

m(t) = m(0) + /0 m' () db (4.5)

with the condition 0 < h < myax where mpax is the maximum liquid mass in the tank.

A model of the level

Maybe you are more interested in how level h varies than how m varies? The relation
between h and m is a given by
m = pV = pAh (4.6)

We insert this into the mass balance (4.4), which then becomes
m' = (pV)' = (pAh)' = pAh' = Fiy — Fous (4.7)

where parameters p and A have been moved outside the derivation (they are assumed
constant).

By dividing by pA we get the following differential equation of h:

1
= — En - Fou 4.
= (= Fo) (@8)
The level h is the integral of h':
t
h(t) = h(0) + / 1 (8) df (4.9)
0

with the condition 0 < h < Apax.

Figure 4.5 shows an overall block diagram of the model (4.8). Note that Fyy is an input
variable despite it represents a physical outflow from the tank!

[End of Example 4.1]

4.5 Mathematical modeling of thermal systems

Mathematical modeling of thermal systems is based on the to set up energy balances. The
term energy covers temperature-dependent energy, which we can call thermal energy, and
kinetic and potential energy. In general we must assume that there is a transformation from
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Environmental variable
(disturbance)

FOUI
Manipulating variable Output variable

Fin h
———» Liquid tank ———»

1

p A

Parameters

Figure 4.5: Example 4.1: Overall block diagram of the liquid tank.

one energy form to another within a given system. For example, kinetic energy can be
transformed to thermal energy via friction. For many thermal systems we can assume that
the energy consists of only thermal energy and we can neglect the transformation from
kinetic and potential energy to thermal energy.

For thermal systems, the “accumulation” in the Balance Law (4.2) is thermal energy. Thus,
the Balance Law becomes an energy balance:

E'=> Qi (4.10)

where E [J] is the thermal energy, and @; [J/s] is energy inflow no. i. The energy F is often
assumed to be proportional to the temperature and the mass (or volume):

E=cmT =cpVT =CT (4.11)
where T' [K] is the temperature, ¢ [J/(kg K)] is specific heat capacity, m [kg] is mass, V [m?]
volume, p [kg/m?] is density, C' [J/K] is total heat capacity.

Example 4.2 Heated liquid tank

Figure 4.6 shows a liquid tank with continuous liquid inflow and outflow. There is heat
transfer with the environment through the walls. The liquid receives power through a
heating element. P is power from the heating element. T is temperature in the tank and in
the outlet flow. T; is the temperature in the inlet flow. F' is mass flow. m is mass of liquid
(constant). c is specific heat capacity. G is heat transfer coefficient.

We will now set up an energy balance for the liquid in the tank to find the differential
equation which describes the temperature 7'(¢). We will then make the following
assumptions:

e The temperature in the liquid in the tank is homogeneous (due to the stirring
machine).
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Mixer
cwik] e[kl
Ny m [kg]
Ti [K] VvV [m]
¢ [J(kg K)] T[K] F
—» —>

F [kg/s] TP W]

P W]

Figure 4.6: Example 4.2: Heated liquid tank.

e The inflow and in the outflow are equal, and the tank is filled by liquid.

e There is no storage of thermal energy in the heating element itself. This means that
all of the supplied power to the heating element is supplied (immediately) to the
liquid. (Thus, we do not write an energy balance for the heating element.)

The energy balance is based on the following energy transports (power):

1. Power from the heating element:

P=0Q (4.12)
2. Power from the inflow:
cFT;, = Qo (4.13)
3. Power removed via the outflow:
—cFT = Q3 (4.14)

4. Power via heat transfer from (or to) the environment:

G(Te—T)=Qu (4.15)
The energy balance is
E'=Q1+Qa+Q3+ Qs (4.16)
where the energy is given by
E=cmT

The energy balance can then be written as
(emT) = P+ cFT;, — cFT + G (T. - T) (4.17)

If we assume that ¢ and m are constant, we can move cm outside the derivative term.
Furthermore, we can combine the terms on the right side. The result is

emT' =P+ cF(T,-T)+G(T. —T) (4.18)
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or:

T — %[ijcF(Ti—THG(Te—T)] (4.19)

The temperature 7' is the integral of T":

T(t) = T(0) + /0 "T(0) do (4.20)

Figure 4.7 shows an overall block diagram of the model (4.19).

Environmental
variables

Ti Te

Manipulating l l Oufcput variable
variable (inventory)

Heated
P—» . —» T
liquid tank

T

cmFG

Parameters

Figure 4.7: Example 4.2: Overall block diagram of heated tank.

[End of Example 4.2]

4.6 Mathematical modeling of kinetic systems

4.6.1 Systems with linear motion

For kinetic systems in the form of a body with linear motion (we will soon study rotational
motion), the “accumulation” term in the Balance Law (4.2) is momentum. Thus, the
Balance Law becomes a momentum balance, which is often denoted force balance:

I'=(mv) =) F, (4.21)
i
where I [Ns| is the momentum (mass times speed), and F; is force (no. 7). I is

I =mv=ma (4.22)

where m [kg] is mass, v [m/s] is speed, and x [m] is position.
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If m is constant, m can be moved outside the derivative term in (4.21), which then becomes

mv' = ma" = ma = Z F; (4.23)
i

where v' = 2" = a is acceleration. (4.23) is the well-known Newton’s second law (the sum of
forces is equal to mass times acceleration).

Often the mass m is constant. Then (4.23) can be used for mathematical modeling. But if
m is time-varying, (4.21) must be used. One example of a system with varying mass is a
conveyor belt where the mass on the belt is varying.

Example 4.3 Block diagram of mass-spring-damper system

Figure 4.8 shows a mass-spring-damper-system.' y is position. u is applied force. d is

k [N/m]

u [N]
—» m n

d [N/(m/s)] E

—
0 y [m]

Figure 4.8: Mass-spring-damper.

damping constant. d is spring constant. It is assumed that the damping force Fj is
proportional to the speed:
Fy=dy (4.24)

and that the spring force Fy is proportional to the position of the mass:
Fs=ky (4.25)

The spring force is assumed to be zero when y is zero. Force balance (Newton’s 2. Law)
yields?

my”" =u— Fy—F,
=u—dy—ky (4.26)

which is a second order differential equation, which we can write as

y' = (u—dy—ky) /m (4.27)

!The mass-spring-damper system is not a typical system found in process control. It is chosen here because
it is easy to develop a mathematical model using well known physical principles, here the Newton’s second
law. Examples of more relevance to process control are described in Chapter 4.

2Double-dot represents second order time-derivative: jj(t) = d?y(t)/dt*
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Speed v/ is the integral of acceleration y”:

t

y () = /(0) + /0 " (0) df (4.28)

And position y is the integral of speed y':

t
) =(0)+ [ o/ (0)as (4:29)
In other words, position is double-integral of the acceleration.

Figure 4.9 shows an overall block diagram for the model (4.26). The applied force u is the
input variable, and the position y is the output variable.

u [N] —corine. | YImI
Mass-spring
damper

k [N/m]T T d [N/(m/s)]

Figure 4.9: Overall block diagram of mass-spring-damper system.

[End of Example 4.3]

4.6.2 Systems with rotational motion
4.6.2.1 Momentum balance

Systems with rotational motion can be modelled in the same way as systems with linear
motion (see above), but we must use momentum balance, which is often denoted torque
balance for rotational systems:

S'=(Jw) => T (4.30)

Here, S [Nms] is momentum, J [kgm?] is inertia, w [rad/s] is rotational speed, and Tj; is
torque (no. 7). If J is constant, (4.30) can be written

Jo'=Jd" =T, (4.31)

(2

where w’ = a” is angular acceleration, and a [rad] is angular position.

(4.31) can be written as:
a" = (Z T) /J (4.32)
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Angular speed a’ is the integral of angular acceleration a”:

d(t) = a'(0) + /0 a"(6) do (4.33)

a(t) = a(0) —i—/o a'(6)do (4.34)

In other words, angular position is double-integral of the angular acceleration.

4.6.2.2 Relations between rotational and linear motion

In mathematical modeling of mechanical systems which consists of a combination of
rotational and linear systems, the following relations are useful: Torque T is force F' times
arm L:

T=FL (4.35)

Arc b is angle a (in radians) times radius r:

b=ar (4.36)

4.6.2.3 Coupled mechanical systems

Mechanical systems often consist of coupled (sub)systems. Each system can have linear
and/or rotational motion. Some examples: (1) A robot manipulator where the arms are
coupled. (2) A traverse crane where a wagon moves a pending load. (3) A motor which
moves a load with linear motion, as in a lathe machine.

A procedure for mathematical modeling of such coupled systems is as follows:
1. The force or torque balance is put up for each of the (sub)systems, and internal forces
and torques acting between the systems are defined.
2. The final model is derived by eliminating the internal forces and torques.
This procedure is demonstrated in Example 4.4. An alternative way of modeling coupled
systems is to use Lagrange mechanics where the model (the equations of motion) are

derived from an expression which contains kinetic and potential energy for the whole
system (this method is not described here).

Example 4.4 Modeling coupled rotational and linear motion systems

Figure 4.10 shows an electric motor (which can be a current-controlled DC-motor) which
moves a load with linear motion via a gear and a rod.
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0 y [m]

(radius)
T =K i [Nm]
Motor a [rad]

i, [A]
Figure 4.10: Example 4.4: Motor moving a linear load via a gear and a rod.

We set up a torque balance for the rotational part of the system and a force balance for the
linear part, and then combines the derived equations. We shall finally have model which
expresses the position y of the tool as a function of the applied motor current i,,. Fr, is a
load force acting on the load by the environment. (For simplicity the time argument ¢ is
excluded in the expressions below.)

1. Torque and force balance: The torque balance for the motor becomes

Ja' = Kpim — T} (4.37)

where T} is the torque which acts on the motor from the rod and the load via the
gear. The force balance for rod and load becomes

my’ = F, — F, (4.38)

where F7 is the force which acts on the rod and the load from the motor via the gear.
The relation between 717 and Fj is given by

T1 = FlT‘ (439)
The relation between y and 6 is given by
Yy =ar (4.40)

which yields

/!
n_Y
== 4.41
W= (4.41)
By setting (4.41) and (4.39) into (4.37), (4.37) can be written
y//
I = Ko — Fyr (4.42)
T

2. Elimination of internal force: By eliminating the internal force F} between (4.38)
and (4.42), we get

r

Km
<m + 7:]2> y' = —"4, — Fp (4.43)
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(o) foed)

which is a mathematical model for the coupled system.

or:

Speed v/ is the integral of acceleration y”:

y(t) = /(0) + /O ' (0) df (4.45)

t
y(t) = y(0) + /0 (0) do (4.46)

Figure 4.11 shows an overall block diagram for the model (4.43). iy, and Ff, are input
variables, and y is the output variable.

" »| Motor y
withrod ——»
» and load

Figure 4.11: Overall block diagram of motor with rod and load.

[End of Example 4.4]

4.7 Mathematical modeling of electric systems

This section gives a summary of some fundamental formulas for electric systems which you
will probably use in mathematical modeling of electric systems.

4.7.1 Kirchhoff’s law
4.7.1.1 Kirchhoff’s Current Law

See the left part of Figure 4.12. The sum of currents into a junction in an electric circuit is
Z€ro:

11+t +i3+---=0 (4.47)
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Junction

Closed
circuit

")

Figure 4.12: Kirchhoff’s laws.

4.7.1.2 Kirchhoff’s Voltage Law

: See the right part of Figure 4.12. The sum of voltage drops over the components on a
closed electric loop is equal to zero:

4.7.2 Resulting resistance

Figure 4.13 shows series and parallel combination of resistors.

Parallel connection:

Series connection:

R,
1
| — | —
L L
1
L
R,

series

parallel

Figure 4.13: Series and parallel combination of resistors.

4.7.2.1 Resistors in series

Given two resistors Ry and Rp [()] in a series combination. The resulting resistance is

Rseries = Rl + RQ (4~49)

4.7.2.2 Resistors in parallel

Given two resistors R; and Ry [?] in a parallel combination. The resulting resistance is

R Ry

4.50
R+ Ry (4:50)

Rparallel =
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4.7.3 Models of resistor, capacitor, and inductor

See Figure 4.14.

ifa] RI€L]
Resistor
+v[V]-
i CIF]
Capacitor I I
+ v -
i L [H]
Inductor YN

Figure 4.14: Resistor, capasitor and inductor.

Suppose that the current through a component is ¢ [A] and that the corresponding voltage
drop over the component v [V]. Current and voltage are then related as follows.

Resistor
v=Ri (Ohm’s law) (4.51)
Capacitor
i=Cv (4.52)
Inductor
v=Li (4.53)

Example 4.5 Mathematical modeling of an RC-circuit

Figure 4.15 shows an RC-circuit (the circuit contains the resistor R and the capacitor C').

The RC-circuit is frequently used as an analog lowpass filter: Signals of low frequencies
passes approximately unchanged through the filter, while signals of high frequencies are
approximately filtered out (stopped).

We will now find a mathematical model relating vout to vin. First we apply the Kirchhoff’s
voltage law in the circuit which consists the input voltage terminals, the resistor, and the
capacitor (we consider the voltage drops to be positive clockwise direction):

—Vin + VR + Vout = 0 (454)
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. Vr [V] .
Al + - I2
+ o——= ] ' > o+
I :
RG] _Ivic
Input vi [V] — v, [V] Output
voltage C[F] 2 voltage
— % o —

Figure 4.15: RC-circuit.

(vout equals the voltage drop over the capacitor.) In (4.54) vg is given by
vp = Ri (4.55)

We assume that there is no current going through the output terminals. (This is a common
assumption, and not unrealistic, since it it typical that the output terminals are connected
to a subsequent circuit which has approximately infinite input impedance, causing the
current into it to be approximately zero. An operational amplifier is an example of such a
load-circuit.) Thus, jf. (4.52),

i=ic = Cuvl, (4.56)

The final model is achieved by using i as given by (4.56) in (4.55) and then using vg as
given by (4.55) for vg in (4.54). The model becomes

RCW, 1 = Vin — Vout (4.57)
or:
Vout’ = (Vin — Vout) / (RC') (4.58)
Vout 1s is the integral of v]
t
Vo (£) = Vo (0) + / Vo (0)' d (4.59)
0

Figure 4.16 shows a block diagram for the model (4.57). vj, is the input variable, and voyy is
the output variable.

1 RC-
circuit

Figure 4.16: Overall block diagram of an RC-circuit.

[End of Example 4.5]
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4.7.4 Power
4.7.4.1 Instantaneous power

When a current ¢ flows through a resistor R, the instantaneous power delivered to the
resistor is

P=ui (4.60)

where u = Ri is the voltage drop across the resistor.

4.7.4.2 Mean power

When an alternating (sinusoidal) current of amplitude I flows through a resistor R (for
example a heating element), the mean or average value of the power delivered to the
resistor is

_1U?

2R

where U is the amplitude of the alternating voltage drop across the resistor. (4.61) is
independent of the frequency.

_ ] 1
P=3UI= iRI2 (4.61)

4.8 Physical component based simulators

To appear.

4.8.1 OpenModelica

To appear.

4.8.2 Aspentech Hysys

To appear.

4.8.3 Simscape

To appear.
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4.9 Problems for Chapter /4

Problem 4.1 Mass balance with volumetric flows
In Example 4.1 the inflow and outflow are mass flows. Now, assume that the flows are

instead volumetric flows, gi,[m3/s] and gout[m?3/s], respectively. Derive the differential
equation of A under this assumption.

Problem 4.2 Modeling of wood chips tank

Figure 4.17 shows a wood chips tank with a feed screw and conveyor belt (the belt has
constant speed).?

Time delay
Screw constant T [min]

Ks [(kg/min)/mA] Wi, [kg/min]

Mass flow

Feed screw Ws [kg/min]

Screw control Level
signal h [m]
u[mA] Chip tank
Chip density
p [kg/m’]
0Om
A [mz] To the

Wout [Kg/min]  cookery

Figure 4.17: Wood chips tank.

There is an outflow of chip via an outlet at the bottom of the tank. The mass flow wy from
the feed screw to the belt is proportional to the screw control signal u:

ws = Kgu (4.62)
The mass flow w;, into the chip tank is equal to ws but time delayed time 7:

win(t) = ws(t — 7) (4.63)

1. Draw an overall input-output block diagram of the system. Define the input and
output variables (it is assumed that the level is of particular interest).

2. Develop a mathematical model describing the behaviour of the chip level h.

Problem 4.3 Mole balance
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Mixer
Raw material Component A

q [m¥/s] w, [mol/s]

V [m’]

¢, [mol/m?]

Product| €a

Figure 4.18: Problem 4.3: Blending tank.

Figure 4.18 shows a stirred blending tank where the material A is fed into a tank for
blending with a raw material. The symbols in Figure 4.18 are as follows: V is the liquid
volume in the tank. ¢ is the volumetric inflow of the raw material. ¢ is also the volumetric
outflow. ¢4 is the mole density or concentration of material A in the tank. w4 is the mole
flow of material A.

Assumptions:

The contents of the tank has constant volume.*

The volumetric flow of material A is very small (negligible) compared to the
volumetric flow of the raw material.

There are homogeneous conditions (perfect stirring) in the tank.

The raw material does not contain A.

1. Develop a mathematical model which expresses how the concentration c4 varies.

2. Draw an overall block diagram of the system.

Problem 4.4 Modeling of blending tank

Figure 4.19 shows a tank with cold water inflow and heated (blended) water outflow. The
tank is constantly full, and the volumetric flow is thus equal to the sum of the inflows.

Assume homogeneous conditions in the tank. Develop a mathematical model of the water
temperature 71" in the tank.

Problem 4.5 Modeling of a ship
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Cold water Hot water
Qi [m/s] ay [m?/s]
Tk [K] Ty [K]

¢ [J/kgK]
VvV [m?]

Figure 4.19: Tank with cold water inflow and heated (blended) water outflow.

Figure 4.20 shows a ship.

In this problem we concentrate on the so-called surge (forward) direction, i.e., the
movements in the other directions are disregarded. The wind acts on the ship with the force
F,,. The absolute value of the hydrodynamic force Fj, (force from water acting on the ship)
is proportional to the square of the difference between the ship speed u and the water
current speed u..” Assume that the proportionality constant is D (a positive number).

1. What is the mathematical relation between speed u and position y?

2. Develop a mathematical model of the ship expressing the motion (the position y) in
the surge direction.
Note: It is important to get the direction of the hydrodynamic force correct. Let us
assume all speeds are positive in the positive surge direction (forwards). If the water
current speed is larger than the ship speed, the hydrodynamic force acts on the ship
in the forward direction. If the water current speed is smaller than the ship speed the
hydrodynamic force acts on the ship in the backward direction. Your model must
express this correctly.

3. Draw an input-output block diagram of the system. Assume that the ship position is
the variable of particular interest.

Problem 4.6 Modeling of a satellite

Figure 4.21 shows a satellite with manoeuvering motors.

Develop a model of the angular motion of the satellite.

3Typically, there is such a wood chips tank in the beginning of the production line of a paper mass factory.

4This can be accomplished with for example a level control system.

5In the context of ship modeling, it is usual to use the symbol v for speed. In the control theory, however,
u often represents the control signal, but control is not a topic in this problem.
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’\,\’\’\

Wind force

Fu [N] [

Propeller force

Mass m [kg]
o O O O

—
Hydrodynamic
force Fy [N]

Position y [m] Ship speed (relative to earth) u [m/s]

D ——— | _—
Water current speed (rel. to earth) u. [m/s]
—>

Figure 4.20: Ship.

Problem 4.7 Modeling of a pendulum

Figure 4.22 shows a cart with the pendulum. A motor (in the cart) acts on the cart with a
force F.°

You can use the following variables and parameters in the model to be derived in this
problem:

e | — the moment of inertia of the pendulum about it’s center of gravity. For the

pendulum shown in Figure 1,
mL?

I =———
12

(4.64)

e VV and H — vertical and horizontal forces, respectively, in the pivot.

e d — a damping coeflicient.
Derive a mathematical model of the motion of the system based on the following principles:

1. Force balance (Newton’s Second Law) applied to the horizontal movement of the
center of gravity of the pendulum.

5This force can be manipulated by the controller to stabilize the pendulum in a standing position or in a
hanging position at a specified position of the cart, but this problem is not about control. The system can
be well controlled with model-based control, for example optimal control based on state-variable feedback (cf.
e.g. Lecture notes on Modes, Estimation and Control, TechTeach/F. Haugen).
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Angular position

0 [rad] 0
Torque
T [Nm]
I\
NY
Inertia
J [kgm?]

Figure 4.21: Satellite.

FIN] )
Vg
1 —d . [N]

I
om yi[m]

T

Figure 4.22: Pendulum.

2. Force balance applied to the vertical movement of the center of gravity of the
pendulum.

3. Torque balance (the rotational version of the Newton’s Second Law applied to the
center of gravity of the pendulum.

4. Force balance applied to the cart.

(When using the model for developing a simulator or design of a stabilizing controller, it
will probably be necessary to eliminate the internal forces V and H, but this elimination is
not a part of this problem. Hence, it is ok that the resulting model in this problem contains
V and H.)

Problem 4.8 Modeling of resistors
Figure 4.23 shows a combination of resistors.

What is the resulting resistance Ry?
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Figure 4.23: Combination of resistors.

Problem 4.9 Calculation of resistance
Given a lamp which receives P = 100 W mean (average) power when it is connected to the

mains, which is an alternate voltage of amplitude U = 220 V. Calculate the lamp
restistance R.

Problem 4.10 Modeling of electric circuit (highpass filter)

Figure 4.24 shows an (analog) highpass filter. (It attenuates low-frequent signals, while
high-frequent signals pass through the filter.)

i[A] +VR VI- i,
— || —
+ O II o +
CIF
Input Vi [V] R[] iiR v, [V] Output
~ % o —

Figure 4.24: High-pass filter.

Find a mathematical model describing the behaviour of the output voltage vo.
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4.10 Solutions to problems for Chapter j

Solution to Problem 4.1

With volumetric flows, the mass balance (4.4) becomes:
m' = (pAh) = pAR = pgin — PQous (4.65)

which gives
1

h/ = Z (Qin - QOut) (466)

Solution to Problem 4.2

1. Figure 4.25 shows the overall block diagram.

u ; _Chip tank h
with conveyor ——»
Wout ’ belt

Figure 4.25: Overall block diagram of wood chips tank model.

2. Since there is a time delay in the system (due to the transport delay of the conveyor
belt) it is important to include the time argument in the equations. The mass balance
if the wood chips contents of the tank is

PpAR(D)] = pAR() =  win(t) — wou(t)
Ws (t - T) — Wout (t) (467)
= Kgu(t—7) — wout(t)

h(t) is given by the integral of h':

h(t) = h(0) + /0 10 db (4.68)

Solution to Problem 4.3

1. The “accumulation” is the total mole number is Vcy. The Balance Law (4.2) is in
terms of a mole balance:

(Vea) =wa —caq (4.69)
A state space model of c4:
1
ca =37 (wa—caq) (4.70)

/.

cA(t) is given by the integral of c4”:
t

ca(t) = ca(0) + / ca’ (0)do (4.71)
0

2. Figure 4.26 shows an overall block diagram of the model (4.70). w4 and ¢ are input
variables, and c4 is the output variable.
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— | Blending
—  » tank

Figure 4.26: Problem 4.3: Overall block diagram for stirred blending tank.

Solution to Problem 4.4

Energy balance of the liquid in the tank:
(cpVT) = cpVT' = cpqiTi + cpauTy — cpqT

Cancelling p:
VT = cqp Ty, + cqTy — cqT

Diving by ¢V gives a state space model of T":
T = (eqpTy, + cqu T, — cqT) /(cV)

Here, ¢ is given by
=g+ qv
T(t) is given by the integral of T":

Solution to Problem 4.5
1. The relation between position y and speed u is
Yy =u
2. Force balance:

mu = E, + Fy, + F,
= F,— Dlu—uc|(u—uc)+ Fy,

(4.77) and (4.79) constitutes the model.

Alternatively, since

the model can be expressed as
my" = F, — D|y' — u,| (y’ — uc) + F,

or:
y”: (Fp*D|y/*uc| (y,*uc)Jer)/m
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Speed ¢/ is the integral of acceleration 3”:

y () = /(0) + /0 " (0) df (4.83)

y(t) = y(0) + /0 (0) do (4.84)

3. We can regard Fj, I, and u,. as input variables, and y as the output variable.
Figure 4.27 shows the block diagram.

Fo ——

. y
F, —»|  Ship |——»
U ———»

Figure 4.27: Overall block diagram of the ship model.

Solution to Problem 4.6

Torque balance:
Jo" =T (4.85)

or:

0" =T/J (4.86)

Angular speed €’ is the integral of angular acceleration 6”:
7 (t) = 0'0) + /0 “0(0)do (4.87)

And angular position 6 is the integral of angular speed '

o(t) = 0(0) + /0 "0(0) o (4.88)

Solution to Problem 4.7

1. Force balance (Newton’s Second Law) applied to the horizontal movement of the
center of gravity of the pendulum.

m(y+ Lsina)’ = H (4.89)

(The differentiation of the additive term (y + L sina) must be carried out in
applications of this model, but it is not shown here.)
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2. Force balance applied to the vertical movement of the center of gravity of the
pendulum:
m(Lcosa)’ =V —mg (4.90)

(The differentiation of the additive term (L cosa) is not shown here.)

3. Torque balance (the rotational version of the Newton’s Second Law applied to the
center of gravity of the pendulum:

Id" =V’Lsina — HLcosa (4.91)
4. Force balance applied to the cart:

My'=F—H —dy (4.92)

(From Eq. (4.89) — (4.92), the internal forces V and H can be eliminated, resulting in two
differential equations not containing V' and H.)

Solution to Problem 4.8

The circuit consists of two resistors in parallel in series with the third resistor. The
resulting resistance is

Ry = R?{FR;% + R3 (4.93)
Solution to Problem 4.9
Mean power is
p- ;U; (4.94)
which solved for R gives , )
R:%%:%%:QQQ (4.95)

Solution to Problem 4.10

There are many ways to find a mathematical model. Here is one: Kirchhoff’s voltage law
gives
—v1 +vo+v2 =0 (4.96)
or
Vo = v — Vg (4.97)
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Kirchhoff’s current law applied to the upper node gives

Getting v alone on the left side:

v9(t) is given by the integral of v’

=0

10— 1R+ 12
v
CUC/_EQ
v
C(vl—vg)’—ﬁ
v
C(vll—vg)—ﬁ
vy = v —va/ (RC)
t
vz(O)—i—/ va(6) db
0

199

(4.103)



Chapter 5

State space models

5.1 Introduction

A state space model is just a structured form or representation of the differential equations
for a system. Typically, the differential equations stem from mechanistic modeling of
dynamic systems as explained in Ch. 4.

State space models are useful in a number of situations:

e Linearization of non-linear models

Calculation of time-responses — both analytically and numerically

e Using simulation tools: Python, MATLAB, LabVIEW, Octave, and Scilab have
simulation functions that assumes state space models.

Analysis of dynamic systems, e.g. stability analysis

Analysis and design of advanced controllers and estimators: Controllability
and observability analysis; Design of LQ optimal controllers, Model-based predictive
control; Design of state estimators (Kalman Filters).

5.2 The state space model

Most dynamic models can be represented with the following two equations:

e The state space model, which is a set of first order differential equations of the state
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variables':

Ill = fl(xvuadvp)
P (5.1)
xnl - fn(m,u,d,p)

e The output model, which is a set of algebraic equations defining the output variables:

y1 = gi(z,u,d,p)
: (5.2)
Ym = gm(x,u,d,p)

The variables are (the indexes are dropped here, for simplicity):

x is the state variable.

y is the output variable.

u is the input variable. In context of control, u represents the control variable (or
signal).

d is the disturbance, which also may be denoted the environmental variable, or the
load variable.

p is the parameter.

(5.1) and (5.2) can be written compactly on a vector form as:

y:g(xau7dap) :g() (54)

In (5.3) and (5.4), x, u, d, p, y are vectors. For example,
€1
Tn

. . T .
which also can be written as = [z1, -+, ]  where super-index T means transpose.

In (5.3) and (5.4), f and g are vector functions:
bl
f=1 (5.6)
fn

! Alternative symbols to &’ are & and i—f.
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g1
g=1 (5.7)
dm

The model (5.3) and (5.4) is often referred to as a nonlinear state space model because the
vector functions f(-) and g(-) may contain nonlinear functions.

In many cases the mathematical modelling results in one or more first order differential
equations. In such cases it is straighforward to write the model as a state space model; All
you have to do is to ensure that the time derivatives appear alone on the left-hand side of
the differential equations. However, when modeling kinetic systems, the model may consist
of second order differential equations due to Newton’s Second Law (since accelaration is the
second order derivative of position). Example 5.1 demonstrates how to write a second order
differential equation as a state space model.

