
Modeling, Simulation and Control

Finn Aakre Haugen

24 August 2023

Contents

I INTRODUCTION 28

1 Flash course in automatic control 29

1.1 Introduction . 29

1.2 What can be obtained with control? . 29

1.3 Process variables that are typically controlled 31

1.4 Feedback control . 32

1.4.1 Manual feedback control . 32

1.4.2 Automatic feedback control . 34

1.4.3 Brief presentation of components of general feedback control loops . . 39

1.4.3.1 Block diagram of a general control loop 39

1.4.3.2 Process . 39

1.4.3.3 Automation hardware . 39

1.4.3.4 Sensor . 40

1.4.3.5 AD converter . 40

1.4.3.6 Measurement signal scaling 40

1.4.3.7 Measurement signal filter . 41

1.4.3.8 Controller . 44

1.4.3.9 Auto/man-switch . 44

1.4.3.10 Control signal scaling . 45

1.4.3.11 DA converter . 45

1

CONTENTS

1.4.3.12 Actuator . 45

1.4.4 PID controller . 45

1.4.4.1 Continuous-time PID controller 45

1.4.4.2 PID parameters . 47

1.4.4.3 Discrete-time PID algorithm 48

1.4.4.4 How does the PID controller work? 51

1.4.5 On-off controller . 54

1.4.5.1 The basic On-off controller 54

1.4.5.2 On-off controller for processes with negative process gain . . 56

1.4.5.3 On-off controller with deadband 57

1.5 Feedforward control . 59

1.6 Performance measures of control systems . 64

1.7 Problems for Chapter 1 . 67

1.8 Solutions to problems for Chapter 1 . 74

II INSTRUMENTATION OF CONTROL SYSTEMS 80

2 Piping & Instrumentation Diagrams 81

2.1 Instrument codes . 81

2.1.1 Letter codes . 81

2.1.2 Numeric codes . 83

2.1.3 Localization . 84

2.2 Signals . 84

2.3 Material flows . 84

2.4 Process equipment . 85

2.4.1 Codes of process equipment . 85

2.4.2 Valves . 86

2

CONTENTS

2.4.3 Rotational flow components . 87

2.4.4 Heat exchangers . 87

2.4.5 Vessels . 87

2.4.6 Mathematical functions . 87

2.4.7 Logical functions . 88

2.5 Problems for Chapter 2 . 89

2.6 Solutions to problems for Chapter 2 . 90

3 Components of control systems 92

3.1 Introduction . 92

3.2 Automation hardware . 93

3.2.1 Introduction . 93

3.2.2 Process controllers . 93

3.2.3 Programmable logic controllers (PLCs) 96

3.2.4 Programmable automation controllers 97

3.2.5 Plantwide control systems . 98

3.2.6 Platforms for home-made automation systems 101

3.2.6.1 Standard PC with I/O device 101

3.2.6.2 Raspberry Pi . 102

3.2.6.3 Arduino . 105

3.3 Sensors . 106

3.3.1 Introduction . 106

3.3.2 Temperature sensors . 106

3.3.2.1 Resistance thermometer . 107

3.3.2.2 Thermocouple thermometers 109

3.3.3 Pressure sensors . 110

3.3.4 Level sensors . 112

3

CONTENTS

3.3.4.1 Ultrasonic level sensor . 112

3.3.4.2 Dp cells as level sensor . 113

3.3.5 Flow rate sensors . 114

3.3.5.1 Flow rate measurement with orifice and dp cell 114

3.3.5.2 Ultrasonic flow rate measurement 115

3.3.5.3 Coriolis flow rate sensor . 117

3.3.5.4 Magnetic flow rate sensor . 118

3.3.5.5 Thermal flow rate sensor . 120

3.3.5.6 Vortex flow rate sensor . 120

3.3.6 Sensors for gas concentration . 122

3.3.7 Position sensors . 123

3.3.7.1 Encoder . 123

3.3.8 Speed sensors . 125

3.3.8.1 Encoder . 125

3.3.8.2 Tachogenerator . 126

3.4 Signal conditioning of measurement signals 126

3.4.1 Analog measurement signals . 126

3.4.2 Current loop . 127

3.4.3 Analog-digital (AD) conversion . 128

3.4.4 Scaling of measurement signals . 132

3.4.5 Accuracy of measurement signals . 133

3.4.6 Measurement filters . 135

3.4.6.1 Moving averaging (MA) measurement filter (revisited) 135

3.4.6.2 Time constant filter . 139

3.4.6.3 Continuous-time filter function 139

3.4.6.4 Analog RC circuit filter . 141

3.5 Actuators . 141

4

CONTENTS

3.5.1 Introduction . 141

3.5.2 Valves . 142

3.5.2.1 Structure and operation . 142

3.5.2.2 Valve equation and valve characteristics 142

3.5.3 Pumps . 148

3.5.3.1 Centrifugal pumps . 148

3.5.3.2 Displacement pumps . 149

3.5.4 Electrical motors . 150

3.5.4.1 AC motors . 150

3.5.4.2 DC motors . 151

3.5.5 Electrical heaters . 151

3.6 Signal conditioning of control signals . 153

3.6.1 Scaling of control signals . 153

3.6.2 Digital-analog (DA) conversion . 155

3.6.3 Pulse-width modulation . 155

3.6.4 Converting current to voltage . 157

3.7 Problems for Chapter 3 . 158

3.8 Solutions to problems for Chapter 3 . 164

III MODELING and SIMULATION OF DYNAMIC SYSTEMS 170

4 Mechanistic modeling 171

4.1 Introduction . 171

4.2 What is a dynamic system? . 171

4.3 A procedure for mathematical modeling . 173

4.4 Mathematical modeling of material systems 175

4.5 Mathematical modeling of thermal systems 176

5

CONTENTS

4.6 Mathematical modeling of kinetic systems . 179

4.6.1 Systems with linear motion . 179

4.6.2 Systems with rotational motion . 181

4.6.2.1 Momentum balance . 181

4.6.2.2 Relations between rotational and linear motion 182

4.6.2.3 Coupled mechanical systems 182

4.7 Mathematical modeling of electric systems . 184

4.7.1 Kirchhoff’s law . 184

4.7.1.1 Kirchhoff’s Current Law . 184

4.7.1.2 Kirchhoff’s Voltage Law . 185

4.7.2 Resulting resistance . 185

4.7.2.1 Resistors in series . 185

4.7.2.2 Resistors in parallel . 185

4.7.3 Models of resistor, capacitor, and inductor 186

4.7.4 Power . 188

4.7.4.1 Instantaneous power . 188

4.7.4.2 Mean power . 188

4.8 Physical component based simulators . 188

4.8.1 OpenModelica . 188

4.8.2 Aspentech Hysys . 188

4.8.3 Simscape . 188

4.9 Problems for Chapter 4 . 189

4.10 Solutions to problems for Chapter 4 . 195

5 State space models 200

5.1 Introduction . 200

5.2 The state space model . 200

6

CONTENTS

5.3 The response of a state space model . 203

5.3.1 Dynamic response . 203

5.3.2 Static response . 204

5.4 Linear state space models . 205

5.4.1 Standard model form of linear state space models 205

5.4.2 Linearization of non-linear models . 206

5.4.2.1 When do we have to linearize? 206

5.4.2.2 Deriving the linearization formulas 207

5.5 Problems for Chapter 5 . 211

5.6 Solutions to problems for Chapter 5 . 213

6 Simulation algorithms of state space models 215

6.1 Why simulate? . 215

6.2 Simulation algorithm for state space models 216

6.2.1 Introduction . 216

6.2.2 The simulation algorithm . 217

6.2.3 How to test the simulator . 224

6.2.3.1 Static test of the simulator 224

6.2.3.2 Dynamic test of the simulator 226

6.2.3.3 Conclusion of static and dynamic testss 228

6.2.4 How to choose the simulation time step, dt? 228

6.2.5 Simulation along real time or scaled real time? 231

6.2.6 Why predict? . 232

6.2.7 Euler Forward vs. Euler Backward . 233

6.3 Simulation of second order differential equation models 233

6.4 Simulation algorithm of time delays . 237

6.5 Problems for Chapter 6 . 242

7

CONTENTS

6.6 Solutions to problems for Chapter 6 . 244

7 Block diagram models 258

7.1 Introduction . 258

7.2 How to draw block diagrams . 258

7.3 Simulation with block diagram models . 261

7.4 Problems for Chapter 7 . 263

7.5 Solutions to problems for Chapter 7 . 264

8 Transfer functions 266

8.1 Introduction . 266

8.2 Definition of the transfer function . 267

8.3 Characteristics of transfer functions . 269

8.4 Combining transfer functions blocks in block diagrams 269

8.5 How to calculate responses from transfer function models 269

8.6 Static transfer function and static response 271

8.7 Simulation with transfer functions . 272

8.7.1 Introduction . 272

8.7.2 Simulation with Python Control Package 272

8.7.3 Simulation with OpenModelica . 273

8.8 From transfer function to differential equation 273

8.9 From transfer function to state space model 273

8.10 From state space model to transfer function 275

8.11 Problems for Chapter 8 . 277

8.12 Solutions to problems for Chapter 8 . 280

9 Process dynamics 285

9.1 Introduction . 285

8

CONTENTS

9.2 Integrators . 285

9.2.1 Integrator model . 285

9.2.1.1 Differential equation . 285

9.2.1.2 Block diagram . 285

9.2.1.3 Transfer function . 286

9.2.1.4 Pole . 286

9.2.2 Dynamics in terms of step response . 286

9.3 Time constant systems . 289

9.3.1 The standard model of time constant systems 289

9.3.1.1 Differential equation . 289

9.3.1.2 Block diagram . 290

9.3.1.3 Transfer function . 290

9.3.1.4 Pole . 291

9.3.1.5 Dynamics in terms of step response 291

9.3.1.6 Step response of time constant systems when initial state is
non-zero . 294

9.3.2 Time constant model expanded with process disturbance as input . . 295

9.4 Second order systems . 298

9.4.1 Mathematical model . 298

9.4.1.1 Transfer function model . 298

9.4.1.2 Differential equation . 299

9.4.1.3 State space model . 299

9.4.2 Classification of second order systems 301

9.4.2.1 Overdamped systems . 302

9.4.2.2 Underdamped system . 304

9.4.2.3 Undamped system . 306

9.5 Time delays . 307

9

CONTENTS

9.5.1 Approximation of time delay by Padé approximation 308

9.6 Higher order systems . 308

9.7 Problems for Chapter 9 . 311

9.8 Solutions to problems for Chapter 9 . 317

10 Adaptation of models to data 325

10.1 Introduction . 325

10.2 Model adaptation as an optimization problem 326

10.2.1 How to find the best model . 326

10.2.2 Good excitation is necessary! . 328

10.3 Adaptation of static models to data . 329

10.3.1 Adaptation using grid optimization . 329

10.3.1.1 Introduction . 329

10.3.1.2 Model adaptation of static models using native grid optimiza-
tion . 330

10.3.1.3 Model adaptation of static models with Python’s brute() func-
tion . 334

10.3.2 Adaptation of static models using nonlinear programming (NLP) . . . 339

10.3.3 Adaptation of static models using standard least squares method . . . 341

10.3.3.1 The standard regression model 341

10.3.3.2 The LS problem . 342

10.3.3.3 The LS solution . 343

10.3.3.4 Properties of the LS estimate 347

10.3.3.5 Criterion for convergence of estimate towards the true value 347

10.4 Adaptation of dynamic models to data . 348

10.4.1 Adaptation of dynamic models using grid optimization 348

10.4.1.1 Introduction . 348

10.4.1.2 Adaptation of dynamic models using grid optimization . . . 348

10

CONTENTS

10.4.1.3 Model adaptation of dynamic models with Python’s brute()
function . 353

10.4.2 Adaptation of dynamic models using nonlinear programming (NLP) . 356

10.4.3 Adaptation of dynamic models using the least squares method 359

10.5 Recursive (real-time) model adaptation . 360

10.6 Problems for Chapter 10 . 362

10.7 Solutions to problems for Chapter 10 . 367

IV BASIC CONTROL METHODS 375

11 PID control (continued) 376

11.1 Introduction . 376

11.2 Transfer function of the PID controller . 376

11.3 Practical aspects of the PID controller . 377

11.3.1 Reverse or direct controller action? . 377

11.3.1.1 What is meant by reverse action and direct action? 377

11.3.1.2 How to select between reverse action and direct action modes? 378

11.3.2 Reducing P-kick and D-kick caused by setpoint changes 380

11.3.3 Integrator anti wind-up . 382

11.3.4 Bumpless transfer between manual and auto modes 385

11.4 Problems for Chapter 11 . 387

11.5 Solutions to problems for Chapter 11 . 389

12 Transfer functions of feedback control systems 391

12.1 Introduction . 391

12.2 Definition of setpoint tracking and disturbance compensation 391

12.3 Sensitivity transfer function . 392

12.3.1 Definition of Sensitivity transfer function 392

11

CONTENTS

12.3.2 Calculation of response in control error 393

12.3.2.1 Response in error due to setpoint 393

12.3.2.2 Response in error due to disturbance 394

12.4 Tracking transfer function . 394

12.4.1 Definition of Tracking transfer function 394

12.4.2 Calculation of response in control error 395

12.5 Analytical calculation of responses with transfer functions 395

12.6 Problems for Chapter 12 . 396

12.7 Solutions to problems for Chapter 12 . 397

13 Simulation of PID control systems 399

13.1 Introduction . 399

13.2 Simulation with elementary code in Python 399

13.3 Simulation of transfer function model with Python Control package 400

13.4 Simulation of block-diagram model with OpenModelica 401

13.5 Problems for Chapter 13 . 402

13.6 Solutions to problems for Chapter 13 . 402

14 Tuning of PID controllers 404

14.1 Introduction . 404

14.2 Ziegler-Nichols closed loop method . 406

14.3 Relaxed Ziegler-Nichols PI settings . 410

14.4 Quasi Ziegler-Nichols tuning . 412

14.5 Åstrøm-Hägglund Relay tuning method . 413

14.6 Auto-tuning . 417

14.7 Good Gain method . 417

14.8 Skogestad controller tuning method . 420

14.8.1 Background of the Skogestad method 420

12

CONTENTS

14.8.2 Controller tuning for “integrator with time delay” processes 423

14.8.2.1 Mathematical model and dynamics 423

14.8.2.2 Controller settings . 423

14.8.2.3 PI tuning for pretended “integrator with time delay” processes426

14.8.2.4 Tuning for integrator without time delay 430

14.8.3 Controller tuning for “time constant with time delay” processes 430

14.8.3.1 Mathematical model and dynamics 430

14.8.3.2 Controller settings . 431

14.8.4 Controller tuning for “double integrator” processes 432

14.8.4.1 Mathematical model . 432

14.8.4.2 Controller settings . 433

14.9 Ziegler-Nichols open loop method . 435

14.10PID tuning when process dynamics varies . 436

14.10.1 Introduction . 436

14.10.2PID parameter adjustment based on the Skogestad PID tuning method 437

14.10.3Gain scheduling of PID parameters . 438

14.10.4Adaptive controller . 443

14.11Problems for Chapter 14 . 445

14.12Solutions to problems for Chapter 14 . 450

15 Control loop stability 455

15.1 Heuristic stability analysis . 455

15.2 Experimental gain margin (GM) and phase margin (PM) 459

15.3 Problems for Chapter 15 . 465

15.4 Solutions to problems for Chapter 15 . 467

16 Control structures based on the PID control loop 468

16.1 Cascade control . 468

13

CONTENTS

16.1.1 The principle of cascade control . 468

16.1.2 Benefits of cascade control . 469

16.1.3 Selection of control functions . 475

16.1.4 Controller tuning . 476

16.1.5 Cascade control and state feedback . 476

16.2 Ratio control . 477

16.3 Split-range control . 478

16.4 Averaging level control . 479

16.4.1 What is averaging level control? . 479

16.4.2 Tuning of the PI controller for averaging level control 483

16.5 Plantwide control . 488

16.6 Problems for Chapter 16 . 494

16.7 Solutions to problems for Chapter 16 . 500

17 Feedforward control 508

17.1 Introduction . 508

17.2 Designing feedforward control from differential equation models 509

17.3 Designing feedforward control from experimental data 513

17.4 Problems for Chapter 17 . 516

17.5 Solutions to problems for Chapter 17 . 519

18 Sequential control 521

18.1 Problems for Chapter 18 . 525

18.2 Solutions to problems for Chapter 18 . 526

V ANALYSIS OF CONTINUOUS-TIME FEEDBACK SYSTEMS 527

19 Stability analysis using poles 528

14

CONTENTS

19.1 Introduction . 528

19.2 Stability properties and impulse response . 528

19.3 Stability properties and poles . 529

19.4 Stability analysis of state space models . 537

19.5 Problems for Chapter 19 . 539

19.6 Solutions to problems for Chapter 19 . 540

20 Stability analysis of feedback systems using poles 543

20.1 Introduction . 543

20.2 Stability analysis of feedback systems . 544

20.3 Problems for Chapter 20 . 547

21 Frequency response 550

21.1 Introduction . 550

21.2 How to calculate frequency response from sinusoidal input and output 551

21.3 Bode diagram . 553

21.4 How to calculate frequency response from transfer function 554

21.5 Filters . 557

21.5.1 Filter types . 557

21.5.2 First order lowpass filters . 558

21.6 Problems for Chapter 21 . 562

21.7 Solutions to problems for Chapter 21 . 564

22 Frequency response analysis of feedback systems 568

22.1 Introduction . 568

22.2 Analysis of setpoint tracking and disturbance compensation 569

22.2.1 Introduction . 569

22.2.2 Frequency response analysis of setpoint tracking 570

15

CONTENTS

22.2.3 Frequency response analysis of disturbance compensation 573

22.3 Stability analysis of feedback systems . 577

22.3.1 Introduction . 577

22.3.2 Nyquist’s stability criterion . 577

22.3.3 Stability margins . 582

22.3.3.1 Stability margins in terms of gain margin and phase margin 582

22.3.3.2 Stability margins in terms of maximum sensitivity amplitude 584

22.3.4 Stability analysis in a Bode diagram 584

22.3.5 Robustness in term of stability margins 587

22.4 Problems for Chapter 22 . 589

22.5 Solutions to problems for Chapter 22 . 595

VI ANALYSIS OF DISCRETE-TIME FEEDBACK SYSTEMS 601

23 Discrete-time signals 602

23.1 Problems for Chapter 23 . 604

23.2 Solutions to problems for Chapter 23 . 605

24 Difference equations 607

24.1 Difference equation models . 607

24.2 Calculating responses from difference equation models 608

24.3 Problems for Chapter 24 . 609

24.4 Solutions to problems for Chapter 24 . 611

25 Discrete-time state space models 613

25.1 General form of discrete-time state space models 613

25.2 Linear discrete-time state space models . 613

25.3 Discretization of continuous-time state space models 614

16

CONTENTS

25.4 Problems for Chapter 25 . 615

25.5 Solutions to problems for Chapter 25 . 616

26 The z-transform 617

26.1 Definition of the z-transform . 617

26.2 Properties of the z-transform . 617

26.3 z-transform pairs . 618

26.4 Inverse z-transform . 618

26.5 Problems for Chapter 26 . 620

26.6 Solutions to problems for Chapter 26 . 621

27 Discrete-time (or z-) transfer functions 622

27.1 Introduction . 622

27.2 From difference equation to transfer function 622

27.3 From transfer function to difference equation 623

27.4 Calculating time responses for discrete-time transfer functions 624

27.5 Static transfer function and static response 624

27.6 Poles and zeros . 625

27.7 From s-transfer functions to z-transfer functions 626

27.8 Problems for Chapter 27 . 629

27.9 Solutions to problems for Chapter 27 . 631

28 Frequency response of discrete-time systems 633

28.1 Problems for Chapter 28 . 636

28.2 Solutions to problems for Chapter 28 . 638

29 Stability analysis of discrete-time dynamic systems 640

29.1 Definition of stability properties . 640

29.2 Stability analysis of transfer function models 640

17

CONTENTS

29.3 Stability analysis of state space models . 644

29.4 Problems for Chapter 29 . 646

29.5 Solutions to problems for Chapter 29 . 648

30 Stability analysis of discrete-time feedback systems 651

30.1 Problems for Chapter 30 . 655

30.2 Solutions to problems for Chapter 30 . 656

VII STATE ESTIMATION 658

31 Stochastic signals 659

31.1 Introduction . 659

31.2 How to characterize stochastic signals . 659

31.2.1 Realizations of stochastic processes . 659

31.2.2 Probability distribution of a stochastic variable 660

31.2.3 The expectation value and the mean value 660

31.2.4 Variance. Standard deviation . 661

31.2.5 Auto-covariance. Cross-covariance . 662

31.3 White and coloured noise . 664

31.3.1 White noise . 664

31.3.2 Coloured noise . 665

31.4 Propagation of mean value and co-variance through static systems 668

31.5 Problems for Chapter 31 . 670

31.6 Solutions to problems for Chapter 31 . 672

32 State estimation with Kalman Filter 678

32.1 Introduction . 678

32.2 Observability of discrete-time systems . 680

18

CONTENTS

32.3 The Kalman Filter algorithm . 683

32.3.1 The assumed process model . 683

32.3.2 The result of Kalman Filtering: an optimal state estimate 686

32.3.3 The Kalman Filter algorithm – step by step 686

32.3.4 Features of the Kalman Filter . 691

32.3.4.1 The error-model . 691

32.3.4.2 The dynamics of the Kalman Filter 691

32.3.4.3 The stability of the Kalman Filter 692

32.4 Tuning the Kalman Filter . 692

32.5 Estimating parameters and disturbances with Kalman Filter 693

32.5.1 Introduction . 693

32.5.2 The augmentative state (xa) is constant 693

32.5.3 The augmentative state (xa) has constant rate 694

32.6 Kalman Filtering when process measurement is absent 700

32.7 Problems for Chapter 32 . 703

32.8 Solutions to problems for Chapter 32 . 704

VIII MODEL-BASED CONTROL 707

33 How to test robustness with simulations 708

33.1 Problems for Chapter 33 . 710

33.2 Solutions to problems for Chapter 33 . 712

34 Linear Quadratic (LQ) optimal control 713

34.1 Introduction . 713

34.2 The basic LQ controller . 714

34.3 LQ controller with integral action . 721

34.3.1 Introduction . 721

19

CONTENTS

34.3.2 Including integrators in the controller 721

34.3.3 Discrete-time implementation of the LQ controller 723

34.4 Problems for Chapter 34 . 724

34.5 Solutions to problems for Chapter 34 . 726

35 Model Predictive Control (MPC) 728

35.1 Introduction . 728

35.2 The MPC method . 729

35.2.1 The principle of MPC . 729

35.2.2 The optimization objective function of MPC 730

35.2.3 Control signal blocking . 732

35.2.4 Tuning factors of MPC . 732

35.2.5 The need for a state estimator . 734

35.3 Problems for Chapter 35 . 737

35.4 Solutions to problems for Chapter 35 . 738

36 Inverse dynamics control 739

36.1 Introduction . 739

36.2 Inverse dynamics control of first order processes 740

36.2.1 The process model . 740

36.2.2 PI tuning . 741

36.2.3 Feedforward controller . 742

36.2.4 The resulting control signal . 742

36.2.5 About the resulting control system . 743

36.3 Inverse dynamics control of second order prosesses 744

36.3.1 The process model . 744

36.3.2 PID tuning . 746

36.3.3 Feedforward controller . 746

20

CONTENTS

36.3.4 The resulting control signal . 747

36.3.5 About the resulting control system . 747

36.3.6 Computed torque control . 748

36.4 Problems for Chapter 36 . 750

36.5 Solutions to problems for Chapter 36 . 754

IX APPENDICES 757

37 Some good control questions 758

38 Selected process models 761

38.1 Wood chips tank . 761

38.1.1 System description . 761

38.1.2 Variables and parameters . 762

38.1.3 Overall block diagram . 762

38.1.4 Mathematical model . 763

38.2 Ship . 763

38.2.1 System description . 763

38.2.2 Variables and parameters . 763

38.2.3 Overall block diagram . 764

38.2.4 Mathematical model . 764

38.3 Buffer tank . 765

38.3.1 System description . 765

38.3.2 Variables and parameters . 765

38.3.3 Overall block diagram . 766

38.3.4 Mathematical model . 766

38.4 Heated liquid tank . 767

38.4.1 System description . 767

21

CONTENTS

38.4.2 Variables and parameters . 767

38.4.3 Overall block diagram . 767

38.4.4 Mathematical model . 768

38.5 Air heater . 769

38.5.1 System description . 769

38.5.2 Variables and parameters . 769

38.5.3 Overall block diagram . 769

38.5.4 Mathematical model . 770

38.5.5 Data file . 770

38.6 Kettle . 771

38.6.1 System description . 771

38.6.2 Parameters and variables . 772

38.6.3 Overall block diagram . 773

38.6.4 Mathematical model . 773

38.7 DC-motor . 774

38.7.1 System description . 774

38.7.2 Overall block diagram . 774

38.7.3 Variables and parameters . 775

38.7.4 Mathematical model . 775

38.7.5 Datafile . 775

38.8 Biogas reactor . 776

38.8.1 System description . 776

38.8.2 Variables and parameters . 777

38.8.3 Overall block diagram . 777

38.8.4 Mathematical model . 778

38.8.5 Operating point . 781

38.9 Pendulum on cart . 781

22

CONTENTS

38.9.1 System description . 781

38.9.2 Variables and parameters . 782

38.9.3 Overall block diagram . 782

38.9.4 Mathematical model . 782

39 The Laplace transform 785

39.1 Introduction . 785

39.2 Definition of the Laplace transform . 785

39.3 Laplace transform pairs . 787

39.4 Laplace transform properties . 788

40 Introduction to optimization 792

40.1 The optimization problem . 792

40.1.1 Introduction . 792

40.1.2 Mathematical formulation of the optimization problem 793

40.1.3 Feasibility region . 794

40.1.4 Some characteristics of the optimal solution 794

40.1.5 What about maximization problems? 796

40.2 How to solve optimization problems . 796

40.2.1 Introduction . 796

40.2.2 Analytical solution . 798

40.2.3 The brute force method of optimization 801

40.2.4 Iterative methods of optimization . 809

40.2.4.1 Steepest decent optimization method 809

40.2.4.2 The Newton optimization method 810

40.2.5 Global optimization . 815

40.2.6 Testing: Have you actually found the minimum? 816

23

CONTENTS

41 Python 819

41.1 About Python . 819

41.2 Installing Python . 819

41.3 Learning Python . 820

42 Python Control package 821

42.1 Introduction . 821

42.1.1 What is the Python Control package? 821

42.1.2 About this guide . 821

42.1.3 Installing the Python Control package 822

42.1.4 Importing the Python Control package into Python 822

42.1.5 Using arrays for numerical data . 822

42.2 Transfer functions . 823

42.2.1 How to create transfer functions . 823

42.2.1.1 Creating transfer functions using the Laplace variable 823

42.2.1.2 Creating transfer functions using coefficient arrays of numer-
ator and denominator . 824

42.2.2 Combinations of transfer functions . 826

42.2.2.1 Series combination . 826

42.2.2.2 Parallel combination . 827

42.2.2.3 Feedback combination . 829

42.2.3 How to get the numerator and denominator of a transfer function . . 831

42.2.4 Simulation with transfer functions . 833

42.2.5 Poles and zeros of transfer functions 836

42.2.6 The Padé-approximation of a time delay 837

42.3 Frequency response . 838

42.3.1 Frequency response of transfer functions 838

42.3.2 Frequency response and stability analysis of feedback loops 840

24

CONTENTS

42.4 State space models . 843

42.4.1 How to create state space models . 843

42.4.2 How to get the model matrices of a state space model 846

42.4.3 Simulation with state space models . 847

42.4.4 From state space model to transfer function 849

42.5 Discrete-time models . 852

42.5.1 Transfer functions . 852

42.5.1.1 Introduction . 852

42.5.1.2 How to create transfer functions 852

42.5.1.3 Discretizing an s-transfer function 853

42.5.1.4 Exact representation of a time delay with a z-transfer function 855

42.5.2 Frequency response . 857

42.5.3 State space models . 857

43 OpenModelica 858

44 SimView 860

45 Selected mathematical formulas 862

45.1 Differentiation of vector functions . 862

Bibliography 862

Index 864

25

Preface

The main topic of this book is automatic control – how to use a computer to automatically
manipulate mechanical, thermal, chemical, eletrical, process so that they behave as you
want. Obviously, automatic control is of crucial importance in industrial and other kinds of
technical systems.

In my own practical control projects, I have had great use of mathematical models, mainly
as the basis for building (programming) simulators. With a simulator you can design,
analyse, and test your systems without exhaustive and perhaps dangerous experimentation
on the physical system; the physical system may even not exist! Furthermore, with models
you can implement methods for monitoring (state and parameter estimation), you can
design advanced, model-based controllers, and you can carry out model-based tuning of
standard PID controllers1. Models and simulators are simply great engineering tools for
control. So, I decided to name this book “Modeling, simulation and control”.

The book may serve as a textbook in pertinent bachelor courses and in master courses, and
as a reference book for professionals.

Problems with detailed solutions are at the end of (most of) the chapters.

The book contains simulated plots from Python programs, OpenModelica models, and
SimView simulators. Python and OpenModelica are open software. SimView is a collection
of executables (exe files) which I have developed in LabVIEW. All this software is free, and
they are introduced in respective appendices in the book.

If you see errors or have suggestions or other comments about the book, you are welcome to
send them to me in email.

The book exists only in pdf file format.

The home page of the book is on techteach.no/control.

While this edition of the book is available for free, a future edition will be for sale. I will
give pertinent information on the home page of the book.

A few words about my background: I have a MSc degree from former Norwegian Institute
of Technology (Norwegian: Norges tekniske høgskole) and a PhD degree from former
Telemark University College (Norwegian: Høgskolen i Telemark). I have experience as

1Proportional-Integral-Derivative controllers – the standard automatic control function in industry

26

http://techteach.no/control

CONTENTS

university teacher and researcher, textbook author, and participant in industrial and
research projects about modeling, simulation and control. At present, I am employed as
professor2 at the University of South-Eastern Norway, and I have my one-person firm
TechTeach. I am also teaching at OsloMet (Oslo Metropolitan University), in vocational
education, and I teach courses for the industry.

I enjoy the field of modeling, simulation and control, and the programming needed to
implement theoretical methods on practical systems. Without that enjoyment, there would
not be a book.

Finn Aakre Haugen
http://techteach.no/fh

finn@techteach.no

2Norwegian title: dosent

27

http://techteach.no/fh

Part I

INTRODUCTION

28

Chapter 1

Flash course in automatic control

1.1 Introduction

This chapter presents the basic principles, and practical methods, of automatic control. The
principles are:

• Feedback control

• Feedforward control

After you have read this chapter, you should be well prepared to apply automatic control
methods in practice!

The remainder of the book presents mainly theoretical methods for automatic control, for
example how to develop a mathematical model of the process to be controlled, and how to
program a simulator of the control system of the process. Although theoretical, these
methods can be very useful in practice.

1.2 What can be obtained with control?

Figure 1.1 compares typical results of “passive” control with “active” control. In the figure,
the term control error is defined as follows:

Control error (e) = Difference between reference value (r) and actual value of the process
variable (y)

Or, briefly:
e = r − y (1.1)

Figure 1.1 illustrates the following:

29

CHAPTER 1. FLASH COURSE IN AUTOMATIC CONTROL

• Passive control , i.e. the process is excited with a fixed or constant control signal.
With passive control, the control error may be too large.

• Active control , i.e. the process is manipulated actively with either a manual control
signal generated by a human or an automatic control signal generated by an
automation device – typically a computer. With active control, the control error may
be kept within specified limits – ideally zero.

t

Passive control: Active control:

Reference
(or setpoint), r

Process variable, y

Control error,
e = r - y

Max

Min

Too large control error
in this time interval

Control signal, u

The control error is small enough
all the time!

Constant u
u is adjusted actively by the
controller (manual or automatic)

Control signal, u

Figure 1.1: Active control can ensure that the control error is small enough.

Automatic control is important in a large number of practical industrial and technical
systems. With automatic control we may obtain:

• Good product quality: A product will have acceptable quality only if certain
process variables are sufficiently close to their setpoints. One example: In artifical
(chemical) fertilizers the pH value and the composition of Nitrogen, Phosphate and
Potassium are factors which express the quality of the fertilizer (for example, too low
pH value is not good for the soil). Therefore the pH value and the compositions must
be controlled.

• Good production economy: The production economy will become worse if part of
the products has unacceptable quality so that it can not be sold. Good control may
maintain the good product quality, and hence, contribute to good production
economy. Further, by good control it may be possible to tighten the limits of the
quality so that a higher price may be taken for the product!

• Safety: To guarantee the security both for humans and equipment, it may be

30

CHAPTER 1. FLASH COURSE IN AUTOMATIC CONTROL

required to keep variables like pressure, temperature, level, and others within certain
limits– that is, these variables must be controlled. Some examples:

– An aircraft with an autopilot (an autopilot is a positional control system).

– A chemical reactor where pressure and temperature must be controlled.

• Environmental care: The amount of poisons to be emitted from a factory is
regulated through laws and directions. The application of control engineering may
help to keep the limits. Some examples:

– In a wood chip tank in a paper pulp factory, hydrogene sulfate gas from the pulp
process is used to preheat the wood chip. If the chip level in the tank is too low,
too much (stinking) gas is emitted to the atmosphere, causing pollution. With
level control the level is kept close to a desired value (set-point) at which only a
small amount of gas is expired.

– In the so-called washing tower nitric acid is added to the intermediate product to
neutralize exhaust gases from the production. This is accomplished by
controlling the pH value of the product by means of a pH control system. Hence,
the pH control system ensures that the amount of emitted ammonia is between
specified limits.

– Automatically controlled spray painting robots avoid humans working in
dangerous areas.

• Comfort:

– The automatic positional control which is performed by the autopilot of an
aircraft to keep a steady course contributes to the comfort of the journey.

– Automatic control of indoor temperature may give better comfort.

• Feasibility: Numerous technical systems could not work or would even not be
possible without the use of control engineering. Some examples:

– An exothermal reactor operating in an unstable (but optimal) operating point

– Launching a space vessel (the course is stabilized)

– A dynamic positioning system holds a ship at a given position without an anchor
despite the influence of waves, wind and current on the ship. The heart of a
dynamic positioning system is the positional control system which controls the
thrusters which are capable of moving the ship in all directions.

• Automation: Computers and other kinds of hardware and software implementing
control solutions can accomplish tedious and dangerous operations for the benefit of
human operators. Also, automation may reduce costs in a factory, thereby indirectly
reducing product prices, to customer’s benefit.

1.3 Process variables that are typically controlled

Below is a list of process variables which typically are controlled to follow their references
(or setpoints):

31

CHAPTER 1. FLASH COURSE IN AUTOMATIC CONTROL

• Level (in a storage tank)

• Temperature (in a room; in the fluid passing a heat exchanger; in a reactor; in a
greenhouse)

• Flow (of feeds into a reactor)

• Pressure (of gas in an oil-water-gas separator)

• Chemical composition (of nitric acid; fertilizers)

• Position (of a ship; a painting robot arm; the tool of a cutting machine; a rocket)

• Speed (of a motor; a car; a fan)

1.4 Feedback control

1.4.1 Manual feedback control

Let’s start with a shower!

Imagine that you are to take a shower, and you want to have the temperature of the shower
water as you desire, see Figure 1.2. The figure also shows responses, as explained below.

Shower

Process

Brain

Controller

Hand + valve

Actuator

Hand

Sensor

Control loop

Feedback loop

Room temperature

Process disturbance or

environmental variable

Water temperature

Process variable
CWHW

Figure 1.2: Controlling the water temperature of a shower. (HW = hot water. CW = cold
water.)

In control terminology, the shower is here the process. The water temperature, T , is the
process variable which we want to follow its desired temperature – the temperature
reference or setpoint, rT . The room temperature, Tr, makes an impact on T , and we can

32

CHAPTER 1. FLASH COURSE IN AUTOMATIC CONTROL

therefore say that Tr is a process disturbance. To control T , you can use your hand to
manipulate a mixing valve which sets the ratio between the hot and cold water flows. The
hand and the valve constitute the actuator. Let u be the setting of the mixing value.

In the shower example, the control error is

control error = temperature reference − actual temperature (1.2)

or, using symbols,
e = r − T (1.3)

Typically, the aim of control is e = 0, or e ≈ 0 in practice as e will inevitably vary
somewhat.1

Let us consider the following two alternative temperature control strategies:

• Passive control: Consider the time interval between t0 and t1 in Figure 1.2.
Assume you took a shower yesterday. The shower temperature was as you desired, i.e.
T = rT . Say that a valve setting of u = ua gave the desired temperature. At time t0
(today) you enter the shower. Naturally, you try the successful setting u = ua also
today. If Tr is the same as yesterday, using u = ua gives T = rT also today. But
assume that Tr is actually lower today than yesterday, maybe because you take the
shower with an open window today while the window was closed yesterday.
Consequently, u = ua gives T = Ta which is less than rT , or in other terms: e > 0.
Assume that keeping u = ua = constant makes you freeze, and that you conclude that
constant control is not a good control strategy. This makes you step aside of the cold
water for a moment to think about a better strategy.

• Active, error-driven control, or feedback control : At time t1, while freezing,
you decide to improve the control to make T reach rT , or in other terms, to obtain
e = 0. How would you improve the control? I guess you decide to measure the
temperature with say your right hand, which is a sensor. That measurement, also
denoted T here as we assume it represents the actual temperature, is detected in your
brain. Your brain – the controller – then adjust the nerve signal to the left hand to
change the setting, u, of the mixing valve until e ≈ 0, and then you are ready to take
the shower – with the desired temperature. Since it the control error that “drives” the
control, we can denote this control strategy as error-driven control. However, a more
common term is feedback control, which is explained below. Also, the term closed
loop control is used, and for constant control, open loop control is an alternative term.

This excellent temperature control system is a manual control system since you (a human
being) are the controller. In an automatic control system you are replaced by a computer
which can generate e.g. an electric control signal to the valve, and the sensor with an
industrial temperature sensor, for example a Pt100 sensor which sends an electric signal to
the controller. More details about an automatic control system for the shower are given in
Section 1.4.2.

1However, in so-called averaging level control of buffer tanks, we actually want a relatively large e for the
level, as this makes the tank compliant to inflow variations. Averaging level control is described in Ch. 16.4.

33

CHAPTER 1. FLASH COURSE IN AUTOMATIC CONTROL

In Figure 1.2, I have indicated the control loop. It consist of the following three main
components needed to control the process. These are the main components also in purely
technical control loops.

• Sensor

• Controller

• Actuator

Sometimes also a measurement filter, which attentuates measurement noise, is included as
component (following the sensor) in the control loop. Alternatively, the filter can also be
regarded as a part of (included in) the sensor.

As I mentioned above, control loops are also denoted feedback (control) loops. The reason
for this name is that there is a connection from the process output, which is the water
temperature, back to the process input, which is the control signal to the valve, via the
sensor and the controller.

An alternative term to feedback control, is error-driven control as it is the control error that
“drives” the control action.2 It is tempting to use the term “measurement-driven control”.
However, that term is ambiguous because also feedforward control, cf. Section 1.5, and not
only feedback control is driven by measurements.