Example 5.1 Mass-spring-damper-model written as a state space model

Figure 5.1 shows a mass-spring-damper-system. z is position. u is applied force. D is

K [N/m]
F[N]
— & m -

D [N/(m/s)] E

—
0 2 [m]

Figure 5.1: Mass-spring-damper.

damping constant. K is spring constant. It is assumed that the damping force Fy is
proportional to the speed, and that the spring force Fj is proportional to the position of the
mass. The spring force is assumed to be zero when z is zero. Force balance (Newton’s
Second Law) yields

mz' =F —F;—F,
=F—-D - K=z (5.8)

which is a second order differential equation.

We define the following new variables: x1 for position z, zo for speed 2z’ and u for force F.
Then the model (5.8) can be written as the following equivalent set of two first order
differential equations:

.%'1/ = X9 (5.9)
mxy' = —Dxo — Kz +u (5.10)
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which can be written on the standard form (5.1) as follows:

x1' = o (5.11)
~—
f1
zy' = (=Dzo — Kyz1 +u) /m (5.12)
P

Let us regard the position x; as the output variable y:

y= T (5.13)

9

The initial position, z1(0), and the initial speed, x2(0), define the initial state of the system.

(5.11) and (5.12) and (5.13) constitute a second order state space model which is equivalent
to the original second order differential equation (5.8).

[End of Example 5.1]

5.3 The response of a state space model

5.3.1 Dynamic response

The output equation, (5.4), or (5.2), expresses that y is a function of z. So, x must exist.

But 2 does not appear explicitly in the model (5.3) — (5.4)! So how is x is obtained? It is

obtained by solving the differential equations, i.e. by integrating the differential equations.
Let’s asssume that the state space model on the vector form (5.3). The response is:

28 = 2(0)+ /0 2/(0) df (5.14)

where 2’ is known from the differential equations:

2'(t) = f (), u(t), d(t), pl (5.15)
The response in the output variable, y(t), is:

y(t) = g[z(t), u(t), d(t), pl (5.16)
See Figure 5.2. The state vector z(t) = [21(t), -, zn(t)]" defines or spans the state space
of the system, with x(t),---, z,(t) as the coordinates of the space. z(t) is the state of the

system as a function of time. As time evolves, x(t) creates a state trajectory. x(t1) is the
state of the system at point of time t1, and x(t2) is the state of the system at point of time
to, etc.
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A
X3
State space
State X(t1)
%o State X(t2)
State trajectory
>
x(0) X1
Initial state

Figure 5.2: The notion of state.
5.3.2 Static response

In some situations it is useful to calculate the static response of a dynamic system, e.g. to
check that the simulated response is correct. The static response is the steady-state value of
the output variable of the model when the input variables have constant values. This
response can be calculated directly from the model after the time-derivatives have been set
equal to zero, since then the variables have constant values, their time-derivatives equal

zero, i.e.
' =0= f(xs,us,ds, D) (5.17)

which is an algebraic equation relating the static values of the variables x, u, and d, and the
model parameters p.

Example 5.2 Calculation of static response for mass-spring-damper

The mass-spring-damper system described in Example 4.3 has the following model:
my" = -Dy — Ky+ F (5.18)

Suppose the force F' is constant of value Fs. The corresponding static response in the
position y can be found by setting the time-derivatives equal to zero and solving with

respect to y. The result is
F

L= 5.19
s = 1 (5.19)

[End of Example 5.2]

Can you calculate the static response in the process variable (the process output) for any
differential equation model? No! Because there may be models for which there is no static
response, as demonstrated in Example 5.3.
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Example 5.3 Failed attempt to calculate static response

See Example 4.1 where (4.8) is the model of the liquid tank, repeated here for convenience:

h'= (g — q) /A (5.20)

Assume that both ¢; and g, have constant values, @); and Q,, respectively. Assuming there
is a static response in h, called hs. Its time derivative is b, = 0. Then, (5.20) gives

0=(Qi~Q,)/A#0

which make no sense unless Q; = @,, and even in that case, no value of h is given. We
know from physical insight that there is no static response in h (unless Q; = Q,); h will
change all the time (unless Q; = Q,).

Only asymptotically stable systems have well-defined steady state responses which can be
calculated from the static version of the mathematical model, as in Example 5.2.
Asymptotic stability is defined in Ch. 19.

[End of Example 5.3]

5.4 Linear state space models

5.4.1 Standard model form of linear state space models

Linear state space models are a special case of the general state space model (5.3)-(5.4).
Many methods for analysis of differential equation models, as stability analysis, response
calculation and model transformations, are based on linear state space models. Let us study
a general second order linear state space model to see how linear state space models are
defined. The model has two state-variables, 1 and z2, and two input variables, u; and ws:

$1/ = a1121 + a2z + b11ur + bious (5.21)

Ty' = ap1w1 + azary + baruy + baouy (5.22)
where the a and b coefficients are parameters (constants).

(5.21)-(5.22) can written on matrix-vector form as follows:

! ai; a2 . b1 b2 "
Ty H) u2
——— a21 a22 ba1 bog
A B
or, more compact:
' = Az + Bu (5.24)

where x is the state vector and wu is the input vector. A is called the system-matrix, and is
square in all cases.
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Let us assume that the system has two output variables, which generally can be functions of
both the state variables and the input variables. The output function can then be written
on the form

Y1 = c1171 + c12%2 + diiuy + digug (5.25)
Y2 = 2171 + C22%2 + do1ur + dagua (5.26)

which can be written on matrix-vector form as follows:

c11 c12 . di1 dy2 u
- ol ] e
y2 ca1 C99 2 da1 dao >
Y N—— x U
C D
or, more compact:
y=Cx+ Du (5.28)

Example 5.4 Mass-spring-damper model as a state space model on matriz-vector form

The state space model (5.11), (5.12), (5.13) is linear. We get

! 0 1 M 0
1 1
= u 5.29
[f@'} _k _d _962} 1 (5.29)
S—— m m dN=—=—— m
’ A ’ B
y=1 0][3”1 +10]u (5.30)
—_—— T2 |

[End of Example 5.4]

5.4.2 Linearization of non-linear models
5.4.2.1 When do we have to linearize?

In many cases the mathematical model contains one or more non-linear differential
equations. If the mathematical model is non-linear, there may be good reasons to linearize
it, which means to develop a local linear model which approximates the original model
about a given operating point. The reasons may be the following:

e We want to study the behavior of the system about an operating point, which is one
specified state where the system can be. It is then the deviations from this operating
point we study. Examples of such operating points are the level of 8.7 m in a tank,
the temperature of 50 degrees Celcius in a heat exchanger, etc. It can be shown (and
we will do it soon) that a model which describes the behavior of the deviations about
the operating point, is approximately linear.
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e We can use the large number of the methods which are available for analysis and
design of linear systems, e.g. for stability analysis, frequency response, controller
design and signal filter design. The number of methods for linear models are much
larger than for non-linear models.s

Note: If you have a non-linear model of a (physical) system, do not use the linearized
model for simulation unless you have a good reason for using it. Instead, use the (original)
non-linear model since it gives a more accurate representation of the system.

Figure 5.3 illustrates the relation between the original non-linear system and the local linear
system (model).

Operating point values

/ (usually constant) \

U X0
—+ 0 —
Au " Non-linear system X Ax
(model) —
dx/dt = f(x,u)

Local linear model /

d(Ax)/dt=AAx+BAu

Figure 5.3: Illustration of the relation between the original non-linear system and the local
linear system (model)

The input variable which excites the non-linear system is assumed to be given by
u=uy+ Au (5.31)
where ug is the value in the operating point and Awu is the deviation from ug. Similarly,

xr=xz0+ Ax (5.32)

If you are going to experiment with the system to develop or adjust a linear model about
the operating point, you must adjust Au and observe the corresponding response in Az (or
in the output variable Ay).

5.4.2.2 Deriving the linearization formulas

We assume that the model is a non-linear state space model:
v = f(x,u) (5.33)
Suppose that the system is in an operating point defined by

zo' = f(zo0,uo) (5.34)
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If the input variable u is changed by Awu from the operating point value ug, the
state-variable x is changed by Ax from z¢. (5.34) can then be written

d(mol;;Aa:) = f(zo + Az, uo+ Au) (5.35)
0 0
xo + Az ~ f(xg,up) + 871: Az + 8—1{ Au (5.36)
0 0

On the left side of (5.35) we have applied the summation rule of differentiation and on the
right side we have used a first order Taylor series expansion of f(-). The expression %
means the partial time-derivative of f with respect to x, calculated in the operating point,
that is, with g and wug inserted into g—i. The same applies to %‘ . Now we will exploit the
fact that x¢’ is equal f(xzg,up), cf. (5.34). This implies that theseotwo terms are cancelled
against each other in (5.36). (5.36) then becomes

0 0
Az’ = of Ax + or Au (5.37)
oz |, ou |,
—— ——
A B
= AAx + BAu (5.38)
or, in more detail,
e} e} o) 0
Azl | — ol gho. | Aze | 4 i | Aug (5.39)
0 0
A B

which is the local linear model. A and B becomes Jacobi-matrices (which are partial
derivative matrices) which generally are functions of the operating point. If the operating
point is constant, A and B will be constant matrices, which can be calculated once and for
all.

Similarly, linearization of the output equation

y=g(z,u) (5.40)
gives
dg dg
Ay= —=| Az + ——| Au= CAz + DAu (5.41)
x|, ou |,
~—— ~——
C D
or
) 0 le) 0,
Ay g% gig; Axy gﬁfﬁ g% Auy
Ays | — aTi? ng | Arg | 4 8—5? % .| Aug (5.42)
0 0
C D
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If the operating point is a static equilibrium point, all variables have constant values and all
time-derivatives are zero. Thus,

xo' = 0= f(x0,u0) (5.43)

The values of the model variables in the static operating point can be found by solving the
algebraic equation (5.43) with respect to the unknown variables.

Example 5.5 Linearization of a non-linear tank model

The nonlinear model

Figure 5.4 shows a liquid tank with inlet via a pump and outlet via a valve with fixed
opening.

x [m] v ]
m [kg]
0 p [kg/m’]

a2

q,=K lfogh [m/s]

Figure 5.4: Liquid tank with non-linear mathematical model

The outflow is assumed to be proportional to the square root of the pressure drop over the
valve, and this pressure is assumed to be equal to the hydrostatic pressure pgh at the
outlet. The mass balance becomes:
pAx’ = pgi — pqu
= pKpu — pKy\/pgz

which can written: K K
v =="Lu—=""\/pgz = f(z,u) (5.44)
Ay Ay

Static operating point

Before we linearize the original model, we will find the static operating point. Let us
assume that the pump control signal is constant: u = ug (constant). We calculate the
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corresponding static level, x = xy (constant), by setting 2’ = 0 in the dynamic model (5.44):

K K,
0=—Lug — —2\/pgzo = f(x0,uo) (5.45)
Ay Ay

Solving (5.45) with respect to xo gives:

0= -~ (Kp“°>2 (5.46)

Linearization

Now that we have found the static operating point (ug, x¢), we can derive the local linear
model by linearizing (5.44):

Az = 8—f Az + 87f Au
ox |, ou |,
K, pg Kp
= —— Az + —= Au 5.47
At 2,/pgro Ay ( )
A B
= AAz + BAu

[End of Example 5.5]
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5.5 Problems for Chapter 5

Problem 5.1 State space model of a system of tanks

Figure 5.5 shows two coupled liquid tanks. u; and ug are control signals.

Uy

qu [ms]
Pump 1
hy [m]
kg/m?®
e B % [ms]
Tank 1 Valve 1 *
ha [m] U

A [m?] a3 [m*/s]
Tank 2 Valve 2

Figure 5.5: Two coupled liquid tanks

Material balance of the liquid in tank 1 gives:

h
pA1 h' = pKpus — pKy, ng ! (5.48)
v —_————

q1

Material balance of the liquid in tank 2 gives:

h h
pAg hy! = pjz(m/&G1 — pKypyuzt/ ngQ (5.49)
q2 q3

Valve 1 has fixed opening. Valve 2 is a control valve with control signal u between 0 and 1.
The square root functions stems from the common valve characteristic which expresses that
the flow is proportional to the square root of the pressures drop across the valve. Here, the
pressure drops are assumed to be equal to the hydrostatic pressures at the bottom the
tanks. For example, for tank 1 the hydrostatic pressure is pghi. The parameter G is the
relative density of the liquid.?

Assume that the input variables are u; and uo, and that the output variables are y; = hy
and yo = hy. Write the model (5.48) — (5.49) as a state space model. Is the state space
model linear or nonlinear?

Problem 5.2 Calculation of static response of thermal system

Calculate the static response in the temperature 7" from the thermal model (4.19).

2G = p/pwate'r-

211



CHAPTER 5. STATE SPACE MODELS

Problem 5.3 State space model on matriz-vector form

Write the following model as a state space model on matrix-vector form:

/

I = X9
2 $2/ = 8ug — 6x9 — 221 + 4uq (5.50)
y = 5x1+ Tuy + 622

Problem 5.4 Linearization

Given the state space model (5.51) — (5.53) which are solutions to Problem (5.1). Linearize
the model.
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5.6 Solutions to problems for Chapter 5

Solution to Problem 5.1

Density p can be cancelled. (5.48) becomes
()

1 h
hl,:<Kpu1_KfU1 pg 1)

Ay G

(5.49) becomes

f2(+)
1 [ pgha [ pgha
h2/ — A—Q (Kvl a — KUQUQ G

The measurement equations become

=~
= M
92(+)
=~
y2 = ho

The state space model is nonlinear due to the square root functions.

Solution to Problem 5.2

We start by setting
T =0

in the model (4.19), which then becomes:

0:£[P+CF(TI-—T)+U;L(T6—T)]

Solving for T' gives the static response:

_ P+ cFT; + U,T,
N cF + U,

T

Solution to Problem 5.3

(5.51)

(5.52)

(5.53)

(5.54)

(5.55)

(5.56)

(5.57)

Firstly, we isolate the first order derivatives on the left side, and list the variables in the

proper order to prepare for the matrix-vector form:

mll = X2
xgl = —x1 — 3x9 + 2uy + 4us
y = 5xr1+ 61+ Tuy
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Finally,
.751, . 0 1 T 0 0 ui
-0 S 05
—— | G — G S — i —
T A o B u
and
y=1[5 6][$1]+[7 o][“l] (5.60)
~——| T2 —— U2
C S~—— D S~——
or, compactly:
2 = Az + Bu 5.61)
y=Cz+ Du (5.62)

Solution to Problem 5.4

Linearization of the differential equations:

A’ _ | o g || [ Al (5.63)
a7 | BB | '

% 8fl A
Jui Ous “1 5.64
_Ke /pg
— All Q\ﬁ 0 . Ahy (5.65)
Ky, \/> 1 7Kv2u2\/E 1 Ahsy '
Az G 2v/h1 As G 2v/ha 0
A
L 0
A, Ay
| iy | s .
B
Linearization of the output equation:
0 0
[Ayl]:[gi{ﬁ 8}9121 .[Ahl} (5.67)
Ayo TZ? ng . Ahs
g1 dgu Au
+ | Gu Gu ) oM } 5.68
BRI o
110 Ahy
SRIRES
C
0 0 Aul
+[00]0'[AW} (5.70)
———
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Chapter 6

Simulation algorithms of state
space models

6.1 Why simulate?

Why simulate? Some good reasons are:

e FEducation and training: A simulator can be a very good educational and training
tool! Simulations can give students, operators and other people an experience of how
systems behave, without running physical experiments. While running physical
experiments is often the dream scenario, it may simply not be possible to run physical
experiments — it can be too expensive or risky, and perhaps the physical system does
not even exist!

o Testing: Different Scenarios — like “if-then” scenarios - may be tested without any
risk to the environment. Just think about the benefits of being able to check whether
an oil platform or aircraft management system will work without actually doing
experiments with the platform or plane.

e Analyze: With simulations, you can observe how variables which you may not
actually measure will develop in reality. This can give new deep insight into, and
understanding of the system.

e Design: You can use a simulator to design — or redesign — a real system. For
example, you can find out if a wastewater magazine in a so-called combined drainage
system, where rain and sewage are mixed, is large enough to be able to collect the
wastewater due to heavy rainfall.

Is simulation important and useful? You can think about it.

A modern term used for simulators is digital twin. (Maybe a buzzword, but quite a
descriptive one.)
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6.2 Simulation algorithm for state space models

6.2.1 Introduction

A textual simulation algorithm is an algorithm that you can program in a textual
programming tool as Python, MATLAB, Octave, JavaScript, C, etc. Although there are
simulation tools (functions) — i.e. differential equation solvers — in Python and MATLAB
etc., I will here show how you can develop a simulation algorithm completely from scratch.
Your own implementation may run faster than with the simulation tools, and your
implementation will become completely transparent, which may be useful for testing and
documentation. (Personally, I usually develop simulation code from scratch in my projects.)

We will focus on developing a simulation algorithm ready for programming based on the
state space model (5.3). Including the output model (5.4) in the simulator algorithm is
straightforward since that model comprises only algebraic expressions.

Thus, we assume that the model of the system to be simulated has the form of(5.3), which
is repeated here for convenience:

' = f(x,u,d,p) (6.1)

The simulation algorithm which we will develop, and eventually implement in a program in
Python, will calculate the state, z(t;), at any discrete point of time, ;. as illustrated in
Figure 6.1. A simulation algorithm is based on some method of discretization of the given
continuous-time model, (6.1).

x T X(tue)
X (.‘(‘M—I) X( tv) X( k.'.])

__§

-(‘-_ CONTWUOUS T(ME
! 4 4 __>
tiat Ty el DISCRETEE TIME
— } - —_
k-1 k k+ TIME \WDEX
Ts
e

Figure 6.1: Discrete-time values of h, with three alternative symbols

Some comments about the symbols shown in Figure 6.1:

e T, [s] is the time step, which defines the resolution along the simulation time axis.
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e [ is the time index, which is an integer, which counts the number of time steps
corresponding to a given point of time, t;. Example: Assume that Ts = 0.1 s. How
many time steps are there from ¢ = 0 to 5.0 s? Answer: 50. Then, we have the
following alternative ways to represent the point of time ¢ = 5.0 s:

t=50% 150 < k=250

e Often, t; means “now”, the present point of time. Then, t;_; means the previous
point of time, and t;11 means the next (future) point of time.

e The following symbols are equivalent:

In the following, I will mainly use the symbol z. This makes the algorithm which we write
on the “paper” look quite similar to the algorithm to appear in the program.

6.2.2 The simulation algorithm

Figure 6.2 illustrates the simulation algorithm.

S\MULATION ALGORITHM
REFORC LooP:  © IWITIAL|ZATION

e STATE LIMITATION

FOR LOoP e SETTING INPUTS AND PARAMETERS
OR . CALCULATION OF TIME DERINAT IVES
WHILE LooP

« PREDICTION OR INTEGRATION (EULER)

U, T\ME \NDEX SHIFT

AFTER LOOP: o pLOTTING, ANALYSIS, STORING, ETC.
Figure 6.2: Simulation algorithm.

The following assumptions are made for the simulation algorithm based on (6.1):

1. The time-step of the algorithm is specified as Ts [s]. (How to select T will be
discussed below.)

2. At the present time ¢, the following have known values:
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a) The state, x.

(a)

(b) The input, u.

(c) The disturbance, d.
(d) The parameter, py.

With these assumptions, we can predict ;1 by integrating ) given by (6.1) between tj
and tk—i—l:
th+1
Thtl = Tk +/ x| dt (6.2)
ty
where z;’ is
x' = f(x, uk, dy, pr) (6.3)

The simulation program running on a computer must calculate (6.2) numerically. There are
many ways to do that. It is my experience from a long life with models and simulations
that the Euler Forward method of calculating (6.2) numerically is sufficient in, by far, the
most cases, and I will therefore concentrate on that method here.

The Euler Forward regarded as an integration method

The Euler Forward method implies that the integrand of (6.2) is kept constant during the
integration time interval. Thus,

Thy1 = T + Tsx), (6.4)
where xy’ is given by (6.3). This corresponds to approximating the integral with rectangle
integration, see Figure 6.3.

x=f 1 )
X
Xkﬂ ————————————— : T
. P
Xg +-=== ol .
|~ T,
(AR 1 Euter L
1 1 E
tV tl«H
e Al
< A

Ts

Figure 6.3: Euler Forward approximation, or rectangle approximation, of the integral of x’

between t; and 4.

The Euler method regarded as a prediction method

Another graphical interpretation of the Euler Forward method is shown in Figure 6.4. z,q
is predicted by assuming that the slope at time ¢ is constant until ¢ .
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X CORRECT Xiq
! PREDICTED:
Xygif = = = — — — — — = — Xt =Xe+Tgx,
OX—
x‘* T~ —= - 4 1.
| TANGENT OF SLOPE | %,
( |
' ¢
tu Tt
e al
~ 4}

Ts

Figure 6.4: Graphical interpretation of the Euler Forward method: zj,q is predicted by
assuming that the slope at time ¢ is constant until ¢x1.

Summary of the similation algorithm:
Before the simulation loop:
e Initializations: Time settings, parameter values, preallocation of arrays for storing
data.

e In particular, initialization of the state variable:

Tk = Tinit (6.5)
Inside the simulation loop:

e Assuming state variable xj is known from initialization or from previous iteration of
simulation loop:

— State limitation: zp must be limited between xmnand Tmax to avoid unrealistic
values (e.g. a negative liquid level):

Tg € [xmirh xmax] (66)

e Assuming that the following quantities have known values at time t:

— Set inputs:

« Control variable (or manipulating variable) wuy.

* Disturbance (or load or environmental variable) dj.
— Set parameter py.

e Apply z;, for storing in an array' for later plotting or analysis, signal processing, file
saving, etc.

lwhich should be preallocated to save computational time
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e Calculate the time derivative at time ¢j:
x' = f (x, uk, dy, pr) (6.7)

e Calculate the state prediction for the next time step, txy1, i.e. the Euler integration
step:
Tht1 = Tk + T x’ (6.8)

e Make a time index shift of z (to prepare for the next iteration of the algorithm):

Tk = Tkl (6.9)
After the simulation loop:
e Plotting, analysis, saving data to file, etc.

When presenting a simulation algorithm briefly, you may present it in terms of (6.5), (6.7),
(6.8), and (6.9).

Example 6.1 Simulation algorithm of temperature of a kettle

We will now develop a simulation algorithm of the kettle presented in Ch. For your
convenience, some of the information is repeated below.

Figure 6.5 shows the kettle.

Figure 6.5: Kettle.

Figure 6.6 shows a sketch of the kettle.
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Teoom

A\
e
k{,”G'\—a

7' ™

Heat condumeon

—

1>

Figure 6.6: Sketch of a kettle.

T' = [P+ G (Tyoom

The mathematical model to be used in the simulator is the following differential equation
which stems from thermal energy balance of the water in the kettle:

-T)/C (6.10)

e (' =2101 J/K is the heat capacity of water in kettle.
e G =234 W/K is the thermal conductivity of plastic jacket.

® Tioom = 20 °C is the room (ambient) temperature.

Figure 6.7 shows an overall block diagram with main variables and parameters of the kettle.

Environmental variable

Troom

l

Input

W] ——>

Kettle

Output

— T [deg C]

11

C G

Parameters

Figure 6.7: Overall block diagram of the kettle.
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The initial temperature is
,—Tinit =20°C

(6.11)

In the simulation, the supplied power will be changed as a step from 0 to 700 W at time

t=0s.

The core of the simulation algorithm is:

e The calculation of the time derivative at time index k:
T.' = [P+ G (Troom — T)] /C
e The state prediction (the Euler step) at time index k + 1:

Tk+1 - Tk + dt Tk/

The time step will be set as
dt =1.0s

but later in this chapter we will observe what happens if it is set too large.

Python code

Python program 6.1 implements the simulator.

http://techteach.no/control /python/sim kettle.py

Listing 6.1: sim_kettle.py

Simulation of kettle
Finn Aakre Haugen, TechTeach. finn@techteach.no
2022 12 31

# %% Import of packages:

import matplotlib.pyplot as plt
import numpy as np

# %% Model parameters:
T_room = 20 # [oC]
# %% Derived parameters:

C = 2101 # [J/K] Heat capacity of water in kettle
G = 2.34 # [W/K] Thermal conductivity

# %% Simulation time settings:
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dt = 1.0 # [s]

t_start = 0 # [s]

t_stop = 400 # [s]

N_sim = int((t_stop - t_start)/dt) + 1 # Num time-steps

# %% Params of input signals:

P_on = 700 # [W]
P_off = 0 # [W]

# %% Preallocation of arrays for plotting:

t_array = np.zeros(N_sim)
T_array = np.zeros(N_sim)
T_room_array = np.zeros(N_sim)
P_array = np.zeros(N_sim)

# %% State limits:

0 # [oC]
100 # [oC]

T_min
T_max

# %% Initialization:

T_k = T_init = 20.0 # [oC]
# %% Simulation loop:

for k in range (0, N_sim):

# Limitation of state:
T_k = np.clip(T_k, T_min, T_max)

# Time:
t_k = kxdt

# Setting input:
if (0 <= t_k <= 0):

P_.k = P_off
else:

P_k = P_on
T_room_k = T_room

# Time derivative:
dT_dt_k = (1/C)*(P_k + G*(T_room - T_k))

# Euler step (prediction):
T_kpl = T_k + dt*dT_dt_k

# Updating arrays for plotting:

t_array[k] = t_k
T_array[k] = T_k
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T_room_array[k] = T_room
P_array[k] = P_k

# Time index shift:
T_k = T_kpl
# %% Plotting:

plt.close(’all’)
plt.figure (1)

plt.subplot (2, 1, 1)

plt.plot(t_array, T_array,’b’, label=’T’)
plt.plot(t_array, T_room_array,’g’, label=’T_room’)
plt.legend )

plt.grid O

plt.ylabel (’[deg C]°)

plt.subplot (2, 1, 2)

plt.plot(t_array, P_array, ’r’, label=’P’)
plt.legend ()

plt.grid ()

plt.xlabel(’t [s]’)

plt.ylabel (°[W]’)

plt.savefig(’plot_sim_kettle.pdf’)
plt.show ()

Figure 6.8 shows a plot from the simulation.

[End of Example 6.1]

6.2.3 How to test the simulator

The simulations that we run in the previous sections seems reasonable. If the responses had
looked strange, we would of course have tried to search for the error and made sure to fix it.
But regardless of whether the responses look correct or incorrect, we should test the
simulator with our own test scenarios, possibly by checking whether the simulations we
have already carried out are in accordance with manual calculations from the model. In
general, we should test both static simulations and dynamic simulations.

6.2.3.1 Static test of the simulator

In static testing, we assume that the system is influenced by constant input signals and that
all variables in the model have constant values, which means that time derivatives are zero.
We manually calculate the static response. Hopefully this this value is equal to the static
value from a simulation.
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100
75 A —— T_room
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[deg C]
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Figure 6.8: Plots from the simulation
Manual calculation

Let’s calculate Tgatic manually. We set the supplied power P so low that T does not reach
the limit of 100 degrees C. P = 100 W is ok. We set Ty, ... = 0 in the model (6.10), which

static
then becomes

0=P+G (Troom - Tstatic) (614)
which gives
P 100
Tsaic:Troom - =2 — =62.7° 1
tat + G 0+ 534 62.7 °C (6.15)

Simulation

Figure 6.9 shows the simulated response with s, = 8000 s. 7' is approximately static at
the end of the simulation. The simulation is run with the following Python program.

http://techteach.no/control /python/sim_kettle_static_test.py

In the program, the final value of T, which we assume is the static value, is found with the
Python code T_array[-1]. The result is 62.7°C, the same as the manually calculated value.
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We can therefore conclude that it seems that the simulator is correctly implemented as far
as static simulations are concerned.

60 - T
. —— T_room
@)

& 40
S,
20- I I I I I I I I I
0 1000 2000 3000 4000 5000 6000 7000 8000
100 ~
— P
2 50-
0_

1000 2000 3000 4000 5000 6000 7000 8000
t [s]

o_

Figure 6.9: Simulation of the kettle until an approximate static state is obtained.

6.2.3.2 Dynamic test of the simulator

In a dynamic test of the simulator, we ensure that 7" is different from zero, and then we
check whether the simulated 7" agrees with manually calculated 7".

Manual calculation

Let’s manually calculate T” just after ¢t = 0, i.e. 77(0). From model (6.10) we get:

T(0) = L 1P(O) + G (T — T(O)] (6.16)

Let us assume that T'(0) = Tyoom and that the supplied power, P, is a step from 0 to 100

W. We then get:
oy . £(0) 100 0
T'(0) = o = 3701 = 0.0476 °C/s (6.17)
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Simulation

Due to the heat loss through the plastic jacket, T'(t) starts to flatten immediately after

t = 0. If we are to read off 7"(0) graphically, we should therefore simulate with a very small
lstop- Let’s set fsiop = 1 s, and use s very small simulation time step, namely dt = 0.01 s.
The simulator is implemented in the following Python program.

http://techteach.no/control /python/sim kettle_dynamic_test.py

Figure 6.10 shows the simulated step response. We can now read off 7”(0) manually from
the plot. However, it is more accurate to use Python code to find 77(0). You may use the
following code (which is already in the program above):

(np.diff(T_array) /dt)[1]

The result of the above expression is 0.0476 °C/s, which is the same as with manual
calculations. We can therefore conclude that it seems that the simulator is correctly
implemented as far as dynamic simulations are concerned.

20044+ — T
— —— T_room
@)
o
S 20.02 A
20.00 T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
100 +
—_ P
2 50-
O i T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

t[s]

Figure 6.10: Simulation of the kettle with a very short stop time (1 sec) to find the initial
slope, T7(0).
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6.2.3.3 Conclusion of static and dynamic testss

We have now successfully accomplished both a static and a dynamic test of the simulator of
the kettle. However, these test does not prove that the simulator is correctly implemented,
although there are indications that it is. Maybe we just had luck with the test scenarios!

6.2.4 How to choose the simulation time step, dt?

As part of the discretization, we must select an appropriate value of the time step, dt, which
specifies the resolution along the simulation time axis. As illustrated in Figure 6.11, a
“small” dt provides greater (better) resolution along the simulation axis — which is a
benefit. On the other hand, the computational demand on the computer is larger since it
has to perform more calculations (more frequently), and also produce more simulated data.

CORRECT

Ts CONTINUOUS <TIME
RESPONSE

Xsim /

S\MULATED
RESPONSE -
ts{vvx
Ts
X sim
Tsim

Figure 6.11: The importance of the time step dt in simulations. Top: Relatively large dt.
Bottom: Relatively small dt.

If we are so unfortunate to choose dt too large, the simulation algorithm itself may become
unstable, so that the simulated responses “take off” and become completely different from
the correct response. This is illustrated in Figure 6.12.

A general rule is to select dt as large as possible (to minimize both the computation
demand and the data generated during the simulation), but the simulation must be
insensitive to dt. The simulation is insensitive to dt is the simulated response is

approximately the same with a somewhat larger dt and with a somewhat smaller dt.

You must expect some trial and error to find a suitable dt. If you have some insight into
how fast or slow the simulated system is, I think you can get a reasonable value of dt by
following the following guidelines:
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CORRECT
X sim 4 RESPONSE

Figure 6.12: With a large dt, the simulation algorithm may become unstable.

e Select dt so that the simulation gives an accurate expression of the responses as they
would actually have been in the original physical system (to be simulated).

e For a fast system, select a relatively small dt.

e For a slow system, you can choose a relatively large dt, but a small dt will also work
well, except that the computer will have a larger computational demand during the
simulation, and more simulation data will be produced for plotting and/or file storage.

If you know the approximate time constant, Teonst, of the system to be simulated, cf. Ch.
9.3, you can try
dt = Teonst /100 (6.18)

If you have no idea what to choose as dt, you can start with
dt =0.01s (6.19)

and then make some adjustment of dt if necessary.

Example 6.2 How the simulation depends on the time step

It can be shown that the time constant of the kettle is approx. 900 s. From (6.18), a
reasonable dt is then dt = 900/100 = 9 s. A simulation with dt = 9.0 s gives a response
which is very similar to the response with d¢ = 1.0 s which is already shown in Figure 6.8.
Instead of showing the response with dt = 9.0 s, let’s do some more exciting changes,
namely setting dt to considerably larger values.

In the program linked to below the simulation time step is set relatively large, namely
dt = 1200 s. To avoid saturations and the consequently clipping of the temperature
response, the supplied power is set as 100 W instead of 700 W as in earlier simulations.
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Inaccurate simulation

http://techteach.no/control /python/sim_kettle_dt_inaccurate.py

Figure 6.13 shows the step response in the temperature, T. The temperature oscillates
someehat, which is a result of numerical inaccuracy in the simulation algorithm due to the
large dt. With large dt the prediction of T}, based on T}, becomes inaccurate.

— 60
(@)
(@)}
S 40
- — T
—— T room
20 L T T T T T T T
0 2000 4000 6000 8000 10000 12000
100 A
— P
2 50-
o i T T T T T T T
0 2000 4000 6000 8000 10000 12000
t [s]

Figure 6.13: Step response in temperature, T', when simulation time step is dt = 1200 s. The
simulation is numerically inaccurate.

Unstable simulation

Let’s see what happens with an even larger time step, namely dt = 2000 s. The following
program runs the simulation.

http://techteach.no/control /python/sim kettle_dt_unstable.py

Figure 6.14 shows the step response in T'. The simulation oscillates with larger and larger
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amplitude — the simulation is numerically unstable, while the kettle itself is stable, of
course!

— T
. —— T_room
O 100 A
(@)
(]
S
0 1 N
0 2000 4000 6000 8000 10000 12000
100 ~
— P
2 50-
0 L I I I I I I I
0 2000 4000 6000 8000 10000 12000

t[s]

Figure 6.14: Step response in temperature T with time step is dt = 2000 s. The simulation
is numerically unstable!

[End of Example 6.2]

6.2.5 Simulation along real time or scaled real time?

If you want a “live” simulation — which can be very effective educationally, you need to run
the simulation in real time so you can see that the simulation progresses as the simulated
time runs. Also, if you want the simulator to run in parallel with the real system, maybe for
monitoring purposes, you need to run the simulator in real time.

However:

e For systems that are very slow, real-time simulation will hardly be popular. Then it is
better with scaled real time, so that the simulation runs eg. 100 times faster than real
time.

e For systems that are very fast, real-time system is of little uses since there will be no
time to experience the live simulation. In this case it may be suitable to run the
simulation for example 100 times slower than real time.
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Figure 6.15 illustrates the above (it is assumed 2 times faster and 2 times slower than real
time, respectively).

0
— —> tmt
REAL SYSTEM N ‘
1S SLOW, p———""">Tsm = > ¢
2 FAST s, 2 rea
SAMEC SPEED .
oF REALAND SMf F— —> tsim=TguL
REAL SYsTem
IS FAST . — = Lsim =2t o

=D SLOW S\M,

Figure 6.15: Real-time, or scaled real-time simulation

How do you implement real-time, or possibly, scaled real-time simulation? Here is a
procedure:

1. Select a proper value of the simulation time step, dt. Note: The selection of dt shall
be independent of the speed of the simulator!

2. If you want the simulator to run k£ times faster than real time, then ensure to
implement the real cycle time, or iteration time, of your simulation algorithm,

tcycle,real, &CCOI‘dng to

dt
tcycle,real = ? (620)

How to implement Z.ycle real, depends on the programming tool you are using, and I
will not discuss this further here.

6.2.6 Why predict?

Why calculate zp1 when we actually need xx? After all, it is z; we need. So why calculate
the predicted value x41?7 Why not just subtract 1 from all of the time indexes in the
algorithm above to get a formula for zj instead of xp1 17 Let us try. Then (6.7) becomes

g1 = f(@k—1,uk—1,dk—1,Pr—1) (6.21)

and (6.7) becomes
Tk = Tp—1 +dt o’ (6.22)

While this may look ok as the basis of a simulation algorithm, a drawback is that the

delayed values ur_1 and di_1 and pg_1 are required. It is much more common to use the
“prediction” algorithm (6.7) — (6.8).
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6.2.7 Euler Forward vs. Euler Backward

The approximation (6.8), on which we have based the simulation algorithm, is the Euler
Forward approximation of the time-derivative of x. As you may have guessed, or know
already, there is also the Euler Backward method of calculating (approximating) the
integral of (6.2):

zp = xp—1 + Ts x" = a1 + dtf (xg, wg, di, Pi) (6.23)

Actually, if the function f() is linear in xp we will certainly be able to obtain a formula for
xy by solving (6.23) for zj. This is actually the Euler Backward method. However, often
process models are nonlinear, i.e. f() is a nonlinear function of x, and then we may get
problems. As an example, assume the following model:?

¥ =-K,z (6.24)

Then, (6.23) becomes:
T = Tp_1 +dt l‘k/ = xp_1 — dtK, /2 (625)

Do you see the problem? It is that xp appears at both sides of the nonlinear equation
(6.25), making it difficult (but not impossible) to calculate xj, which we need in the
simulation algorithm! With the Euler Forward method, the problem does not even appear —
not for any function f().

It can be shown that the Euler Forward method is somewhat less accurate than the Euler
Backward method. But if we choose a small enough time step, dt, the two methods give
almost identical results.

Above, we have actually got a demonstration of why the Euler Backward method is also
called the Euler Implicit method: (6.25) gives an implicit solution of ;. And the Euler
Forward method is also denoted the Euler Explicit method.

6.3 Simulation of second order differential equation models

In Section 6.2, the simulation algorithm assumed a first order differential equation. What if
the model consists of a second order differential equation, like when you apply the Newton’s
Second Law to model the motion of a mechanical system?? One common way to obtain a
simulation algorithm for second order differential equation is to represent this differential
equation by two first order differential equations, and applying the Euler method to each of
them. This procedure is demonstrated in Example 6.3 where we develop a simulation
algorithm for a mass-spring-damper system. Both the speed and the position of the system
will be simulated.

Example 6.3 Simulator of a mass-spring-damper

2A model of a water tank with a valve in the outlet may be modelled like this. The outflow through the
valve is the cause of the square root function.

3Differential equation of higher order than two are very rare. You may meet them in e.g. signal processing
and state estimator design, but such applications are not relevant here.

233



CHAPTER 6. SIMULATION ALGORITHMS OF STATE SPACE MODELS

Figure 6.16 shows a mass-spring-damper system. The damping force Fj is assumed

k [N)
Fl m
1 M Jd—
AN
Om sim]
7[7‘"‘/5]

Figure 6.16: Mass-spring-damper system.
proprtional with the speed (i.e. so-called viscous damping is assumed):
Fy=—-Dv (6.26)

The spring force is assumed proportional with the position of the body relative to position
s =0:
F,=—-Ks (6.27)

The Newton’s 2nd law (force balance) is:

ms’ =mv'=F —-F;—F;=F—Dv—Ks (6.28)
The state space model is:
s=wv (6.29)
1
v/ = = [F— Dv— Ks] (6.30)
m
The simulation algorithm is:
Before the stmulation loop:
e Initialization:
Sk = Sinit (6.31)
Uk = Vinit (6.32)
Inside the simulation loop:
e State limitation:
Sk € [Smina Smax] (633)
Vg € [Umina Umax] (634)

e Time derivatives (the differential equations):

Sk/ = Vg (6.35)

1
m

[Fk — ka - Ksk] (636)

Uk,
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e Euler integration:

e Time index shift:

Sg41 = Sk +dt - Sk/ (637)
Vg1 = Vg + dt - Uk/ (6.38)
Sk = Sk+1 (6.39)
Vi = Vg1 (6.40)

Program 6.2 shows an implementation of the simulator, including various numerical settings
(I do not show these values in the text). Figure 6.17 shows simulated responses due to a
step change of the applied force F'.

[m/s]

t(s]

Figure 6.17: Simulation of a mass-spring-damper.

http://techteach.no/control/python/prog_sim_mfd.py

Listing 6.2: prog_sim_mfd.py

import matplotlib.pyplot as plt
import numpy as np

m 1
K

D

0

# For
s_min
v_min

10
.5

# [kgl
# [N/m]
# [N/ (m/s)]

state limitation, but not effective here.

-np.inf;
-np.inf;

s_max = np.inf,

v_max = np.inf
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Ts = 0.001 # [s]
t_start = 0 # [s]
t_stop = 10 # [s]
N_sim = int((t_stop - t_start)/Ts) + 1

t_array = np.zeros(N_sim)
s_array = np.zeros(N_sim)
v_array = np.zeros(N_sim)
F_array = np.zeros(N_sim)
s_k = s_init = 0 # [m]

v_k = s_init = 0 # [m/s]

for k in range (0, N_sim):

t_k = kxTs

if 0 <= t_k <= 1: F_k = 0 # [N]
else: F_k = 1 # [N]

s_k = np.clip(s_k, s_min, s_max)

v_k = np.clip(v_k, v_min, v_max)
ds_dt_k = v_k

dv_dt_k = (1/m)*(F_k - Dxv_k - Kx*s_k)

s_kpl = s_k + Ts*ds_dt_k
v_kpl = v_k + Tsxdv_dt_k

t_arrayl[k] = t
s_array[k] = s
v_array[k] = v
F_array[k] = F

s_kpl

_k
_k v_kp1l

S
v
plt.close(’all’)
plt.figure(l, figsize=(12, 9))

plt.subplot(3, 1, 1)

plt.plot(t_array, s_array, ’b’, label=’s’)
plt.xlabel (’t [s]?)

plt.ylabel (’[m]’)

plt.grid )

plt.legend )

plt.subplot(3, 1, 2)

plt.plot(t_array, v_array, ’g’, label=’v’)
plt.grid ()

plt.xlabel (°t [s]?)

plt.ylabel (’[m/s]’)

plt.legend ()
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plt.subplot (3, 1, 3)

plt.plot(t_array, F_array, ’r’, label=’F’)
plt.grid ()

plt.xlabel (’t [s]?)

plt.ylabel (’[N]’)

plt.legend ()

# plt.savefig(’plot_sim_mfd.pdf’)
plt.show ()

[Slutt pa eksempel 6.3]

6.4 Simulation algorithm of time delays

Time delays — also denoted transportation time and time delay — appear in various systems:

e Transportation of material on conveyor belt or through pipelines.

e Apparent time delay due to imperfect mixing in tanks, e.g. a delayed response in the
measured temperature of liquid in a tank after some change in the supplied power to
the liquid.

e Delay of information through communication channels.
How to make a simulation algorithm of a time delay? Let us make a simulator of the

transportation taking place on the conveyor belt shown in Figure 6.18. The belt runs with
fixed speed.

Fén D‘S/ 5]

) — H

@ 8

. L] @)= ey

Figure 6.18: Conveyor belt

There is a time delay from inflow Fj, to the belt to the outflow Fy,; from the belt.
Example: Suppose the time delay is 45 seconds. A change in the inflow at 12:30:00 will
then give the same change in the outflow at 12:30:45. Mathematically, the relationship
between Fj, and Fy,¢ can be expressed as:

Fout(t) = Fin(t — tg) (6.41)
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where ty = 45 s is the time delay (transportation time).

Let us imagine that the conveyor belt in Figure 6.18 is represented by an array, where the
input signal to the array is put into the first element of the array, and the time delayed
signal is taken out from from the last element of the array. At each discrete time in the
simulation, the value of each element in the array is moved one step toward the end of the
array. This is illustrated in Figure 6.19 where yi, is the input to the array and you is the
output of the array. The mathematical relationship between 3oyt and i, is

Yout (t) = Yin(t — ta) (6.42)

What should be the length of the array? If the time delay is ¢4 [s] and the simulation time
step is dt [s], the length of the array should be

_ta

(6.43)
or rounded upwards to the nearest integer if this fraction is not an integer (rounding
upwards is safer than rounding downwards assuming it is safer to overstate the time delay
than to understate it).

We can now state a simulation algorithm as follows. The algorithm is executed at each
point of simulation time.

1. The time delayed signal, yout(t) = yin(t — t4), is the value of the last element of the
array.

2. In principle, all the elements of the array are moved one step towards the end of the
array. (The program example below shows a way to implement the move, but there
are other ways.)

3. The value of the variable to be delayed, yiy(t), is entered into the first element of the

array.
ARRAY OF Ny ELEMENTS
Bilt) NN TN
Yok =% (Yo [Yoka Yk [ Y
NDEX: 0 M-l =gy,

=Jc (tu‘tl)

TIME DELAY, tuLs]=NiTs

Figure 6.19: Realization of a time delay using an array. At each simulation point of time, all
the elements of the array are moved one step toward the end of the array.

Example 6.4 A Python program for simulation of a time delay
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Python program 6.3 implements the simulator of a time delay.

http://techteach.no/control /python/prog_sim_time_delay.py

Listing 6.3: prog-sim_time_delay.py
# %% Import of packages:

import matplotlib.pyplot as plt
import numpy as np

# %% Model parameters:

t_delay = 1.0 # [s]

# %% Simulation time settings:
Ts = 0.01 # [s]

t_start = 0 # [s]

t_stop = 5 # [s]

N_sim = int((t_stop - t_start)/Ts) + 1

# %% Preallocation of arrays for plotting:

t_array = np.zeros(N_sim)
y_in_array = np.zeros(N_sim)
y_out_array = np.zeros(N_sim)

# %% Initialization:
Y_out_init = 0.5
# %% Preallocation of array for time-delay:

Nd = int(round(t_delay/Ts)) + 1
delay_array = np.zeros(Nd) + Y_out_init

# %% Simulation loop:
for k in range (0, N_sim):
t_k = kxTs

# Excitation:
if (t_start <= t_k < 2.0):

y_in_k = 0
if (2.0 <= t_k):
y_in_k = 1.0

# Time delay:

y_out_k = delay_array[-1]
delay_array[1:] = delay_array[0:-1]
delay_array[0] = y_in_k
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# Writing values to arrays for plotting:
t_array[k] = t_k

y_in_array[k] = y_in_k

y_out_array[k] = y_out_k

# %% Plotting:

plt.close(’all’)

plt.figure (1)

plt.grid O

plt.plot(t_array, y_out_array, ’b’)
plt.plot(t_array, y_in_array, ’r’)
plt.xlabel (’t [s]?)
plt.legend(labels=(’y_out’, ’y_in’))

plt.savefig(’plot_sim_time_delay.pdf ’)
plt.show ()

The specifications of the simulator are as follows:

Time step: dt =0.01 s

Time delay: tg;=1s

The input signal, ¥y, is changed as a step at time {5 = 2 s.

The array representing the time delay is initially filled with values Y _out_init = 0.5.
This causes the time delay value, yout, to have value Y _out_init until the simulation
time has become greater than the time delay.

Figure 6.20 shows the results of a simulation with the program.

101 — y out
— y_in

0.8 1
0.6 1

0.4 4

0.2

0.0 1

t[s]

Figure 6.20: Simulation of a time delay

Comments to the above program:
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The code Y _out_init = 0.5 defines a constant to fill the array with an initial value.

The code Nd = int(round(td/Ts)) + 1 calculates the number of elements of the array
needed to represent the time delay.

The code delay_array = np.zeros(Nd) + y_out_init creates the array, and gives all the
elements the initial value of y_out_init.

The code beneath # Excitation: generates a step change of the input signal.

The code beneath # Time delay: realizes the time delay accordiing to the algorithm
presented above:

— Step 1 of the algorithm: The code y_out_k = delay_array[-1] assigns the time
delayed variable, y_out_k, the value of the last element of the array. Index —1
addresses the last element.

— Step 2 of the algorithm: The code delay_array[l:] = delay_array[0:-1] moves each
of the elements one step towards the right. The access code 0:-1 means “all
elements but the last one”. The access code 1: means “all elements starting with
element of index 1 (i.e. the element of index 0 is excluded)”.

— Step 3 of the algorithm: The code delay array[0] = y_in_k assigns the element of
index 0 (the leftmost element) of delay_array the value of the input variable,
y_in_k.

e The code beneath # Writing values to arrays for plotting: writes values to the arrays
to be used for plotting (but the code for plotting is not shown here).

[End of Example 6.4]
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6.5 Problems for Chapter 6

Problem 6.1 Simulator of a heated water tank

A mathematical model of a heated water tank with initial model parameter values is
presented in Ch. 38.4. The model (38.9) includes a time delay of the supplied power P.
However, in the problems below you can (for simplicity) disregard this time delay, i.e. not
implement it in the simulator.

1. “Pseudo” simulation algorithm

Derive a “pseudo” simulation algorithm for the temperature (more or less ready to be
implemented in a program).

2. Calculation of static operating point:

Calculate from the model the constant power, Py, needed to bring the temperature to a
constant value of 25 deg C.

3. Programming and simulation:

Program a simulator in Python of the tank heater. The simulator must be implemented
with “native” code in a For loop based on the Euler Forward discretization of the model (a
built-in simulation function of Python should not be used). You can set the time-step to 1
s. The following variables should be plotted: T, Ti,, and Teyy in one subplot, and P in
another subplot. Assume that the initial temperature is Tin; = 20 deg C. Run a simulation
with P = P, as calculated above. Is the static T the same as specified in Problem 2 above?

4. Stability of the simulator:

Demonstrate that the simulator becomes numerically inaccurate if you select a (too) large
simulator time step. Also, run a simulation with such a large time step that the simulation
becomes numerically unstable.

Problem 6.2 Simulation of a time delay

This problem is a continuation of Problem 6.1.

Modify program 6.5 (which is in the solution of Problem 6.1) as follows: Set the time step
to 1 sec. Include a time delay of 60 sec in P.

Verify with a simulation that you have implemented the time delay correctly.

Problem 6.3 Simulator of a ship

A mathematical model of the surge or longitudal motion of a ship is presented in Ch. 38.2.
Program a simulator of the ship according to the following specifications:
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e Time step is 1 s.
e Stop time is 1000 s.
e Position is initially 0 m, and speed is initially 0 m/s.

e The propeller force is initially 0 kN. It is changed as a step from 0 to 200 kN at time
200 s, and back to 0 kN at time 400 s.

e Water current can be assumed zero.
e Wind speed can be assumed zero.
e Position, speed, propeller force, and hydrodynamic force together with wind force are

plotted in individual plots (four plots, altogether).

Hint: Write the model as a second order state space model with the following state
variables: Position x1, and speed xz-.
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6.6 Solutions to problems for Chapter 6

Solution to Problem 6.1

1. “Pseudo” simulation algorithm

The model (38.18) without the time delay (i.e., 7 = 0) is:

epVT(t) = P(t) + cpF [Tin(t) = T(#)] + U [Tuu (t) — T(1)] (6.44)

We write this model as a state space model:

T = {P(t) + cpF [Tin(t) = T(O)] + U [Ton () — T(1)]} /(cpV) (6.45)
The model simulation algorithm:

e Before the simulation loop:
— Initialization: T _k = T_init
e Inside the simulation loop:

— Limitation of T _k between T min = 0 deg C and T_max = 100 deg C (using e.g.
the numpy.clip function)

— Setting input signals P_k, and T_in_k, and T_env_k

— Any use of Tk, e.g. storing in an array for later plotting

— Time derivative: dT_dt -k = (1/(c*rho*V))*(P_k + c*rho*F*(T.in k - T k) +
U*(T_env_k - T k))

— Prediction or integration (Euler forward): T kpl = T k + dt*dT_dt k
— Time index shift: T_k = T _kpl

o After the simulation loop:

— Plotting, analysis, saving simulation data to file, etc.

2. Calculation of static operating point:

Python program 6.4 implements a solution.

http://techteach.no/control/python/sim_heated_tank_1.py

Listing 6.4: sim_heated_tank_1.py
#%% Model params:

c = 4200 # [J/(kg*K)]

rho = 1000 # [kg/m3]
V=20.2# [m3]
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1000 # [W/K]

0.25e-3 # [m3/s]
in = 20 # [deg C]
_env = 20 # [deg C]

L s By B

#%% Calculation of power giving specified static temp:
T_static = 25 # [deg C] Static temp
# From model after t’ is set to zero (static value):

PO = - (c*rho*F*(T_in-T_static) + U*(T_env-T_static)) # [W]
print (PO [W] =’, PO)

The result is:

PO [W] = 10250.0

3. Programming and simulation:

Python program 6.5 implements a solution.

http://techteach.no/control /python/sim_heated_tank_2.py

Listing 6.5: sim_heated_tank_2.py
#%.% Imports:

import numpy as np
import matplotlib.pyplot as plt

#%% Model params:

(@]
]

4200 # [J/(kg*K)]
rho = 1000 # [kg/m3]

V=0.2# [m3]

U = 1000 # [W/K]

F = 0.25e-3 # [m3/s]
T_in = 20 # [deg C]
T_env = 20 # [deg C]
T_min = 0

T_max = 100

#%% Calculation of power giving specified static temp:
T_static = 25 # [deg C] Static temp

# From model after t’ is set to zero (static value):
PO = - (c*rho*F*(T_in-T_static) + U*(T_env-T_static)) # [W]

#%% Sim time settings:

dt = 1 # [s]
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t_start = 0 # [s]
t_stop = 6000 # [s]
N_sim = int((t_stop - t_start)/dt) + 1

#%% Preallocation of arrays for storing:
t_array = np.zeros(N_sim)

T_array = np.zeros(N_sim)

T_in_array = np.zeros(N_sim)

T_env_array = np.zeros(N_sim)

P_array = np.zeros(N_sim)

#%% Sim loop:

T_k = T_init = 20 # [deg C] Initial temp

for k in range(0, N_sim):

# State limitation:
T_k = np.clip(T_k, T_min, T_max)

t_k = kx*xdt

P_k = PO

T_in_k = T_in
T_env_k = T_env

t_array [k] t_
T_array[k] = T_
T_in_array[k] = T_in_k

T_env_array [k] T_env_k
P_array[k] = P

W

=

# Time derivative:
dT_dt_k = ((1/(c*rhox*xV))
*(P_k
+ (c*xrho*F)*(T_in-T_k)
+ Ux(T_env-T_k)))
T_kpl = T_k + dt*xdT_dt_k

# Time index shift:
T_k = T_kpl

# %% Plotting:

plt.close(’all’)
plt.figure (1)

plt.subplot (2, 1, 1)

plt.plot(t_array, T_array, ’r’, label="T?’)
plt.plot(t_array, T_in_array, ’b’, label=’T_in’)
plt.plot(t_array, T_env_array, ’g’, label=’T_env’)
plt.legend ()

plt.grid ()
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plt.
plt.

plt.
plt.

plt

plt.
plt.
plt.

plt.

xlabel (’t [s]’)
ylabel (’[deg C17)

subplot (2, 1, 2)

plot (t_array, P_array,
.legend ()

grid ()

xlabel (’t [s]’)

ylabel (’ [W]’)

show ()

'm’, label=’P’)

# plt.savefig(’plot_sim_heated_tank_2.pdf’)

Figure 6.21 shows the simulated responses.
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Figure 6.21: Problem 6.1: Simulated responses.

Comments:

e The static value of T can be read off from the plot in Figure 6.21, and can be found

more precisely with the code T_array[-1], and is 25.00, which is the same as the

specified value, cf. Problem 2.
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4. Stability of the simulator:
Python program 6.6 runs a simulation with time step

dt =700 s

http://techteach.no/control /python/sim_heated tank 2.py

Listing 6.6: sim_heated_tank_3.py
#%% Imports:

import numpy as np
import matplotlib.pyplot as plt

#%% Model params:

(@]
]

4200 # [J/(kg+*K)]
rho = 1000 # [kg/m3]

V=0.2# [m3]

U = 1000 # [W/K]

F = 0.25e-3 # [m3/s]
T_in = 20 # [deg C]
T_env = 20 # [deg C]
T_min = 0

T_max = 100

#%% Calculation of power giving specified static temp:
T_static = 256 # [deg C] Static temp

# From model after t’ is set to zero (static value):
PO = - (c*rho*F*(T_in-T_static) + U*(T_env-T_static)) # [W]

#%% Sim time settings:

dt = 700 # [s]

t_start = 0 # [s]

t_stop = 10000 # [s]

N_sim = int((t_stop - t_start)/dt) + 1
#%% Preallocation of arrays for storing:
t_array = np.zeros(N_sim)

T_array = np.zeros(N_sim)

T_in_array = np.zeros(N_sim)
T_env_array = np.zeros(N_sim)

P_array = np.zeros(N_sim)

#%% Sim loop:

T_k = T_init = 20 # [deg C] Initial temp
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for k in range(0, N_sim):

# State limitation:
T_k = np.clip(T_k, T_min, T_max)

t_k = kx*xdt

P_k = PO

T_in_k = T_in
T_env_k = T_env

t_array [k] t_
T_array[k] = T_
T_in_array[k] = T_in_k

T_env_array[k] = T_env_k
P_array[k] = P_k

W

# Time derivative:
dT_dt_k = ((1/(c*rhox*xV))
*(P_k
+ (c*xrho*xF)*(T_in-T_k)
+ Ux(T_env-T_k)))
T_kpl = T_k + dt*dT_dt_k

# Time index shift:
T_k = T_kpl
# %% Plotting:

plt.close(’all’)
plt.figure (1)

plt.subplot(2, 1, 1)

plt.plot(t_array, T_array, ’r’, label="T?’)
plt.plot(t_array, T_in_array, ’b’, label=’T_in’)
plt.plot(t_array, T_env_array, ’g’, label=’T_env’)
plt.legend ()

plt.grid ()

plt.xlabel(’t [s]’)

plt.ylabel (’[deg C]?)

plt.subplot (2, 1, 2)

plt.plot(t_array, P_array, ’m’, label=’P’)
plt.legend ()

plt.grid ()

plt.xlabel (’t [s]’)

plt.ylabel (’[W] )

plt.savefig(’plot_sim_heated_tank_3.pdf’)
plt.show ()

Figure 6.22 shows the simulated response. The simulation is (numerically) inaccurate.
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Figure 6.22: Problem 6.1: Simulated response with time step dt = 700 s.