1.4.2 Automatic feedback control

Maybe you dream about an automatic temperature control system of your shower. In that
system, you only need to specify the reference (setpoint) of shower outlet temperature, and
a controller manipulates the valve automatically to make the actual (real) temperature
become equal to the reference. Figure 1.3 shows a possible implementation of such an
automatic temperature control system.

The components shown in Figure 1.3 are presented briefly below.

Actuator

The actuator is an electronically controlled three-way valve with two inlets, namely hot
water and cold water, and one outlet, namely mixed water. Generally, it is typical that the
actuator is manipulated by the controller with an electrical current in the range 0-20 mA
generated by the controller.

2Personally, I like the term error-driven control better than the term feedback control since it expresses
better the principle of control systems.

34

CHAPTER 1. FLASH COURSE IN AUTOMATIC CONTROL

Sensor Controller

Actuator

Process

CW

HW

Figure 1.3: The shower water temperature control system implemented with only technical
components. (Sensor: Autek. Controller: Fuji. Valve: Taco.)

Sensor

In Figure 1.3, the temperature sensor, which measures the water temperature out of the
shower, is a Pt100 sensor. The measuring principle of a Pt100 sensor is that the resistance
value of the electric resistor, which is made of Platinum, varies in a known way with the
temperature. Included in the sensor is a temperature transmitter. The transmitter detects
the resistance value, and generates typically either an electrical current or a voltage
representing the temperature.

Controller

The controller in 1.3 is an industrial process controller containing a computer which
executes a program implementing the control function. The measurement signal from the
sensor is connected to the controller. You can set the temperature reference, r, using
buttons on the front panel of the controller. The controller adjusts the control signal, u, to
the valve automatically to make the measured temperature, y, become equal to r – without
any human interaction. Thus, the control system shown in Figure 1.3 is an automatic
temperature control system.

Piping & Instrumentation Diagram – P&ID

In the industry, it is common to document the structure of control systems with Piping &
Instrumentation Diagrams (P&I Ds). Figure 1.4 shows a Piping & Instrumentation
Diagram (P&I D) of the shower water temperature control system. P&I Ds are described in
more detail in Appendix 2.

In Figure 1.4:

35

CHAPTER 1. FLASH COURSE IN AUTOMATIC CONTROL

TCTT

Sensor Controller

Actuator
Setpoint

Measurement

signal

Control

signal

CWHW

Process

Figure 1.4: Piping & Instrumentation Diagram (P&I D) of the temperature control system
of the shower.

• TT = Temperature Transmitter, which is the standard letters of temperature sensors.
A transmitter is actually not a sensor, but a device which sends the measurement
signal, which in general may be electric or pneumatic or hydraulic or digital, to the
controller. Still, TT here represents the temperature sensor.

• TC = Temperature Controller.

• The actuator – a mixing valve – is shown with a representative symbol. There is no
general symbol for actuator. If the actuator were a pump, a pump symbols should be
shown.

• Process flows in e.g. pipelines are drawn with relatively thick lines.

• Signals, as measurement signals and control signals, are drawn with relatively thin
lines. If necessary, you can use special dashes to indicate the signal type, i.e. electric,
digital, etc. A line without dashes does not indicate any special signal type – it is just
a signal.

• Strictly, signal lines are not drawn with arrow heads, just pure lines. I draw with
arrow heads in this book because it makes the diagram easier to read, although it
breaks with the standards of P&I Ds.

Block diagram of feedback control loop

In many contexts, e.g. in teaching, it is useful to draw a block diagram of a control system.
Block diagrams are useful for showing the various variables (signals) and the components of
a control system. The level of detail of block diagrams may vary, depending on what to
show in the diagram. There are no specific standards for block diagrams.

36

CHAPTER 1. FLASH COURSE IN AUTOMATIC CONTROL

Figure 1.5 shows a block diagram of the temperature control system of the shower. General
control-related terms are used, with terms specific to the temperature control system in
parenthesis. Note the three components needed to implement any feedback control system:
Controller, actuator and sensor.

Process
(shower)

Sensor
(Pt100)

rT u
Controller

Reference
(desired temp.)

Control
signal

Process variable
(water temp.)

Actuator
(valve)

Disturbance
(room temp)

Tr

Prosess measurement
(temperature meas.)

ym

Control loop

Control
error

e y

Feedback

Actual valve
setting

Control equipment

Figure 1.5: Block diagram of the temperature control system of the shower.

Some comments to Figure 1.5:

• The controller as a physical component is represented with a frame with a dashed
line, while the controller function is represented with the blue block inside the dasjed
frame. Often the dashed frame representing the (physical) controller is not drawn in
block diagrams.

• The circle to the left is an adder. The negative sign indicates the measurement enters
the adder with a negative sign. Therefore, the output of the adder is reference minus
measurement, i.e. the control error, e = r − ym.

• The symbol ym represents the temperature measurement signal. However, if it is
assumed that the measurement gives a precise representation of the process variable,
y, the same symbol, y, may be used also for the measurement.

Let’s take a look at an industrial example of a control system.

Example 1.1 Level control of a wood chips tank

Figure 1.6 shows the front panel of a simulator of a real level control system of a wood chips
tank with feed screw and conveyor belt. The belt runs with constant speed. The tank is3 in

3Actually: was, since the factory in Norway – Södra Cell at Tofte – has been shut down.

37

CHAPTER 1. FLASH COURSE IN AUTOMATIC CONTROL

Figure 1.6: Level control of wood chips tank: Simulated responses due to a step change of
the level setpoint and a step change of the outflow (disturbance).

the production line of a paper pulp producing factory. There is a continuous outflow of
wood-chips which constitutes a disturbance on the chips level in the tank. A level controller
(LC) manipulates the feed screw. The conveyor belt makes up a transport delay of 250 sec
(4.17min) of the chips from screw to tank. A model with parameter values is described in
Appendix 38.1.4

The simulator is in the SimView simulator library, and is available on:

http://techteach.no/simview/levelcontrol chiptank

Figure 1.7 shows a block diagram of the level control system.

Figure 1.6 shows simulated responses in the level controlled tank. The level reference (or
setpoint) is changed as a step from 10 to 12 m at t = 220 min, and the outflow (level
disturbance) is changed as a step from 25 to 30 kg/s at t = 320 min. We observe that the

4The model used in the simulator differs from the model in the appendix as some of the model parameters
are in different units.

38

http://techteach.no/simview/levelcontrol_chiptank

CHAPTER 1. FLASH COURSE IN AUTOMATIC CONTROL

Tank with

belt

(Process)

Sensor

LT

r
u

Controller

LC

Feed screw

(Actuator)

Fout

hm

e h[m] [m]

[m]

[kg/s][m] [%]

Fs

[kg/s]

Figure 1.7: Block diagram of the temperature control system of the wood chip tank.

level control system is able to bring the level control error to zero in steady state after the
setpoint change and after the disturbance change.

[End of Example 1.1]

1.4.3 Brief presentation of components of general feedback control loops

1.4.3.1 Block diagram of a general control loop

Figure 1.8 shows a detailed block diagram of a general feedback control system where the
controller is realized with a computer.

Below are brief descriptions of each of the components of the control system

1.4.3.2 Process

The process is the physical system to be controlled, e.g. a tank where the level is to be
controlled, a ship where the position on the sea is to be controlled, a biogas reactor where
the temperature is to be controlled, etc.

1.4.3.3 Automation hardware

Automation hardware is the physical equipment where the control function is implemented,
and where signal processing of the measurement signal and the control signal takes place.
Nowadays it is common that automation hardware is computer-based. (More info in Section
3.2.)

39

CHAPTER 1. FLASH COURSE IN AUTOMATIC CONTROL

Process

Sensor

r e
Controller

y

d

ym

Measurement
noise

ymf

Computer-based
control device

ADC

DAC

Manual

Auto

Control
signal
scaling

Measurement
signal
scaling

Meas
filter

Actuator

uman

u

t

y(t)

tk=k*dt
dt

tk tk

u(t)

t

tk t

ym(t)
n

Process
disturbance

dt

rk ek uk

ymf,k

Figure 1.8: A computer-based control system. (DAC = Digital-Analog Converter. ADC =
Analog-Digital Converter.)

1.4.3.4 Sensor

The sensor detects the process value, and generates typically either an electrical current or
a voltage. Typically the current signal is in the standard range of 4-20 mA (milliampere).
The voltage signal may be in the range 1-5 V, or some other range.

1.4.3.5 AD converter

AD converter (analog-digital converter, ADC) converts the process measurement signal –
typically a current signal (milliampere) or a voltage signal from the sensor into a digital
value that can be used by the computer. (More info in Section 3.4.3.)

1.4.3.6 Measurement signal scaling

The measurement signal scaling block scales the digital signal from the AD converter into a
digital value expressed with the relevant physical unit, e.g. meters, degrees C, or %. For the
shower temperature control system, assume that the measurement signal, m, is a voltage in
the range 1-5 V representing a temperature (y) in the range 0–100 oC, with a linear relation
between the ranges, see Figure 1.9. Then, the value of y can be calculated from any

40

CHAPTER 1. FLASH COURSE IN AUTOMATIC CONTROL

m [V]1 5
0

100

y [deg C]

Figure 1.9: Scaling of temperature measurement signal.

registered value of m with the following linear scaling formula:

y = a ·m+ b (1.4)

Slope a is

a =
100oC− 0oC

5 V− 1 V
= 25

K

V
(1.5)

Intercept or constant b can be calculated from the first point (alternatively from the second
point) by solving (1.4) for b:

b = y − a ·m = 0− 25oC (1.6)

For example, a measurement value of m = 3.0 V indicates that the temperature is
y = 25 · 3.0− 25 = 50 oC.
With industrial controllers, you can assume that transformation formulas like (1.4) are
already implemented, and in such cases you only have to specify on the controller the
temperature range that the measurement range (in mA or V) represents. While if you build
a computer-based measurement and control system yourself (based on e.g. Python or
LabVIEW), you will implement the transformation formula (1.4) in computer code. More
information about sensors is given in Ch. 3.3.

1.4.3.7 Measurement signal filter

The measurement signal filter – or just measurement filter – shown in Figure 1.8 is an
important part of the feedback control loop. The purpose of the filter is to filter out, or
attenuate, the more or less random measurement noise from the measurement signal, so
that the measurement signal used by the controller is more smooth, in turn causing a
smoother control signal.

41

CHAPTER 1. FLASH COURSE IN AUTOMATIC CONTROL

For illustration, Figure 1.10 shows the response of a lowpass filter output due to the
following input signals:

Figure 1.10: Response in a lowpass filter output due to a input step change at time 6 sec and
random noise at the input from time 18 s.

• 0 < t < 6 s: Zero input (no noise).

• t = 6 s: A step change of the input.

• t ≥ 18 s: Random noise at the input

Comments to the responses shown in Figure 1.10:

• The filter attenuates the noise, as we want it to do.

• The filter has a sluggish response to the step change at the input. If this step
represents the real changes of the process variable (although in practice such step
changes would probably not appear), the filter actually have removed some
information about the behaviour of the process variable, which may be unfortunate in
an application.

• From the above two points, we can conclude that it is important to tune a filter for
good noise attenuation while avoiding attenuation of variations in the process
variables.

There are various types of measurement filters. The most relevant filters for use in control
systems are:

• The moving average (MA) filter, which is presented in Section 3.4.6.1.

• The time constant filter, which is presented in Section 3.4.6.

42

CHAPTER 1. FLASH COURSE IN AUTOMATIC CONTROL

It turns out that the discrete time filter algorithm ready for programming is identical for
these two filters. Since the MA filter is simpler to describe, let’s here take a brief look the
MA filter.

The MA calculates the filtered value, ymf,as the average of a number, Nf , of the most
recent measurement samples. Nf is the length of the filter. The time window of the filter
moves as time goes. Assume as an example that Nf = 5. Figure 1.11 shows unfiltered
measurement values (white circles) and the filtered value (black circle). The filtered

k-4

Time window, Tw

ymf,k

ym,k

ym,k-1 Average =
Filter output

k-3 k-2 k-1 k

Figure 1.11: Moving average filter with length Nf = 5.

measurement is calculated as the average of the present and the last four measurement
samples – totally five samples:

ymf,k =
1

5
(ym,k + ym,k−1 + ym,k−2 + ym,k−3 + ym,k−4)

=
1

5

4∑
i=0

ym,k−i (1.7)

Obviously, this averaging will smooth – i.e. filter – the measurement signal.

The general formula for ymf,k is

ymf,k =
1

Nf

Nf−1∑
i=0

ym,k−i (1.8)

For a given filter time window Tw, the filter length is

Nf =
Tw

dt
+ 1 (1.9)

For example, with dt = 0.1 and Tw = 4 s, Nf = 5 (as in Figure 1.11).

43

CHAPTER 1. FLASH COURSE IN AUTOMATIC CONTROL

In Section 3.4.6.1 it is shown that (1.10) shown below is a recursive – or online – realization
of (1.8). (1.10) is a MA filter algorithm – ready for programming.

MA filter algorithm

ymf,k = (1− a) ymf,k−1 + aym,k (1.10)

which is a filter algorithm ready for programming.

In (1.10), the filter parameter a is

a =
1

Nf
=

dt

Tw + dt
(1.11)

For example, with dt = 0.1 and Tw = 0.4 s (as in Figure 1.11), and a = 0.2.

1.4.3.8 Controller

The controller calculates the control signal manipulating the actuator. Note: The terms
“controller” here denote the control functions, and not the physical realization of the
control function. The controller shown in Figure 1.3 is one realization of the control
functions. Other realizations, i.e. physical controllers, are presented in Ch. 3.2.

The two most common control functions are the PID controller
(proportional-integral-derivative) and the On-off controller. They are presented in detail in
Sections 1.4.4 and 1.4.5, respectively.

Note: In Figure 1.8 the subtraction point for calculating the control error is shown ahead of
the controller block. This is a common way to draw block diagrams of control systems, but
in practice, the subtraction is calculated in the program code in the block.

1.4.3.9 Auto/man-switch

Industrial controllers can be switched between automatic mode (auto) and manual mode
(man):

• Auto: The control signal is generated automatically by the controller function
(algorithm) programmed in the built-in computer in the controller.

• Man: The built-in controller function is deactivated, and the control signal can be
adjusted by a human via the user interface of the controller.

44

CHAPTER 1. FLASH COURSE IN AUTOMATIC CONTROL

1.4.3.10 Control signal scaling

The control signal scaling block converts the calculated control signal, which may in units of
e.g. % or kg/min, to a digital value of the signal to be applied to the actuator. The digital
value may be in units of e.g. 0-20 mA for current signals, and e.g. 0.5 V for voltage signals.
(More information is in Section 3.6.1.)

1.4.3.11 DA converter

The DA converter (digital-analog converter, DAC) converts the digital control signal into a
physical control signal manipulating the actuator – typically a current signal in mA, but
possibly a voltage signal. (More info is in Section 3.6.2.)

1.4.3.12 Actuator

The actuator manipulates the process based on the control signal generated by the
controller. Examples of actuators are control valves, pumps, heating elements, motors, etc.
(A number of actuators are described in Section 3.5.)

1.4.4 PID controller

1.4.4.1 Continuous-time PID controller

In Section 1.4.4.3 we shall develop a discrete-time PID controller – or a PID algorithm –
ready for programming. This is the contents of the controller block in Figure 1.8. In the
present section, I present the continuous-time, or analog, PID controller since it is the basis
of the discrete-time PID controller.

The continuous-time PID controller is:

u = uman + Kce︸︷︷︸
up

+
Kc

Ti

ˆ t

0
e dτ︸ ︷︷ ︸

ui

+KcTd ef
′︸ ︷︷ ︸

ud

(1.12)

= uman + P+ I + D

where e is the control error:
e = r − ymf (1.13)

where ymf is the filtered (smoothed) process measurement signal.

The parameters in (1.12) are defined in Section 1.4.4.2.

In (1.12),

• uman is the nominal value of the control variable. It is the control signal available for
adjustment by the operator while the controller is in manual mode. While the

45

CHAPTER 1. FLASH COURSE IN AUTOMATIC CONTROL

controller is in automatic mode, uman can usually not be adjusted. uman provides a
reasonable initial value of the control signal at the moment of switching from manual
to automatic mode. When the controller is switched from automatic to manual mode,
uman can be given the value of u just before the switching thereby providing the
actuator with an assumeably appropriate control signal value.

• up is the P term. It is proportional to the control error.

• ui is the I term, with time t = 0 being the latest time when the controller was set to
automatic mode. The I term is the time integral of the control error. The integration
starts when the control is set to automatic mode.

• ud is the D term. The D term takes the time derivative, i.e. the rate of change, of the
control error,

• ef used in the D term is the lowpass filtered (smoothed) control error e. The filter is
denoted the D filter. The filter is used to smooth the abrupt noise in the control error.
This noise is due to the measurement noise present in any practical measurement
signal. There is remaining noise even in after the measurement signal has been filtered
with the measurement filter block shown in Figure 1.8. The D term takes the time
derivative, i.e. the rate of change, of the control error. Since noise vary abruptly, the
derivative can get large amplitudes. These amplitudes cause unfortunate variations in
the D term, and consequently in the total control signal generated by the PID
controller in which the D term is a part. To reduce the problem of the “noisy” D
term, a lowpass filter is used.

The PID controller (1.12) is denoted the parallel PID controller since the terms appear in
parallel in a mathematical block diagram of the controller, see Figure 1.12. It is sometimes

P

I

D

ui

up

ud

e

uman

u
+

+
+

+

F
ef

Figure 1.12: A block diagram illustrating why the PID controller (1.12) is denoted the parallel
PID controller. (“F” is filter.)

denoted the academic controller.5 There is also a serial form, which is discussed in Section
14.8.4.2.

5To a non-academic this name may indicate that the form is not useful in practice. However, it is indeed
useful in practice!

46

CHAPTER 1. FLASH COURSE IN AUTOMATIC CONTROL

1.4.4.2 PID parameters

The controller parameters in (1.12) are commented in detail below.

Proportional gain

Kc is the controller gain. An alternative symbol of this gain is Kp (p for proportional).

Kc is in unit of [unit of u/unit of ymf]. Example: If u is in unit of W and ymf is in unit of
◦C, Kc is in unit of W/◦C, or strictly speaking, unit of W/K.

Several commercial controllers use the proportional band PB, denoted just P in some
industrial controllers, as a parameter instead of the proportional gain, Kc. The relation
between PB and Kc is

PB =
100%

Kc
(1.14)

where Kc is the controller gain, which here is assumed to be dimensionless. (It will be
dimensionless if the control error e and the control variable u have the same unit, typically
percent). It is typical that PB has a value in the range of 10% ≤ PB ≤ 500%, which
corresponds to Kc being in the range of 0.2 ≤ Kc ≤ 10. It is important to note that PB is
inversely proportional to Kc. Thus, a small PB corresponds to a large Kc, and vice versa.

Why the term proportional band? One explanation is that PB is the change of the control
error interval ∆e (or the size of the measurement signal interval) which gives a change of
the control signal interval ∆u equal to 100% (i.e. a full range change of u): From the
P-term u = Kce we see that ∆e = ∆u/Kc = 100%/Kc = PB.

Integral time

Ti [s] (or som other time unit, e.g. minutes) is the integral time.

In some controllers the value of 1/Ti is used instead of the value of Ti. The unit of 1/Ti is
repeats per minute. For example, 5 repeats per minute means that Ti = 1/5 = 0.2 min. The
background of the term repeats per minute is as follows: Assume that the control error e is
constant, say E. The P-term has value up = KcE. During a time interval of 1 minute, the

I-term equals Kc
Ti

´ 1
0 E dτ = KcE · 1[min]/Ti = up · 1/Ti. Thus, the I-term has repeated the

P-term 1/Ti times.

Derivative time

Td [s] is the derivative time.

47

CHAPTER 1. FLASH COURSE IN AUTOMATIC CONTROL

P controller and PI controller

A P controller (proportional controller) is achieved by setting Ti = ∞ (or to a very large
value) and Td = 0. In some industrial controllers, you set Ti to 0 (zero) to deactivate the
integral term, although this is an “unacceptable” numerical value of Ti because division by
zero is not acceptable mathematically, cf. (1.12).

A PI controller (proportional-integral controller) is obtained by setting Td = 0.

Alternative parameterization

Some controllers use the following alternative parameterization of the PID control function:

• Integral gain:

Ki =
Kc

Ti
(1.15)

• Derivative gain:
Kd = KcTd (1.16)

1.4.4.3 Discrete-time PID algorithm

Using the continuous-time PID controller, (1.12), as the basis, we will now develop a
discrete-time PID controller – or a PID algorithm – ready for programming. The PID
algorithm has the same basic form as (1.12), i.e.

uk = uman,k + up,k + ui,k + ud,k (1.17)

where each of the terms are discretized version of their corresponding continuous-time
terms.

In the following, the discrete-time control error is calculated as

ek = rk − ymf,k (1.18)

In the following, dt is the sampling time (or time step, or cycle time) of the controller. In
industrial PID controllers, a typical value of dt is 0.1 s.

The manual term

uman is a constant set by the operator (you?) when the controller is in manual mode. uman,
is “passive” when the controller is in automatic mode.

48

CHAPTER 1. FLASH COURSE IN AUTOMATIC CONTROL

The P term

It is straightforward to discretize the P term:

up,k = Kcek (1.19)

The I term

The continuous-time I term is

ui(t) =
Kc

Ti

ˆ t

0
e(τ) dτ (1.20)

It has become a tradition to discretize this integral with the Euler Backward method, which
gives

ui,k =
Kc

Ti

ˆ tk

0
e dτ

=
Kcdt

Ti
(e1 + . . .+ ek−1 + ek) (1.21)

=
Kcdt

Ti
(e1 + . . .+ ek−1)︸ ︷︷ ︸

ui,k−1

+
Kcdt

Ti
ek

= ui,k−1 +
Kcdt

Ti
ek (1.22)

which is a recursive version of the I term algorithm, which I repeated here for easier
reference:

ui,k = ui,k−1 +
Kcdt

Ti
ek (1.23)

It is much more practical to implement (1.23), which is a recursive or online algorithm,
than the batch algorithm (1.21), although they are equivalent. In (1.23), the only term that
we have to store is ui,k−1, while in (1.21) we have to store all older control errors, from
t = 0 (i.e. the last time when the controller was set to automatic mode), whenever back in
time that is (years maybe).

The D term

The continuous-time D term is, cf. (1.12),

ud = KcTd ef
′ (1.24)

It has become a tradition in the control community to discretize ef
′ with the Euler

Backward method, which gives the following discrete-time D term:

ud,k = KcTd
ef,k − ef,k−1

dt
(1.25)

49

CHAPTER 1. FLASH COURSE IN AUTOMATIC CONTROL

Above, ef is lowpass filtered (smoothed) control error e, filtered with the D term filter. The
filter is commonly either a moving average (MA) filter with filter parameter Tw (cf. Section
3.4.6.1) or a time constant filter with filter time constant Tf (cf. Section 3.4.6. As shown in
Section 3.4.6, the discrete time algorithms of both these filters are identical. With any of
these filters, the D term filter algorithm is

ef,k = (1− a)ef,k−1 + aek (1.26)

Filter parameter a is

a =
dt

Tw + dt
=

dt

Tf + dt
(1.27)

It is common to set Tw or Tf as a fraction of the derivative time, Td, of the controller:

Tw = Tf = αTd (1.28)

with the following typically setting:
α = 0.1 (1.29)

Obviously, the D term filter is needed only if the controller has an active D term, i.e. if Td

is different from zero. If you are to implement a P controller or a PI controller, you can just
forget about both the D term and the D term filter.

The total control signal

Just a repeat: Once the P, I, and D terms are calculated as described above, the total
control signal must be calculated with (1.17), which I repeat here for convenience:

uk = uman,k + up,k + ui,k + ud,k (1.30)

The PI algorithm

Assume you are to program a PI controller yourself. Below is a PI control algorithm that
you can use, expressed in pseudo code. umin and umaxare minimum and maximum values of
the control signal, respectively. For example: uminmay be 0 % or 0 V or 0 mA, and
umaxmay be 100 % or 5 V or 20 mA, depending on the application.

PI control algorithm

• Initialization of the I term: Typically, you can set ui,0 = 0.

• In a for loop or a while loop running with cycle time (time step) dt [s], which is
the real time between each loop iteration:

– Read the process measurement from the sensor: ym,k.

50

CHAPTER 1. FLASH COURSE IN AUTOMATIC CONTROL

– Filter (smooth) the measurement ym,k to obtain ymf,k.

– Calculate the control error: ek = rk − ymf,k.

– Calculate the P term: up,k = Kcek.

– Update the I term: ui,k = ui,k−1 + dt · (Kc/Ti) ek.

– Optional (may be dropped in a quick & dirty implementation): Implement
anti integral windup by limiting the I term, cf. Ch. 1.4.4.3 for details.

– Calculate the total control signal: uk = uman,k + up,k + ui,k.

– Limit the control signal between umin and umax.

– Write (apply) uk to the actuator.

– Time index shift (to prepare for the next iteration of the loop): Set
ui,k−1 equal to ui,k.

Practical modifications of the PID controller

The PID controller presented above can be used in “quick & dirty” implementations of the
controller. To make a full-fledged implementation, you should consider the following
practical modifications of the PID controller:

• Integral anti windup

• Reducing P kick and D kick

• Bumpless transfer between manual and automatic modes

These modifications are described in Section 11.3.

1.4.4.4 How does the PID controller work?

The manual term , uman, is constant, and hence “passive” when the controller is in
automatic mode. Its contribution in automatic mode is to provide kind of a reasonable
initial value at the moment of switching from manual to automatic mode.

The P term , up, contributes with a term in the total control signal, u, which is
proportional to the control error, e. It brings some speed to the control. However, assuming
uman is not “perfect” to give zero control error, i.e. e = 0, the P term by itself can not
ensure e = 0 either This is because, with e = 0, up = 0, which mean no contribution from
the P term. In other words, P controller can not ensure zero error in steady state.

The I term is the most important part of the PID controller because it ensures zero
steady state control error, i.e. es = 0. How? Look at the I term, (1.23). As long as e is
different from zero, ui will change. In other words, e is an “improvement term”. Or, e

51

CHAPTER 1. FLASH COURSE IN AUTOMATIC CONTROL

drives the control. This change keeps on until e has become zero, and then ui,and u, are
kept constant, until some disturbance or setpoint change causes e again to become nonzero,
but then the improvement starts again.

The D term

• Assume that, for some reason, the control error, e, is increasing, i.e. the measurement
is moving away from (lower than) the setpoint. The difference ef,k − ef,k−1 in 1.25) is
then positive, making ud,k positive. So, the D term contributes positively to the total
control signal, uk, and we can expect faster control with the D term (PID control)
comparing with no D term (only PI control).

• Now, assume that e is decreasing, i.e. the measurement is getting closer to the
setpoint. The difference in 1.25) is now negative, making ud,k negative. So, the D
term contributes negatively to the total control signal, uk, and we can expect a
breaking or stabilizing control with the D term (PID control) comparing with no D
term (only PI control).

So, the D term may “press the gas pedal” when appropriate, and “press the break pedal”
when appropriate.

One implication of the above is that the D term may stabilize a control system which
otherwise can not be stabilized with a P or a PI controller. This is the case with dynamic
positioning of ships. With a PI controller the control system is deemed to be unstable,
while it is stable with a properly tuned PID controller.

There is one serious practical problem with the D-term: It amplifies the random
measurement noise, causing large variations in the control signal. These variations will be
reduced with a lowpass (smoothing) filter acting on the process measurement, cf. Section
1.4.3.7.

Example 1.2 Temperature control of a liquid tank

Figure 1.13 shows a simulation of a temperature control system of a liquid tank.

The tank can be e.g. a biogas reactor where the temperature in the tank is maintained at a
temperature reference which is favourable to the microorganisms that form biogas (mainly
methane gas) of the biological raw material. The temperature control, which is made by the
controller TC (Temperature Controller) is based on feedback from the measured
temperature in the tank provided by the sensor TT (Temperatuere Transmitter). The
controller manipulates the tank temperature by adjusting the control signal to the heating
element in the tank. A significant process disturbance, or environmental variable, is the
varying inlet temperature Tin. The temperature setpoint, rT , i.e. the desired temperature,
is 40◦C.

Figure 1.14 shows a block diagram of the temperature control system.

As seen in the simulation:

52

CHAPTER 1. FLASH COURSE IN AUTOMATIC CONTROL

P PI PID
PID

+filter

Figure 1.13: Temperature control with P, PI, PID controller without meas. filter, and PID
with filter.

• The steady state control error is non-zero with the P controller. The non-zero error is
due to the lack of the integral term of the PI controller.

• The steady state control error is zero with the PI controller. The zero error is due to
the integral term of the PI controller.

• The control signal is very noisy when the PID controller is used. (The large transient
response in the temperature around t = 210 s is due to the D term suddenly being
activated, causing a jump in the control signal and hence in the temperature.)

• The measurement filter attenuates the noise, thereby reducing the noise in the control
signal.

The simulations in this example are made with this SimView simulator:

53

CHAPTER 1. FLASH COURSE IN AUTOMATIC CONTROL

Tank

(Process)

Temp.

sensor

rT u
Controller

Heater

(Actuator)

Tin

Tm

e T

Te

[C] [C]

[C][C]

[C]

[%] [kW][C]

Figure 1.14: Block diagram of the temperature control system of the liquid tank

http://techteach.no/simview/temp control pid onoff

[End of Example 1.2]

Summing up the PID controller

From the above it can be concluded that the controller should definitely have an I-term, i.e.
the controller should be either a PID controller or a PI controller, to ensure zero
steady-state control error. The D-term should be omitted if the control signal is too noisy
even with a measurement lowpass filter. However there are processes where the D-term is
essential for obtaining a stable control system (as in position control of ships and other
“free-body” mechanical systems). In fact, the PI controller is by far the most used feedback
controller in the industry. I have heard that more than 90% of PID controllers runs as PI
controllers.

1.4.5 On-off controller

1.4.5.1 The basic On-off controller

The On-off controller is probably the simplest controller there is. On-off controllers may be
an alternative to PID controllers, especially in temperature control. For example, room
temperature is commonly controlled with a thermostat, which is an On-off controller.

Figure 1.15 illustrates the On-off controller function.

In Figure 1.15, uminmay be 0 % or 0 V or 0 mA, and umaxmay be 100 % or 5 V or 20 mA,
depending on the application.

Alternatively, the On-off controller can be presented as an algorithm as follows.

54

http://techteach.no/simview/temp_control_pid_onoff

CHAPTER 1. FLASH COURSE IN AUTOMATIC CONTROL

e

umax

umin

u

Figure 1.15: On-off controller.

• In a for loop or a while loop running with cycle time (time step) dt [s], which is the
real time between each loop iteration:

– Read the process measurement from the sensor: ym,k.

– Optional (may be dropped in a quick & dirty implementation): Filter (smooth)
the measurement ym,k to obtain ymf,k, cf. Ch. 1.4.3.7.

– Calculate the control error: ek = rk − ym,k. If ym,k is filtered: ek = rk − ymf,k.

– If ek ≥0, set uk = umin.

– Else (i.e. if ek < 0), set uk = umax.

– Write (apply) uk to the actuator.

The On-off controller works as follows: When the control error, e, is positive, i.e. when y is
below r, u is umax, causing y to increase. Eventually y becomes larger than r, so that e
becomes negative, which sets u to umin, causing y to decrease. Eventually y becomes less
than r, so that e becomes positive, and then the scenario repeats. Hence, the On-off
controller causes the control system to oscillate.

The period of the oscillations is given by the dynamic properties of the process. The
amplitude of the oscillations in u and in y are also given by the dynamic properties of the
process. We can reduce the amplitudes by reducing the difference between umax and umin,
but with the danger of limiting the control signal so that it will stay at either umax or umin

in case of large process disturbances.

The benefits of the On-off controller are:

• It is a very “quick” controller. It compensates quickly for process disturbances –
quicker than a PID controller.

• It is tuned very easily. In principle, the only tuning is selecting the values of umax and
umin.

The main drawbacks about the On-off controller are:

55

CHAPTER 1. FLASH COURSE IN AUTOMATIC CONTROL

• The control loop has inavoidable oscillations, cf. Figure 1.16.

• The average value of the control error is non-zero, cf. Figure 1.16.

Example 1.3 Temperature control with On-off controller

In this example, the simulations are made with the following SimView simulator:

http://techteach.no/simview/temp control pid onoff

Figure 1.16 shows a simulation of a temperature control system. umax = 80 kW, and umin =
0 kW. The oscillatory behaviour is clear. Note that the mean value of the control error is
different from zero (the mean temperature is slightly below its setpoint), which is typical for
On-off control.

Figure 1.16: Simulation of a temperature control system with an On-off controller.

[End of Example 1.3]

1.4.5.2 On-off controller for processes with negative process gain

Actually, the On-off controller shown in Section (1.4.5.1) applies only to processes which
have a so-called positive process gain, i.e. the process measurement increases when the

56

http://techteach.no/simview/temp_control_pid_onoff

CHAPTER 1. FLASH COURSE IN AUTOMATIC CONTROL

control signal increases (like in a “heating” thermal process where an increase of the control
signal to the heater makes the process temperature increase).

If the process has a negative gain, i.e. the process measurement decreases when the control
signal increases (like in a “cooling” thermal process where an increase of the control signal
to the cooler makes the process temperature decrease), the On-off controller is “flipped” as
shown in Figure 1.17.

e

umax

umin

u

Figure 1.17: On-off controller for processes with negative process gain.

The corresponding psuedo-code is the core of the On-off control algorithm:

On-off control algorithm

• If ek ≥0, set uk = umax.

• Else (i.e. if ek < 0), set uk = umin.

1.4.5.3 On-off controller with deadband

There is a practical problem with the On-off controller presented in Sections 1.4.5.1: If the
process measurement, y, is noisy, also the controller error, e, is noisy. A noisy e may make
the control signal, u, switch abruptly between umin and umax. This is unfortunate,
especially if the actuator is mechanical.

Example 1.4 Temperature control with On-off controller with noisy measurement

Figure 1.18 shows a simulation of the same temperature control system as in Example 1.3,
but where uniformly distributed random noise between ±1.0 ◦C has been added to the

57

CHAPTER 1. FLASH COURSE IN AUTOMATIC CONTROL

Figure 1.18: Simulation of a temperature control system where uniformly distributed random
noise between ±1.0 ◦C of has been added to the temperature measurement.

temperature measurement. We can see that the control signal varies abruptly when the
error is around zero.

[End of Example 1.4]

In Example 1.4 we saw that measurement noise caused the On-off controller output to
change abruptly between umin and umax when the control error varied around zero. Such
abrupt changes are unfortunate, and should be avoided, particularly if the actuator is
mechanical, like a mechanical relay, or a pump, or a valve, or a motor.

How can we avoid such abrupt changes? We can include a deadband in the On-off
controller! The deadband should be larger than the maximum amplitude of the
measurement noise. This solution is shown in Figure 1.19.

e

umax

umin

u

De

Figure 1.19: On-off controller with deadband.

58

CHAPTER 1. FLASH COURSE IN AUTOMATIC CONTROL

A drawback about including the deadband is that the amplitude of the oscillations in y will
be somewhat larger than without deadband. Furthermore, the period of the oscillations will
increase, but this is hardly a drawback.

Example 1.5 On-off controller with deadband

Figure 1.18 in Example 1.4 shows a simulation of a temperature control system where
uniformly distributed random noise between ±1.0 ◦C was added to the temperature
measurement, causing u to change abruptly when e is around zero. Now we include a
deadband with De = 2 ◦C in the On-off controller. Figure 1.20 shows the results of a
simulation. As expected, the abrupt changes in u are now eliminated. The period of the
oscillations is somewhat larger than without deadband, cf. Figure 1.18.

Figure 1.20: Temperature control with On-off controller with deadband.

[End of Example 1.5]

1.5 Feedforward control

By now, we know that feedback control – or error-driven control – can bring the process
output variable to or close to the setpoint in steady state (strictly: when time goes to
infinity). Feedback control is in most cases a sufficiently good control method. But
sometimes you want more. The “problem” with feedback is that there has to exist a control
error different from zero for any change of the control signal to take place, since the control
variable is adjusted as a function of the control error. Here, feedforward control come to

59

CHAPTER 1. FLASH COURSE IN AUTOMATIC CONTROL

help. Feedforward control is based on the following information about the process to be
controlled:

• Desired behaviour of the process in terms of the setpoint. This is always known, and is
needed also in feedback control.

• Measurements of the process disturbances

• A mathematical model of the process. A model is an abstract, mathematical
representation of process, and expresses how the process behaves.

Using all this information to calculate the control signal, we may obtain excellent (accurate)
control, i.e. very good setpoint tracking. However, the information is certainly more or less
imprecise, causing the control to be more or less imperfect so that the control error becomes
somewhat different from zero. But here comes feedback control to help: It reduces the
control error which exist due to the inevitable imperfect feedforward control. Hence, when
feedforward control is used, it is typically used together with feedback control.

Let’s take a brief look at an interesting real application of feedforward control, see Example
1.6. Feedforwad control is presented more systematically and in more detail in Chapter 17.

Example 1.6 Dynamic positioning of a ship

Dynamic Positioning (DP) of ships is automatic position control through the manipulation
of the actuators which are the main propeller, maneuvering thrusters, and the rudder. DP
systems are very important in various marine operations. DP systems make ships stay
sufficiently close to e.g. platforms and other ships, and make ships follow a given position
trajectory accurately. Obviously, DP systems increase the level of safety largely.

Let us see how feedforward control can be used in the dynamic positioning system of a ship.
The main disturbances are:

• Wind, represented with the wind speed, Vw [m/s], causing a disturbing force, Fw [N],
on the ship.

• Water current, represented with the water current speed, uc [m/s], causing a
disturbing hydraulic force, Fh, on the ship.

Assume that we can measure or estimate Vw and uc and calculate Fw and Fh, respectively.
This can actually be done with a wind force model and a water current model. Such models
are presented in Ch. 38.2, but we skip details about how to design the feedforward
controller using these models until Ch. 17. Assuming that we know Fw and Fh from
measurements of Vw and uc and the mentioned models. To compensate for these disturbing
forces, we can increase the propeller force, Fp, with an amount which is equal to the
negative sum of Fw and Fh, thereby cancelling out their impacts on the ship motion! In
other words, we establish a technical coupling – a feedforward controller – that cancels out

60

CHAPTER 1. FLASH COURSE IN AUTOMATIC CONTROL

the natural coupling that the disturbances has on the ship (the process). The feedforward
controller also uses the position reference, yr, to calculate the feedforward control signal.

The resulting control signal (which is a propeller force demand) is the sum of the feedback
control signal and the feedforward control signal:

Fp = Fp,fb + Fp,ff (1.31)

Figure 1.21 shows the dynamic positioning system with feedforward control, which is added
to the feedback control based on position measurement from GPS sensors, but other
position sensors may be used also depending on the operation conditions.

Feedback

controller

Position

sensor

Disturbance

Disturbance

Sensor
Sensor/

estimator

Position

reference

Feedforward

controller

+
+

Fp
Fp,fb

Fp,ff

y

yr

Vw

uc

Vwuc

Figure 1.21: Dynamic positioning system with feedforward control added to the feedback
control. (The drawing is based on a drawing originally made by Kongberg Maritime AS.)

Feedback control

Let’s first see how the DP system works without feedforward control – but with the
compulsory feedback control. The feedback controller is a PID controller.