Figure 6.23 shows the simulated response with time step dt = 900 s. The simulation is
(numerically) unstable.

Solution to Problem 6.2

Python program 6.7 implements a solution.

http://techteach.no/control /python/sim_heated_tank_time_delay.py

Listing 6.7: sim_heated_tank_time_delay.py
#%% Imports:

import numpy as np
import matplotlib.pyplot as plt

#%% Model params:

(]
I

4200 # [J/(kg*K)]
rho = 1000 # [kg/m3]
= 0.2 # [m3]

1000 # [W/K]

F 0.25e-3 # [m3/s]
T_in = 20 # [deg CI]

<
o

250


http://techteach.no/control/python/sim_heated_tank_time_delay.py

CHAPTER 6. SIMULATION ALGORITHMS OF STATE SPACE MODELS

— T
. 40 A /\ — T.in
O
— T _env
O’ -—
g | /\ /\ /\ \_/
O L I I I I I I
0 2000 4000 6000 8000 10000
— P
10500 -
s
10000
0 2000 4000 6000 8000 10000
t [s]
Figure 6.23: Problem 6.1: Simulated response with time step dt = 900 s.
T_env = 20 # [deg C]
T_min = O
T_max = 100

#%% Sim time settings:

dt = 1

# [s]

t_start = 0 # [s]

t_stop

N_sim

= 10000 # [s]
= int((t_stop - t_start)/dt) + 1

#%% Defining a step change in power P. A step is a
# convenient test signal to demonstrate the time delay
# of the system:

T_static = 25 # [deg C] Static temp

# From model after t’ is set to zero (static value):

PO = -

(cxrho*xF*x(T_in-T_static) + Ux(T_env-T_static)) # [W]

dP = 0.1%PO # [W] Step amplitude of 10 percent
P1 = PO + dP # [W] Power after step change
print (’PO [W] =’, PO)

print (’P1 [W] =’, P1)
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#%% Array for transport delay of power:

t_delay = 60 # [s]

P_delayed_init = PO # [W]

N_delay = int(round(t_delay/dt)) + 1

P_delay_array = np.zeros(N_delay) + P_delayed_init

#%% Preallocation of arrays for storing:
t_array = np.zeros(N_sim)

T_array np.zeros (N_sim)
T_in_array = np.zeros(N_sim)

T_env_array = np.zeros(N_sim)
P_array = np.zeros(N_sim)

#%% Sim loop:

T_k = T_init = 25 # [deg C]
t0 = 5000 # [s] Time of step in P

for k in range(0, N_sim):

# State limitation:
T_k = np.clip(T_k, T_min, T_max)

t_k k*xdt

if (0 <= t_k <= t0):

P_k = PO

T_in_k = T_in

T_env_k = T_env
else:

P_k = P1

T_in_k = T_in

T_env_k = T_env

# Moving delay array elements one step:
P_delayed_k = P_delay_array[-1]
P_delay_array[1:] = P_delay_array[0:-1]
P_delay_array[0] = P_k

t_array [k] t
T_array[k] = T
T_in_array[k] = T_in_k
T_env_array[k] = T_env_k
P_array[k] = P_k

dT_dt_k = ((1/(c*xrhox*V))
*(P_delayed_k
+ (cxrho*F)*x(T_in-T_k)
+ Ux(T_env-T_k)))

T_kpl = T_k + dt*xdT_dt_k
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#

# Time index shift:
T_k = T_kpl

%% Plotting:

plt.close(’all’)
plt.figure (1)

#
#

t_

#

t_

#

i_

#

i_

#

i_

Defining time intervals for plotting:
Start time for plotting:

plot_start = 4900 # [s]

Stop time for plotting:

plot_end = 5200 # [s]

Array index for start of plotting:
start = int(t_plot_start/dt) # [s]
Array index for start of plotting
end = int(t_plot_end/dt) # [s]

Index interval for plotting
interval = np.arange(i_start, i_end, dt)

plt.subplot (2, 1, 1)

plt.plot(t_array[i_interval], T_array[i_intervall,

label="T"’)

plt.legend ()
plt.grid )
plt.xlabel (’t [s]?)
plt.ylabel (’[C]’)

plt.subplot(2, 1, 2)

plt.plot(t_array[i_interval], P_array[i_intervall,

plt.legend ()
plt.grid O
plt.xlabel (’t [s]?)
plt.ylabel (°[W]’)

plt.

plt.show ()

savefig(’plot_sim_heated_tank_with_delay.pdf’)

Jb),

’m’, label=’P’)

Figure 6.24 shows the simulated response. The time delay of 60 s is apparent in the plot.

Solution to Problem 6.3

With the following definitions:

e Position

e Speed:

(6.46)

(6.47)



CHAPTER 6. SIMULATION ALGORITHMS OF STATE SPACE MODELS
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Figure 6.24: Problem 6.2: Simulated response.

the original model, (38.3), can be represented with the following two first order differential
equations:

r1' = 1 (6.48)
zy' = (F, + Fp, + Fy) /m (6.49)
where:
Fy, = Dy, (uec — x2) |uc — 2| (6.50)
Fw = Dw (Vw - x2) ’Vw - .%2‘ (651)

Python program 6.8 implements a simulator based on (6.48)-(6.49).

http://techteach.no/control /python/sim_ship.py

Listing 6.8: sim_ship.py
#%% Importing packages:

import matplotlib.pyplot as plt
import numpy as np
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#%% Model parameters:

m = 71164%1000 # [kgl
Dh 8.4%x1000 # [N/(m/s)"2]
Dw 0.177%1000 # [N/(m/s) 2]

#%% State limits:

x1_min = -np.inf
x1_max = np.inf
x2_min = -np.inf
x2_max = np.inf

#%% Simulation time settings:

dt = 1 # [s]

t_start = 0 # [s]

t_stop = 1000 # [s]

N_sim = int((t_stop - t_start)/dt) + 1

#%% Preallocation of arrays for plotting:

t_array = np.zeros(N_sim)
x1_array = np.zeros(N_sim)
x2_array = np.zeros(N_sim)
Fp_array = np.zeros(N_sim)
Fh_array = np.zeros(N_sim)
Fw_array = np.zeros(N_sim)

#%% Initialization:

x1_init = O
x2_init = 0
x1_k = x1_init
x2_k = x2_init

#%% Simulation loop:
for k in range (0, N_sim):

# State limitation:
x1_k = np.clip(xl_k, xl1l_min, x1_max)
x2_k = np.clip(x2_k, x2_min, x2_max)

# Time:
t_k = kxdt

# Excitations:

if t_start <= t_k < 200:
Fp_k = 0 # [N]
uc_k = 0
Vw_k 0

if 200 <= t_k:
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Fp_k = 200%1000
uc_k = 0
Vw_k = 0
if 400 <= t_k:
Fp_k = 0
uc_k = 0
Vw_k = 0

# Forces from water and wind:
Fh_k = Dh*(uc_k - x2_k)*np.abs(uc_k - x2_k)
Fw_k = Dwx(Vw_k - x2_k)#*np.abs(Vw_k - x2_k)

# Time derivatives:
dx1_k = x2_k
dx2_k (1/m)*(Fp_k + Fh_k + Fw_k)

# State prediction (Euler step):
x1_kpl = x1_k + dxl1_k*dt
x2_kpl = x2_k + dx2_k*dt

# Arrays for plotting:
t_array[k] = t_k
x1_array[k] = x1_k
x2_array[k] = x2_k
Fp_array[k] = Fp_k
Fh_array[k] = Fh_k
Fw_array[k] = Fw_k

# Time shift:
x1_k = x1_kpl
x2_k = x2_kpl

#%% Plotting:

plt.close(’all’) # Closes all figures before plotting
plt.figure (1)

plt.subplot (4, 1, 1)

plt.plot(t_array, xl1_array, ’r’, label=’y’)
plt.legend )

plt.grid )

plt.ylabel (’[m]’)

plt.subplot (4, 1, 2)

plt.plot(t_array, x2_array, ’b’, label=’dydt’)
plt.legend )

plt.grid ()

plt.ylabel (’[m/s]’)

plt.subplot (4, 1, 3)

plt.plot(t_array, Fp_array/1000, ’g’, label=’Fp’)
plt.legend ()

plt.grid O

plt.ylabel (’[kN]?)
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plt.
plt.
plt.
plt.
plt.
plt.
plt.

# %%

plt.
plt.

subplot (4, 1, 4)

plot(t_array, Fh_array/1000, label=’Fh’)
plot(t_array, Fw_array/1000, label=’Fw’)
legend ()

grid ()

ylabel (’ [kN]’)
xlabel (’t [s]’)

Saving the plot figure as a pdf file:

savefig(’plot_simulation_ship.pdf ’)
show ()

Figure 6.25 shows the simulated responses.

— =Y
E 250
O - T T T T T
@ 0.5 — dydt
E
O'o B T T T T T
200 +—F == == == ==
z —
i
O - T T T
0 —F=—= =22 == = —_—
— —— Fh
3 Fw
=
0 200 400 600 1000

t [s]

Figure 6.25: Problem 6.3: Simulated responses.

Comments to the simulation:

e The speed increases relatively fast between ¢ = 200 and 400 s, which is due to the

e The speed decreases relatively slowly after ¢ = 400 s, which is due to the relatively

relatively large propeller force.

small forces from water and wind.
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Chapter 7

Block diagram models

7.1 Introduction

The differential equation models in Ch. 5 can be represented with block diagrams which
display graphically the structure of the model. A block diagram may enhance your
understanding of the model. Simulink, LabVIEW and OpenModelica are examples of
simulation tools for block diagram models, cf. Section 7.3.

7.2 How to draw block diagrams

Assume that you have derived a state space model of some dynamic system. The
differential equations are:

:171/ = fl(xvuadap)
Do (7.1)
I’n/ = fn(x,u,d,p)
The states are given by integrals:
t
() = @)+ [ Al
0
Do (7.2)

t
a(t) = 2,(0) +/ ful) dr
0
where 21(0) = 1 init, rn(0) = @y init are the initial states.
We can represent (7.1)-(7.2) with a (mathematical) block diagram. The block diagram

shows the state variables as solutions to their differential equations (the solutions are
obtained with integrations), see Figure 7.1.
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DISTURBANCE(s) INITIAL

0 STATES
\NPYT I} . Al S
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Figure 7.1: Mathematical block diagram of the model consisting of (5.1). In some models,
namely pure integrator models, the dashed feedbacks do not exist.

In Figure 7.1, x1, ..., , which are the integrator outputs, are fed back to the inputs of the
block where f1, ..., f, are calculated. However, in some models, namely so-called pure
integrator models, those feedbacks do not exist. Therefore, I have drawn these feedbacks as
dashed lines in Figure 7.1.

Example 7.1 Model with block diagram of water tank

Figure 7.2 shows a water tank with inlet and outlet.

= 7 W)

~ Ow
OUTLET
Gal%]

pPump

Figure 7.2: Water tank with inlet and outlet

In Figure 7.2:

e h [m] is the water level.
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F; [m3 /s] is volumetric inflow. It can not be adjusted; its value is given, and it is here
regarded as an environmental variable or a process disturbance.

Fyu [m3/s] er volumetric outflow. It can be manipulated by the user or a computer.

A [m?] is the inner cross sectional area of the tank, which is also the water surface
area.

p (tho) [kg/m?] is the water density.

We will develop a mathematical model which expresses how the level in the tank varies.
The model will be based on a mass balance of the water in the tank:

The rate of change of mass of water [kg/s| = water inflow [kg/s] — water outflow [kg/s]

In mathematical terms, the mass balance is:
m' = pFin — pFou (7.3)

Since we want the level h to appear explicitly in the model, we express the mass m [kg| as a
function of level h and area A:
m = pAh (7.4)

By using this m in (7.3), (7.3) becomes:
(pAR) = pFiy — pFout (7.5)

Here, we move the constants p and A outside the differentiation, and then divide all terms
by pA. The result is:

1
W == (Fpn— Fou 7.6
1 ) (76)
which is the state equation of the model.
The level h is the integral of h':
¢
h(t) = h(0) + / 1(0) do (7.7)
0

with initial condition A(0) = hipit-
Egs. (7.6)-(7.7) constitute a mathematical model of the tank.

With general model terms:

e h is the state variable.
e h is also the process output variable.
e [, is a process disturbance, or environmental variable, or process load.

e [yt is an input variable. Are you confused by thinking about the outflow Fyy: as an
input variable? It is correct from a systems perspective.
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ENVIRONMENTAL VARIABLE
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DISTURBANCE
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Figure 7.3: Mathematical block diagram of the model of the water tank.
e A is a model parameter.

Figure 7.3 shows a mathematical block diagram of the model (7.6)-(7.7) of the water tank.
[End of Example 7.1]
Using elementary mathematical blocks instead of textual math

In Figure 7.3, a texrtual mathematical expression is used to represent the mathematical
expression making up the time dervative. Alternatively, you can use use elementary
mathematical blocks. Figure 7.4 shows various blocks. There is no standard about how to
design mathematical blocks, so you may actually invent blocks yourself.

Example 7.2 Block diagram model of water tank using elementary blocks
Figure 7.5 shows a block diagram of the model (7.6) using some elementary mathematical

blocks, here: summation and division, in addition to the integration block.

The block diagrams in Figures 7.3 and 7.5 have different forms, but are functionally
equivalent. So, which form to select? That’s up to you.!

[End of Example 7.2]

7.3 Simulation with block diagram models

Earlier in this chapter, you have seen how mathematical models can be illustrated with
block diagrams. Here are some relatively well-known simulation tools using block diagram
models:

T often prefer the block diagram form of Figure 7.3 since I find it easier, and more flexible in the case of
changes, to represent mathematical formulas with text (rather than with blocks).
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Linear functions: Nonlinear functions:

¢YO
u=y’ t
Integrator —y> f _y» y(t) =yo + f u(t)dt
0

2

Time delay L» (t-1) _y» y(t) = Ku-o

Ui — y
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|
|
|
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|
ug :
u ! .
Sum - ! y=Up+Uz—Us | Rate (slope)llmlter_>_#f__>y
|
Uzl — :
ug : !
Multiplication ™ MuLT _y» y = Uiy ! Dead zone —»7——é—>y
Uz |
|
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|
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|
|
|
|
|
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Figure 7.4: Elementary mathematical blocks.

e OpenModelica
e Simulink

e LabVIEW

Some characteristics of such tools are:

e They come with a library of blocks which you connect to construct the model. The
blocks comprise blocks for elementary mathematical functions, and blocks to represent
state space models and transfer functions.

e They offer alternative simulation algorithms.
Block diagram-based simulation tools are user-friendly since the model to be simulated has

a graphical representation, as opposed to the textual representation you are using when you
program simulators in native textual programming code like Python, cf. Ch. 6.

This book concentrates on using OpenModelica (because this is a free tool). A tutorial to
OpenModelica is in Appendix 43.
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Fin U‘-&.;e
Fost piv [ f R

Figure 7.5: A block diagram of the model (7.6) using elementary mathematical blocks.

7.4 Problems for Chapter 7

Problem 7.1 Mathematical block diagram of an accumulation

In Ch. 4, the general model of dynamic systems are presented as (4.1)-(4.2), which are
repeated here for convenience:

Ace(t) = Acc(0) + /Ot Acc’ db (7.8)

where:
Acc’ = Inflow — Outflow + Generation (7.9)

Draw a mathematical block diagram of (7.8)-(7.9).

Problem 7.2 Mathematical block diagram of water tank

Figure 7.6 shows a water tank with pump inflow and valve outflow.

u [mA]

Pump

h [m]

Figure 7.6: Water tank with pump inflow and valve outflow.
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A mathematical model of the level in a water tank is:

AW = Fy, — Fout (7.10)

where:
F,=K,u (7.11)
Fout = Kun\/ pgh (7.12)

Draw a mathematical block diagram of the model using one block with textual
mathematical expressions for representing k', and another block diagram of the model using
elementary mathematical blocks for representing h'.

7.5 Solutions to problems for Chapter 7

Solution to Problem 7.1

See Figure 7.7.

Initial accumulation;

Acc(0)
Inflow + Acc’ Acc
Outflow - > f —
Generation +
Adder Integrator

Figure 7.7: Mathematical block diagram of accumulation.

Solution to Problem 7.2

Figures 7.8 and 7.9 show the block diagrams.
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hinit
Input Formula block
variable i Output
u . 1 h h variable

——> h(t) = < [Kuu(t)—Kv pgh(t)} B f >

T T T T T T Integrator

A K, K, rho 9 h

Parameters

Figure 7.8: A mathematical block diagram of the model using one block with textual math-
ematical expressions for representing h'.

Input h
variable init
u > Sum . i' Output

dh/dt=h h  variable
K, MULT ﬂ@—» “Div f i
r Integrator

<N
LI muLt| L SQRT |e—] MULT le—9
<«— rho

"I,

Figure 7.9: A mathematical block diagram of the model using elementary mathematical
blocks for representing h'.
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Chapter 8

Transfer functions

8.1 Introduction

Transfer functions is a model form based on the Laplace transform (The Laplace transform
is presented in Ch. 39.) Transfer functions are very useful in analysis and design of linear
dynamic systems, in particular controller functions and signal filters. The main reasons why
transfer functions are useful are as follows:

e Compact model form: If the original model is a higher order differential equation,
or a set of first order differential equations, the relation between the input variable
and the output variable can be described by one transfer function, which is a rational
function of the Laplace variable s, without any time-derivatives.

e Representation of standard models: Transfer functions are often used to
represent standard models of controllers and signal filters.

e Simple to combine systems: For example, the transfer function for a combined
system which consists of two systems in a series combination, is just the product of
the transfer functions of each system.

e Simple to calculate time responses: The calculations will be made using the
Laplace transform, and the necessary mathematical operations are usually much
simpler than solving differential equations. Calculation of time-responses for transfer
function models is described in Chapter 8.5.

e Simple to find the frequency response: The frequency response is a function
which expresses how sinusoid signals are transfered through a dynamic system.
Frequency response is an important tool in analysis and design of signal filters and
control systems. The frequency response can be found from the transfer function of
the system. However, frequency response theory is not a part of this book (a reference
is 7).

Before we start, I must say something about the mathematical notation: In the following
sections, and in the reminder of the book, I use the same symbol (letter) for the time
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function, say y(t), as for the Laplace transform of y(¢), here y(s) — although it is
mathematically incorrect to do it. The reason is to simplify the presentation. Now, only one
variable name (symbol) is needed for both the Laplace domain and the time domain. For
example, assume that y(t) is the time function of the level y in a water tank. Then I write
y(s), although I formally should have written Y'(s) or y*(s) or 7(s) (or something else that
is different from y(s)) for L{y(t)}. It is my experience (from many years together with
transfer functions) that this simplifying notation causes no problems.

8.2 Definition of the transfer function

The first step in deriving the transfer function of a system is taking the Laplace transform
of the differential equation (which must be linear). Let us go on with an example, but the
results are general. Given the following mathematical model having two input variables ug
and uz and one output variable y. (I think you will understand from this example how to
find the transfer function for systems with different number of inputs and outputs.)

y'(t) = ay(t) + bruy (t) + baua(t) (8.1)

a, by and by are model parameters (coefficients). Let the initial state (at time ¢ = 0) be yo.
We start by taking the Laplace transform of both sides of the differential equation:

L {y’(t)} =L {ay(t) + biuq (t) + bQUQ(t)} (82)

By using the linearity property of the Laplace transform, cf. (39.17), the right side of (8.2)
can be written as

LA{ay(t)} + L{brua(t)} + L{baua(t)} (8.3)
=al{y(t)} + b1 L{ui(t)} + b2l {ua(t)}
= ay(s) + brui(s) + baua(s) (8.5)

The left side of (8.2) will be Laplace transformed using the differentiation rule, cf. (39.20),
on L{y(t)}:
LAG(1)} = sy(s) — o (8.6)

Thus, we have found that the Laplace transformed (8.2) is
sy(s) —yo = ay(s) + brui(s) + baua(s) (8.7)
Solving for the output variable y(s) gives

Yinit (5) y1(s) y2(s)
——
1 by

y(s) = s—ay0+ S_au1(8)+ S_auz(s) (8.8)
——
Hi(s) Ha(s)

In (8.8),

e 1 is the contribution from input u; to the total response y,
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® 15 is the contribution from input uo to the total response y,

® yinit is the contribution from the initial state yg to the total response y.

Of course, these contributions to the total response are in the Laplace domain. The
corresponding responses in the time domain are found by calculating the inverse Laplace
transforms.

Now we have the following two transfer functions for our system:

e The transfer function from u; to y is

by
H = 8.9
() = (89)
e The transfer function from wus to y is
b2
H. = 8.10
2(s) =~ (810)

Thus, the transfer function from a given input variable to a given output variable is the
s-valued function with which the Laplace transformed input variable is multiplied to get its
contribution to the response in the output variable. In other words: The transfer function
expresses how the input variable is transferred through the system.

The transfer functions derived above can be illustrated with the block diagram shown in
Figure 8.1

u](s) y](s) =H1(S)MI(S)
——»| H,s5) j
Y(s) =y,(s) +y,(s)
ﬂ» H(S)
77 yys) = Hy(s)u,(s)

Figure 8.1: Block diagram representing the transfer functions Hi(s) and Ha(s) in (8.8).

One alternative way to express the definition of transfer function

From (8.8) we have
b wui(s)
s—a ui(s)

Hi(s) = (8.11)

So, we can define the transfer functions as the ratio between the Laplace transformed
contribution to the total response in the output variable, here y;(s), and the Laplace
transformed input variable, here ui(s). We may also say that the transfer functions is the
ratio between the Laplace transformed total response in the output variable, here y(s), and
the Laplace transformed input variable, here wu;(s), when all other inputs are set to zero
and the initial state is zero.
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8.3 Characteristics of transfer functions

A transfer function can be written on a factorized form — often called a zero-pole form:

(s —21)(5—22)---(5s—2)  b(s)

H(s) = = 8.12
) = o) —pa) (5= pu) — als) (512
Here z1,..., 2, are the zeros and p1,...,p, are the poles of the transfer function. For
example, the transfer function
4s — 4 —1
H(s) i i (8.13)

T 2245b5+6  (5+3)(s+2)

have two poles, —3 and —2, one zero, 1, and the gain is 4. (As shown in Ch. 19, the values
of the poles determines the stability property of a system. The system is stable only if all
the poles have negative real parts, in other words if all the poles lie in the left half part of
the complex plane.)

The s-polynomial in the denominator of H(s), which is a(s) in (8.12), is denoted the
characteristic polynomial. The poles are the roots of the characteristic polynomial, that is

a(s) =0 for s = s1, S, ..., S, (the poles) (8.14)

The order of a transfer function is the order of the characteristic polynomial. For example,
the transfer function (8.13) has order 2.

8.4 Combining transfer functions blocks in block diagrams

Transfer function blocks may be combined in a block diagram according to the rules shown
in Figure 8.2.

One possible purpose of such a combination is to simplify the block diagram, or to calculate
the resulting or overall transfer function. For example, the combined transfer function of
two transfer functions connected in series is equal to the product of the individual transfer
functions, jc. the Series connection rule in Figure 8.2.

8.5 How to calculate responses from transfer function
models

It is quite easy to calculate responses in transfer function models manually (by hand).
Assume given the following transfer function model:

y(s) = H(s)u(s) (8.15)

To calculate the time-response y(t) for a given input signal u(t), we can do as follows:
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Series
connection
ﬂ» Hi(s) > H,(s) RIC/N © 4P —>u(s) Hy(s)H(s) —Py(s)
> Hs) Parallel connection
u(s) () — u(s) Hy()+H(s) )’(S)l
> H(s)

ui(s) Sp_litting
sum junction
()

<+

u(s)
ux(s)

us(s)

u(s)

y(s) i uy(s) y(s)
L o e L
<_> Hy(s)

Mﬂ» H(s) H(s)

uy(s) T
u(s) ¥(s) Negative
H(s) feedback u(s) H(s) Vs,
_ - 1+H(s)Ho(s)
H,(s)

Figure 8.2: Rules for combining transfer function blocks.

1. First, find u(s) — the Laplace transform of the input signal. u(s) can be found from
precalculated Laplace transform pairs, cf. Section 39.3, possibly combined with one or
more of the Laplace transform properties, cf. Section 39.4, where particularly the
linearity property (39.17) is useful.

2. The Laplace transform of the output signal, y(s), is calculated from (8.15), that is,
y(s) = H(s)u(s) (3.16)
where u(s) is found as explained above.
3. The time-function y(t) is calculated as the inverse Laplace transform of y(s), cf. Ch.
39.

Example 8.1 Calculation of time-response for transfer function model

Given the transfer function model

3
y(s) = gz uls) (8.17)
——

H(s)

Suppose that u(t) is a step from 0 to 2 at ¢ = 0. We shall find an expression for the
time-response y(t). The Laplace transform of u(t) is, cf. (39.7),

(8.18)
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Inserting this into (8.17) gives

3 2 6 12

V) = 05 s T G 08)s - @s+1)s (8.19)

(8.19) has the same form as the Laplace transform pair (39.11) which is repeated here:

k

Ts+1)s =] (8.20)

Here k = 12 and T' = 2. The time-response becomes

y(t) = 12 [1 - e—t/ﬂ (8.21)

Figure 8.3 shows y(t). The steady-state response is 12, which can be calculated from y(t) by
setting t = oo.

Step response

yit)

tisac)

Figure 8.3: Example 8.1: The time-response y(t) given by (8.70)

[End of Example 8.1]

8.6 Static transfer function and static response

Suppose that the input signal to a system is a step of amplitude us. The corresponding
static time-response can found from the Final Value Theorem:

ys = lim s - y(s) = lim s - H(s)% = lim H(s)us (8.22)
s—0 s—0 S s—0
H,
where Hy is the static transfer function. That is,

H, = lim H(s) (8.23)

s—0
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Thus, the static transfer function, Hg, is found by letting s approach zero in the transfer

function, H(s).

Once we know the static transfer function H, the static (steady-state) response ys due to a

constant input of value ug, is
Ys = Hsus

Example 8.2 Static transfer function and static response

See Example 8.1. The transfer function is

3

H{s) = s+ 0.5

The corresponding static transfer function becomes

3

H; = lim H(s) = lim

5—0 s—05s+0.5 -

(8.24)

(8.25)

(8.26)

Assume that the input u has the constant value of us = 2. What is the corresponding static

response ¥ in the output? It can be calculated from the static transfer function as

ys = Hous =6-2 =12
which is the same result as found in Example 8.1.
[End of Example 8.2]

8.7 Simulation with transfer functions

8.7.1 Introduction

(8.27)

In the following sections, two alternative tools for simulation of responses in the output of

transfer functions are presented:

e Python Control Package, using Python code.

e OpenModelica, based on a block diagram representation of the transfer function.

There are simulation tools also in LabVIEW, Matlab and Simulink, but they are not

presented in this book.

8.7.2 Simulation with Python Control Package
This is described in Ch. 42.2.4.
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8.7.3 Simulation with OpenModelica

This is described in Ch. 43.

8.8 From transfer function to differential equation

Assume you have a transfer function from inut u to output y:

You can find an equivalent differential equation relating y and u as demonstrated in
Example 8.3.

Example 8.3 Converting a transfer function to an equivalent differential equation

Given the transfer function
y(s) 25

H(s) = =—=

u(s) T Bs+1 (8.28)

Here is how to find an equivalent differential equation:

1. Cross-multipy to get:
(5s 4+ 1)y(s) = 2su(s)

2. Dissolve the parenthesis to get:
5sy(s) + y(s) = 2su(s)
3. Apply the pertinent Laplace transform properties, cf. Section 39.4, to get:
5y +y = 2u

which is the differential equation.

[End of Example 8.3]

8.9 From transfer function to state space model

Some times we want to find a standard linear state space model which is equivalent to a
given transfer function. We assume that the transfer function is:
y(s)  bps™ + bu 18"t 4 - bys 4 by

H(s) = = 8.29
() u(s)  s"+ap_18" L +--rais+ag (8:29)
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YTy Y

A A A A A

v y y y

SR S S

Figure 8.4: Canonical block diagram

It can be shown, e.g. using the block diagram manipulation rules presented in Figure 8.2,
that the block diagram shown in Figure 8.4 has the transfer function (8.29) from u to y.
Then, from the block diagram, you can write down a state space model. Hence, using the
block diagram, you can transform a given transfer function into an equivalent state space
model.

The block diagram in Figure (8.4) is just one of an infinitely number of possible block
diagram with (8.29) as transfer function. This block diagram has a special form denoted
controller canonical form. (Canonical means “according to the rules”.).

Example 8.4 From transfer function to state space model

Given this transfer function:

y(s) 4s +5 0s>+4s+5
H(s) = = = 8.30
(5) u(s)  s24+25s+3  s24+25+3 (8:30)
Figure 8.5 shows a corresponding block diagram.

From the block diagram, we find the following state space model:
Ty = m (8.31)
xh = —3r —2x3+u (8.32)
y = bxy+ 4w (8.33)

[End of Example 8.4]
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e
0 4 5

A A A

u :\J R [ X2 > f X1

A 4

2
T
Figure 8.5: Block diagram corresponding to the transfer function (8.30).

8.10 From state space model to transfer function

Given a state space model:

' = Az + Bu (8.34)
y=Cz+ Du (8.35)

We can derive the transfer function from u to y as follows: Take the Laplace transform of
(8.34) — (8.35) to get (I is the identity matrix of equal dimension as of A)

slx(s) — xog = Ax(s) + Bu(s) (8.36)
y(s) = Cz(s) + Du(s) (8.37)

We neglect the initial state xg, as we always can do when deriving transfer functions from
differential equation models. Solving (8.36) for x(s) gives

x(s) = (sI — A)~'Bu(s) (8.38)
Inserting this x(s) into (8.37) gives
y(s) = [C(sI — A)"'B + D] u(s) (8.39)
from which we get the following transfer function from u to :8.10
y(s) -1
H = === I-A)~"B+D A4
() = L5 =C6I-a"B+ (8.40)
adj(sI — A)
= C———ZB+D A1
Cdet(s[ —A) + (841)
1
= ———.C-adj(sI—A)-B+D 42
det(s] — A) C - adj(s )- B+ (8.42)

One interesting observation: The poles of H(s) are the roots of the denominator:

a(s) =det(sI — A) =0 (8.43)
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which is the characteristic equation. (8.43) defines the eigenvalues of A.' So, the poles of
the transfer function are the same as the eigenvalues of A.

Example 8.5 Calculating the transfer function of a state space model

Given the following state space model:

[2]_[—02 —13H2]+{H“ (8.44)
y=[3 1]e+ (0u (8.45)
C D

The transfer function from u to y using (8.42) is:

H(s) = zEZ;ZC(SI—A)—lB+D
1 :

- s2+313+2'[3 1]-adj(s[—[_02 fg})-[(l)]ﬂo]
- w0 []
s+ 3

s24+3s5+2

[End of Example 8.5]

In mathematics litterature it is more common to use the symbol X instead of s for eigenvalues.
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8.11 Problems for Chapter 8

Problem 8.1 From second order differential equation to transfer function

Given the following differential equation model:
!

y" = —ary’ — agy + bou + cod (8.46)

where y is the output variable, u is the input variable, d is the interference variable, and a1,
ap, by and ¢y are parameters. Find the transfer function from u to y. What is the order of
the transfer function?

Problem 8.2 Transfer function of of a wood-chip tank

In Problem 4.2 the mathematical model of a wood-chip tank was derived. The model is
pAN (t) = Ksu(t — 7) — wout (t) (8.47)

Calculate the transfer function Hj(s) from the screw control signal u to the level h and the
transfer function Ha(s) from the outflow weyt to the level h.

Problem 8.3 Transfer function of a mass-spring-damper-system

Figure 8.6 shows a mass-spring-damper-system.

k [N/m]

u [N]
—» m -

d [N/(m/s)] E

—
0 y [m]

Figure 8.6: Mass-spring-damper-system.

y is position. u is applied force. d is damping constant. k is spring constant. It is assumed
that the damping force Fy is proportional to the speed, and that the spring force F is
proportional to the position of the mass. The spring force is assumed to be zero when y is
zero. Force balance (Newtons 2. Law) yields

my’ =u— Dy — Ky (8.48)

Calculate the transfer function from force u to position y.
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Problem 8.4 Simulation of transfer function using Python Control
Package

In Problem 8.3, you are to derive the transfer function from force F' to position y.
Assume the following model parameters: m = 20 kg, D =4 N/(m/s), and K =2 N/m.

Simulate the response in y due to a step of 5 N at time zero in F'. The initial position and
speed have zero values.

Problem 8.5 Characteristics of transfer function

Given the following transfer function:

s+3
H(s) = ——— 8.49
()= 273572 (8.49)
1. What is the order?
2. What is the characteristic equation?
3. What is the characteristic polynomial?
4. What are the poles and the zeros?
Problem 8.6 Transfer function block diagrams
Given a thermal process with transfer function H)(s) from supplied power P to
temperature 1" as follows:
b
T(s)=—2-P 8.50
(3) = s P (5.50)
N——
Hy(s)

The transfer function from temperature 1" to temperature measurement 7}, is as follows:

Tin(s) = . jiW;mT(s) (8.51)
——

Hn(s)

ap, by, am, and b, are parameters.

1. Draw a transfer function block diagram of the system (process with sensor) with P as
input variable and 7}, as output variable.

2. What is the transfer function from P to 7,7 (Derive it from the block diagram.)
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Problem 8.7 Calculation of step response using transfer function

Given the transfer function model
5
ys) = = uls) (8.52)
~~
H(s)

Suppose that the input u is a step from 0 to 3 at ¢ = 0. Calculate the response y(¢) due to
this input.
Problem 8.8 Static transfer function

See Problem 8.3. It can be shown that the transfer function from force u to position y is

_yls) _ 1
H(s) = u(s)  ms2+ds+k (8:53)

Calculate the static transfer function H,. From H, calculate the static response y;
corresponding to a constant force, Fj.

Problem 8.9 From transfer function to state space model

The transfer function of a first order high-pass filter can be written as:

S

H(S):zég - iﬁl - s+ w

(8.54)

where w, [rad/s| is the crossover or corner frequency.

Find an equivalent state space model from a canonical block diagram corresponding to
(8.54).
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8.12 Solutions to problems for Chapter 8

Solution to Problem 8.1

Taking the Laplace transformation of the differential equation gives (here, any non-zero

initial values of y and y' are neglected):
s*y(s) = —a1sy(s) — aoy(s) + bou(s) + cod(s)
Solving for y(s) gives:
b c
— 2—0u(8) + 2—0
s“+ais+ap s+ a1+ ag
Hence, the transfer function from u to y is:

y(s) _ bo
u(s)  s2+ais+ag

(s)

y(s)

Solution to Problem 8.2

The Laplace transform of (8.47) is
pA[sh(s) — ho] = Kse™ "u(s) — wour(s)

Solving for output variable h gives

1 Ks _., 1
h(s) = ;ho + pAse u(s) + (—pAS>wout(s)
———
Hy(s) Ha(s)
Thus, the transfer functions are
K
H —T58
1(s) s
and )
H -
2(s) s

Solution to Problem 8.3

Laplace transform of (19.27) gives

m [s*y(s) = sy — yo| = F(s) — D [sy(s) — yo] — Ky(s)

Setting initial values yo = 0 and y{, = 0, and then solving for y(s) gives

1
= F
y(s) ms2 + Ds + K (5)
—_—————
H(s)
The transfer function is (s) .
y(s
H p— p—
() F(s) ms?4+Ds+ K

(8.55)

(8.56)

(8.57)

(8.58)

(8.59)

(8.60)

(8.61)

(8.62)

(8.63)

(8.64)
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Solution to Problem 8.4

Python program 8.1 implements the simulator.

http://techteach.no/control /python/sim_msd_tf_python_control_package.py

Listing 8.1: sim_msd_tf_python_control_package.py
# %% Import:

import numpy as np
import matplotlib.pyplot as plt
import control

#%% Defining Laplace variable for def of transfer func:
s = control.tf(’s’)

#%% Model
m = 20 # [kg]

=4 # [N/(m/s)]
K =2 # [N/m]

o

H = 1/(m*xs**2 + Dxs + K)
# %% Simulation of unit step response:

ampl_F = 5

t_final = 50

(t, y_unit_step) = control.step_response(H, t_final)
y = y_unit_stepx*xampl_F

F = np.zeros(len(t)) + ampl_F

# %% Plotting:

plt.close(’all’)
plt.figure (1)

plt.subplot(2,1,1)

plt.plot(t, F, color=’blue’, label=’F’)
plt.legend ()

plt.grid O

plt.xlabel (’t [s]?)

plt.ylabel (’[N]’)

plt.subplot (2,1,2)

plt.plot(t, y, color=’red’, label=’y’)
plt.legend ()

plt.grid ()

plt.xlabel (’t [s]’)

plt.ylabel (’[m]’)

# plt.savefig(’plot_sim_msd.pdf’)
plt.show ()
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Figure 8.7 shows the simulation.

5.2 4 — F
Z 5.0
4.8 A

0 10 20 30 40 50

3 -y
—_ 2

£

1 -

O i T T T T T T

0 10 20 30 40 50

t[s]

Figure 8.7: Problem 8.4: Simulation of mass-spring-damper.

Solution to Problem 8.5

1. Order: 2.
2. 24+35+2=0

3. 2+ 3s5+2

4. We write the transfer function on pole-zero-form:
s+3 s+3

H(s) = = 8.65
O = T2  GrDe1Y) (8.65)
We see that the poles are —1 and —2, and the zero is —3.
Solution to Problem 8.6
1. Figure 8.8 shows the block diagram.
2. According to the series combination rule the transfer function becomes
T (s) bm by

H(s) ="/ g H = 8.66
(5) = Froy = HulHple) = 2 (5.66)
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P bp T bm Tm
- —>
s+a, s+ap,

Figure 8.8: Block diagram of transfer functions in series.

Solution to Problem 8.7

The Laplace transform of u(t) is (cf. the Laplace transform pair (39.7):

3
u(s) = 5 (8.67)
Inserting this into (8.52) gives
5 3 15
y(s) = s 2 (8.68)

which has the same form as in the Laplace transform pair (39.8), which is repeated here:

k
2 = kt (8.69)
We have k = 15, so the response is
y(t) = 15t (8.70)
Solution to Problem 8.8
Setting s = 0 in the transfer function gives
H, = H(0) = 1 (8.71)
=5 - K :

The static response ys corresponding to a constant force, Fj, is

F.
Solution to Problem 8.9
Figure 8.9 shows a canonical block diagram corresponding to (8.54). From the block
diagram, we find the following state space model:
¥ = —wer +u= Az + Bu (8.73)
y=—wx+u=Cx+ Du (8.74)
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Figure 8.9: A canonical block diagram corresponding to (8.54).
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Chapter 9

Process dynamics

9.1 Introduction

In this chapter a number of standard dynamic models in the form of transfer functions will
be defined. With such standard models you can characterize the dynamic properties of a
physical system in terms of for example gain, time constant, and time delay. These terms
are also useful for controller tuning, as in the Skogestad tuning method which is described
in Section 14.8.

9.2 Integrators

9.2.1 Integrator model
9.2.1.1 Differential equation

An integrator is a system where the output variable vy is the time integral of the input
variable w, multiplied with the integrator gain Kj:

t
y(t) = K; /0 u(6) do (9.1)

Taking the time derivative of both sides of (9.1) yields the following differential equation
describing an integrator:
y'(t) = Kyu(t) (9.2)

9.2.1.2 Block diagram

Figure 9.1 shows a block diagram of the integrator model (9.2).
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y’ = Ki*u

N\

v
y
u—»Ki—ybf—>

»

Figure 9.1: Block diagram of the integrator (9.17).

9.2.1.3 Transfer function

Taking the Laplace transform using (39.23) gives
sy(s) = Ku(s) (9.3)

which gives the following transfer function of an integrator:

H(s) = 51 = — (9.4)

9.2.1.4 Pole

From (9.4) we find that the pole of an integrator is
p=20 (9.5)
which is in the origin of the complex plane, see Figure 9.2.

Im A

Figure 9.2: The pole of an integrator.

9.2.2 Dynamics in terms of step response

Let us now find the step response of the integrator. We assume that u(t) is a step of
amplitude U at t = 0. From (39.7) u(s) = % Thus,

LK U_KU

s s 52

(9.6)
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which, inverse Laplace transformed using (39.8), is
y(t) = K;Ut (9.7)
Thus, the step response of an integrator is a ramp with rate of change K;U.

Figure 9.3 shows a simulated response of an integrator. The response is with the following
settings:

K; =05 (9.8)
U=4 (9.9)
104
Yy
5.
0- T
0 1 2 3 4 5
41 —u
2.
0- T T T T T T
0 1 2 3 4 5

t[s]

Figure 9.3: Simulated response of an integrator.

The following Python program implements the simulator which produces the response
shown in Figure 9.3.

http://techteach.no/control /python/sim_integrator_elementary_code.py

The program above contains elementary programming code implementing an Euler forward
simulation algorithm. Alternatively, you can simulate the step response with the
forced_response() function of the Python Control package, as in the following program:

http://techteach.no/control /python/sim_integrator_forced response_py_con.py

You can also use the step_response() function of the Python Control package.

A SimView simulator of an integrator is available on:
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http://techteach.no/simview/integrator

Example 9.1 An physical integrator: A liquid tank

See Example 4.1 on page 175 which describes a liquid tank. Assume for simplicity that
there is no outflow from the tank. The mathematical model of this system is then

1

W (t) = =q(t 1
(1) = Sait) (9.10)
Taking the Laplace transform of (9.10) gives
1

sh(s) — ho = Zqi(s) (9.11)
which gives

hs) =" 0 L) 9.12)

T T As® ’
H(s)
So, the transfer function is
h(s) 1 1
H(s) = =— - 1
5) a(s) A s (913)

The system is an integrator!

It is actually quite naturally that the liquid tank is an integrator, since the level is
proportional to the integral of the inflow. This can be seen by integrating (9.10), which gives

t
1
h(t) = h(0) + / Sai(0) df (9.14)
0
Whenever you need a concrete example of an integrator, recall the tank!

A SimView simulator of the tank is available on:

http://techteach.no/simview /liquid_tank

Figure 9.4 shows the result of a simulation where the inflow is changed step-wise.

[End of Example 9.1]
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q.in [m3/s] qinim3/s] [ 0.00
0,10<
0,082
0,06=
Reset level 0'04_;
to h_init [m] 0,02=
0,00-

him] Y 093 h [m] 90-00
0

IO Tt
5 10 15 20 25 30
t[s]

qout[my/s] AN 000

0,08

0,06

Pump control 0,04]

t[s] Valve control signal, up, i
signal, uv, ‘(bztweenﬂand 1) 0]
(between 0 and 1) 1‘ 0,00 e

00

Kp

t[s]

q_out = Kv*uv*sqrt(h) q_out = Kp*up

Figure 9.4: Example 9.1: Simulation where the inflow is changed step-wise.

9.3 Time constant systems

9.3.1 The standard model of time constant systems
9.3.1.1 Differential equation

Many mathematical models, for material systems, thermal systems, mechanical systems and
electric systems, are first order differential equations, which can be written on the following

general form:
Y =ay+bu (9.15)

where y is the output variable, and w is the input variable. a and b are parameters. It has
become a tradition within the field of automatic control to write (9.15) on a different form
when the purpose is to analyse the dynamic properties of (9.15). That form is

Ty = Ku—y (9.16)
where K is the gain and T is the time constant.
An alternative but equivalent way of writing (9.16) is
y = (Ku—vy)/T (9.17)
which is on a state space form, to be used in e.g. a simulation algorithm.

Both (9.16) and (9.17) can be regarded as a standard time constant model.
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The relations between the parameters of (9.15) and (9.16) are:

b

K=—- 1
: (9.18)
1

T=-= 1
; (9.19)

The parameters K and T give useful information about the dynamic properties of first
order differential equations, as you will see soon.

9.3.1.2 Block diagram

Figure 9.5 shows a block diagram of the time constant model (9.17). The block diagram
contains an integrator which calculates y from 3/, while the integrator is not presented in
Section 9.3.1.1. The feedback from y has a stabilizing effect on the system, as can be seen
in the step response shown in Figure 9.7.

y'=(K*u-y)T

\ ¢yo
Yl kK —»f y’ y
B —» 1/T —» f >

Figure 9.5: Block diagram of the time constant model (9.17).

9.3.1.3 Transfer function

Often the time constant model is in the form of a transfer function. To find the transfer
function, we take the Laplace transform of both sides of (9.16), which gives

Tsy(s) = Ku(s) — y(s) (9.20)

Solving for the output variable y gives

u(s) (9.21)

where H (s) is the transfer function corresponding to (9.16).

Here is an example showing how to find K and T from the transfer function:

ys) 3 15
u(s) 4s+2  2s+1

H(s) = (9.22)
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The gain is K = 1.5, and the time constant is 7' = 2 (in a proper time unit, e.g. seconds).
The clue is to write the transfer function on the standard form of (9.21), i.e. with 1 as the
constant in the denominator.

9.3.1.4 Pole

From (9.21) we find that the pole of a time constant system is

P=-r (9.23)

If T is positive, as it is for stable systems, the pole is in the left half plane, see Figure 9.6.

Im A

v

N
A

/\ Re

p=-1T

Figure 9.6: The pole of a a time constant system.

9.3.1.5 Dynamics in terms of step response

To analyse the dynamic properties of (9.16), or (9.21), it is common to study the step
response of the system. We assume that the input signal u(t) is changed as a step of

amplitude U at time ¢t = 0. From (39.7) u(s) = % The Laplace transformed response
becomes

K U

=H = - — 9.24
y(s) = H(shus) = 7 - (9.24)
Taking the inverse Laplace transform using (39.11) gives the system step response:

y(t) = KU1 — e ¥/T) (9.25)

This step response is shown in plotted in Figure 9.7. The annotations on the plot are
explained in the following.

The response is actually generated from a simulation of the differential equation model
(9.17) assuming the input u is a step, but the response is the same as (9.25). The response
is with the following settings:

K =05 (9.26)
T=1s (9.27)
U=4 (9.28)
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100%2' -~
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t[5]

Figure 9.7: Step response of a time constant system.

The following Python program implements the simulator which produces the response
shown in Figure 9.7.

http://techteach.no/control/python/sim_time_const_sys.py

The program above contains elementary programming code implementing an Euler forward
simulation algorithm. Alternatively, you can simulate the step response with the
forced_response() function of the Python Control package:

http://techteach.no/control /python/sim_time_const_forced_response_py_con.py

You can also use the step_response() function of the Python Control package.

A SimView simulator of a time constant system is available on:

http://techteach.no/simview/time_constant
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The impact of K on the steady-state step response

The steady-state response due to the input step is

Y = lim y(t) = KU (9.29)
t—ro0
which can be found from (9.25) with ¢ — oco. The steady-state response can also be found
from the static version of (9.17), i.e. with the time derivative (y’) assumed zero. Thus, the
step U is amplified with the gain K to get the steady-state output value. This can be seen

in Figure 9.7, where
Y=KU=05-4=2 (9.30)

In Section 8.6 the static transfer function Hg was defined. What is H, of a time constant

system? We get
Y KU

H,
U U

K (9.31)
So, H; is equal to the gain K.
The impact of T' on the transient step response

It has become common to analyse the impact of T on the step response by setting ¢t =T in
(9.25):

y(T) = KU1 — e~ T/T) (9.32)
= KU(1—e™") (9.33)
=0.63- KU (9.34)
=0.63-Y (9.35)

Thus, at time ¢t = T the step response has reached 63 % of the steady state response Y.
This is shown in Figure 9.7 where T' = 1 s. This suggests a practical way to read off the
time constant from a step response curve, namely as the 63 % rise time of the step response.

Qualitatively, we can state the importance of the time constant as follows: The less T, the
faster the system.

Does the steady-state response depend on the time constant? No, because the steady-state
response is equal to Y = KU which is independent of T.

Above, we saw that the time constant is the 63 % rise time of the step response. Here is
another interpretation of the time constant: It is the 98 % rise time, and therefore, we may
say it is the approximate “settling time” since 98 is very close to 100. This can be seen by
setting ¢t = 47 in (9.36):

y(t =4T) = KU1 — e /Ty = KU(1 — ™) = 0.98 (9.36)

If you take a look at Figure 9.7, you will see that the step response is indeed very close to
the steady state response at t =47 =4-1 s.
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The impact of K and T on the initial slope of the step response

The initial slope, Sy = 3/(07), of the step response is indicated with the tangent shown in
Figure 9.8.

KU 2 A !
|
|
1- l
|
! —y
| —
0- T Tangent
0 1 2 3 4 5 6
4_
— u
2_
0_ T T T T T T T
0 1 2 3 4 5 6
t[s]

Figure 9.8: Step response with initial slope.

The value of Sy is can be derived (9.37) from (9.17) as follows. The initial value of y is 0.
Then, (9.17) becomes
So=y'(0") = (KU —0) /T = KU/T (9.37)

As indicated in Figure 9.8, the tangent representing the initial slope crosses the steady-state
response, which is KU, at t =1T.

9.3.1.6 Step response of time constant systems when initial state is non-zero

In Section 9.3.1.5 we assumed that the system initially was “at rest” with input v and
output y having values zero before the step change in u. However, in practical situations u
and y may initially be at rest but with non-zero values before the step change. Assume that
1 1S nonzero:

u = Uy (9.38)
Then, the corresponding static response can be calculated from (9.17) with ¢’ set to zero,
giving
Yo = Kug (9.39)
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The model (9.17) can be used to express the dynamics of the deviations from the static
operating point (ug, yo):

dy' = K - du — dy (9.40)
where
dy =1y —yo (9.41)
and
du =u — ug (9.42)

Assume that u is changed from wug as a step of amplitude U, i.e.
du(t)=U

Then the step response is
dy(t) = KU1 — e /T)

or, by using (9.41),
y(t) =yo+ KU1 — e /7

where yp is given by (9.39).

Figure 9.9 shows the simulated step response of a system with the following parameters:

K =05 (9.43)
T=1s (9.44)
ug = 2 (9.45)
U= (9.46)
The initial, static value of y is
yo=Kup=05-2=1 (9.47)

The following Python program implements the simulator. (No program listing is presented
here since it is almost identical to the program shown earlier in this chapter.)

http://techteach.no/control /python/sim_time_const_sys_nonzero_init_state.py

9.3.2 Time constant model expanded with process disturbance as input

Above we assumed that the time constant system has one input variables, cf. (9.16). Let us
assume that the system has two input signals, namely the control signal u and the process
disturbance d, and that the model is

Ty = Kyu+ Kgd —y (9.48)
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0 1 2 3 4 5
t [s]

Figure 9.9: Simulation with a non-zero operating point.

Figure 9.10 shows a block diagram of (9.48).
Taking the Laplace transform and gives

Tisy(s) = —y(s) + Kuu(s) + Kad(s)
from which we find two transfer functions, H, ,(s) and H, 4(s):

Ku Kd

Y(s) = rtruls) + - d(s)
SN—— SN——
Hy,u(s) Hy,a(s)

The system has one time constant: 7', and two gains: K, and Kj.

(9.49)

(9.50)

Above the system has two inputs, u and d. If the system has more than two inputs, the

model is expanded naturally (not described in detail here).

Example 9.2 First order system: Heated liquid tank

In Example 4.2 we developed a mathematical model of heated liquid tank (a thermal

system). The model is repeated here, but with 6 instead of T" as temperature as I prefer to

reserve 1" as symbol of time constant:
em@' = P+ cF (0; — 0) + G(6. — 0)
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y’= (Ku*u + Kda*d — y)/T

—» Ku i+ T >

v
u > y’ f y

Figure 9.10: Block diagram of (9.48).

Let us for simplicity assume that the tank is well isolated so that
G=0 (9.52)

We will now calculate the transfer functions from P to 6 and from 6; to 6. Taking the
Laplace transform of (9.51) while setting the initial value 6y to zero gives

emsl(s) = P(s) + cF [0;(s) — 0(s)] (9.53)
From (9.53) we will find
K Ky
0(s) = Tst 1P(S) + Tst 191(5) (9.54)
~—— ~——
Hi(s) Hs(s)

The gains and the time constant of each of the two transfer functions are

1
K| =— .
1= 5 (9.55)
Ky=1 (9.56)
m  Mass
F ~ Flow (9.57)

Comments:

e The time constant, which represents the “dynamics”, is the same for both transfer
functions Hi(s) and Ha(s).

e In many applications the flow F may change. Assume that the flow is decreased. The
dynamic properties of the system then change:

— According to (9.55) the gain from P to 6 increases, and hence the 6 becomes
more sensitive to P, giving higher value of 6 for a given change of P.

— According to (9.57) the time constant increases, causing a more sluggish response
in 6 to a change in P.

e In chemistry (incl. bioprocesses like biogas reactor technology), the ratio mass/flow in
(9.57) is denoted the hydraulic retention time.
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A SimView simulator of the heated tank is available on:

http://techteach.no/simview /heated_tank

Figure 9.11 shows the simulation of the step response of the heated tank.

Heated Tank - T[C) 39
_ nvironment 200+
Time params  Process model params | About ‘ temperature, Tenv [C] g
40,0~ 35,07
Density, p 30’05 g
[kg/m*3] T_init [C] - 30.0<
; ; o2 3
oJ|10000 200 100°
Heat transfer E
coefficient, U ?’0
[/sK] 200
Joo
Volume V L
[m*3]
’ kg/s ]
oz w [kg/s] B
) 200 220 240 260 280 300 320 340 360 380 400
T O et o
feat 000 020 040 060 080 1,00 t [min]
capasity, ¢ A
(kg K] .20
oJ|42000 _@T w
- > -
Transfer function from P [kKW] to T [K]: EE ) =
T(s)/P(s) = K/(Tc*s+1) Inlet temp. Power, P [kW] Supplied power, P [kW]
= Inlet temp,, Ti [C] TiC] 20,0~ 20
K=1/(c"w+U) 4007 17,5- :
[K/IW] H = 15
30,0- 150 ]
1,19 B 12,5- ]
Time-constant 200- @ 10,0- 'l 10}
Te=p V/iw+U/c) : 7.5- ]
[min] 100° 2 :
167 : 5,0-
e 25- :
430 500 50 G0 ASee P 0,0- D et
[ Pause | t{min] J ; 400 420 440 460 48D 500 520 540 560 580 600
- 100 + [min]

Figure 9.11: Example 9.2: Simulation of the step response of a heated tank.

[End of Example 9.2]

9.4 Second order systems

9.4.1 Mathematical model

9.4.1.1 Transfer function model

A standard second order transfer function model (with u as input variable and y as output
variable) is
Kuwo? K
o 2(:05 oy Su(s) = 5 u(s) (9.58)
0% =0 (%0) +202 +1

where K is the gain, ¢ (zeta) [dimension 1] is the relative damping factor, and wy [rad/s] is
the undamped resonance frequency.

y(s) =
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9.4.1.2 Differential equation

A differential equation model which corresponds to the transfer function (9.58) can be
found as follows: Cross-multiplying (9.58) by the denominator gives

(5% + 2¢wos + wo?) y(s) = Kwou(s)
Taking the inverse Laplace transform, and neglecting the initial values, gives
Y+ 2Cwoy + wo’y = Kwo’u

or
y" = Kwo?u — 2Cwoy’ — wo’y (9.59)

9.4.1.3 State space model

A state space model corresponding to (9.59) can be found by defining the following two
state variables:
x1 =1y (9.60)

o =1 (9.61)
(9.59) can then be written as the following linear state space model:

0 1 0

/
[ o } — [ o ] + u (9.62)
H%—’ —wp? —2Cwo A,Z_/ Kuwy?
z T N———
A B
Z1
y=[1 0][ }4—[0]14 (9.63)
—_—— | T2 ——

Example 9.3 Second order system: Mass-spring-damper

In Problem 8.3 the transfer function from force u to position y of a mass-spring-damper
system is to be found. The transfer function is repeated here:

His)= —

ms? +ds + k
To find the standard parameters, we must transform the transfer function to one of the
equivalent standard forms given by (9.58). Let us here choose the first one:

(9.64)

Kwg?
=
1
m

H(s) = ——F——~ 9.65
()= —1— (9.65)
5+ —s+ —

m . m
~—_——

$2+2¢wos+wp?
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By equating the coefficients and using the following parameters values: m = 20 kg, d = 4
N/(m/s) and k =2 N/m, we get

1
K= = 0.5 [m/N] (9.66)
k
— = +/0,1=0.32 [rad/s] (9.67)
m
c= L s (9.68)
2vmk ' '
A SimView simulator of the mass-spring-damper system is available on:
http://techteach.no/simview/mass_spring_damper
Figure 9.12 shows the result of a simulation.
Mass Spring Damper
Time settings  Model ‘ About ‘ - : o ym]
N 40 -30 -20 -0 00 10 20 30 490
FN] N [N/} Position, y [m] |

— m

0 3 [m]
Mass Spring constant Damping constant
m Kf
15,0 200 250 025 30
wmq 15, \\"' b, 35
10,0 o ' 30,0 3
3 ; f3° 1 ,ao
5,0%_ §350 z,o' 052, \45
& \‘ )
0,0 40,0 1 00
‘,l 20,0 20 v-‘J 4.0
[kg] [N/m] [N/(m/s)] Force
F[N] Force, F[N] n
80-" 0+
Transfer function from F to y: 6.0-
V(S)/F(S) = KA(s/w0) A2 + 2°2(s/wD) + 1] 10°
where: 2.0%
K=1/Kf; 00
z=(D/(sqrt(m™*Kf))/2; ol
wO=sqrt(Kf/m); -2,0-
K[m/N] z w [rad/s] ’4-0';
0500 = {0316  J0316 -6,0=
8,0-

Figure 9.12: Example 9.3: Simulation of mass-spring-damper system.