I have programmed a simulator in Python of the longitudinal or surge motion of a ship,
using model parameter values provided by the company Kongsberg Maritime AS, Norway.
The mathematical model is presented in Ch. 38.2. Figure 1.22 shows simulated responses
where:

• The position reference (setpoint) r is changed softly (as a sinusoid) from 0 to 20 m

61

CHAPTER 1. FLASH COURSE IN AUTOMATIC CONTROL

from t = 0 s and 200 s, and is kept constant at 20 m between t = 200 s and 600 s, see
the upper subplot of Figure 1.22.

• The speed, Vw, of the wind acting on the ship is changed from 0 to −30 m/s at time
t = 600 s.6 The wind speed causes a wind force, Fw, which is a disturbance on the DP
system. Fw is plotted in the lower subplot of Figure 1.22.

0 200 400 600 800 1000 1200
0

10

20

[m
]

r
y

0 200 400 600 800 1000 1200
t [s]

200

0

200

[k
N] Fp

Fw

Figure 1.22: Simulation of position control of a ship (dynamic positioning).

Based on the control error, i.e. the difference between the position reference and the
measured position, the controller generates a propeller force Fp in an attempt to keep the
ship at the reference, see the lower plot in Figure 1.22. The ship tracks the varying setpoint
with a maximum control error of a few meters, and the wind gust drives the ship off the
setpoint with approximately 2.5 m. In steady state, the control error is zero.

Now, let’s see if feedforward control can reduce the control error.

Feedforward control

Figure 1.23 shows a simulation of the ship with position control based on feedforward
control combined with feedback control. The control system behaves excellently:

6You may say that this wind gust is unrealistically large. But keep in mind that this change may be due to
the ship being in harsh weather with a strong side wind, and when the ship turns for some reason, the wind
force suddenly changes direction and force relative to the ship.

62

CHAPTER 1. FLASH COURSE IN AUTOMATIC CONTROL

0 200 400 600 800 1000 1200
0

10

20

[m
]

r
y

0 200 400 600 800 1000 1200
t [s]

100

0

100

[k
N] Fp

Fw

Figure 1.23: Simulation of the ship with position control based on feedforward control com-
bined with feedback control.

• The position reference is tracked precisely (the position reference and the position
measurement can hardly be distinguished).

• The wind disturbance (there is a wind gust at t = 600 s) is compensated for
effectively. Notice that the propeller force counteracts exactly the wind force, causing
the ship to stay still despite the heavy wind gust. This demonstrates very well the
behaviour of the feedforward controller.

In practice, we can not expect such an excellent behaviour of the controlled ship because we
can not (never) implement a perfect feedforward controller due to modeling and/or
measurement errors. However, we can expect a large improvement of the control with a
well-designed feedforward controller.

The simulated responses shown in Figure 1.23 are produced with the following Python
simulator:

http://techteach.no/control/python/prog sim dynpos feedforward.py

A SimView simulator of this position control system is available on:

63

http://techteach.no/control/python/prog_sim_dynpos_feedforward.py

CHAPTER 1. FLASH COURSE IN AUTOMATIC CONTROL

http://techteach.no/simview/dynpos

[End of Example 1.6]

1.6 Performance measures of control systems

Some times it is useful to evaluate the performance of a control system with a numerical
measure or index. There are several alternative measures:

• Control error based measures, which can be found experimentally.

• Stability margins, which can be found experimentally or from the frequency response
of the control system.

• Bandwidth, which can be found from the frequency response of the control system.

Performance measures based on the control error are defined below. Stability margins are
defined later in the book; in Sections 15.2 and 22.3, while bandwidth is defined in Section
22.3.

Figure 1.24 shows three common quantitative measures of the performance of control
systems. These measures are based on the observed control error:

e = r − y (1.32)

where r is the reference (or setpoint), and y is the (measured) process output.

Below are comments to each of the three performance measures.

Maximum control error

The smaller the |e|max, the better performance.

Example 1.7 Maximum control error in a level control system

See Figure 1.6. Assume that the change of wout from 1500 to 1800 kg/min, which is a
change of 300 kg/min, is the worst outflow change that can occur during normal
production. From the plot of the wood chips level, we see that the maximum control error
due to this change is |e|max = 1.3 m.

[End of Example 1.7]

64

http://techteach.no/simview/dynpos

CHAPTER 1. FLASH COURSE IN AUTOMATIC CONTROL

t

e

|e|max

t

e

es

t

e

Max error

IAE

tstoptstart

Ts

+

+

IAE (integral or area of

absolute value of error)

Steady state error

Figure 1.24: Three common quantitative measures of the performance of control systems.

Steady state control error

The steady state control error, es, is the error when the error is approximately constant
(when you disregard the variations due to measurement noise). The steady state control
error can also be denoted the static control error.

The smaller the es, the better performance.

Example 1.8 Steady state control error in a level control system

See Figure 1.6. From the plot of the wood chips level, we see that the steady state control
error when the level reference and the process disturbance (the outflow) are contants is
es = 0 m.

[End of Example 1.8]

65

CHAPTER 1. FLASH COURSE IN AUTOMATIC CONTROL

IAE

IAE is short for integral of absolute value of control error. The IAE performance index is
widely used in literature (books and articles) where the performance of control systems is
compared, but you will not find any IAE indicator in an industrial controller.

IAE is defined as

IAE =

ˆ tstop

tstart

|e(t)| dt (1.33)

The IAE can be calculated numerically as

IAE = dt · [|e (t0)|+ |e (t1)|+ · · ·+ |e (tk−1)|+ |e (tk)|] = dt

tN−1=tend∑
t0=tstart

|e (tk)| (1.34)

where dt is the sampling time. tstart and tend are specified by the user. k is the time index
(an integer). If you disregard the factor dt (i.e. assume it 1), the IAE is the sum of the
absolute errors.

The smaller the IAE index, the better performance.

The IAE value from an experiment does not tell that much, but it is useful when it is
compared with the IAE values from other experiments.

The IAE index depends on the duration of the experiment, so you can compare IAE values
from different experiments only when the experiments have the same duration. If you want
an IAE index which is independent of the duration, you can use the following normalized
index:

IAEnorm =
1

tstop − tstart

ˆ tstop

tstart

|e(t)| dt (1.35)

which gives you the average absolute control error over the pertinent time interval.

66

CHAPTER 1. FLASH COURSE IN AUTOMATIC CONTROL

1.7 Problems for Chapter 1

Problem 1.1 Components of a speed control system

Figure 1.25 shows the different components of a speed control system of an electric motor.

Subtractor

Controller
Tacho-

meter

Voltage

Rotational

speed of

shaft

Motor

Measurement

filter

Load torque

(disturbance)

Figure 1.25: Components of a motor servo mechanism.

1. “Construct” a speed control system by connecting the components (draw a block
diagram of the control system). Where is the control error in your block diagram?

2. How does the control system work? (Assume that the speed initially is equal to the
speed reference (setpoint), and that the load torque is increased so that the motor
speed is reduced.)

Problem 1.2 Automatic bartender

The weight control system shown in Figure 1.26 seems to be an automatic bartender.7

Explain how the control system works. (Explain the feedback control action.)

Do you know any other process of your daily life which uses the same principle of level
control?

Problem 1.3 Evaporator

Figure 1.27 shows an evaporator where the product is created by evaporating the feed. (As
an example, an evaporator is used to remove water from the half-finished fertilizer in a
fertilizer factory.)

7From the book ”Origins of Feedback Control” by O. Mayr.

67

CHAPTER 1. FLASH COURSE IN AUTOMATIC CONTROL

Figure 1.26: A weight control system from the Antics. An automatic bartender?

Feed

Vapour

Steam

Product

Figure 1.27: Evaporator.

Suggest a control structure by drawing a Process & Instrumentation Diagram of the
evaporator according to the requirements listed below. (Process & Instrumentation
Diagrams are covered in detail in Ch. 2, but I assume you have enough information from
the examples in this chapter to draw such a diagram at this stage.)

• The feed flow is controlled to its setpoint. (Symbol of flow is F.)

• The liquid level is controlled to its setpoint. (Symbol of level is L.)

• The liquid temperature is controlled to its setpoint. (Symbol of temperature is T.)

• The vapour pressure is controlled to its setpoint. (Symbol of pressure is P.)

• You can use control valves as actuators. A symbol of a control valve is shown in
Figure 1.28.

Control signal

Flow

Figure 1.28: Symbol of a control valve.

68

CHAPTER 1. FLASH COURSE IN AUTOMATIC CONTROL

Problem 1.4 Examples of control systems

Below are mentioned three processes which are supposed to be controlled. The process
output variable is indicated in parenthesis. For each of the processes:

• What is the control (manipulating) variable?

• What are the disturbances or loads or environmental variables (these are alternative
names)?

Make your own assumptions. The processes are as follows:

1. Robot arm or manipulator driven by an electric motor (arm position).

2. Steam heated heat exchanger with some process fluid to be heated (temperature of
fluid outlet).

3. Ship positioned with thrusters (denoted a dynamic positioning system) (ship position).

Problem 1.5 Measurement scaling

Given a level sensor which represents the level, h, in the range [0 – 15 m] with a
measurement signal (current), m, in the range [4 – 20 mA], with a linear relation between
these ranges.

1. Find the scaling function with m as input and h as output, and express it as a linear
function on the standard form

h = a ·m+ b (1.36)

where a is the slope and b is the intercept (or constant term).

2. What is h if 8 mA?

Problem 1.6 Manual calculation of filter output

Given the following measurement signals, ym, for the times t0, t1,t2, respectively:

9.11

10.48

9.54

(The ideal (noise-free) measurement value is 10.)

Suppose the filter’s initial value is 10. Manually calculate the filter output for times t0, t1,
t2 for a time constant filter. The filter parameter is a = 0.1.

Can you see from the results that the filter output is smoother (varies less) than the filter
input?

69

CHAPTER 1. FLASH COURSE IN AUTOMATIC CONTROL

Problem 1.7 Static response of MA filter

The MA filter algorithm is given by (3.48). Assume that the filter input is constant, say
Ym. We would like the corresponding static response, Yfm,to be equal to Ym. Show that
this is fortunately the case.

Problem 1.8 Filter length of an MA filter

Given an MA filter with Tw = 5.0 s and dt = 0.05 s. What is the filter length Nf of the
filter? What is the filter parameter a?

Problem 1.9 Temperature response with various controllers

Figure 1.29 shows an air heater. A fan with fixed speed blows air through the pipe. The fan
opening can be varied manually. The air is heated by a electric heater. The control signal u
is the voltage signal which controls (adjusts) the power supplied to the heater. The
temperature is measured with a thermistor which is a temperature-dependent resistance. In
the experiments described below the controller is implemented in a PC with I/O-device
(Input/Output-device). (In general, a control system should contain a measurement filter,
but in this particular system a filter was not used.)

Fan opening

Heater

Temperature
sensor

Temperature
sensor

Tube

Measurement signal
(to external controller)

[V]

Control signal
(from external
controller) [V]

Potensiometer for measuring
the fan opening [V]

Air

Figure 1.29: Process trainer

1. Draw a block diagram of the control system, including a measurement filter.

2. Figure 1.30 shows the response in the temperature y after a step in the temperature
reference (setpoint) and after a step in the air inflow due to an increase of the fan

70

CHAPTER 1. FLASH COURSE IN AUTOMATIC CONTROL

opening. The air inflow or – equivalently the fan opening – can be regarded as a
disturbance. In this experiment the control signal is constant, hence there is no
feedback (no measurement-based or error-driven) control. Explain why there is no
response in the temperature due to the reference change. And explain why there is a
response after the disturbance (fan opening) change.

3. Assume that the temperature is controlled with a PID-controller (with proper
parameter settings). Draw the principal temperature response after a reference step
and after a disturbance step. You can “add” your curves to 1.30.)

Increased fan

opening

t [s]

Figure 1.30: Temperature response with constant control signal

Problem 1.10 Gain and PB

What is the value of the controller gain Kc corresponding to proportional band PB = 250
%?

Problem 1.11 Manual calculation of PI controller output

In this problem, you will act as a discrete time PI controller.

Assume the following:

• Reference: rk = 60.

• Filtered process measurement: ymf,k = 59.4.

• Integral term from previous time-step: ui,k−1 = 0.5.

• Manual control signal: uman = 50.

71

CHAPTER 1. FLASH COURSE IN AUTOMATIC CONTROL

• Controller gain: Kc = 2.

• Integral time: Ti = 10 s.

• Time step of the controller: dt = 0.1 s.

Calculate the control signal uk according to the discrete time PI control agorithm.

Problem 1.12 Step response of PI controller

Suppose you want to verify that a PI controller works correctly according to the
mathematical PI controller function. This can be done with a step response test, where a
step is applied to the setpoint r input to the controller while the measurement input ym is
kept constant. Assume that

ym(t) = A (1.37)

and that the setpoint is increased from A to

r(t) = A+ E (1.38)

This implies that the control error e is increased as a step from zero to

e(t) = r(t)− ym(t) = (A+ E)−A = E (1.39)

By comparing the observed (experimental) step response in the controller output u with the
theoretical output, you can (hopefully) confirm that the mathematical operation of the
controller is correct.

The PI controller function is

u = Kce+
Kc

Ti

ˆ t

0
e dt (1.40)

1. Calculate the step response in u (as a function of time) assuming that the control
error is a step of amplitude E, and plot u(t).

2. Figure 1.31 shows the step response in u for a given PI controller. The step amplitude
of the control error was

E = 1 (1.41)

Calculate Kc and Ti from the step response.

Problem 1.13 Filter time constant in D-term

Given a PID controller with a lowpass filter acting on the derivative term. Assume that the
derivative time Td is 2.0 sec. Suggest a proper value of the filter time constant Tf .

72

CHAPTER 1. FLASH COURSE IN AUTOMATIC CONTROL

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t [sec]

0

1

2

3

4

5

6

7

8

u

Figure 1.31: Step response in PI controller output.

Problem 1.14 On-off control

See Figure 1.16.

1. What is the period of the oscillations?

2. What is the average control error? Is it zero?

Problem 1.15 IAE

Assume that an experiment with control system number 1 has an IAE index of 148
calculated over the time interval 20-30 min after a step in the reference at time t = 20 min.
The same experiment with another control system, number 2, has an IAE index of 97 over
the same time interval, and the same experiment with control system no. 3 gives IAE index
of 123 calculated over the time interval 20-40 min.

1. Can the IAE indexes of the control systems 1, 2 and 3 be compared to each other?

2. Which of the control systems has the best performance in terms of IAE?

73

CHAPTER 1. FLASH COURSE IN AUTOMATIC CONTROL

1.8 Solutions to problems for Chapter 1

Solution to Problem 1.1

1. Figure 1.32 shows the speed control system. The control error, e, is the output of the

Subtractor

Controller
Tacho-

meter

Speed

reference
Motor

Measurement

filter

e

Load torque

(disturbance)

Figure 1.32: Speed control system.

subtractor.

2. When the speed is reduced due to the increased load torque, the control error
becomes different from zero, and positive. This non-zero, positive control error causes
the controller to increase the control signal acting on the motor, so that the speed is
increased. If the controller is properly chosen (it must have integral action, actually),
the controller is able to adjust the control signal to exactly the new value that is
needed to compensate for the load torque, and consequently the control error become
zero – in steady state.

Solution to Problem 1.2

The purpose of the system is to fill just the right amount of liquid into the cup, i.e. level
control. The system works as follows: As long as the level is low the inlet is open and the
cup is being filled. The more liquid in the cup, the less opening in the inlet. Eventually,
when the cup is full, the inlet is closed ands hence, the desired level (the level setpoint) is
reached.

Another system: Water toilet.

Solution to Problem 1.3

The control structure is shown in Figure 1.33.

Solution to Problem 1.4

1. Robot arm: Control signal manipulates the motor. Disturbances: Torques due to the
gravity and due to mechanical couplings to other links.

74

CHAPTER 1. FLASH COURSE IN AUTOMATIC CONTROL

Feed

Vapour

Steam

Product TCTT

LC

LT

PC

PT

FC FT

Lsp

Fsp

Psp

Tsp

Figure 1.33: Control structure of an evaporator.

2. Heat exchanger: Control signal manipulates the valve. Disturbances: Temperature
and pressure of inlet steam.

3. Ship: Control signal manipulates the propellers (thrusters). Disturbances: Wind,
current, waves.

Solution to Problem 1.5

1. The slope becomes

a =
15 m− 0 m

20 mA− 4 mA
=

15

16

m

mA
= 0.9375

m

mA
(1.42)

The constant term becomes

b = 0 m− 15

16

m

mA
· 4 mA = −3.75 m (1.43)

2. With m = 8 mA, (1.36) gives

p = a ·m+ b =
15

16

m

mA
· 8 mA− 3.75 m = 3.75 m (1.44)

Solution to Problem 1.6

The filter function is given by (3.48), which with a = 0.1 becomes

ymf (tk) = 0.9ymf (tk−1) + 0.1ym(tk)

75

CHAPTER 1. FLASH COURSE IN AUTOMATIC CONTROL

At time t0:

ymf (t0) = 0.9ymf (t−1) + 0.1ym(t0) = 0.9 · 10 + 0.1 · 9.11 = 9.911

At time t1:

ymf (t1) = 0.9ymf (t0) + 0.1ym(t1) = 0.9 · 9.911 + 0.1 · 10.48 = 9.968

At time t2:

ymf (t2) = 0.9ymf (t1) + 0.1ym(t2) = 0.9 · 9.968 + 0.1 · 9.54 = 9.925

Yes, it is quite clear that these values of the filter output vary less than the filter inputs.

Solution to Problem 1.7

In (3.48): We set ym,k = Ym. Assuming a the static response, both ymf,k = Ymf and
ymf,k−1 = Ymf . This gives

Ymf = (1− a)Ymf + aYm (1.45)

which, fortunately, gives
Ymf = Ym (1.46)

i.e., the static response is equal to the constant input.

Solution to Problem 1.8

From (1.9):

Nf =
Tw

dt
+ 1 =

5.0

0.05
+ 1 = 101 (1.47)

From (1.11):

a =
1

Nf
=

1

101
= 0.009901 (1.48)

Solution to Problem 1.9

1. The block diagram is shown in Figure 1.34.

2. Since u0 is not influenced by the temperature reference (setpoint), the control signal
remains constant. Therefore, the reference does not influence the actual temperature.
However, an increase of the fan opening will influence (reduce) the temperature
because more cold air is blown into the pipe.

3. The PID-controller gives zero control error (in average), see Figure 1.35.

76

CHAPTER 1. FLASH COURSE IN AUTOMATIC CONTROL

Controller
Air heater

(Process)

Temp.-

sensor

Temp.-

setpoint

y

Air inflow

(Disturbance)
Control

signal to

heater

Temperature

(Process

output)ysp u

Temperature

measurement

ymMeas.

filter

Figure 1.34: Block diagram of temperature control system

Solution to Problem 1.10

Kc =
100

PB
=

100

250
= 0.4 (1.49)

Solution to Problem 1.11

Control error:
ek = rk − ymf,k = 60.0− 59.4 = 0.6

P term:
up,k = Kcek = 2 · 0.6 = 1.2

I term:
ui,k = ui,k−1 + dt · (Kc/Ti) ek = 0.5 + 0.1 · (2/10) · 0.6 = 0.512

Total control signal:

uk = uman,k + up,k + ui,k = 50 + 1.2 + 0.512 = 51.712

Solution to Problem 1.12

1. Setting e = E in the controller function gives

u(t) = KcE +
Kc

Ti

ˆ t

0
E dt = KcE +

Kc

Ti
Et (1.50)

which is “constant plus ramp”. Figure 1.36 shows this step response.

77

CHAPTER 1. FLASH COURSE IN AUTOMATIC CONTROL

Increased fan

opening

t [s]

Figure 1.35: Temperature response with PID controller

t

KpE

0

Slope

KpE/Ti

u

Figure 1.36: Step response of PI controller.