[End of Example 9.3]
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9.4.2 Classification of second order systems

We will classify second order systems from the shape of the step response. We assume that
the input variable u(t) is a step of amplitude U, which Laplace transformed is u(s) = U/s.
Then the Laplace transformed time-response becomes

Kw02 U
52 + 2Cwps + wo? s

y(s) = H(s)u(s) = (9.69)

The shape of the time-response y(t), which is calculated as the inverse Laplace transform of
y(s), depends on the poles, cf. Section 8.5. The poles are the roots of the characteristic
equation a(s):

a(s) = 8% 4 2Cwos +wp® = 0 (9.70)

The poles p; and ps are the roots of a(s) and becomes

p1, p2 = —Cwo £ /(2 — 1 wo (9.71)

Im A

P,

1w

uwr
@ = arcin {
—{uwn Re

X
P,

Figure 9.13: Pole placement of second order systems when the poles are complex conjugate.
The poles are given by (9.72).

The value of ¢ determines whether the poles are real or complex conjugate:

e If ( > 1, the poles are real and given by (9.71).

e If 0 < ( < 1, the poles are complex conjugate:

p1, p2 = —Cwo £ 71— (% wo (9.72)
R I

Figure 9.13 shows the pole placement when the poles are complex conjugate.

Figure 9.14 classifies second order systems by the value of ¢. (This is a common way to do
the classification.) The step responses referenced in the figure can be calculated by taking
the inverse Laplace transform of (9.69), but the detailed calculations are not shown here.
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Reference
Value
£ Poles p, and p, Type of step o (6
of § response y(?) in Avpendix
Real and distinct - Overdamped

Im 1

5> 1 s J// (B.17)
Re o

—U.SD : o

Critically damped

Real and multiple

Im.
6=1 M (B.18)
Re
Complex con;. Underdamped
Im /-\"‘h-._—-""
0<¢<1 X y (B.23)
X | Re
. Undamped
Imaginary
" AWAWA
=0 (B.23)
5 VARY,
Unstable
Pos. real part
Im (B.17) or
6<0 /\ (B.18) or
Re —N (B.23)

Figure 9.14: Classification of second order systems by the value of (.

In the following are given simulated step responses and pole plots for representative
examples of overdamped, underdamped, and undamped systems. The parameter values are
shown on the front panels of the simulators in the respective figures.

In all cases the steady-state value of the step response is
ys = KU (9.73)

because the static transfer function is K.

9.4.2.1 Overdamped systems

Figure 9.15 shows the step response and the poles for an example of an overdamped system.
The shown step response is generated with the following Python program9.3 which
simulates a second order system, with model parameter settings as shown in Figure 9.15.
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http://techteach.no/control /python/sim_2order_sys_forced response_py_con.py

K=1;z=15w0=1.

0.0 2.5 5.0 7.5 10.0 125 15.0 17.5 20.0
tls]

—u

0.0 25 5.0 7.5 10.0 12.5 15.0 175 20.0
Poles = [-2.61803399 -0.38196601]

1.0 X poles

Figure 9.15: Step response and the poles of an example of an overdamped system.

Comments:

The step response has no overshoot.

The poles p; and p- are real and distinct:

p1, p2 = —Cwo = V/(* — 1 wo (9.74)

The transfer function can therefore be written on the form

_ Kpip2 B K
H(s) = G5—p1)(s—pa)  (Tis+ 1) (Tas + 1) (9.75)

This implies that the second order system can be split into two first order subsystems
having time constants 77 and 75, respectively. The largest of these time constants can
be denoted the dominating time constant.
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9.4.2.2 Underdamped system

Figure 9.16 shows the step response and the poles for an example of an underdamped
system. The shown step response is generated with the Python program9.3 given in Section
9.4.2.1, with the model parameter settings as shown in Figure 9.16.

K=1;z2=0.2;w0=1.

16
14
12
1.0
0.8
0.6
0.4
0.2
0.0

0.0 2.5 5.0 7.5 10.0 125 15.0 17.5 20.0
tls]

—u

0.0 25 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Poles = [-0.2+0.9797959j -0.2-0.9797959j]

1.0 x X poles

Figure 9.16: Step response and poles of an example of an underdamped system.

Comments:

e The poles are complex conjugate:
p1, p2 = —Cwo £ j/1— (% wo (9.76)

e The less ¢, the less damping in the step response. It can be shown that the less (, the
more dominating imaginary part over the real part of the poles. This is a general
property of poles: The larger imaginary part relative to the real part, the less damping
in the time-response. Figure 9.17 shows the step-response for various values of (.

e The overshoot factor § of the step response is defined as

Ymax — Ys
0= F77—7 2 9.77
" (9.77)
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Figure 9.17: Step-response for various values of ¢ of second order systems.

where y, is the steady-state value of the step-response. It can be shown that ¢ is a
function of the relative damping factor ¢, as follows:

§ = e T/V1=¢C (9.78)

0 is plotted as a function of ¢ in Figure 9.18.

1

0.9

0.8 [

0.7 [

0.6 [

< 051

0.4

03[

0.2

0.1 ~_

0 I I I | | | L

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
¢

Figure 9.18: Overshoot factor ¢ plotted as a function of the relative damping factor (, cf.
(9.78).

The inverse function of (9.78) is
[In ¢
72 4+ (Ind)?

A few examples: Overshoot § = 0.1, that is, 10% overshoot, corresponds to ¢ = 0.6.
Overshoot 6 = 0 (zero overshoot) corresponds to ¢ = 1 (critically damped system).

¢= (9.79)

e Simulations shows that the 63% response-time of the step response is approximately
1.5

T ~— 9.80
P~ (9.80)
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wp expresses in a way how quick the system is. wq is the distance from origin to the
poles, see Figure 9.13. This is a general property of poles: The longer distance from
origin, the faster the dynamics of the system.

e It can be shown that the frequency in the oscillations are

B=+v1-Cuw [rad/s] (9.81)

9.4.2.3 Undamped system

Figure 9.19 shows the step response and the poles for an example of an undamped system.
The shown step response is generated with the Python program9.3 given in Section 9.4.2.1,
with the model parameter settings as shown in Figure 9.19.

K=1;,z=0;w0=1.
2.00 —y

1.75
1.50
1.25
1.00
0.75
0.50
0.25

0.00

0.0 2.5 5.0 7.5 10.0 125 15.0 17.5 20.0
tls]

—u

0.0 25 5.0 75 100 125 15.0 175 200
Poles = [-0.+1.j 0.-1.j]

1.0 X poles

Real

Figure 9.19: Step response and the poles of an example of an undamped system.

Comments:

e The step response is undamped, steady-state oscillations:

y(t) = KU (1 — coswot) (9.82)
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The frequency of the oscillations in rad/s is wg — therefore the name undamped
resonance frequency.

e The poles are purely imaginary:
p1, p2 = £jwo (9.83)

The real part is zero, which is an explanation of why the step response is undamped.
In general, damping is due non-zero real part of poles.

9.5 Time delays

In many systems there is a time delay or dead-time in the signal flow, for example with
material transport on a conveyor belt, see Figure 9.20. In this application, the relation
between the input variable Fi, and the output variable Fy, is

Fout (t) = En(t - T) (984)

where 7 is the time delay which is the transportation time on the belt. In other words: The
outflow at time ¢ is equal to the inflow 7 time units ago.

Fin(t) [kg/s]

((% <1

Conveyor belt

Fou(t) = Fin(t-7) [ka/s]

Figure 9.20: Time delay on a conveyor belt.

What is the transfer function of a time delay? Taking the Laplace transform of (9.84) using
(39.19):
Fout(s) = ¢ " Fin(s) (9.85)
H(s)

Thus, the transfer function of a time delay of 7 [time unit] is

H(s)=¢€° (9.86)

Figure 9.21 shows a simulation of a time delay. The time delay is 7 = 1 sec.

The simulation is made with the following SimView simulator:

http://techteach.no/simview/timedelay
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Input Output

R O WO OO O T F U O A O U0 O G DOONoany]
6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
t [sec]

Figure 9.21: Output is equal to input, time delayed 1 sec.

9.5.1 Approximation of time delay by Padé approximation

Some times it is difficult to use the irrational transfer function e~"° in calculations and

simulations with transfer functions. A Padé-approximation of e~"% can then help as it
approximates e~ 7® with a rational transfer function, i.e. a transfer function with
polynomials of s in both the numerator and the denominator. A Padé-approximation is a
function of

e the time delay 7

e the order n you select for the approximation

For example, a Padé-approximation of order n = 2 is

2
_ T T G2
e LA vL

~ 9.87
14 Is+ Ds2 (9-87)

e

Ch. 42.2.6 shows how to create Padé-approximations with the Python Control package, and
how to use them in simulations.

9.6 Higher order systems

Systems having higher order of the denominator polynomial of the transfer function than
one, are so-called higher order systems, or more specifically, second order systems, third
order systems and so on. A serial connection of first order systems results in a higher order
system. (But not all possible higher order systems can be constructed by serial connection
of first order systems.) When transfer functions are connected in series, the resulting
transfer function is the product of the individual transfer functions, cf. Figure 8.2. As an
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U I N

T s+ S| Tosti

Figure 9.22: Step responses in a second order system

example, Figure 9.22 shows a second order system consisting of “two time constants”
connected in series.

The combined transfer function becomes

B 1 ~ ya2(s)
H(s) = (Tys +1)(Ths +1)  u(s) (9:88)

The figure also shows the step responses in the system. It is assumed that 77 =1, 75 =1
and K = 1. Observe that each first order systems makes the response become more
sluggish, as it has a smoothing effect.

Let us define the response-time T, as the time it takes for a step response to reach 63% of
its steady-state value. For time constant systems, the response-time is equal to the time
constant:

T.=T (9.89)

For higher order systems (order larger than one) it turns out that the response-time can be
roughly estimated as the sum of the time constants of the assumed serial subsystems that
make up the higher order system:

T.~ ) T, (9.90)
i
As an example, the response-time of the system shown in Figure 9.22 is
T, =~1+1=2s (9.91)
Does the simulation shown in Figure 9.22 confirm this?"

A SimView simulator of the following second order transfer function with a zero, i.e. a
system with two poles and one zero,
y(s) b1s + by

H(s) = u(s)  s2+ays + a (9:92)

is available on:

Yes
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http://techteach.no/simview /transferfunction
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9.7 Problems for Chapter 9

Problem 9.1 Dynamic response in tank

See Problem 8.2. The transfer function from we,: to h is

h(s) _ 1 _ .
wout(s) B pAS H2( ) (993)

1. Does this transfer function represent integrator dynamics?

2. Assume that wey(t) is a step from 0 to W at time ¢ = 0. Calculate the response h(t)
that this excitation causes in the level h. You are required to base your calculations
on the Laplace transform.

Problem 9.2 Tank as integrator

Figure 9.23 shows an isolated tank (having zero heat transfer through the walls).

Isolation E Stirring motor
(zero heat transfer)

N

T[K]
=

V [m?]

¢ [J/(kg K)]

%%M

P [Js]

)

NN

Figure 9.23: Isolated tank

Show that the tank dynamically is an integrator with the power P as input variable and the
temperature 1" as output variable. (Hint: Study the transfer function from P to T'.)

Problem 9.3 Time constant dynamsics

Given a system with gain K, time constant T', and time delay T;. The system is initially in
steady (static) state, with the value of the output variable, y, equal to yo. At time tg, the
system is affected by a step change from ug to u; at the input, u. Plot principally u(¢) and
y(t) manually in their respective plots, showing how the given information appears in the
plots. The origin (0, 0) shall appear in both plots.
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Problem 9.4 Time constant dynamaics - 2
Assume a system with gain —3, time constant 10 s, and time delay 2 s. Sketch (manually)

principally the step response of the system assuming the input step has amplitude 4
appearing at time 50 s. Before the step appears, the system output is at rest with value 15.

Problem 9.5 Time constant dynamsics from transfer function

Calculate the gain and the time constant of the following transfer function:

H(s) = ZEZ; _ 452+ - (9.94)

Draw by hand roughly the step response of y(t) due to a step of amplitude 6 in u from the
following information:

e The steady-state value of the step response
e The time constant

e The initial slope of the step response

Problem 9.6 Deriving transfer function from step response

Figure 9.24 shows the temperature response 1" of a thermal system due to a step of
amplitude 1 kW in the supplied power P.

32
30 5 0 0 O O O
E
28 F
26 |
o
[=2]
Q
Sl
-
2t
20/
18 ‘ ‘ ‘ ‘
0 50 100 150 200 250

t [min]
Figure 9.24: Problem 9.6: Temperature response due to step in supplied power

Find the transfer function from AP (power) to AT (temperature) where A indicates
deviations from the steady-state values. Assume that the system is of first order (a time
constant system).
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Problem 9.7 Time constant dynamaics of kettle

A kettle and a mathematical model based on energy balance are presented in Ch. 38.6. The

model is repeated here:
T' =[P+ G (Tyoom — T)] /C (9.95)

1. Derive the transfer function, H(s), from power P to temperature 7'

2. What is the gain, K, and the time constant, tconst? (In Section 9.3 the symbol T is
used for time constant. To avoid misunderstandings, I use the symbol fconst in this
problem.) What are their numerical values? (Parameter values are given in Table
38.6.)

Problem 9.8 Dynamics of an RC circuit

Figure 9.25 shows an RC-circuit (the circuit contains the resistor R and the capacitor C).

. Vr [V] .
Al + - I2
+oo—= ] ' > o+
I :
R[] _[Y e
Input vi [V] — v, [V] Output
voltage C[F] 2 voltage
— % o —

Figure 9.25: Problem 9.8: RC-circuit.

The RC-circuit is frequently used as an analog lowpass filter: Signals of low frequencies
passes approximately unchanged through the filter, while signals of high frequencies are
approximately filtered out (stopped). It can be shown that a mathematical model of the
RC circuit is

RO . = Vin — Vout (9.96)

1. Calculate the transfer function H(s) from vy, to veut, and calculate the gain and the
time constant of H(s).

2. Assume that the RC circuit is used as a signal filter. Assume that the capacitance C
[F] is fixed. How can you adjust the resistance R (increase or descrease) so that the
filter performs stronger filtering or, in other words: is more sluggish.

A SimView simulator of the RC circuit is available on:

http://techteach.no/simview/rc_circuit

Figure 9.26 shows results of a simulation with the simulator.
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Figure 9.26: Problem 9.8: Simulation of an RC circuit.

Problem 9.9 Second order system: Position control system
Figure 9.27 shows an angular position control system of an electric motor.

Position  Load torque

Angular
position y[rad] d[Nm]
reference Motor
r [rad] u[V] Angular
—> .-
Controller position
Sensor
y,, [rad]
Measurement

Figure 9.27: Problem 9.9: Angular position control system of an electric motor.

Figure 9.28 shows a block diagram with transfer functions of the control system.

Assume that the transfer functions are as follows:

K, 1

Pls) = (Ts+1)s (s+1)s (9:97)
B Ky 1

D(s) = (Ts+1)s  (s+1)s (9.98)

C(s) = K. (proportional controller) (9.99)

Comments about P(s): The factor K, /(Ts + 1), which represents a time constant system,
is the transfer function from control signal u to speed, say v. The factor 1/s, which is an
integrator, is the transfer function from v to (measured) position y. The process to be
controlled is thus a “time constant with integrator” process.
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Motor incl. sensor

d

= process

r——————— -
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| |

v e u | 1y m
» C(s) ——» P(s) —>

I I
Controller : :
I I

Figure 9.28: Problem 9.9: Block diagram of the positional control system.

. Derive the transfer function, 7'(s), from position reference r to position measurement
Ym- You can use the numerical model parameters given in (9.97). (This transfer
function is generally denoted the tracking transfer function. Its symbol happens to be
the same as that of the time constant.)

. T'(s) turns out to be a second order transfer function. What are the parameters K, ¢
and wp of T'(s) (possibly) in terms of the controller gain K.

. You will see that both ¢ and wy are functions of K., and you may calculate K. from
either a specified ¢ or from a specified wp. Of these two parameters, it is ¢ that
determines the stability. Since it is necessary that a control system has acceptable
stability, K. should be calculated from a specified ¢ rather from a specified wy. Let us
say that ¢ = 0.6 is a good value. ¢ = 0.6 gives 10% overshoot (§ = 0.1) in the step
response, cf. (9.79). Calculate K. so that this specification is obtained.

. With the value of K. that you have calculated above, what is the 63 % response time
of the control system?

. Make a Python program which simulates the solution above (you may simulate with
the forced response function of the Python Control package). Simulate the step
response of the control system, i.e. 7 is a step, and you simulate the response in y,,.
Are the overshoot and response time confirmed with the simulations?

Problem 9.10 Time delay of pipeline

For a pipeline of length 0.5 m and cross sectional area of 0.01 m? filled with liquid which
flows with a volumetric flow 0.001 m?/s, calculate the time delay (transport delay) from
inlet to outlet of the pipe.

Problem 9.11 Response time of compound system
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Assume that a system can be well described by 3 time constant systems in series, with the
following time constants respectively: 0.5, 1.0, and 2.0 sec. What is the approximate
response time of the system?

Problem 9.12 Simulation of Padé approximation with Python Control
Package

Given a “time constant with time delay” system, with gain 2, time constant 4, and time
delay 1 sec. Assume that the system input is a step of amplitude 5. Simulate the response
of the system with the forced_response() function of the Python Control Package. The time
delay should be represented by a Padé approximation of order 10.
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9.8 Solutions to problems for Chapter 9

Solution to Problem 9.1

1. Yes! Because the transfer function has the form of K;/s.

2. The Laplace transform of the response is
1

h(S) = HQ(S)wout(S) = _Ewout(s) (9100)

Since weut(t) is a step of amplitude W at ¢ = 0, wout(s) becomes, according to (39.7),

w

Wout(8) = (9.101)
With this wout(s), (9.100) becomes
1w
h(s) = ————— 9.102
)=~ (9,102
According to (39.8),
w
h(t) = ——t 9.103
0= (9.103)

That is, the response is a ramp with negative slope.

Comment: This h(t) is only the contribution from the outflow to the level. To
calculate the complete response in the level, the total model (8.47), where both u and
Weyt are independent or input variables, must be used.

Solution to Problem 9.2

Energy balance:

cpVT' =P (9.104)
Laplace transformation:
cpV [sT(s) — Tp] = P(s) (9.105)
which yields
1 1
T(s) =-T P 1
(s) S 1o + Vs (s) (9.106)
~——
H(s)

The transfer function is
B T(s) 1 K

~ P(s)  cpVs T s

which is the transfer function of an integrator with gain K = 1/cpV’.

(9.107)

Solution to Problem 9.3

See Figure 9.29.
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Y A K-~ We)
0% + - - — — _[____,.

0% Yo |
Oot, >t
e—te—l

>t
to
Figure 9.29: Problem 9.3: Time constant dynamics.

Solution to Problem 9.4

See Figure 9.30.

Solution to Problem 9.5

We manipulate the transfer function so that the constant term of the denominator is 1:

2 2/8 0.25 K

) = 8 T @Ry s+8/8 0bs+1 Tstl (9.108)
Hence,
K =0.25
and
T=05
We base the drawing of the step response on the following information:
e The steady-state value of the step response:
ys = KU =025-6=1.5 (9.109)
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Figure 9.30: Problem 9.4: Time constant dynamics.

e The time constant:
T=0.5 (9.110)

which is the time when the step response has reached value

0.63 -y, = 0.63- 1.5 = 0.95 (9.111)

e The initial slope of the step response:

KU 0256

So=y'(0") = = =3 (9.112)
Figure 9.31 shows the step response.
i Slope =3
1.5=KU+- —VZ _______
/
1 !
A4
095=063*15 i |
y
|
! )
0 I I »
005=T1 t[s]

Figure 9.31: Problem 9.5: Step response.
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Solution to Problem 9.6

From Figure 9.24 we see that the gain is

AT 30K -20K
K="=

K
= — 10—
AP 1 kW OkW
and that the time constant (the 63% rise time) is
T7 = 50 min
The transfer function becomes
AT(s) 10 K

AP(s)  50s+1 kW

Solution to Problem 9.7

(9.113)

(9.114)

1. We can neglect Troom in (9.95). We also neglect the initial temperature, 7°(0). Taking
the Laplace transform gives

sT(s)=P(s) —GT(s)/C
Solving for T'(s) gives
1 e
)= o 1P = gy 7O
2. The gain is
1 1
K=—=———=042TK/W
G 231 W/K 0427 K/
The time constant is

C 2101 J/K
et = 2= L2 g8
feonst = = 5 31 W/K °

Solution to Problem 9.8

1. Laplace transformation of the differential equation (9.96) gives

RC'svout(s) = vin(s) — vout(s)
Solving for voy(s) gives

1

vou() = e 1)
The transfer function is ) X
H = =
)= Res+1~ Tst1
The gain is
K=1
The time constant is

T = RC
2. The filtering is stronger (time constant larger) if R is increased.
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Solution to Problem 9.9

1. From Figure 9.28 (for simplicity dropping the Laplace variable as argument):

Ym =P -C-(r—ym) (9.123)
Solving for y,:
PC
ym—1+PCr—Tr (9.124)
So,
1
P(s)C(s) Ke o3 K.
() 1+P(s)C(s) 1+K,- (SJ:I)S 2+ s+ K. ( )

2. (9.125) is on the standard form (9.58):

2
T(s) = s? —I—Is(c—l- K, s+ 22((,:08 + wp? (9-126)
Equating coefficients in (9.126) gives
K = (9.127)
wo = VK. (9.128)
-1 (9.129)
2VK,
3. From (9.129):

K, = 422 - ﬁ;@ = 0.69 (9.130)

4. The 63 % response time is given by (9.80):
R S E (9.131)

wo VK. +0.69

5. The following Python program implements a simulator of the control system using the
forced_response() function of the Python Control package. Figure 9.32 shows the
simulated step response. From the step response we can read off the 63 % response
time as approximately 1.9 s, which is in good accordance with the estimated value
(9.131).

http://techteach.no/control /python/sim_control_decmotor_2ord forced_resp_py_con.py

Solution to Problem 9.10

Given: L =0.5m, A= 0.01 m?, F = 0.001 m?/s. The the time delay becomes

AL 0.0l m?-0.5m
= T _5 9.132
F 0.001 m3/s ° (9.132)

T =
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Figure 9.32: Problem 9.9: Simulated step responses of the control system.

Solution to Problem 9.11

The approximate response time is

T=05+1+2=35s (9.133)

Solution to Problem 9.12

Python program 9.1 implements the simulator.

http://techteach.no/control /python/sim_pade_forced resp_python_control.py

Listing 9.1: sim_pade_forced_resp_python_control.py
# %% Imports:

import numpy as np
import control
import matplotlib.pyplot as plt

# %% Generating transfer function:

# Transfer function without time delay:
s = control.tf(’s’)
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K = 2
T =4
H_without_delay = K/(T*s + 1)

# Transfer function of Pade approx:

T_delay = 1

n_pade = 10

(num_pade, den_pade) = control.pade(T_delay, n_pade)
H_pade = control.tf(num_pade, den_pade)

# Transfer function with time delay:
H_with_delay = H_without_delay * H_pade

# %% Simulation setup:

t0 = 0

tl = 20

dt = 0.01

nt = int(tl1/dt) + 1 # Number of points of sim time

t = np.linspace(tO, t1, nt)
# %% Defining input signal:

U =2
= U *x np.ones(nt)

e
I

# %% Simulation:
(t, y) = control.forced_response(H_with_delay, t, u)
# %% Plotting:

plt.close(’all’)
plt.figure (1)

plt.subplot (2, 1, 1)

plt.plot(t, y, color=’blue’, label=’y’)
plt.legend ()

plt.xlabel (°t [s]?)

plt.grid )

plt.subplot (2, 1, 2)

plt.plot(t, u, color=’green’, label=’u’)

plt.plot ([0, dt], [0, U], ’green’) # Plotting vertical line of step
plt.legend )

plt.xlabel (°t [s]?)

plt.grid O

plt.show
plt.savefig(’sim_pade.pdf ’)

Figure 9.33 shows the simulation.
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0.0 2.5 5.0 7.5 10.0 125 15.0 17.5 20.0
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Figure 9.33: Problem 9.12: Simulation of time constant with time delay-system.
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Chapter 10

Adaptation of models to data

10.1 Introduction

Assume that you have a mathematical model of a system with parameters that
characterizes the model. The model can be static or dynamic:

e Static models are models not containing time-derivatives. Thus, differential
equations are not static models. One example of a static model is

Yy = a1r1 + a1 (10.1)

where y is the output and x; are inputs, and a; are parameters to be estimated from
known data of output and inputs.

e Dynamic models may be in the form of:

— Differential equations (continuous-time models), linear or nonlinear, possibly in
the form of a state space model

— Difference equations (discrete-time models), linear or nonlinear, possibly in the
form of a state space model
— Transfer functions:

« Laplace-transform based transfer functions (i.e. continuous-time transfer
functions)

« Z-transform based transfer functions (i.e. discrete-time transfer functions)

Model adaptation is calculation of values of model parameters so that the model behaves in
as good accordance as possible to given observations or measurements from the real system.
“as good as possible” indicates that the model adaptation problem can be solved with
optimization! Indeed, we will do that in Section 10.2.

But why do we want a model when we already have data? Good question! And here are
two good answers:
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e Prediction or simulation: We can use the model for prediction, ie to predict
(predict) or simulate what may happen in the future, which we have no observations
from yet.

e Analysis: We can use the model to analyse the data we already have, e.g. calculate
increments for a trend that is in the data.

Throughout this chapter are application of optimization methods. If you do not have any
background in optimization methods, you may take look at Appendix 40 Optimization
methods.

10.2 Model adaptation as an optimization problem

10.2.1 How to find the best model

We assume given a time series of observations or measurements of the system. The
observations may consist of a time series of the input variable or signal and a time series of
the output variable or signal, see Figure 10.1. In some cases we have no input excitation
signal; only “data” or measurements, e.g. statistical data.

Input signal Output signal

u(t) Physical ()
system

Parameter
estimator
for mathematical
model
l Model parameters

(parameter vector)
g

Figure 10.1: Estimation of parameters of a mathematical model from time-series of the
observations which may consist of the input variable or signal (u in the figure) and the
output variable or signal (y).

The formulation of the parameter estimation problem as an optimization problem is
typically as follows:

e The objective function to be minimized is the sum of squared prediction errors — also
denoted a least squares criterion:

N
SSPE =) e(k) (10.2)
k=1
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where e(i) is the prediction error which is the difference between the observations
(measurements) and the model-based predicted or calculated observations:

6(1) = yobs(i) - ypred(i) (10-3)

Figure 10.2 illustrates the prediction error. It is assumed that a linear model is to be
adapted to the observerations. ypreq is calculated in simulations, using the model.
Therefore, ypreq is a function of the parameters to be estimated, and SSPE is a also a
function of the parameters.

e The parameters to be estimated are used as optimization variables. All the
parameters may be collected in a parameter vector:

P = [p(1), p(2), ..., p(r)]" (10.4)

e In each iteration, the optimizer runs a simulation with parameter values that are
adjusted based on previous iterations (simulations). The iterations stops when when
the parameter values that minimizes the SSPE, are found. These “best” values are
then used as the parameter estimates.

€ z=1.6x-0.6

Figure 10.2: Tllustration of the prediction error, e(i). A linear model is assumed.
Mathematical formulation of the parameter estimation problem

Mathematically, the optimization problem can be stated as:

min SSPE (10.5)
P:[p(l),p(Q)er(r)]

s.t. (subject to) the given mathematical model.
Figure 10.3 illustrates the principle of optimization-based parameter estimation.

Any nonlinear optimizer can be used to implement the parameter estimation, e.g. the slsqp
optimizer in the Scipy package of Python or the fmincon optimizer in the Optimization
toolbox of Matlab.

Selecting the best model among several model candidates

In some applications there are several candidates of models, for example, a first order
differential equation and a second order differential equation that are both assumed to
represent the real system. You can select the best model as the one that minimizes the
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Figure 10.3: The principle of parameter estimation using optimization. The ultimate (esti-
mated) parameter values are those that minimize SSPE. (SSPE = sum of squared prediction
errors.)

SSPE index (10.2) calculated from a validation data set. The validation data set may be a
part, e.g. a half of the original data set, while the data set used for parameter estimation is
the other half of the original data set. This is illustrated in Figure 10.4.

Note that if you have only one (fixed) mathematical model that you want to adapt to the
given data, there is no need to validate the model with any validation data set. In that
case, you can use the whole data set for estimation. An example: If you assume that the
following transfer function model:

y(s) K

Hs) =06 = Ts 11

(10.6)

is appropriate to represent the dynamics of a given system, then you can use the whole data
for estimation of parameters K and 7. In other words, model validation is not necessary.
But if you have two model candidates, say model (10.6) and the following second order
transfer function:

y(s) K

o) =08~ Tst 1) T 7 1) (10.7)

then you must use a validation data set to select among the two model candidates.

10.2.2 Good excitation is necessary!

Assume, as an example, that you want to estimate the time constant T of a first order
transfer function. You can not estimate 7', which is related to the dynamics of the system,
if y and u have constant values all the time. Thus, it is necessary that the excitation signal,
u(t), has sufficiently rich variation to give the LS-method enough information about the
dynamics of the system to produce an accurate estimate of T'.
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1. Excite the real system, and log input and output:

Measured response, Yiotai(K)

Input sequence, Ugotai(K) Real
II
L

ogging

2. Split data, for estimation and for validation:

Urotar(K)  ["Split data |—— Uesin(K)
(e-g- into ——— yestimgk;

Yiotal (K) two —— Uvaiid

halves) [——® Yvaiia(K)

3. Estimate model candidates: Model
ues(im(k) candidates,
System M1,..., Mr

Yesin(K)_ | identification

4. Select best model among candidates:

uvalid(k) Yva d(k)

ysim‘l(k)
: . * Simulations
Ysim(K)
Mr

Figure 10.4: Procedure for selecting the best among several model candidates.

The up-down-up signal is a good excition signal, see Figure 10.5. This signal is simple to
generate manually during the experiment. This signal gives in many cases enough
excitation for the estimator to calculate accurate parameter estimates, but the period of the
signal shift must be large enough to give the system output a chance to approximately
stabilize between the steps.

10.3 Adaptation of static models to data

10.3.1 Adaptation using grid optimization
10.3.1.1 Introduction

If the number of model parameters to be estimated is not so large, e.g. 5 or less, the
straightforward brute force method (or grid method) of optimization, can be used to find
the estimates (the best values). As optimization criterion, we can use minimum of the
squared sum of prediction error (sspe), cf. Section 10.5.
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Figure 10.5: A good excition signal: Up-down-up signal.

10.3.1.2 Model adaptation of static models using native grid optimization

The following examples demonstrates how to adapt a static model to given data using the
brute force method:

e Example 10.1: Adaptation of a model to data about greenhouse gas emission in
Norway using the brute force method implemented from scratch with nested for loops.

e Example 10.2: The same as Example 10.1, but using Python’s scipy.optimize.brute()
function which implements the brute force method, cf. Section 10.3.1.1. The brute()
function has an option to obtain an accurate optimal estimate with simplex
optimization method started from the grid optimal solution. In the example, this
option is activated.

As objective function (optimization criterion) we use the least squares deviation between
observations and predictions. Often, the term regression is used on the least squares static
model adaptation.

Example 10.1 Adaptation of a static model to greenhouse gas emission data using the
brute force method

Statistics Norway' has an overview of total greenhouse gas emissions in Norway since 1990.
An extract of the overview, for the period 2000 — 2018, is shown in Table 10.1. The data are
plotted in Figure 10.6.

We assume the following linear model (but a linear model is not necessarily a good model in
all applications):
y=ax+b (10.8)

!Statistisk sentralbyra (SSB)
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Table 10.1: Total greenhouse gas emissions in Norway over years 2000 — 2018.

Source: Statistics Norway:
https://www.ssb.no/statbank/table/08940/tableViewLayout1/

Index ¢ | Time, x Emission, yops Index ¢ | Time, x Emission, yops

[year] [10° tons CO2-equiv.] [year] [10° tons CO2-equiv.]
0 2000 54.8 10 2010 55.5
1 2001 56.1 11 2011 54.6
2 2002 55.0 12 2012 54.1
3 2003 55.7 13 2013 54.0
4 2004 56.2 14 2014 54.1
5 2005 55.4 15 2015 54.4
6 2006 55.3 16 2016 53.6
7 2007 57.0 17 2017 52.7
8 2008 55.6 18 2018 52.9
9 2009 53.2 - - -

As objective function we select the minimum SSPE, or least squares, function with a and b

as optimization variables:
min f(a, b)

a,

where
N—1=18

f= ) [

1=0

N =19 is the number of observations. e(i) is the prediction error:

6(7,) = yobs(i) - ypred(i)

(10.9)

(10.10)

(10.11)

where yops(7) is given in Table 10.1, and ¥pred(?) is predicted from the modell (10.8). Thus,

Ypred = AT + b

In detail, the objective function, (10.10), is:

N-1
fla, b) = Z[e(z’)F

v

= [yobs(i) - ypred(i)]2
1=0
N—-1

= {Yobs (i) — [az(i) + ]}
1=0

where yobs(i) og x(i) are given in Table 10.1.

Python program 10.1 solves this optimization problem using the brute force method.

http://techteach.no/control /python/prog_grid_optim_greenhouse_gas.py
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Listing 10.1: prog_grid_optim_greenhouse_gas.py
# %% Import of packages:

import numpy as np
import matplotlib.pyplot as plt
import time

# %% Definition of objective function:

def fun_obj (params):
a = params [0]
b = params [1]
y_pred_array = a*xx_array + b
e_array = y_obs_array - y_pred_array
sspe = sum(e_array*e_array)
return sspe

# %% Data:

x_array = np.arange (2000, 2019)

y_obs_array = np.array([54.8, 56.1, 55.0, 55.7, 56.2,
55.4, 55.3, 57.0, 55.6, 53.2,
55.5, 54.6, 54.1, 54.0, 54.1,
54.4, 53.6, 52.7, 52.9])

# %% Initialization:

N_resol_param = 1000

a_lb = -0.3

a_ub = 0

a_array = np.linspace(a_lb, a_ub, N_resol_param)
b_1b = 300

b_ub = 500

b_array = np.linspace(b_lb, b_ub, N_resol_param)
sspe_min = np.inf
a_opt = 0
b_opt = 0
# %% Starting the timer:
tic = time.time ()
# %% Grid optimization:
for a in a_array:

for b in b_array:

# Calc of objective function:

params = np.array([a, bl)
sspe = fun_obj (params)
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# Improvement of solution:
if (sspe < sspe_min):

sspe_min = sspe
a_opt = a
b_opt = Db

# %% Stopping the timer:

toc = time.time ()
t_elapsed = toc-tic

# %% Presentation of result:

print(f’a_opt = {a_opt:.3e}’)

print (f’b_opt {b_opt:.3e}’)

print (f’sspe_min = {sspe_min:.3e}’)
print (f ’Elapsed time = {t_elapsed:.3e}’)

# %% Plotting:
y_pred = a_opt*xx_array + b_opt

plt.close(’all’)
plt.figure (num=1, figsize=(12, 9))

plt.plot(x_array, y_obs_array, ’ro’)
plt.plot(x_array, y_pred,’b-’)
plt.x1im (2000, 2018)

plt.xlabel(’x [year]?’)

plt.ylabel (’[mill tons CO02-equiv]’)
plt.grid ()

plt.legend(labels=(’y_obs’, ’y_pred’),)
plt.savefig(’prog_optim_grid_greenhouse_gas.pdf’)

plt.show ()

In the program, I have used the following value ranges of a and b:

e Value range of a: Since a is the slope of the linear function (10.12), we can estimate a
value of a as the slope between two appropriate data point in Table 10.1. I select

52.9 — 56.1

~—— =-0.1 10.1
“% o018 —2001 ~ 188 (10.16)
Now, the value range of @ may be set as

—03<a<0 (10.17)

e Value range of b: Let us take e.g. the data set (2018, 52.9): By setting y = 52.9 and
x = 2018 in (10.8) with a = —0.188, we get an estimate of b as

b=y —ax = 52.9 — (—0.188) - 2018 = 432 (10.18)

333



CHAPTER 10. ADAPTATION OF MODELS TO DATA

Now, the value range of b may be set as
300 < b < 500 (10.19)
Since we have only two optimization variables (a and b), we can allow a fairly high

resolution of the optimization variables. I set Nyesolution = 1000 for both a and b, which
gives 1000000 calculations.

The result:

a_opt = —0.1553
b_opt = 366.7
sspe_min = 11.75

In Example 10.4, a og b are calculated with an exact implementation of the least squares
method. The result, which can be regarded as the exact or true optimum, is a = —0.1517
and b = 359.6, see Table 10.2 which shows the results with a number of optimization
methods. The grid estimates shown above are in good accordance with the exact values.

Figure 10.6 shows the observations s from Table 10.1 and the prediction ypeq calculated
with the model (10.8) with the optimal parameter values, aopt and bops, inserted.

Models can be used, and abused. Let us calculate the year in which Norway does not emit
greenhouse gases: We set y = 0 in (10.8):

O=azx+b
which gives
b 366.7
= —_—— = — = 2
T= T T Toass - 200

— a trustworthy result?

[End of Example 10.1]

10.3.1.3 Model adaptation of static models with Python’s brute() function

As alternative to implementing the brute force method from scratch, Python has a built-in
optimization function based on the brute force method, namely scipy.optimize.brute(). You
may be able to save some programming time using this feature compared to programming
the brute force method from scratch, but probably not much. And the execution time is
almost the same.

However, scipy.optimize.brute() has one strong feature which is offered as an option: It can
invoke an accurate iterative optimization method, namely a Nelder-Mead algorithm (also
denoted downhill simplex algorithm), following after the grid optimization, to find an
accurate optimal solution (i.e. a minimum). The starting point of this Nelder-Mead
algorithm is the optimal solution that brute() function found from its built-in brute force
method. So, this option gives a final improvement of the optimal solution. Figure 10.7
illustrates this.
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Figure 10.6: Plot of observations (y_obs) and prediction (y_pred)
Example 10.2 Adaptation of a static model to data using Python’s brute() function

This example is based on the data and model used in Example 10.1.

In the present example I will use Python’s scipy.optimize.brute() function which implements
the brute force method, cf. Section 10.3.1.1. The standard use of brute() gives exactly the
same result as a brute force method implemented from scratch.

The brute() function has an option to obtain an accurate optimal estimate with the
Nelder-Mead optimization algorithm started from the grid optimal solution. The options —
without and with final optimization — can be selected as follows:

e With input argument finish=None to the brute() function, only grid optimization is
calculated.

e With input argument finish=optimize.fmin to the brute() function, the Nelder-Mead
algorithm is run with the grid solution as starting point.

I try both options in this example.

335



CHAPTER 10. ADAPTATION OF MODELS TO DATA

: }“*\Gmo
ACCURATE | | OfTIMUM
OPTIMUM : :
L
. R
M 7
Xo\ot, ase X.,pt/ ﬂﬂd- *

Figure 10.7: The starting point of the Nelder-Meads algorithm is the optimal solution that
brute() function found from its built-in brute force method.

Program 10.2 implements the brute force method using the brute() function.

http://techteach.no/control /python/prog_scipy_brute_estim_co2.py

Listing 10.2: prog_scipy_brute_estim_co2.py
# %% Import of packages:

import numpy as np
from scipy import optimize
import time

# %% Definition of objective function:

def fun_obj (params):
a = params [0]
b = params [1]
y_pred_array = a*xx_array + b
e_array = y_obs_array - y_pred_array
sspe = sum(e_array*e_array)
return sspe

# %% Data:

x_array = np.arange (2000, 2019)

y_obs_array = np.array([54.8, 56.1, 55.0, 55.7, 56.2,
556.4, 55.3, 57.0, 55.6, 53.2,
556.5, 54.6, 54.1, 54.0, 54.1,
54.4, 53.6, 52.7, 52.9]1)
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# %% Initialization:

N_resol_param = 100

a_lb = -0.3

a_ub = 0

a_step = (a_ub - a_1lb)/(N_resol_param - 1)
b_1b = 300

b_ub = 500

b_step = (b_ub - b_1b)/(N_resol_param - 1)

params_ranges = (slice(a_lb, a_ub, a_step),
slice(b_1b, b_ub, b_step))

# %% Starting timer to calculate execution time:
tic = time.time ()
# %% Solving the optim problem with optimize.brute():

# finish_setting = None
finish_setting = optimize.fmin # Nelder-Mead optim

result_optim = optimize.brute(fun_obj, params_ranges,
full_output=True,
finish=finish_setting)

params_optim = result_optim[0]

sspe_min = result_optim[1]

# %% Optimal parameter values:

a_opt = params_optim[0]
b_opt = params_optim[1]

# %% Stopping timer:

toc = time.time ()
t_elapsed = toc-tic

# %% Presentation of result:

print(’a_opt =’, f’{a_opt:.3e}’)
print(’b_opt =’, f’{b_opt:.3e}’)

print (’sspe_min =’, f’{sspe_min:.3e}’)
print (’Elapsed time =’, f’{t_elapsed:.3e}’)

The result is shown in Table 10.2, which also shows other results for comparison. Also, the
execution time as measured with the time() function of the time module is shown in the
table.

Comments to the results shown in Table 10.2:

337



CHAPTER 10. ADAPTATION OF MODELS TO DATA

Table 10.2: Results of parameter estimation of greenhouse gas emission model obtained with
alternative optimization methods. The execution times, ¢, may vary substantially between
computers, but their ratios should not differ so much.

Method ‘ Nrcsolution a ‘ b ‘ Sspe ‘ L [S] ‘
id optim i ti d
Grid optim in mative code 1000 | -0.1553 | 366.7 | 11.75 | ~12.8
(Example 10.1)
Grid optim in native code 100 | 0.1242 | 304.0 | 14.00 | ~0.12
(Example 10.1)
ipy’s brut ithout final opti
Scipy’s brute() without final optim 1000 | -0.1553 | 366.7 | 11.75 | ~13.2
(Ex. 10.2)
Scipy’s brute() without final optim 100 01242 | 3040 | 14.00 | ~014
(Ex. 10.2)
Scipy’s brute() with final optim 100 | 01518 | 359.6 | 11.74 | ~0.14
(Ex. 10.2)
ipy’s minimi ; Nelder-Mead sol
Scipy’s minimize(); Nelder-Mead solver B 01518 | 359.6 | 11.74 | ~0.005
(Ex. 10.3)
I . : .
S (exact optimum) in native code B 01518 | 359.6 | 11.74 ~0
(Ex. 10.4)

e The Python’s brute() function with NV = 100 and the option of accurate optimization
with the Nelder-Mead algorithm activated, produces an accurate optimal solution,
and with almost 1/100 of execution time comparing with the brute() function with
N = 1000 which gives comparable, however somewhat less accurate, results.

e The least squares (LS) method is extremely fast. A limitation of the LS method is
that it works only on models which are linear in its parameters.

Comments to program 10.2:

e The function fun_sspe defines the function which calculates (returns) the optimization
objective to be minimized.

e The list theta = [a, b] represents the parameters to be estimated. theta is the input
argument to fun_sspe.

e fun_sspe is used by the brute() function which adjusts theta until a minimum of sspe
is found.

e The brute() function returns the results of the optimization in a tuple named
result_optim.

e The optimal solution, i.e. the optimal parameters, are the elements of the array
theta_optim which is the element with index 0 in the tuple named result_optim.

e The minimum of the optimization objective is the element with index 1 in the tuple
named result_optim.

[End of Example 10.2]
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10.3.2 Adaptation of static models using nonlinear programming (NLP)

An nonlinear programming (NLP) solver can find the optimum (minimum) of an objective
function which is a nonlinear function of the optimization variables.

Example 10.3 Adaptation of a static model to COy data using an NLP solver of Scipy

Table 10.1 in Example 10.1 presents COs emission data in Norway over the years
2000-2018. In that example, I used the brute force method of optimization to estimate
parameters a¢ and b in this linear model:

y=azxr+b (10.20)

where: y are CO4 emissions and z is year. How will the estimation go if I instead use an
NLP solver? The Python program 10.3 estimates a and b using the
scipy.optimize.minimize() function in the Scipy package of Python. There are several
alternative solvers that the minimize() function can use. In program 10.3 I have selected
the Nelder-Mead solver (also denoted the downhill simplex method) which finds the
minimum after a kind of geometrical search for minimum based on subsequent calculations
of objective function values.

http://techteach.no/control /python/prog_scipy nelder_mead_adapt_static_model_co2.py

Listing 10.3: prog_scipy_nelder_mead_adapt_static.model_co2.py
# %% Import:

import numpy as np
import scipy.optimize

# %% Defining functions:

def fun_objective (params):
a = params [0]
b = params [1]
co2_pred_array = ax*xyear_array + b
e_array = co2_obs_array - co2_pred_array
sspe = sum(e_array*e_array)
return sspe

# %% Data:

year_array = np.arange (2000, 2019)

co2_obs_array = np.array([54.8, 56.1, 55.0, 55.7, 56.2,
55.4, 55.3, 57.0, 55.6, 53.2,
556.5, 54.6, 54.1, 54.0, 54.1,
54.4, 53.6, 52.7, 52.9])

# %% Guessed values (initial values) of optim variables:
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a_guess = -0.188
b_guess = 432
x_guess = np.array([a_guess, b_guess])

# %% Solving the optim problem:

res = scipy.optimize.minimize(fun_objective, x_guess,
method = ’nelder -mead’,
options = {’ftol’: 1le-9, ’disp’: Truel})

# %% The results of the optimization:

(a_optim, b_optim) = res.x
sspe_optim = res.fun

# %% Displaying the optimal solution:

print (’Optimal estimates:’)
print(’a_optim =’, f’{a_optim:.3e}’)
print (’b_optim =’, f’{b_optim:.3e}’)
print (f’sspe_optim = {sspe_optim:.3e}’)

As guessed or initial values for search, I selected the same values as (10.16) and (10.18) as
derived in Example 10.1, namely:

Gguess = —0.188 (10.21)
bguess = 432 (10.22)
The results of the estimation are:
aest = —0.1518 (10.23)
best = 359.6 (10.24)
with
SSPE =11.74 (10.25)

These results are great as they are equal to the correct values as found with the Least
Squares method — with the selected number of digits.

I have also tried the solver named “slsqp’” (Sequential Least Squares Programming) in
minimize(). It turned out that the resulting optimal values, which are the estimates, were
quite sensitive to the selection of the guessed parameter values, i.e. the initial or starting
point, used by the slsqp algorithm. For some guessed values, the results were accurate,
while for other guessed values, the results were quite inaccurate.

[End of Example 10.3]

340



CHAPTER 10. ADAPTATION OF MODELS TO DATA

10.3.3 Adaptation of static models using standard least squares method
10.3.3.1 The standard regression model

Assume given the following model:

01

=[e1 - el : (10.27)
o On
0

= o0 (10.28)

which is called the regression model. In (10.28):

@i is the regression variable (with known value).

¢ is the regression vector (with known value).

y is the observed variable (with known value).

f is an unknown parameter vector to be estimated with the LS-method.

Note that the regression model is linear in the parameter vector 6. If the model is
nonlinear, you can not use the LS method. Instead, you can use some optimization method
for nonlinear models, e.g. the brute force method, cf. Ch. 10.3.1, or nonlinear
programming, cf. Ch. 10.4.2.

Assume that we have m corresponding values of y and ¢. Then we can write the following
m equations according to the model:

y1 = @110 + -+ 1y = P10

Yi = @i101 + -+ ©inlp = ;0

Ym = (-Pmlel +- @mnen = Qbme

These m “stacked” equations can more compactly be written as

y.i = ¢z 0 (10.29)
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or just:
Y =0 (10.30)

where Y and @ consist of known data and 6 is the unknown parameter of which we will
calculate or estimate a value 6 using the LS-method.?

10.3.3.2 The LS problem

We define the equation-error vector or prediction-error vector®, E, as the difference between
the left side and the right side of (10.30):

Figure 10.8 illustrates the equation-errors or prediction errors for the case of the model
y = ¢b (10.32)

to be fitted to two data points.

y A

Y5

y]'

-
@j’ '@2 @

Figure 10.8: Equation-errors or prediction errors e; and es for a simple case.

The problem is to calculate a value — an estimate — of the unknown parameter-vector 6 so

2In matematical literature, (10.30) is more often written on the form b = Az. T have used symbols which
are common in the field of system identification.

3The name prediction-error vector is because the term ®6 can be regarded as a prediction of the observed
(known) “output” y.
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that the following quadratic criterion function, V'(#), is minimized:

V() =er® +e? +- +em? (10.33)
=ETE (10.34)
= (Y —00)" (Y — o0) (10.35)
=T -60"o") (Y — 20) (10.36)
=YTYy — Y790 — 670"y + 670" ®0 (10.37)

In other words, the problem is to estimate 6 so that the sum of quadratic prediction errors
is minimized.

10.3.3.3 The LS solution

Since V(0) is a quadratic function of the unknown parameters 6, the minimum value of
V(0) can be calculated by setting the derivative of V' with respect to 8 equal to zero. This
is illustrated in Figure 10.9.

I I
0 05 1 15 2

Figure 10.9: The LS solution fest corresponds to the minimum value of the quadratic function
V(0), and can be calculated by setting the derivative V' (6)/df to zero.

Using the differentiation rule (45.5) on (10.37), and then setting the derivative equal to
zero, gives

d‘;g") = 26700 — 26TV £ 0 (vector) (10.38)

or

oToh = Ty (10.39)

(10.39) is called the normal equation. The -solution of (10.39) can be found by
pre-multiplying (10.39) with (#7®)~!. The result is

Oost = (DT D) 10TY (10.40)

which is the LS-solution of (10.30)*. All right side terms in (10.30) are known. We may
denote (10.40) as the “batch LS formula”.

1(@T®)~'®7 is the so-called pseudo-inverse of ®.
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Note: To apply the LS-method, the model must be written on the regression model form
(10.30), which consists of m (10.28) “stacked”.

Example 10.4 LS-estimation of parameters of a greenhouse gas emission model

In Example 10.1 we estimated the a linear model to the given data using the grid
optimization method. The data are shown in Figure 10.6 in Example 10.1. The assumed
model is

y=axr+b (10.41)

Since this model is linear in its parameters a and b, we can estimate the parameters a and b
using the LS method.

We start by writing the model on the standard regression form:

y=ar+b= =, 1][‘5]:@ (10.42)

The values of y and x are given in Table 10.1.

The estimate is given by (10.40), which is repeated here:

Ous = (T @) 10Ty (10.43)
In (10.43):

Yo 94.8
Y = : = :
Y18 52.9

©o o 1 2000 1

o= i |=| : = L

P18 r1g 1 2018 1

Program 10.4 implements the above calculations.

The results are:

a_est = —1.518e-01
b_est = 3.596e-+02
sspe = 1.174e+4-01

The results are also shown in Table 10.2 togheter with the results obtained with several
other optimization methods.

Comparing with the brute force method and the brute() function, one benefit of the LS
method is that there is no need to define any range of the values of the parameters to be
estimated. A drawback of the LS method is that the model has to be linear in the
parameters, i.e. the LS method is selective regarding applicable models.
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http://techteach.no/control /python/prog_ls native_estim_co2.py

Listing 10.4: prog_ls_native_estim_co2.py
# %% Import of packages:

import numpy as np
# %% Data:

x_obs_array = np.arange (2000, 2019)

y_obs_array = np.array([54.8, 56.1, 55.0, 55.7, 56.2,
656.4, 55.3, 57.0, 55.6, 53.2,
656.5, 54.6, 54.1, 54.0, 54.1,
54.4, 53.6, 52.7, 52.9])

# %% Regression model:

Phi_c0l_0 = np.array(x_obs_array)
Phi_col_1 = np.array(np.ones(19))

Phi = np.array([Phi_col_0, Phi_col_1]).T
Y = np.array([y_obs_array]).T

# %% Calculating LS estimate:
theta = np.linalg.inv(Phi.T @ Phi) @ Phi.T @ Y

a_est theta [0, O]
b_est theta[1, 0]

# %% Calculating value of objective function:

y_pred_array = a_est*x_obs_array + b_est
pe = y_obs_array - y_pred_array # prediction error
sspe = sum(pe*pe)

# %% Presentation of result:

print(’a_est =’, f’{a_est:.3e}’)
print(’b_est =’, f’{b_est:.3e}’)
print (’sspe =’, f’{sspe:.3e}’)

Comments to Program 10.4:

e The LS estimate () is calculated with the code theta = np.linalg.inv(Phi.T @ Phi) @
Phi.T @ y which implements the batch LS formula ().

e The np.linalg.inv() function belongs to the linalg module in the numpy package.

e The @ operator performs matrix multiplication of matrices represented as 2D-arrays

in Python.

LS estimate with the np.linalg.lstsq() in Numpy
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Of course, there is a built-in function in Python which implements least squares estimation,
namely Istsq() in Numpy. Program 10.5 uses this function to estimate a and b in the COq
model. The results are as with our native LS code:

a_est = —1.518e-01
b_est = 3.596e+02
sspe = 1.174e+01

http://techteach.no/control /python/prog_ lstsq_params_estim_co2.py

Listing 10.5: prog_lstsq_params_estim_co2.py
# %% Import of packages:

import numpy as np
# %% Data:

x_obs_array = np.arange (2000, 2019)

y_obs_array = np.array([54.8, 56.1, 55.0, 55.7, 56.2,
55.4, 55.3, 57.0, 55.6, 53.2,
55.5, 54.6, 54.1, 54.0, 54.1,
54.4, 53.6, 52.7, 52.9]1)

# %% Regression model:

phi_0 = np.array(x_obs_array)
phi_1 = np.array(np.ones (19))
Phi = np.array([phi_O0, phi_1]).T
Y = np.array([y_obs_array]).T

# %% Results of LS estimate with 1lstsq() function:

ls_result = np.linalg.lstsq(Phi, Y, rcond=None)
theta = 1ls_result [0]
sspe_array = ls_result[1]

a_est = theta[0][0]
b_est theta [1] [0]
sspe = sspe_array [0]

# %% Presentation of results:

print(’a_est =’, f’{a_est:.3e}’)
print(’b_est =’, f’{b_est:.3e}’)
print (’sspe =’, f’{sspe:.3e}’)

[End of Example 10.4]
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10.3.3.4 Properties of the LS estimate

The variance of 0 is:
Var(fest) = diag {cov (Best) = B (Best — 00) (Bess — GO)T] = o2 (@TqS)_l} (10.44)

where sub-index “e” represents prediction (or model) error. 6y are the “true” parameter
values. 0.2 is the variance of the measurement noise (or model error). What do we mean
with “variance of 61g”7 It is the variance of a large (ideally: infinite) number of g
estimates where each 0y is calculated with some realization of the random model error e.

If you do not know the value of o.2, you can estimate it with:
0e2 — Vv (Hest)
N —n
where: N is the number of observations. n is the number of parameters to be estimated.
V (Best) is given by (10.37), i.e.:

V (eest) = (Yobs - @eest)T (}/obs - ngest) (1046)

(10.45)

You can use (10.45) together with (10.46) to calculate confidence intervals of g if you
assume that feg is normally distributed. For example, as you may know from the field of
statistics, the 95 % confidence interval of a random estimate o given the known, or
estimated o, given by (10.45), is

Oest — 20, é Oest é Oest + 20 (1047)

The 95 % confidence interval is the interval in which there is 95% probability that the true
parameter values is, assuming that the statistical properties of the given data (time series)
is representative for data from any other experiment.

Note that the confidence interval does not express any certainty of the calculated estimate
itself. Actually, there is no uncertainty at all related to that estimate as the estimate is just
a number calculated from the observations with given formulas.

10.3.3.5 Criterion for convergence of estimate towards the true value

The prediction-error vector is
E=Y — POy (10.48)

It can be shown that the LS-estimate 61,5 converges towards the true value 6y of the
parameter vector as the number m of sets of observations goes to infinity, only if F is
so-called white noise, which is defined in Ch. 31.3.1. White noise means that the elements
of E are random numbers, and the vector £ has zero mean value. The “opposite” of white
noise is coloured noise. E becomes coloured if there are systematic equation errors. Such
systematic equation errors can be reduced or eliminated by choosing a more accurate model
structure.