2. From Figure 1.31 we see that

u(0+) = 2 = KcE = Kc · 1 = Kc (1.51)

And we see that the slope is

Slope = 4 =
Kc

Ti
E =

2

Ti
· 1 (1.52)

which gives
Ti = 0.5 sec (1.53)

Solution to Problem 1.13

Tf = 0.1Td = 0.1 · 2 = 0.2 s (1.54)

78

CHAPTER 1. FLASH COURSE IN AUTOMATIC CONTROL

Solution to Problem 1.14

From Figure 1.20:

1. The period is approximately 7.5 min.

2. The max and min values of the the temperature is approximately 43.0 and 35.5 deg C.
Then the average temperature is approximately (43.0 + 35.5)/2 = 39.25. And the
average control error is 40.0− 39.25 = 0.75 deg C, which is non-zero.

Solution to Problem 1.15

1. Only the IAE indexes of control systems 1 and 2 can be compared to each other since
their IAE values are calculated over the same time interval.

2. Among control system 1 and 2, system 2 has best performance since it has smaller
IAE value than system 1 has.

79

Part II

INSTRUMENTATION OF
CONTROL SYSTEMS

80

Chapter 2

Piping & Instrumentation Diagrams

In the industry, Process & Instrumentation Diagrams – P&I Ds are widely used as
documentation of control systems. A P&I D shows the structure of the control system. It
contains easily recognizable drawings of the processes to be controller, e.g. tanks and heat
exchangers, together with symbols for instrumentation equipment as sensors, controllers
and actuators, e.g. valves and pumps. We have already seen examples of simple P&I Ds in
the previous sections

This section gives a brief overview over codes and symbols used in the P&I D standard
ISA-5.1 by International Society of Automation. There are other similar standars, both
international, national and internal standards in factories.

2.1 Instrument codes

Instrument tags are used to give the instrument a unique name. The instrument code
contains a letter code that expresses the function of the instrument (i.e. what it does), and
a number code. For example, LC-102 is a Level Controller, while the LT-103 is a Level
Transmitter (sensor). When we refer to the instrument code, we use a hyphen between the
letter code and the numeric code, but when the instrument code is written in a P&I D, the
hyphen is not included.

2.1.1 Letter codes

Table 2.1 shows the most commonly used letter codes used in Process & Instrumentation
Diagrams.

Some examples:

• LC = Level Controller

• LIC = Level Indicator Controller = level controller with level indicator

81

CHAPTER 2. PIPING & INSTRUMENTATION DIAGRAMS

Table 2.1: Common letter codes (identifiers) for instrument symbols in the ISA 5.1 standard

Letter 1. letter Subsequent Subsequent

code modificator letter

to 1. letter

A Analysis Alarm

B Burner, Combustion

C User’s choice Control

D User’s choice Differential

E Voltage Sensor, Primary element

F Flow rate Ratio

G User’s choice Glass, Gauge

H Hand High

I Current (electric) Indicate

J Power

L Level Low

P Pressure

Q Quantity Integrate, Totalize

R Radiation Record

S Speed, Frequency Switch

T Temperature Transmit

V Vibration Valve

W Weight, Force

Y Computation

Z Position Safety Instrumented

System (Interlock)

82

CHAPTER 2. PIPING & INSTRUMENTATION DIAGRAMS

• LE = Level Element = transducer; the primary device used to detect the process
variable to be measured, e.g. an ultrasound level sensor. Note: In P&I Ds, we will use
the letter code LT, not LE, to represent the level sensor.

• TT = Temperature Transmitter = temperature sensor

• PDT = Pressure Differential Transmitter

• TY = Temperature computation = some formula related to temperature
measurement or regulation, e.g. a feedforward controller based on temperature
measurement. The formula must be indicated on an appropriate place in the P&I D.

It is the function that determins which letter symbol to be used. Example: If a differential
pressure (dp) cell is used to measure fluid flow in a pipeline, the letter symbol FT – not PT
– must be used.

In P&I Ds where emphasis is placed on documenting control structures, and with little
emphasis on details such as whether the controller contains a display for showing the
process value, you can use the simplest letter code, e.g. LC instead of LIC.

2.1.2 Numeric codes

Numeric codes are used to number the instruments. The ISA 5.1 standard does not define
any specific standard for numbering instruments (such as controllers and sensors), but still
recommends choosing between so-called parallel and serial numbering:

• Parallel numbering: New numbering is started for each new first letter, with 1
being the lowest number.
Examples: FIC-101. FT-102. LIC-101.

• Serial numbering: The numbering is continuous, regardless of letter.
Examples: FIC-101. FT-102. LIC-103. LIC-104.

Serial numbering is used in the P&I Ds in this book.

The first digit of the number code may represent e.g.

• Area or field

• Unit

• Plant (factory)

The number of digits is not defined by the standard. It must be chosen so that all elements
can have their unique instrument code.

83

CHAPTER 2. PIPING & INSTRUMENTATION DIAGRAMS

2.1.3 Localization

You can use various symbols to indicate the localization of the instrument, so the user
knows where she/he can find it (this can be important information particularly in
emergency situations). Three different localizations are shown in Figure 2.1.

Instrument mounted locally

Instrument mounted in a central

(control room)

FC
123

FC
123

Instrument available on screen in a

central
FC
123

Figure 2.1: Main instrument symbols (FC123 is one example of instrument code)

If it is not important to show the location in a P&I D, you can use the simplest symbol,
which is a circle with only the instrument code inside (the upper symbol in Figure 2.1).

2.2 Signals

Figure 2.2 shows various signal symbols.

General (undefined) signal:

Pneumatic signal:

Electrical signal:

or

Digital signal:

or

Figure 2.2: Signal symbols

2.3 Material flows

Figure 2.3 shows how material flows (process flows) can be drawn in a P&I D. Material
flows should be drawn with lines that are clearly thicker than signal lines. If the plant is so

84

CHAPTER 2. PIPING & INSTRUMENTATION DIAGRAMS

extensive that more than one flowchart is needed for all of the units, references to the
adjacent diagrams are indicated, as shown in Figure 2.3.

P&ID-1 4

P&ID-3

3

Water/oil/gas

T-1

1

Water

2

Gas

3

Oil

4

Material flows

(From)

2

LC

LT

1

(To)

Figure 2.3: Drawing of material flows in a P&I D. (The example is a water/oil/gas separator.
The vertical line inside the separator is a so-called weir that is used to separate the oil and
water. The oil flows over the weir.)

In Figure 2.3, the material flows are identified with labels on the pipelines, and the flows
are defined at the bottom of the diagram. However, it is not required in the ISA 5.1
standard to label material flows in P&I Ds. Instead, material flows can be labelled in
so-called Process Flow Diagrams (PFDs), which are diagrams similar to technical flow
charts, but which show fewer details of the instrumentation. ISA’s documentation
guidelines encourages to avoid giving the same information in different diagrams. However,
this rule is not absolute, and control structures may appear both in P&I Ds and PFDs, and
you may define material flows in P&I Ds if you find it appropriate.

Note: In Figure 2.3, I have drawn arrow heads on the signal lines pertaining to the level
control loop. In the ISA 5.1 standard, arrow heads are generally not used on signal lines,
only ordinary lines. However, in this book I will still draw arrow heads to make the
direction of the signal flow completely clear. In comprehensive P&I Ds it may cause extra
stress to understand the signal direction from the symbols, although the direction is
obvious, but implicit. For example, the signal direction between a LT and a LC is obvious –
the signal goes from the LT to the LC.

2.4 Process equipment

2.4.1 Codes of process equipment

P&I Ds contain drawings of process equipment such as tanks, heat exchangers, pumps,
valves, etc. These can also be represented by letter and number codes, e.g. H-1 for Heat
Exchanger number 1. The ISA 5.1 standard does not define process equipment letters, but
some common letter codes are shown in Table . The numbering is usually serial.

85

CHAPTER 2. PIPING & INSTRUMENTATION DIAGRAMS

Table 2.2: Letter codes of process equipment

Code Equipment

C Column

D Drum

F Furnace

H Heat exchanger

K Compressor

M Motor

P Pump

R Reactor

T Tank

V Valve. Vessel

2.4.2 Valves

Some common valve symbols are shown in Figure 2.4.

Hand operated

(manual) valve:

Valve with membrane actuator:

Also a general symbol

of control valve

Valve with

fixed opening:

On/off magnetic

valve (solenoid):

Valve with

electrical actuator:

FO-valve

(Fail Open)

FC-valve

(Fail Closed)

or
FO

FC
or

S

Safety valve

(at over-pressure):

Atm

M

Valve with

positioner:

P

Non-return

valve:

Figure 2.4: Valve symbols.

One comment:

• There are symbols for a Fail Open (FO) valve and a Fail Closed (FC) valve. The
“fail” situation means that the power, e.g. air pressure, needed to operate the valve
fails. So, a FC valve closes if the air pressure vanish.

86

CHAPTER 2. PIPING & INSTRUMENTATION DIAGRAMS

2.4.3 Rotational flow components

Figure 2.5 shows various rotational flow components.

Sentrifugal

pump

Pump

(general symbol)

Compressor Turbine

Displacement

pump

Figure 2.5: Symbols of pumps, compressors and turbines

2.4.4 Heat exchangers

Figure 2.6 shows symbols of heat exchangers.

Heat exchanger

(general symbol)

Shell-and-tube

heat exchanger

Tube fluid

Shell fluid

Figure 2.6: Symbols of heat exchangers

2.4.5 Vessels

Figure 2.7 shows symbols of various types of vessels.

2.4.6 Mathematical functions

Figure 2.8 shows two alternative ways of including mathematical functions in P&I Ds. In
the example, the control signal uff is from a feedforward controller, to be added to the

87

CHAPTER 2. PIPING & INSTRUMENTATION DIAGRAMS

Open tank Closed tank

Vessel Reactor Absorber/

stripping

column

Destillation

column

Figure 2.7: Symbols of various types of vessels

TC

2

+

+

u = uPID + uf

uf

uPID

Process

TT

1

Heater

Steam

TC

2

u

uf

uPID

Process

TT

1

Heater

Steam

TY

3

Alternative 1: Alternative 2:

TY3: u = uPID + uf

Control signal

from feedforward

controller

Figure 2.8: Two alternative ways of including mathematical functions in P&I Ds.

control signal uPID generated by a feedback temperature controller (PID controller). The
total control signal is u = uPID + uff. Two alternatives are shown:

• Alternative 1: The mathematical function is specified directly with a suitable
mathematical symbol.

• Alternative 2: A general letter symbol is used, here TY, where Y stands for
“computation”, cf. Table 2.1. In this alternative, the mathematical function must be
specified at a suitable location in the P&I D.

2.4.7 Logical functions

In addition to arithmetic functions as discussed above, one can enter logical functions into
the diagram e.g. to express that a valve should be opened if the temperature in a tank is
above a certain limit. Such logical functions are used to implement safety actions, i.e.
interlocks, which are activated in critical situations.

A special diagram type denoted System and Control Diagram (SCD) has been developed in
Norway for the oil and gas industry. SCDs defines a uniform documentation of both logical

88

CHAPTER 2. PIPING & INSTRUMENTATION DIAGRAMS

control for safety, i.e. interlocks, and process control.

2.5 Problems for Chapter 2

Problem 2.1 P&I D of a level control system

Given a level control system for a water tank with inlet and outlet. The level control is
based on manipulation of a pump in the inlet. The controller is accessible via a computer
screen in a control room. Both the control signal and the measuring signal are electric.
Draw a Piping & Instrumentation Diagram of the control system.

Problem 2.2 P&I D of a temperature control system

Draw a Piping & Instrumentation Diagram of a temperature control system of a process.
You can select by yourself the process to be temperature controlled. It is assumed that the
controller is accessible in the field. The instruments are numbered with parallell numbering
with three digits. Both the control signal and the measurement signal are digital.

Problem 2.3 P&I D of a separator

Figure 2.9 shows an oil/water/gas separator. (The separation takes place by a sufficient
retention time.) The vertical line inside the separator is a so-called weir that is used to
separate the oil and water. The oil flows over the weir.

Separator

Gas

OilWater

Water/oil/gas

from reservoir

Water surface

Oil surface

Figure 2.9: Oil/water/gas separator.

Draw a Process & Instrumentation Diagram for the separator according to the following
requirements:

• The oil and water levels and the gas pressure in the separator are controlled to their
setpoints.

89

CHAPTER 2. PIPING & INSTRUMENTATION DIAGRAMS

• The setpoints can be shown explicitly with arrows.

• Signal lines may be drawn with arrows (although arrows are not normally used in P&I
D standards).

• Control valves are used as actuators, and should be labeled.

• The separator should be labeled.

• Parallel numbering is used.

2.6 Solutions to problems for Chapter 2

Solution to Problem 2.1

See Figure 2.10.

LC

1

LT

1

Figure 2.10: P&I Diagram of level control system.

Solution to Problem 2.2

See Figure 2.11.

Solution to Problem 2.3

The P&I D of the separator is shown in Figure 2.12.

90

CHAPTER 2. PIPING & INSTRUMENTATION DIAGRAMS

TC

101

TT

102

Heating

medium

o

o o

o

Figure 2.11: P&I Diagram of temperature control system.

T-1

LC

2

LT

1
Water surface

Oil surface

Gas

OilWater

Water/oil/gas

from reservoir

LT

3

LC

4

PC

1

PT

2

V-1

V-2

V-3

Water level

setpoint

Oil level

setpoint

Gas

pressure

setpoint

Figure 2.12: Control structure of an oil/water/gas separator.

91

Chapter 3

Components of control systems

3.1 Introduction

Section 1.4.3 provided a brief description of the components of such control systems. In the
present chapter, we will take a more detailed look at these component. Figure 3.1 shows a
block diagram of a general feedback control system. The diagram is the same as Figure 1.8,
but repeated here for convenience.

Process

Sensor

r e
Controller

y

d

ym

Measurement
noise

ymf

Computer-based
control device

ADC

DAC

Manual

Auto

Control
signal
scaling

Measurement
signal
scaling

Meas
filter

Actuator

uman

u

t

y(t)

tk=k*dt
dt

tk tk

u(t)

t

tk t

ym(t)
n

Process
disturbance

dt

rk ek uk

ymf,k

Figure 3.1: Block diagram of a control system.

92

CHAPTER 3. COMPONENTS OF CONTROL SYSTEMS

3.2 Automation hardware

3.2.1 Introduction

The following sections presents various equipment implementing the component denoted
automation hardware in Figure 3.1.

3.2.2 Process controllers

The term process controller is often used for standalone automation units that implement a
small number of – typically one – PID control loops. Figure 3.2 shows an example of a
process controller, namely the ABB CM50 1. Values of setpoint, process variable, and
control signal are displayed on the front panel.

Figure 3.2: The process controller ABB CM50 (height 14.4 cm, width 7.6 cm).

Figure 3.3 shows the backplane of the controller. Sensors and actuators are connected with
cables to terminals on the backplane.

1Control Master 50

93

CHAPTER 3. COMPONENTS OF CONTROL SYSTEMS

From sensor

(bl.a. V, mA, TC, RTD)

To actuator (mA)

Pulse-width modulated

(PWM) relay output

For data communication

(Modbus)

Figure 3.3: Backplane of the process controller ABB CM50.

Below is a list of some of the features of the ABB CM50 controller. The list is
representative of process controllers, although this controller is quite advanced.

• Control functions:

– PID controller with adjustable parameters:

∗ Proportional band P in range 0-999%. (The relationship between the P and
controller gain Kc is P = 100/Kc.)

∗ Integral time Ti in range 0-10000 s.

∗ Derivative time Td in range 0-999.9 s.

– Manual control with control signal adjustable in range 0-100%.

– On/off controller, cf. Ch. 1.4.5.

• Control tuning:

– Autotuner with the “relay method”, cf. Ch. 14.6.

– Gain scheduling, cf. Ch. 14.10.3.

94

CHAPTER 3. COMPONENTS OF CONTROL SYSTEMS

– Adaptive PID setting, i.e. continuous updating of the PID parameters on the
basis of an estimated transfer function process model.

• Sampling time (time step): 0.125 s.

• Measurement filter: Moving average filter with averaging interval adjustable in the
range 0-60 s, cf. Ch. 3.4.6.1.

• Setpoint (reference): Can be set locally on the controller, or received externally, e.g.
from another controller or from a sensor. The setpoint can be given a ramp-shaped
change between two different values to obtain a smooth shift from one setpoint value
to another.

• Analog inputs: Measurement signals (from sensors), cf. Ch. 3.3:

– Current in the range 0-50 mA (which covers the standard range 4-20 mA)

– Voltage in the range 0-25 V

– Millivolt signals in the range 0-150 mV

– Resistance values in the range 0-55 Ω

– Thermocouples (eng.: thermocouples = TC) of many types: J, K, L, etc.

– Resistance thermometer: Pt100 elements within the range –200 - +600 oC.

• Analogue output signals (control signals to actuators):

– mA in the range 4-20 mA or 0-20 mA

– Pulse-width modulated control signal, cf. Ch. 3.6.3

– Split-range control, cf. Ch. 16.3.

• Digital inputs from e.g. limit switches and push buttons.

• Digital outputs for controlling e.g. lamps, relays and motors.

• Logical control with logical operators as AND, OR, etc.

• Data communication: Connection to external devices with Modbus or Ethernet.

• Alarms: A warning can be given on the front panel if the process value exceeds alarm
limits.

• Programming: From the front panel or from a computer (PC) using a wireless
connection.

• Power supply to the regulator: Mains voltage or 24 VDC.

• Control structures: The CM50 controller contains ready-made templates for the
following structures, see Example 3.1.

– Single-loop control, cf. Ch. 1.4.2. (However, two independent regulation loops can
be implemented.)

– Cascade control, cf. Ch. 16.1.

– Ratio control, cf. Ch. 16.2.

– Feedforward control, cf. Ch. 17.

95

CHAPTER 3. COMPONENTS OF CONTROL SYSTEMS

Example 3.1 Control structure template in process controller CM50

Figure 3.4 shows an example from the control structure templates, namely level control of a
boiler. The process variable to be controlled to a setpoint is the water level in the boiler.
The control signal from the controller is the control signal for the air-actuated valve. The
control structure is cascade control. The primary loop is based on feedback from sensor LT.
The secondary loop is based on feedback from flow sensor FT for the feedwater.
Feedforward control is based on sensor FT of the steam flow.

Figure 3.4: From the control structure templates of ABB CM50: Level control of a boiler.

[End of Example 3.1]

3.2.3 Programmable logic controllers (PLCs)

Programmable logical controllers (PLCs) is a type of automation equipment that is widely
used – in process industry, discrete processes, building automation, water resource recover
plants2, motor control, traffic control, etc.

PLCs are available both as relatively small compact units, and as modular systems where
special modules can be added as required. Figure 3.5 shows a PLC.

The name PLC suggests that PLCs are meant for logical control of valves, motors, lamps,
etc., but typically modern PLCs can also run PID control.

Figure 3.6 shows the principle structure of a PLC. Program development usually takes place
on a PC, possibly on a hand-held programming tool, and the finished program is then
downloaded to the PLC where it runs on the microprosessor (see Figure 3.6), independently
of the PC.

PLCs can be programmed in different types of programming languages. The open standard
IEC 61131-3 standard (IEC = International Electrotechnical Commission) defines the
following languages:

2Older term: Wasterwater treatment plants.

96

CHAPTER 3. COMPONENTS OF CONTROL SYSTEMS

Figure 3.5: A Simatic PLC. (Public domain. https://en.wikipedia.org/wiki/Programmable logic controller.)

• Ladder diagram (LD), graphical programming

• Function block diagram (FBD), graphical programming

• Structured text (ST), textual programming

• Instruction list (IL), textual programming

• Sequential function chart (SFC), which is not really a separate language, but instead
a standard for organizing the program in serial and parallel sequences.

Different vendors of PLCs may offer their own variation of the above languages.

3.2.4 Programmable automation controllers

Programmable automation controllers (PACs) can be considered as an alternative to a PLC.
A PAC is a modular system for e.g. logical and sequential control and continuous PID
control. In some ways, PACs are more manufacturer-specific than PLCs as they typically
have their own “proprietary” programming languages. These languages may be flexible and
powerful than PLC languages, and can therefore give PACs greater functionality than PLCs.

97

CHAPTER 3. COMPONENTS OF CONTROL SYSTEMS

Micro
processor

Data
storage

Program
storage

Digital inputs
(from e.g. switches, buttons,
photo detectors, encoder)

In
pu

t t
er

m
in

al
s

Digital outputs
(to e.g. relays, motors,

valves, lamps)

O
utput term

inals

Analog inputs
(from e.g. sensors of temperature,

flow, pressure, level)

In
pu

t t
er

m
in

al
s

Analog outputs
(to e.g. control valves,

pumps, motors)

O
utput term

inals

DA
converter

AD
converter External

communication
(Modbus,

Profibus, etc)

Figure 3.6: The structure of a PLC. (AD = analog-digital. DA = digital-analog.)

Figure 3.7 shows an example of a PAC, namely Compact FieldPoint (National
Instruments). The control program is developed in LabVIEW on a PC and then
downloaded to the PAC equipment where it runs independently of the PC.

National Instruments presents the CompactRIO as follows: “The CompactRIO platform
features a range of embedded controllers with two processing targets: (1) a real-time
processor for communication and signal processing and (2) a user-programmable FPGA to
implement high-speed control and custom timing and triggering directly in hardware.
Eliminate the need for separate subsystems by connecting directly to sensors, displays,
cameras, and motors and take advantage of powerful development and run-time software.

3.2.5 Plantwide control systems

In modern factories, the control (or automation) systems are implemented in complex,
structured computer-based systems.

In the past, when computer performance was generally far weaker than it is today, the
control system was implemented using one central computer, possibly with one additional,
redundant computer to increase security. These days, control systems instead have a
distributed structure. This means that the implementation of the control system is
distributed on a number of computers. These computers can be process controllers, PLCs,
PACs and/or other types of automation devices.

98

CHAPTER 3. COMPONENTS OF CONTROL SYSTEMS

Figure 3.7: CompactRIO (National Instruments).

Plantwide control systems are modular and scalable. This implies that the existing system
can be modified and expanded with new control devices modules to obtain the desired
functionality of the system.

Figure 3.8 shows an example of a plantwide control system. The system consists of a
number of levels:

• Field level. Here, the control system interacts with the physical process via sensors
and actuators. In Figure 3.8, motors are the physical processes.

• Control level. This level includes the PLCs, PACs, process controllers and process
stations. Different types of automation devices can communicate with each other
using digital communication based on standardized communication protocols. It is
common for control systems to consist of equipment from several different suppliers.

• Operator level. This level includes process operators and computers – operator
stations -- which are used for process monitoring and possibly control in e.g. control
room. The operator stations display process images with tanks, containers, valves,
etc., as well as dashboards, alarm indicators (for example too high a level in a tank)
and diagrams with plots of process data (for example the time course of a level in a
tank).

• Management level. This level includes operations and company management and
computers that are used there for overall monitoring and operational planning. This
kind of planning is called ERP (enterprise resource planning). ERP software is a
software tool for the overall management of business areas such as production,
storage, sales, purchasing and finance.

99

CHAPTER 3. COMPONENTS OF CONTROL SYSTEMS

Figure 3.8: Example of a plantwide control system (PCS7, Siemens).

Between the various levels, data is exchanged digitally using standardized communication
techniques. Analog signals (current or voltage) are only used at the field level, but also
digital communication is common at field level.

Process data, which are logged values (time series) of process measurements, control signals,
set points, alarm signals etc., are stored in a process database. Historical process data can
later be retrieved for presentation and analysis on computers at the operator level and
management level.

DCS and SCADA

A distinction is often made between DCS control systems and SCADA control systems,
although there are not very clear lines between them. DCS is short for Distributed Control
Systems; SCADA for Supervisory Control and Data Acquisition. Here are some special
features of the two types of control systems:

100

CHAPTER 3. COMPONENTS OF CONTROL SYSTEMS

• DCS systems consist of equipment and software which mainly originates from one
total supplier where equipment, functionality and data communication are integrated
and optimized.

• DCS systems can have special processing stations which are powerful computers in
control cabinets. These computers can run advanced, computationally demanding
algorithms for e.g. model-based control and simulation.

• A DCS system often has its own, proprietary function block-based language for
developing control programs. Some of the function blocks may be advanced. For
example, Emerson’s DeltaV system has its own functions for MPC control
(Model-based Predictive Control) and functions for process modeling with neural
network models.

• SCADA systems use PLCs and/or RTUs (RTU = Remote Terminal Unit). An RTU is
an I/O unit that can send out analogue and digital data to actuators and receive such
data from sensors. The SCADA software running on operator-level PCs, may come
from a different supplier than the PLC and RTU supplier(s).

Examples of DCS/SCADA suppliers/products are: Siemens/PCS7, Rockwell
Automation/PlantPAX, Honeywell/Experion, ABB/System 800xA and Emerson/DeltaV,
Schneider Electric/AVEVA.

3.2.6 Platforms for home-made automation systems

In the sections above, we took a look at various platforms industrial automation systems.
The following sections gives a brief presentation of some platforms for home-made
automation systems.

3.2.6.1 Standard PC with I/O device

In facilities where there are no strict industrial requirements for regularity and safety, a
standard PC with an I/O device may be used to create a powerful and flexible
computer-based control and monitoring system. The application program runs on the PC.
Examples of such facilities are experimental setups for research and teaching which are used
for a limited period of time, and which are not damaged if the PC hangs up. Such PCs are
often used for things other than control and measurement, e.g. editing documents,
calculations, internet searches, etc., and there is indeed a chance that the PC will hang or
be disturbed in some other way.

The PC may be programmed with tools such as LabVIEW or Matlab/Simulink. Relatively
inexpensive I/O may be purchased for reading measurement signals and generating control
signals, typically in the form of voltage signals. The I/O device may communicate with the
PC via USB. If the PC or the program stops, the I/O device may hold the last control
signal, which prevents the system from a shut down.

101

CHAPTER 3. COMPONENTS OF CONTROL SYSTEMS

Figure 3.9 shows an example of a PC-based control and monitoring system for an
experimental facility of a biogas reactor. The PC runs a LabVIEW program. An I/O device

PC running LabVIEW
I/O-device

(in electronics cabinet)
Process (biogas reactor)

USB Analog
I/O

Internet

I/O device

Figure 3.9: PC-based control and monitoring system for an experimental setup for a biogas
reactor (University of South-Eastern Norway).

with USB communication with the PC is mounted in a electronics cabinet. From the
cabinet there are cables for transmitting voltage signals to actuators (here: pumps) and
from sensors (here: sensors for temperatures, gas flow and gas concentration). The PC is
connected to the internet. With suitable software, remote login can be carried out on the
PC via any other PC on the Internet, to run and maintain the LabVIEW program and to
download files with timeseries of data.

Alternatives to standard PCs are industrial PCs, which are PCs designed to be far more
robust than normal PCs.

3.2.6.2 Raspberry Pi

Raspberry Pi is a an electronics board with a programmable microcontroller and various
types of inputs and outputs. Figure 3.10 shows a Raspberry Pi 3. It can be connected to
various kinds of extention equipment, e.g. electronic breadboards where various components
like motors, switches, LEDs, etc. can be mounted and interconnected, displays (both
standard monitors and small displays), and a keyboard.

Essential features of the Raspberry Pi:

102

CHAPTER 3. COMPONENTS OF CONTROL SYSTEMS

GPIO

Ethernet

2 x USB 2.0

HDMI

Audio jack

USB C
for power

supply

Display port

CPU + RAM

2 x USB 3.0

Figure 3.10: Raspberry PI 3.

• Physical dimensions: 8.6 x 5.7 cm.

• Digital inputs and outputs (I/O).

• Analog voltage inputs, to read measurement signals from sensors.

• No analog outputs! However, some of the digital outputs can be used for approximate
analog output based on pulse-width modulation, cf. Section 3.6.3.

• The standard operating system is Raspberry Pi OS (formerly denoted Raspbian)
which is based on Linux.

• The microcontroller can be programmed with Python code.

• Of course, any algorithm, e.g. a PID controller, a signal filter, etc. can be
programmed on the Raspberry Pi.

The home page of Raspberry Pi is on

https://www.raspberrypi.org/

103

https://www.raspberrypi.org/

CHAPTER 3. COMPONENTS OF CONTROL SYSTEMS

Raspberry Pi Pico

Raspberry Pi Pico is a very small electronics board with a programmable microcontroller
and various types of inputs and outputs. Figure 3.11 shows a Raspberry Pi Pico with
pre-solded headers (pins) mounted on a breakout board for connecting wires to external
equipment. The Raspberry Pi Pico can also be mounted directly on electronics breadboards
(a breadboard is shown in Figure 3.12).

Breakout board:

Raspberry Pi Pico:

USB

I/O pins
(pre-solded headers)

CPU

Wifi +
Bluetooth RAM

Figure 3.11: Raspberry Pi Pico with breakout board.

Essential features of the Raspberry Pi Pico:

• Physical dimensions: 5.1 x 2.1 cm.

• Digital inputs and outputs (I/O).

• Analog voltage inputs, to read measurement signals from sensors.

• No analog outputs! However, some of the digital outputs can be used for approximate
analog output based on pulse-width modulation, cf. Section 3.6.3.

• The microcontroller can be programmed with MicroPython code – not full-fledged
Python.

104

CHAPTER 3. COMPONENTS OF CONTROL SYSTEMS

• Algorithm for PID control, signal filtering, etc. can be programmed.

3.2.6.3 Arduino

Arduino3 is a an electronics board with a programmable microcontroller and various types
of inputs and outputs. There are various versions of Arduino hardware. Figure 3.12 shows
an Arduino UNO R3 with an electronics breadboard where various components like motors,
switches, LEDs, etc. can be mounted and interconnected.

USB

Power
supply

to Arduino
(7-12 V)

Digital I/O
Terminals marked "~" can be used for analog output with PWM

Analog inputsPower from Arduino

CPU

Breadboard

CPU

Figure 3.12: Arduino Uno R3 with electronics breadboard.

Essential features of the Ardunio:

• Digital inputs and outputs (I/O).

3According to Wikipedia, the name Arduino stems from the bar Arduino in Ivrea, Italy where the founders
of the project used to meet.

105

CHAPTER 3. COMPONENTS OF CONTROL SYSTEMS

• Analog voltage inputs, to read measurement signals from sensors.

• No analog outputs! However, some of the digital outputs can be used for approximate
analog output based on pulse-width modulation, cf. Section 3.6.3.

• The microcontroller can be programmed with the Arduino programming language,
which is based on the C language. Both C and C++ code can be used in the
programming.

• Algorithm for PID control, signal filtering, etc. can be programmed.

The home page of Arduino is on

https://www.arduino.cc/

3.3 Sensors

3.3.1 Introduction

This chapter describes examples of sensors for measuring the following common process
variables:

• Temperature

• Pressure

• Level

• Liquid and gas flow

• Gas concentration

• Position

• Speed

In one of the problems at the end of this chapter, you are asked to find additional sensors.

3.3.2 Temperature sensors

The two most common temperature sensors – or thermometers – are thermocouple
thermometers and resistance thermometers. Figure 3.13 shows some industrial temperature
sensors including the transmitter, which is the “head” of the components shown in Figure
3.13. The transmitter typically outputs a current signal in the standard range of 4-20 mA
and/or a digital measurement signal representing the temperature.

106

https://www.arduino.cc/

CHAPTER 3. COMPONENTS OF CONTROL SYSTEMS

Figure 3.13: Industrial temperature sensors including transmitters (the “head” of the com-
ponents). [Autek AS]

3.3.2.1 Resistance thermometer

Resistance thermometers – also denoted resistance temperature detectors – (RTD) are
perhaps the most commonly used type of temperature sensor. Figure 3.14 shows the
principal construction of an RTD.

T

Resistor at the
measurement spot

Electronics
with

Wheatstone's
bridge

R

Power supply
24 VDC

Measurement signal
4-20 mA

Figure 3.14: Principal construction of a resistance temperature detector (RTD).

The temperature is detected using a resistor placed at the measurement spot. The
resistance R [Ω] vary with the temperature T [oC] in a known way:

R(T) = R0(1 + aT) (3.1)

where R0 is the resistance value at 0oC, and a is a constant that depends on which metal is
used as resistance. R is found with a special electrical circuit called Wheatstone’s bridge
which is generally used for precise calculation of an unknown resistance value.

Pt100 sensors are the most commonly used type of RTDs. Pt is short for platinum. For

107

CHAPTER 3. COMPONENTS OF CONTROL SYSTEMS

Pt100 sensors,
R0 = 100 Ω (3.2)

a = 3.9083 · 10−3oC−1 (3.3)

Once, R is detected (with the Wheatstone’s bridge), T can be calculated from (3.1):

T =
(R/R0)− 1

a
(3.4)

Since the measurement principle is based on an accurate measurement of the resistance R,
variable resistance value in the signal lines due to e.g. temperature changes and aging can
give an inaccurate temperature measurement. To increase the accuracy, one or two
additional conductors can be connected between the bridge connection and the resistance at
the measuring point. Two-wire sensors as in Figure 3.14 are the least accurate, while
four-wire are the most accurate.

Resistance thermometers have an accuracy of approx. ±0.2 oC. They can be used for
measuring temperatures in the range of approximately [−100, 500] oC, but for a given
sensor the range will be smaller, e.g. [0, 100] oC.

As an alternative to a Pt100 sensor, you can use a Pt1000 sensor4, cf. Example .

Example 3.2 Temperature sensor and transmitter

Figure 3.15 shows an electronics box including a Pt1000 sensor and a transmitter. (The box
is used in a temperature control application of a kettle, but the kettle is not shown in the
figure.) The Pt1000 sensor is connected to the transmitter, which generates a current
measurement signal in the range 4-10 mA representing the temperature in the range 0-100
oC, with a linear relation between the ranges:

4-10 mA ⇐⇒ 0-100oC (3.5)

A precision resistor of 250 Ω is mounted between the current signal terminals to convert the
current signal into a voltage signal. The reason for this transformation is that the data
acquisition device (not shown in Figure 3.15) can only read voltage signals, not current
signals. According to Ohm’s Law, the current signal and voltage signal ranges relate as
follows:

4-10 mA ⇐⇒ 1-5V (3.6)

Then we have,
1-5 V ⇐⇒ 0-100oC (3.7)

[End of example 3.2]

4I think you can guess what the number 1000 means here.

108

CHAPTER 3. COMPONENTS OF CONTROL SYSTEMS

Temperature
transmitter

Pt1000-
transduser
(sensor)

Power supply
24 VDC

220 VAC
from mains

220 VAC
(controlled by SSR)

to kettle

Connecting
blocks

Solid State Relay (SSR)
for power control

Temperature
measurement signal

1-5 V

Motstand
250 Ohm

Control signal to SSR
0-5 V

Figure 3.15: Electronics box including a Pt1000 sensor and a transmitter.

3.3.2.2 Thermocouple thermometers

The measuring principle for thermocouple thermometers is based on the Seebeck effect: An
electromotive force (EMF) exists between two points of a metallic electric conductor if the
points are at different temperatures. Some metals have greater EMF per temperature
difference than others, i.e. different metals have different Seebeck constants, also denoted
thermoelectric sensitivity, in unit µV/K. It is this phenomenon, i.e. that different metallic
conductors have different Seebeck constants, that is exploited in thermocouples.

Figure 3.16 illustrates the principle of thermocouple thermometers. Tm is the temperature
that the thermocouple thermometer is to be measured. Two conductors, which must be
different metals, are connected together at the measuring point, also denoted the “hot
junction”. An expansion cable of the same metal type as the measurement lead wires
themselves can be used to connect the measurement element, which is in or near the
process, to a voltage measurement meter that is typically at a distance off the measurement
point, e.g. in a room. The place where the generated voltage v is detected, is called the
reference point, or the “cold junction”. The temperature Tr at the reference point is
assumed known. In modern thermocouples, Tr is measured with a temperature-sensitive
semiconductor component, e.g. a thermistor, which is built into the thermocouple. Tm can
now be found from the detected voltage v for a given thermocouple. However, we will not
go into more details about how to get Tm from v.

109

CHAPTER 3. COMPONENTS OF CONTROL SYSTEMS

+

_
v [V]Tm [oC]

Expansion cabel
 (compensation cabel)

Metal A

Metal B

Metal C

Metal C

Tr [oC]

Measurement point
("hot junction")

Metal A

Metal B

Reference point
("cold junction").

Transducer

Figure 3.16: The principle of thermocouple thermometers.

The accuracy of thermocouple thermometers is approximately 2 Kelvin.

Thermocouple thermometers will of course not react instantaneously to temperature
changes. A typical time constant (or response time, cf. Section 9.3) of thermocouples
without encapsulation is 10-20 ms, while the time constant with solid encapsulation can be
in the region of 10-20 s Johnson (2000).

Thermocouple thermometers come in different versions, each having a unique combination
of metallic conductors. The different types are identified by a letter code: K, E, J, N, etc.
The different types have different thermoelectric sensitivities, different measurement ranges,
and different robustness against environmental effects. Here are some data of a type K
thermocouple, which is a widely used type5:

• Metal conductors: Cromel + Alumel (both are alloys with mainly nickel).

• Sensitivity : It varies with temperature. As an example, for the range [100, 110] oC,
the thermoelectric sensitivities is 41.3 µV/K.

• Temperature range of application: [−35, 1260] oC.

3.3.3 Pressure sensors

There are many types of pressure sensors. Here we will only look at the sensor type denoted
dp (differential pressure) cells.

Dp cell pressure sensors are widely used as pressure sensors. They can be used also for
measuring other process variables, such as

5Information by Autek AS, Norway

110

CHAPTER 3. COMPONENTS OF CONTROL SYSTEMS

• Level, cf. Section 3.3.4

• Flow of liquid and gas, cf. Section 3.3.5

Figure 3.17 illustrates that one type of dp cell can be used for measuring feed water flow,
liquid level and steam pressure.

Boiler

Pressure
measurement

Flow
measurement

Level
measurement

Feedwater

Steam

Figure 3.17: One type of dp cell is used for measuring feed water flow, liquid level and steam
pressure in a boiler.

Figure 3.18 shows an example of the construction of a dP cell. The left part of the figure
shows the structure of sensor or transducer itself. PH is the pressure on the high pressure
side, PL on the low pressure side. When these two pressures are different, the pressure
difference will cause the diaphragm, which is a plate that can hold an electric charge, to be
displaced and to have a changed position in relation to two fixed metallized plates. The
plates and diaphragm form an electrical capacitance. The displacement causes the
capacitance value to change. This change is detected by an electronic circuit. From the
measurement of the capacitance change, the differential pressure is calculated and presented
on a display in the part that makes up the transmitter of the dp-cell. The dp value is
available as a current signal in the standard range of 4-20 mA and as a digital measurement
signal in various formats.

111

CHAPTER 3. COMPONENTS OF CONTROL SYSTEMS

(Transducer) (Transmitter)

Figure 3.18: Example of construction of a dP cell. (Smar Pressure Transmitter. LD300
Series. Autek AS.)

3.3.4 Level sensors

There are many different types of level sensors. Here we will look at two types:

• Ultrasonic level sensor, cf. Section 3.3.4.1.

• Dp cell-based level sensor, cf. Section 3.3.4.2.

3.3.4.1 Ultrasonic level sensor

Figure 3.19 shows an example of an ultrasonic level sensor and an application to measure
the level of water in a tank. Also, the specifications of the sensor is shown in the figure.