A special example of coloured noise is a constant or bias, say b, having value different from
zero. For example, a model like (10.49) includes the bias, b.

y=ar+b (10.49)
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10.4 Adaptation of dynamic models to data

10.4.1 Adaptation of dynamic models using grid optimization
10.4.1.1 Introduction

The brute force method of optimization can be used for adaptation of dynamic models to
given data. In Python, you can program the brute force method from scratch as shown in
Example 10.5, or using the built-in function scipy.optimize.brute() of the Scipy package, as
shown in Example 10.6.

10.4.1.2 Adaptation of dynamic models using grid optimization

Example 10.5 DC motor model adaptation to simulated data with grid optimization

Figure 10.10 shows a DC-motor with tachogenerator which is presented in Ch. 38.7.

Figure 10.10: DC motor.

One reasonable mathematical model of the motor is the following time constant model:
TS =Ku+L]-S (10.50)

where: S [krpm = kilo revolutions per minute] is the er rotational speed. u [V] is the
control signal to the motor. L [V] is a voltage which represents the load torque acting on
the motor. K [krpm/V] is the motor gain. T [s] is the motor time constant.

We will estimate K and T from a simulated experiment. We assume for simplicity that
both L and the initial state S, are known and have values zero, although we may estimate
both L and Siyit-
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The objective function to the be minimized, is:

N

sspe = Z e’

k=1

where:
ek = Sobs,k — Spred,k

where Sopg i, is here the observed (but simulated) S, and Spreq x is the predicted S.

We use grid optimization with the following intervals of K and T
K €10.05, ..., 0.55]

Telol,..., 1.1]

We assume that the true values of the model parameters are:
Kirwe = 0.15

Tirue = 0.30

In the simulated experiment we vary the control signal, u, as an up-down-up-signal.

(10.51)

(10.52)

(10.53)

(10.54)

(10.55)

(10.56)

The Python program 10.6 implements the parameter estimation. Firstly, the program
generates a simulated “experimental” data series, and then uses this data series as the basis

of the parameter estimation.

http://techteach.no/control /python/prog_grid_motor K_T _estim_sim.py

Listing 10.6: prog_grid_motor_K_T _estim_sim.py
# %% Import of packages:

import matplotlib.pyplot as plt
import numpy as np
# %% Definition of objective function:

def fun_calc_objfun(params, S_init, S_obs_array,
u_array, N, Ts):

(K, T) = params
S_pred_k = S_init
pe_array = np.zeros (N)
for k in range (0, N):
# Simulation algorithm (Euler step):

dS_sim_Ts_k = (1/T)*(-S_pred_k + K*xu_arrayl[k])
S_pred_kpl = S_pred_k + Ts*dS_sim_Ts_k
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# Updating prediction error (pe):
pe_array[k] = S_obs_arrayl[k] - S_pred_k

# Time shift:
S_pred_k = S_pred_kpl

sspe = sum(pe_array*pe_array)
return sspe

# %% Definition of simulation function:
def fun_sim(params, S_init, u_array, N, Ts):

(K, T) = params
S_sim_k = S_init
S_sim_array = np.zeros (N)

for k in range(0, N):
# Simulation algorithm (Euler step):
dS_sim_Ts_k = (1/T)*(-S_sim_k + Kxu_arrayl[k])
S_sim_kpl = S_sim_k + Ts*dS_sim_Ts_k
S_sim_array[k] = S_sim_k
S_sim_k = S_sim_kpl # Time shift

return S_sim_array
# /% Time settings:

t_start = 0 # [s]

t_stop = 7

Ts = 0.02

N = int(((t_stop - t_start)/Ts)) + 1
t_array = np.linspace(t_start, t_stop, N)

# %% Create input signal:
u_array = np.zeros (N)

for k in range(N):
t_k = kx*xTs
if t_start <= t_k < 1: wu_arrayl[k] = 0
elif 1 <= t_k < 3: wu_arrayl[k] =1
elif 3 <= t_k < 5: wu_arrayl[k] = -1
else: u_arrayl[k] = 0

# %% Creating simulated observation data:

K_true = 0.15

T_true = 0.30

params = (K_true, T_true)
S_init = 0
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S_sim_array
S_obs_array

fun_sim(params, S_init, u_array, N, Ts)
S_sim_array

# %% Arrays of candidates of estimated param values:
N_params = 10

K_1b = 0.05 # Lower bound
# Upper bound

=
=
o'
1
o
o
o

T_1b
T_ub

|
= O
=

K_array = np.linspace(K_lb, K_ub, N_params)
T_array = np.linspace(T_lb, T_ub, N_params)

# %% For loop implementing estimation with grid optim:
sspe_optim = np.inf # Initialization of sspe
for K in K_array:
for T in T_array:

params = (K, T) # params with candidate K and T

#Calculating objective function (sspe):

sspe = fun_calc_objfun(params, S_init,

S_obs_array,

u_array, N, Ts)

#Improving the previous optim solution:

if sspe <= sspe_optim:

sspe_optim = sspe

K_est = K

T_est =T
# %% Displaying the optimal solution = param estimates:
print (’K_true =’, f’{K_true:.4f}’)
print (°T_true =’, £°{T_true:.4f}’)
print (’K_est =’, f’{K_est:.4e}’)
print(’T_est =’, f’{T_est:.4e}’)
print (’sspe_optim =’, f’{sspe_optim:.7£}’)

# %% Simulation with estimated parameters in the model:
S_init = 0

params = (K_est, T_est)

S_sim_adapted_model_array = fun_sim(params, S_init,

u_array, N, Ts)

# %% Plotting:
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plt.
plt.

plt.
plt.
plt.

plt.
plt.
.ylabel (’ [krpm] ’)

plt

plt.

plt.
plt.
plt.
plt.
.ylabel (’[V]’)

plt

plt.

plt.
plt.

close("all")
figure (1, figsize=(12, 9))

subplot (2, 1, 1)

plot (t_array, S_obs_array, ’b’, label=’S_obs’)

plot(t_array, S_sim_adapted_model_array, ’r’,
label=’S_sim’)

grid ()

xlabel (’t [s]?)

legend ()

subplot (2, 1, 2)

plot(t_array, u_array, ’g’, label=’u’)
grid ()

xlabel (’t [s]’)

legend ()

savefig(’plot_grid_K_T_dcmotor_simdata.pdf’)
show ()

Figure 10.11 shows a plot of the control signal v and the simulated speed S.

t(s]

t(s]

Figure 10.11: Plots of the control signal u and the simulated speed S used in the parameter
estimation.

Table 10.3 shows the result of the parameter estimation with two different resolutions of the
parameters K and T'.
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Table 10.3: Results of estimation of parameters K and T using grid optimization.

’ Parameter ‘ Nesolution ‘ K [krpm/V] ‘ T [s] ‘ sspe
True value - 0.150 0.300 —
Estimated 10 0.161 0.322 | 0.0164
Estimated 100 0.151 0.302 | 0.000137

Above, the true values of K and T' are not among the candidate values. If we had ensured
that the true values were among the candidate values, the estimated values by the brute
force method would have been these true values.

[End of Example 10.5]

10.4.1.3 Model adaptation of dynamic models with Python’s brute() function

In Example 10.5, the brute force method was implemented from scratch. Alternatively, we
can use the scipy.optimize.brute() function of the Python Scipy package which implements
the brute force method, cf. Section 10.3.1.3.

Example 10.6 DC motor model adaptation to simulated data with the
scipy.optimize.brute() function

The parameter estimation problem is as in Example 10.5.
The intervals of K and T are the same as in Example 10.5, namely:
K €[0.05, ..., 0.55] (10.57)

Telol,... 1.1] (10.58)

The Python program 10.7 below implements the parameter estimator. A resolution of 10 is
selected for each of the parameters K and T'. The brute() function is set to run a final
Nelder-Mead optimization algorithm to obtain an accurate optimal solution (optimal
parameter estimates). Example 10.2 explains how to set this option.

http://techteach.no/control /python/prog_scipy_brute_motor_K_T _estim_sim.py

Listing 10.7: prog_scipy_brute_motor K_T _estim_sim.py
# %% Import of packages:

import numpy as np
from scipy import optimize

# %% Definition of functions:

def fun_objective(x):
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K = x[0]

T = x[1]

S_pred_k = S_init
pe_array = np.zeros (N)

for k in range(0, N):

# Simulation algorithm (Euler step):
dS_sim_Ts_k = (1/T)*(-S_pred_k + Kxu_arrayl[k])
S_pred_kpl = S_pred_k + Ts*dS_sim_Ts_k

# Updating prediction error (pe):
pe_array [k] = S_obs_arrayl[k] - S_pred_k

# Time shift:
S_pred_k = S_pred_kpl

sspe = sum(pe_array*pe_array)
return sspe

def fun_sim(modelparams, S_init, u_array, N, Ts):

(K, T) = modelparams
S_sim_k = S_init
S_sim_array = np.zeros(N)

for k in range (0, N):
# Simulation algorithm (Euler step):
dS_sim_Ts_k = (1/T)*(-S_sim_k + Kxu_array[k])
S_sim_kpl = S_sim_k + Ts*dS_sim_Ts_k
S_sim_array([k] = S_sim_k
S_sim_k = S_sim_kpl # Time shift

return S_sim_array
# %% Time settings:
t_start = 0 # [s]
t_stop =7
Ts = 0.02
N = int (((t_stop - t_start)/Ts)) + 1
t_array = np.linspace(t_start, t_stop, N)
# %% Create input signal:

u_array = np.zeros (N)

for k in range(N):
t_k = kxTs

if t_start <= t_k < 1: wu_arrayl[k] = 0
elif 1 <= t_k < 3: wu_arraylk] =1
elif 3 <= t_k < 5: wu_arraylk] = -1
else: u_arrayl[k] = 0
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# %% Creating simulated observation data:

K_true = 0.15

T_true = 0.3

params = (K_true, T_true)
S_init 0

fun_sim(params, S_init, u_array, N, Ts)
S_sim_array

S_sim_array
S_obs_array

# %% Creating arrays of candidate parameter values:

N_resolution_params = 10

K_ub 0.55 # Upper bound
K_1b 0.05 # Lower bound
K_step = (K_ub - K_1b)/(N_resolution_params - 1)

T_ub = 1.1
T_1b = 0.1
T_step = (T_ub - T_1b)/(N_resolution_params - 1)

x_ranges = (slice(K_1lb, K_ub, K_step),
slice(T_1b, T_ub, T_step))

# %% Solving the optim problem with optimize.brute():

# Options for the finish argument:

finish_setting = optimize.fmin

# finish_setting = None

result_est = optimize.brute(fun_objective, x_ranges,
full _output=True,

finish=finish_setting)

params_optim = result_est [0]
sspe_optim = result_est [1]

# %% The optimal parameters values:

K_est = params_optim[0]
T_est = params_optim[1]

# %% Displaying the results:

print (’Optimal estimates:’)

print (’K_true =’, f’{K_true:.4f}’)
print (°’T_true =’, f’{T_true:.4f}’)
print (f°K_est = {K_est:.4f}’)

print (£’ T_est {T_est:.4£f}’)

print (f’sspe_optim = {sspe_optim:.4f}’)
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The result of the parameter estimation is shown in Table 10.4. The brute() function was
able to estimate the parameters accurately despite the realtively poor resolution of 10 for
each of the parameters. The good result is due to the final optimization with the
Nelder-Mead optimization algorithm (selected as an option in brute() function).

Table 10.4: Result of estimation of parameters K and T with the brute() function with a
final Nelder-Mead optimization.

Parameter | Nyesolution \ K [krpm/V] \ T [s] \ sspe ‘
True value — 0.150 0.300 —
Estimated 10 0.150 0.300 | 0.0

[End of Example 10.6]

10.4.2 Adaptation of dynamic models using nonlinear programming
(NLP)

The optimization problem of parameter estimation can be solved with nonlinear
programming.

Example 10.7 DC motor model adaptation to simulated data with the Nelder-Mead
optimizer in Scipy

The parameter estimation problem is as in Example 10.5: We will now use the Nelder-Mead
NLP solver to estimate K and T
Guessed (initial) values are selected as:

Kguess =0.3 (1059)

Typess = 0.6 (10.60)

Python program 10.8 implements the parameter estimator.

http://techteach.no/control/python/prog_minimize nelder_mead_estim_K_T_sim_motor.py

Listing 10.8: prog_minimize nelder_mead_estim _K_T_sim_motor.py
# %% Import:

import numpy as np
import scipy.optimize

# %% Defining functions:

def fun_objective(x):
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K = x[0]

T = x[1]

S_pred_k = S_init
pe_array = np.zeros (N)

for k in range(0, N):

# Simulation algorithm (Euler step):
dS_sim_Ts_k = (1/T)*(-S_pred_k + Kxu_arrayl[k])
S_pred_kpl = S_pred_k + Ts*dS_sim_Ts_k

# Updating prediction error (pe):
pe_array [k] = S_obs_arrayl[k] - S_pred_k

# Time shift:
S_pred_k = S_pred_kpl

sspe = sum(pe_array*pe_array)
return sspe

# %% Definition of simulation function:
def fun_sim(modelparams, S_init, u_array, N, Ts):

(K, T) = modelparams
S_sim_k = S_init
S_sim_array = np.zeros(N)

for k in range(0, N):
# Simulation algorithm (Euler step):
dS_sim_Ts_k = (1/T)*(-S_sim_k + Kxu_arrayl[k])
S_sim_kpl = S_sim_k + Ts*dS_sim_Ts_k
S_sim_array[k] = S_sim_k
S_sim_k = S_sim_kpl # Time shift

return S_sim_array
# %% Time settings:
t_start = 0 # [s]
t_stop = 7
Ts = 0.02
N = int (((t_stop - t_start)/Ts)) + 1
t_array = np.linspace(t_start, t_stop, N)
# %% Create input signal:
u_array = np.zeros (N)
for k in range(N):
t_k = kx*xTs

if t_start <= t_k < 1: wu_arraylk] = 0
elif 1 <= t_k < 3: wu_arraylk] =1
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elif 3 <= t_k < 5: wu_arrayl[k] = -1
else: u_arrayl[k] = 0

# %% Creating simulated observation data:

K_true = 0.15
T_true = 0.30

params = (K_true, T_true)
S_init = 0
S_sim_array = fun_sim(params, S_init, u_array, N, Ts)

S_obs_array S_sim_array

# %% Guessed values (initial values) of optim variables:

K_guess = 0.3
T_guess = 0.6
x_guess = np.array ([K_guess, T_guess])

# %% Solving the optim problem:

res = scipy.optimize.minimize(fun_objective, x_guess,
method = ’nelder -mead’,
options = {’ftol’: 1le-9, ’disp’: Truel})

# %% The results of the optimization:
(K_optim, T_optim) = res.x
sspe_optim = res.fun

# %% Displaying the optimal solution:
print (’Optimal estimates:’)

print (’K_true =’, f’{K_true:.4f}’)
print (’T_true =’, f’{T_true:.4f}’)
print (’K_optim =’, f’{K_optim:.4f}’)
print (’T_optim =’, f£’{T_optim:.4f}’)

print (f’sspe_optim = {sspe_optim:.4f}’)

The result of the parameter estimation is shown in Table 10.5. The parameter estimates are
virtually identical to the true values.

Table 10.5: Result of estimation of parameters K and 7" with the minimize() function with
Nelder-Mead optimzation solver.

Parameter ‘ K [krpm/V] ‘ T [s| ‘ sspe ‘
True value 0.150 0.300 | -
Estimated 0.150 0.300 | 0.0

[End of Example 10.7]
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10.4.3 Adaptation of dynamic models using the least squares method

Assume that the dynamic model which you want to adapt to data, can be written on the
form of (10.28), which is repeated here for convenience:

y = ¢b (10.61)

With m observations, the stacked model is:

y'i = ¢>z 0 (10.62)

where ¢ € [0, m — 1]. Then, the parameters can be estimated with the ordinary least
squares (LS) method. The parameter estimates are given by (10.40), which is repeated here:

Ors = (T 0)1olYy (10.63)
Example 10.8 Estimation of parameters of a dynamic model using ordinary LS method

Given the following “time constant” model:
Ty = Ku+d—=x

where x is the measurement signal, u is the control signal, and d is the disturbance. K and
T are model parameters.  and u have known values (at the sampling points of time).
Assume that neither K, T', nor d are known. How can we estimate their values with the
ordinary least squares method?

Let us use the Euler Forward (Euler Explicit) method of discretization:

Th+1 — Tk

/
€T =
k T,

We write the model on the regression model form, which is

Ye = eil (10.64)
where 6 is the parameter vector to be estimated.

Using the Euler Forward (Euler Explicit) approximation of the time-derivative, the model

becomes:
T -
T TF — Kup +d — (10.65)
T
which can be written as:
T - T - K
ap = Kup + T-FL =70 g = |y, — 2L 7R 4 T (10.66)
T, T, y
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which is on the form (10.64) with:

Yk = Tk
or = |up, — LTk (10.67)
T
K
0=\ T
d

The parameter vector estimate is calculated with the LS formula:

Os = (&70) " Y (10.68)

[End of Example 10.8]

The model (10.30) is linear in the parameters. If the model is nonlinear in the parameters,
you can not apply the ordinary least squares method. Instead, you can use e.g. the brute
force method, cf. Section 10.4.1, or nonlinear programming, cf. Section 10.4.2. Since the
latter methods can be applied equally well to models being linear in its parameters
(generally, linear models are just a special case of nonlinear models), I recommend that you
consider those methods.

Still, one argument for using ordinary least squares method it that it is an extremely fast
method as it uses a formula, and no iterative algorithm, to find the optimal solution, i.e.
the parameter estimates.

10.5 Recursive (real-time) model adaptation

The parameter estimation described in this section is a batch estimation since it operates on
the whole data series available. An alternative term to batch estimation is full information
estimation. If you assume that the parameters may change continuously during the time
interval of interest, the parameter estimates obtained with batch estimation may not be
good estimates at recent (newest) times. In such cases, you may consider online parameter
estimation where the estimates are updated continuously based on the most recent process
measurement available.

Some alternative methods for online parameter estimation are:

e Kalman Filter, which is presented in Ch. 32.

e Recursive least squares method (RLS), which is not covered by this book. RLS can be
regarded as a special case of using a Kalman Filter for parameter estimation.

e Moving horizon estimation (MHE), which is not presented in this book.

In MHE and Kalman Filter, the parameters are estimated as state variables. The original
state vector is augmented with parameter states. Therefore, the Kalman Filter used for
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parameter estimation is denoted augmented Kalman Filter, and the MHE may similarly be
denoted augmented MHE.

Among those two alternatives, I generally recommend the Kalman Filter since it is easier to
implement and executes faster. I have experiences relatively simple cases where MHE fails
to estimate the parameters while the Kalman Filter works well.
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10.6 Problems for Chapter 10

Problem 10.1 Characterizing models as linear and nonlinear

Give an example of a model that is linear in the parameters, and an example of a model
that is nonlinear in the parameters.

Problem 10.2 How to check if estimation has a chance to succeed

Assume that you have programmed some parameter estimation method. How can you check
if your estimator is able to produce parameter estimates successfully?

Problem 10.3 Writing the regression model

Assume that the parameters a and b in the differential equation

h(k) + ay/h(k — 1) = h(k — 1) + bu(k — 1) (10.69)

is to be estimated with the Least Squares (LS) method. Assume that the following samples
of the variables h and u exist:

{h(0),h(1),h(2),h(3),h(4)} (10.70)

{u(0), u(1), u(2), u(3), u(4)} (10.71)

Write the total regression model
Y =0 (10.72)

which makes the basis for the LS estimation. However, you shall not calculate the estimate
in this Problem. The regression model contains only the samples of h and u that are
available. (You are to find the vector Y, matrix @, and the vector 6.)

Problem 10.4 Bias in LS estimate

This problem demonstrates that a LS-estimate converges towards an erroneous value — in
other words the estimate is biased — if the noise or the model error has a mean value
different from zero.”

The constant K in the model
y=K (10.73)

is be estimated. Assume that the real (true) value of K is K. The observation yy is
Yk = Ko +ex (10.74)

where ey, is noise (or equation error or model error or prediction error). Calculate the LS
estimate of K (you can assume that there are N observations). Assume that y; in (10.73) is
given by (10.74).

SIn general, the estimate will be biased if the noise is coloured (non-white).
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Problem 10.5 Which model order?

Figure 10.12 shows the criterion function V' as a function of model order n in a fictitous
problem about parameter estimation.

7 A

Model order

Figure 10.12: The criterion function V as a function of model order n

Which order should be selected?

Problem 10.6 Analysis of LS estimate

In Example 10.4, Program 10.4 uses the ordinary least squares method to estimate the
parameters a¢ and b in the model
y=ax+b

to given emission data (observations). Modify Program 10.4 to calculate the 95 %
confidence intervals of aestand best.

Problem 10.7 Minimum order at estimation of time delay

Assume that you know in advance that a given physical process has time delay of 2 sec.
You are to estimate a discrete-time transfer function to from experimental input and output
(measurement) sequences. The sampling time is 0.5 sec. You are not sure about the order
of the transfer function, but what is the minimum order that it should have?

Problem 10.8 Mathematical modeling of a DC motor

Here is a mathematical model of an electric motor (a DC motor) with load torque:

K
Jw' = R—T (va — Kew) + T1, (10.75)
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Assume that the inertia .J and the torque 17, will be estimated with the LS method. The
motor is excited with the armature voltage v,. The rotational speed w is measured with a
tachogenerator. Kp, R, and K. have known values.

Write the model on the standard form y = ¢f. Use the center difference method to
calculate w’ (see below).

The center difference method

Using y as the name of the variable or signal, the center difference method is

Y(trs1) — y(te—1) (10.76)

y(te)' ~ 5T
S

For a given time step T, the center difference method gives a somewhat more accurate
approximation to y than the forward difference method and the backward difference
method. Actually, the center difference method is the average of those two approximations.

Problem 10.9 Adaption of linear dynamic models

Assume that you want to adapt a linear dynamic model, e.g. a transfer function, to
experimental data. If the model is actually nonlinear, a linear model will give a good
representation of the system only near an operating point. How can you process the input
and output data (the sequences) before using them in system identification to improve the
accuracy of the estimated linear model, assuming the process is nonlinear?

Problem 10.10 Is is possible to estimate parameters of a DC motor
model?

Given the following “time constant” model:

Tr' = Ku+d—=x
where z is the measurement signal, u is the control signal, and d is the disturbance. K and
T are model parameters.  and u have known values (at the sampling points of time).

In the problems below: “Static” means “constant”. You should explain your answers, but
no rigorous explanations are expected.

1. Assume that both K and d have known values. Is it possible to estimate 71" from static
data?

2. Assume that T is known. Is it possible to estimate both K and d from static data?
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Problem 10.11 LS estimation of dynamic model

Given the model:
Tpr1 = axy + buy (10.77)

Explain how you can estimate the assumed constant parameters a and b with the ordinary
least squares method using data series (time series) of sampled values of x and u. In your
answer, you are not expected to actually calculate the estimates, but the formula of the
estimates should be given.

Problem 10.12 Python program for estimation of DC motor load torque
from simulated data

In Example 10.5 we estimated the motor parameters K and T from simulated data.

Write a Python program, starting with the program available in Example 10.5, that also
estimates an assumed constant load torque, L. You can assume that the true value is
Liyye = —0.5 V (an equivalent voltage which acts on the motor in the same way as a load
torque).

Problem 10.13 Python program for estimation of DC motor load torque
Jfrom real data

In Problem 10.12, K, T, and L of a DC motor model are to be estimated from simulated
data. In the present problem, these parameters are estimated from real data.

Real data from an experiment with the motor are available at this link:
http://techteach.no/control/python/data_dc_motor.txt

The sampling time is 0.02 s (as you can also see in the data file). The file has the following
columns of data:

e Colum 0: Time in seconds.

e Colum 1: The control signal u in voltage, adjusted manually more or less randomly.

e Colum 2: The tachogenerator voltage Siacho, Which can be converted to a
corresponding rotational speed in krpm (kilo revolutions per minute) with:

Skrpm = Stacho/Kt (1078)

where:

K; =5.0 V/krpm (10.79)

You can load the data file to Python with e.g. the loadtxt() function of the Numpy package.

Based on the program given in the solution of Problem 10.12, create a program which
estimates K, T', and L from u and Sipm, and (after the estimation) simulates Sy;pm with
the estimated parameters, and plots the simulated S together with the real Syypm. Does it
look like the represents the real motor well?
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Problem 10.14 Python program for estimation of DC motor parameters
with ordinary LS method

To appear.

Problem 10.15 Python program for estimation parameters of an air
heater with the scipy.brute() function

Section 38.5 describes a laboratory air heater. A data file from an experiment on the air
heater is available in Section 38.5.5.

Write a Python program which estimates the following variables using the data file: Gain
Kj. Time constant 6;. Time delay 6. Environmental temperature T,. Initial value of the
outlet temperature, Tipi;. In the call of the brute() function, you can select the option with
final optimization, i.e. setting the finish argument to optimize.fmin.

Simulate the air heater with the control signal of the data file, and plot both the simulated
temperature and the observed (measured) temperature in the same diagram. Does the
adapted model represent the real air heater accurately?

Problem 10.16 Comparing parameter estimation methods

Range the following parameter estimation methods (approaches) in terms of program
(algorithm) execution speed:

e Nonlinear programming (NLP)
e Ordinary Least Squares method

e Gridding (or brute force) method

Also, for each of these methods, give an important applicability limitation.
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10.7 Solutions to problems for Chapter 10

Solution to Problem 10.1

Example of a model which is linear in the parameters (a and b):

¥ =au+ bx (10.80)
A model which is nonlinear in the parameters (¢ and d):

2 = c(du—x) (10.81)

However, in the latter example, the model can be written as a model being linear in the
parameters e and ¢ where

e=cd (10.82)

The reformulated model is:
¥ =eu—cx (10.83)

Solution to Problem 10.2

1. Generate simulated data using a model with the known, true parameters.
2. Estimate the parameters from the simulated data.

3. Check if the parameter estimate becomes equal to the true parameter values.

Solution to Problem 10.3

Writing the model on standard regression form:

hk)—h(k—1)=[ =/AE—-1) ulk—1) ] [ Z } (10.84)
The total model becomes
o || v
h(2) — h(1 | —=v/h(1 u(1 a
o | = | Vi we |Lb) (10:55)
h(4) — h(3) VZIC)RTIC) N
Y P
Solution to Problem 10.4
K is given by
yp = K (10.86)
1K (10.87)
= b (10.88)
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The LS estimate is

OLs = Kis (10.89)
= (oTo) taTy (10.90)
1 -1 Ko+ e
Ko+ e
= [1...1] : [1...1] )
. :
Ko+en
(10.91)
N
=N !N Ko+ Y ek] (10.92)
k=1
1 N
= Ko+ ; en (10.93)
= Ko+ me (10.94)

where m, is the mean value of the noise. From (10.94) you can see that Kyg does not
converge towards Ky if the mean value m, is different from zero.

Solution to Problem 10.5

According to the Parsimony Principle, you should select the smallest order with relatively
small value of the criterion function. So, you should select order ns.

Solution to Problem 10.6

See the following Program:

http://techteach.no/control/python/prog_ls_optim_greenhouse_gas_estimate_analysis.py

The results are shown in the box below.

a_opt = —0.152

b_opt = 359.622

fmin =V = 11.741

std_a = 0.035

std_b = 69.930

confint_a = [-0.221 -0.152 —0.082]
confint b = [219.761 359.622 499.482]
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So, the 95 % confidence intervals are:
aest: [—0.221, —0.082] (10.95)

best: [219.761, 499.482] (10.96)

Solution to Problem 10.7

The order should be large enough to include the time delay. One time step of 0.5 sec
corresponds to a time delay of 0.5 s, and one such time delay is represented by the factor
271 in the transfer function. The model should therefore include 2/0.5 = 4 such factors.
Hence, the mimimum order of the transfer function is 4.

Solution to Problem 10.8

The model written on the standard LS form:

T (i) - Koot = [ w(t)’ —1}[1{L ] (10.97)

w(ty,)" is calculated with the center difference method:

w(tkt1) — w(te-1)

w(tk)' ~ oT
s

(10.98)

where T is the time step.

Solution to Problem 10.9

You can remove the mean values of both the input and the output signals (time series or
sequences), and use the devations as new input and output. In more detail: Assume that
{u(k)} is the original input signal and {y(k)} is the output signal, and that m, and m, are
the respective mean values. The deviation signals are then

{du(k)} = {u(k) — my} (10.99)

and
{dy(