The operating principle is that ultrasonic pulses are sent towards the surface of the liquid
(or other material) of which the level is to be measured. The reflection time Tr [s], i.e. the
time from emission to reception of the ultrasonic pulse, is detected. The speed of sound v
[m/s] is known (330 m/s in air). Then, the distance L [m] from the sensor to the liquid

112

CHAPTER 3. COMPONENTS OF CONTROL SYSTEMS

Figure 3.19: Ultrasonic level sensor. (Microflex, Autek AS.)

surface can be calculated:

L =
vTr

2
(3.8)

Ultrasonic level sensors are relatively easy to install in the process. They can, however,
cause problems when mounted in too small containers as there may be unfavorable
reflections of the pulses.

3.3.4.2 Dp cells as level sensor

Dp cells as pressure sensors were described in Section 3.3.3. Dp cells can be used for level
measurement. The dp cell is then used to detect the hydrostatic liquid pressure at the
measuring point. Since this pressure is a function of the liquid level above the measuring
point, the level can be calculated from the pressure.

Figure 3.20 shows the principle of measuring the liquid level in a tank using a dp cell. The

113

CHAPTER 3. COMPONENTS OF CONTROL SYSTEMS

dP

h0

Atm

h [m]

p [Pa]

Atmosphere

PH PL

PH = Pressure High
PL = Pressure Low

Level
calc.

h

Figure 3.20: The principle of level measurement using a dp cell.

hydrostatic pressure p [Pa] at the measuring point, i.e. at the PH input of the dp-cell, is

p = ρg(h+ h0) (3.9)

where h+ h0 [m] is the total liquid height, g [m/s2] is the gravity, ρ [kg/m3] is the density
of the liquid. From 3.9) we get the following formula for liquid level h:

h =
p

ρg
− h0 (3.10)

3.3.5 Flow rate sensors

We will look at different principles and sensors for measuring material flow rate, also
denoted flow velocity. Most of the principles presented can be applied to both liquid flows
and gas flows.

3.3.5.1 Flow rate measurement with orifice and dp cell

Figure 3.21 shows how flow rate in a pipeline can be measured with an orifice (an annular
constriction) mounted inside a pipline, and a dp cell. The flow rate is larger at the
constriction than ahead of the constriction. In general, the pressure in the liquid decreases
with increased flow rate. Therefore, the larger flow rate, the larger pressure drop at the
constriction. For an orifice with a fixed orifice opening, the following applies:

F = k
√
∆p (3.11)

114

CHAPTER 3. COMPONENTS OF CONTROL SYSTEMS

pH pL

Orifice

dp cell

Calculation

F = ?

Pipeline

Flow profile

Figure 3.21: Flow rate measurement with an orifice and dp cell.

where F is the flow rate in an appropriate unit, e.g. m3/s, and ∆p is the pressure drop. k is
a constant. The pressure drop can be measured with a dp cell, cf. Section 3.3.3.

3.3.5.2 Ultrasonic flow rate measurement

Ultrasonic flow rate measurement can be used for liquids and gases. An advantage,
comparing with other methods, is that the sensor can be mounted “clamp-on”, so an
intervention on the pipeline is not necessary.

Figure 3.22 shows an industrial ultrasonic flow rate sensor and the basic structure of such a
sensor. The sensor consists of two sender-receiver pairs, S1-R1 and S2-R2. The senders send
ultrasonic pulses regularly – for example several hundred times a second – and at the same
point of time. The receivers detect the transport time of the sound pulse it receives. In
Figure 3.22, t1 [s] is the transport time of a pulse sent downstream, i.e. from S1 to R2, while
t2 is the transport time of the pulse sent upstream, i.e. from S2 to R1. t2 is less than t1. The
flow velocity v [m/s] is proportional to the difference between these two transport times, i.e.

v = k (t2 − t1) (3.12)

From v, the volumetric flow rate Q [m3/s] can be calculated with

Q = v ·A = k (t2 − t1) ·A (3.13)

where A [m2] is the internal cross-sectional area of the pipe. (Of course, units other than
m3/h and m2 may be used here.)

115

CHAPTER 3. COMPONENTS OF CONTROL SYSTEMS

S = Sender

S1 R2 R1 S2

R = Receiver

t2 t1

Figure 3.22: Top: An industrial ultrasonic flow rate sensor. (The symbol Ex means that
this sensor is suitable for potentially explosive atmospheres.) (Fluxus, Flexim, Flow-Teknikk
AS.) Bottom: The principle structure of ultrasonic sensors.

In Figure 3.22 there is one reflection. More than one reflection may be used; the ultrasonic
pulse is then reflected in the pipe walls several times on its way from sender to receiver.
This may increase accuracy, but at the same time the receiver will receive weaker signals.
Ultrasonic sensors of the brand mentioned in Figure 3.22 are able to find the optimal
number of reflections, i.e. the optimal sound path.

As an example of characteristic data of ultrasonic flow rate sensors, below are data of the
ultrasonic flow rate sensor mentioned in Figure 3.22:

• Update period of measurement signal : 1 s.

• Measurement range: 0.01 ... 25 m/s.

• Accuracy : Approx. 1% of read value ±0.01 m/s.

• Resolution: 0.025 cm/s.

116

CHAPTER 3. COMPONENTS OF CONTROL SYSTEMS

3.3.5.3 Coriolis flow rate sensor

Coriolis mass flow sensors are used to measure both mass flow rate and volume flow rate of
liquids and gases. Figure 3.23 shows an industrial Coriolis mass flow sensor.

Figure 3.23: Industrial Coriolis flow rate sensor. (Heinrich’s TMU. Flow-Teknikk AS.)

The principle of Coriolis flow rate sensors is as follows. See Figure 3.24. Inside the sensor,
the medium – liquid or gas – passes through two pipe loops. With two loops, the forces
arising due to the vibrations in the sensor, cancels each other, thereby prevening the sensor
from vibrating. The motion actuators ensures that the loops are in periodic oscillations at
the particular frequency being the natural or resonance frequency of the loops including the
medium. The actuator ensures that the oscillations are in opposite phase, i.e. one loop is
moved up when the other is moved down.

The two loops have a certain flexibility, i.e. they are twistable, as indicated in Figure 3.24.
When the medium flows through the moving loops, a Coriolis force arises on the flowing
medium. This force is due to the fluid being in a reference system that rotates around the
axis shown in Figure 3.24.

For each of the two loops, the Coriolis force causes the loop to twist, and the direction of
motion depends on whether the liquid moves towards the axis or away from the axis on its
way through the loop. The twist on each side of the loop is detected by respective motion
sensors, see Figure 3.24.

For Coriolis flow rate sensors the following applies:

• The mass flow rate Fm [kg/s] is a function of the phase shift ϕ [degrees] between the
oscillations. This phase shift is equal to 360 degrees times the time shift dt [s] divided
by the period P [s].

• The density of the liquid ρ [kg/m
3
] is a function of the period P of the oscillations.

117

CHAPTER 3. COMPONENTS OF CONTROL SYSTEMS

Flow in Flow out

Motion sensor A
Motion sensor B

Motion actuator
(creating

oscillations
up-down)

A B

dt

P

t

Rotational axis

Figure 3.24: The principle of Coriolis mass flow sensors. (The figure showing the sensor itself
can be found at http://en.wikipedia.org/wiki/Mass flow meter.

From the detected of mass flow rate and density, the volume flow rate Fv [m3] can be
calculated with

Fv =
Fm

ρ
(3.14)

It is common for Coriolis flow rate sensors to output also a temperature measurement.

Coriolis flow rate sensors can cover large areas and are relatively accurate, but they are also
relatively expensive. For example, the sensor shown in Figure 3.23 covers 0-2.2 tons/h with
an accuracy of 0.1% of measurement range (span).

3.3.5.4 Magnetic flow rate sensor

Magnetic flow rate sensors are based on Faraday’s law which expresses that an electromotive
force (emf - electromotoric force), i.e. an electric potential, or voltage, is induced in a
conductor that moves in a magnetic field. The voltage is proportional to the speed of the
conductor in the field, i.e. the greater the speed, the greater the voltage. In general, liquids
are electrical conductors. In magnetic flow rate meters, the fluid velocity , i.e. the flow rate,

118

CHAPTER 3. COMPONENTS OF CONTROL SYSTEMS

is measured with the voltage induced as the fluid moves in a magnetic field.

Figure 3.25 shows the basic structure of a magnetic current sensor and an image of an
industrial sensor. A magnetic field is generated inside the sensor. Usually, magnets are used

++
__

+

_

+

U_

Flow

Induced
voltage

Magnetic
field

N

S

Electric conducting liquid element
moving in the magnetic field.

Voltage
measurement

Sensor with
non-conducting wall

Pipeline

Figure 3.25: Magnetic flow rate sensor for liquid flow (Flomid FX, Techfluid. Flow-Teknikk
AS.)

that are mounted outside the pipeline, and in that case the magnets must work through a
piece of pipe that is not conductive; Otherwise the magnetic field would not pass through
the liquid, but instead follow the pipe wall (like a Faraday cage). The sensor part of the
pipeline usually consists of a plastic material. In the figure you can see a shows a fluid
element that moves in the magnetic field. Remember that a fluid is an electric conductor.
Due to the motion, a voltage is induced in the liquid element. This voltage is detected by
electrodes. (An electrode is a piece of material that conducts electric current to or from a
liquid, a gas, a body part, etc., or to another electrode which is in contact with the liquid.)
Since the induced voltage is proportional to the velocity of the fluid element (conductor),
the voltage will indicate the fluid velocity.

To prevent electrostatic conditions in the liquid itself from causing a systematic error in the

119

CHAPTER 3. COMPONENTS OF CONTROL SYSTEMS

measurement, the direction of the magnetic field is changed with a fixed frequency. The
difference in induced voltage between periods with opposite field directions then forms the
basis for measuring the fluid velocity.

Magnetic flow rate sensor can measure liquids with particles.

The measured the volume flow rate F [m3/s] can be calculated with

F = Av (3.15)

where v [m/s] is the fluid velocity and A [m2] is the internal cross-sectional area of the
pipeline. A must be precisely known so that the volume flow can be measured accurately.

Here are some data given in the data sheet for the sensor depicted in Figure 3.25:

• Accuracy : ±0.5 % of displayed flow rate value.

• Recommended flow velocity : Approx. 0.5-4 m/s. If the volume flow rate range of what
is to be read is known, you can then use ([eq qdv]) to calculate the appropriate pipe
diameter in the sensor. (If the calculated sensor diameter is smaller than the diameter
of the pipeline, narrowings are fitted on each side of the sensor. Guidelines are given
for the narrowings’ slope and distance from the sensor.)

3.3.5.5 Thermal flow rate sensor

Figure 3.26 shows an example of a thermal mass flow rate sensor. The shown sensor is for
gases, e.g. biogas, but there are thermal flow rate sensors also for liquids. The device shown
in Figure 3.26 also has a built-in control valve (see right part of the figure), as well as a
controller, and therefore implements a control system for mass flow rate.

Figure 3.27 shows the principle of thermal mass flow rate measurement. A part of the flow
of the medium (gas or liquid) is heated using heating coils in two subsequent heating
sections. The temperature in each of the two sections, i.e. T1 and T2, is detected, see
“sensor bridge” in the figure. The temperature difference between the two sections is
proportional to the mass flow rate F [kg/s], see the diagram in the figure:

∆T = T2 − T1 = kF (3.16)

So, assuming ∆T and k are known, F can be calculated with

F =
∆T

k
(3.17)

3.3.5.6 Vortex flow rate sensor

When you see the flag flapping in the wind, you see the vortex principle in free dressage.
The greater the wind speed, the higher the frequency in the flutter ring. The frequency
basically gives an expression of the wind speed.

120

CHAPTER 3. COMPONENTS OF CONTROL SYSTEMS

Figure 3.26: Example of thermal mass flow sensor for gas. The unit also has a built-in control
valve and a regulator and therefore implements a mass flow control system. (Bronkhorst.
Flow-Teknikk AS.)

A vortex sensor is based on the fact that a restriction in a pipeline creates regular vortices,
and the frequency of these vortices is proportional to the flow rate. By detecting the
frequency, the flow rate can be measured. This principle applies to both liquid flow and gas
flow.

Figure 3.28 illustrates the principle and shows an industrial vortex sensor. The frequency in
the pressure vortices is usually detected with e.g. piezoelectric crystals, which are crystals
where charges are produced when they are exposed to pressure.

The measurement accuracy for vortex sensors is around 1 % of the maximum measurement
value.

121

CHAPTER 3. COMPONENTS OF CONTROL SYSTEMS

Figure 3.27: The principle of thermal mass flow rate measurement. (Bronkhorst. Flow-
Teknikk AS.)

3.3.6 Sensors for gas concentration

Figure 3.29 shows an example where you need to measure gas concentration, namely a
biogas reactor which converts various types of biological material, e.g. food waste, slaughter
waste, manure, etc., into biogas, which mainly consists of methane and carbondioxide. The
energy content of the biogas for combustion is the methane. Therefore, biogas reactors are
usually equipped with methane gas flow rate sensors to indirectly measure the power
production by the reactor. The methane gas flow rate can be calculated as the product of
the total biogas flow rate using e.g. a thermal gas fom rate sensor, cf. Section 3.3.5.5, and
the methane concentration.

The methane concentration can be detected with e.g. a spectroscopic concentration sensor
where the concentration in percent is detected by measuring the intensity of light with a

122

CHAPTER 3. COMPONENTS OF CONTROL SYSTEMS

Figure 3.28: The principle of vortex sensor for measuring gas or liquid flow and an industrial
vortex sensor. (Racine. Flow-Teknikk AS.)

specific wavelength – typically infrared (IR) light – is absorbed by the gas, see Figure 3.30.

The measuring accuracy of one example of a spectroscopic sensor is approximately ±2 % of
the upper limit of the measurement range.

3.3.7 Position sensors

There are several types of position sensors. Here, I will present only the encoder.

3.3.7.1 Encoder

Encoders are popular for measuring of angular position. Figure 3.31 shows a principle
sketch of an encoder. The encoder is attached to the object whose angular position is to be
measured. The encoder has a number of evenly spaced slits that can let the light from the
light source through. As the encoder disc rotates, light pulses are generated for each of
channels A and B. These channels are 90 degrees (a quarter period) offset from each other

123

CHAPTER 3. COMPONENTS OF CONTROL SYSTEMS

Biogas reactor

Biogas

Digestate
(liquid)

Feed
pump

35 oC

CT1

FT1

Sensor for
biogas

flow rate

Sensor for
methane gas
consentration

MULT

Methane gas
flow rate

Feed
(biological
material)

Figure 3.29: Methane concentration measurement used to calculate the methane gas flow
rate out of a biogas reactor.

to enable detecting an increasing as well as a decreasing position. The counter is a logic
circuit that counts the pulses for channels A and B. If the direction of rotation is positive,
the counter counts up. If it is negative, it counts down.

A typical number of pulses, n, also denoted bits, for each of the channels for one full
rotation is 1024. This gives a resolution, angle change per pulse, of

r =
360 degrees

n
[degrees/pulse] (3.18)

For example, if n = 1024,the resolution is r = 360 degrees/1024 pulses = 0.3516 degrees per
pulse.

In addition to channels A and B, encoders often also have a Z channel, which gives one
pulse for each time the code disc has rotated once. The Z channel can be used to define a
reference position, so that for example position zero corresponds to a lifting arm standing in
a vertical position.

Encoders can be used together with suitable data acquisition equipment from various
suppliers. Figure 3.32 shows an example with equipment from National Instruments. The
I/O module shown to the left can be connected to a encoder. The programming tool
LabVIEW has functions for recording the position measurement signals from the encoder
which, via the NI-9401 module, are read by LabVIEW running on a PC.

124

CHAPTER 3. COMPONENTS OF CONTROL SYSTEMS

IR lamp Gas

Gas inflow

Measurement
signal

IR detector

Gas outflow

Figure 3.30: Spectroscopic measurement of gas concentration using IR lamp and detector.
(IR = Infrared.)

3.3.8 Speed sensors

There are several types of speed sensors. Below I will present the encoder and the
tachogenerator as sensors for rotational speed.

3.3.8.1 Encoder

Figure 3.31 shows an encoder. Assuming only one-directional rotation, the absolute value of
the speed v [rpm] can be calculated from the detected frequency f [# pulses/s] of either
pulse train A or B:

v =
f

n
(3.19)

where n is the number of pulses or bits of the encoder for one full rotation, i.e. 1024.

If the rotation is bi-directional, the speed can be calculated as the time derivative of the
position measurement:

v(t) = s′(t) (3.20)

which in discrete-time form can be approximated with

v(tk) ≈
s (tk)− s (tk−1)

dt
(3.21)

where s(tk) is the position value at the current point of time and s(tk−1) is the position
value at the previous point of time. dt [s] is the sampling time of the position measurements.

125

CHAPTER 3. COMPONENTS OF CONTROL SYSTEMS

Channel A

A
B

Light source

Light
detector

Channel B

Encoder

Rotational
rod

Angle

Up/down
counter

Position
(digital
value)

Pulses
(A and B)

Channels A and B
have 90 degrees

phase shift

Time

Figure 3.31: Encoder for position measurement.

3.3.8.2 Tachogenerator

A tachogenerator6 is an electrical machine generating a DC voltage that is proportional to
the rotational speed of the machine. When a tachogenerator is connected (fixed) to the
shaft of some rotating device, e.g. a motor, the tachogenerator acts as a rotational speed
sensor for that device. The generated voltage ut [V] is approximately proportional to the
rotational speed v [rpm = revolutions per minute]:

ut = Kv (3.22)

where K [V/rpm] is the tachogenerator constant. Figure 3.33 shows an application of a
tachogenerator as speed sensor of a DC motor.

3.4 Signal conditioning of measurement signals

3.4.1 Analog measurement signals

Sensors output the measurement signal as an analog signal or a digital signal, and some
sensors output both analog and digital signals. Below is a brief description of analog

6Tacho means speed in Greek.

126

CHAPTER 3. COMPONENTS OF CONTROL SYSTEMS

IO module
with built-in counter.
The module can be

connected to an encoder
for position measurement.

PC with LabVIEWCompactDAQ rack
with IO modules

Figure 3.32: Example of equipment that can measure position measurement signals from an
encoder. (National Instruments)

signals. There are many forms or standards for digital signals (RS-232/serial,
RS-485/Modbus, HART, etc.), but these are not described in this book.

Current signals

A common process measurement signal form is electric current in the range of 4-20 mA
(milliamperes), but 0-20 mA is also used.

Voltage signals

Although not as common as current signals, measurement signals can be in the form of
electrical voltages, typically in the range 0-5 V or 1-5 V.

3.4.2 Current loop

In process instrumentation, current loops are common. Figure 3.34 shows a current loop.

127

CHAPTER 3. COMPONENTS OF CONTROL SYSTEMS

Tachogenerator

DC motor

+
_

ut [V]

Generated
voltage

Rotational
speed,
v [rpm]

Figure 3.33: A tachogenerator connected to the shaft of a DC motor for speed measurement.
(Electro-Craft S-19-3AT.)

Current loops comprise the following:

• A power supply delivering typically 24 VDC.

• A sensor supplied with 24 VDC from the power supply.

• The sensor generates a measurement signal in the form of an electrical current in the
typical range of 4-20 mA, representing the value of the pertinent process variable, e.g.
temperature, level, pressure, etc.

• A device registering a measurement signal in the form of an electrical voltage with a
specified range, e.g. 1-5 V. Examples of devices are data acquisition devices, and
controllers. Actually, there can be several devices in series in the current loop,
although only one device is shown in Figure 3.34.

• A resistor for converting the current signal into a proportional voltage signal. The
resistance needed can be found with Ohm’s Law:

R =
U

I
[Ω] (3.23)

As an example, assume the signal ranges given above, the resistance is 5 V/20 mA =
250 Ω.

3.4.3 Analog-digital (AD) conversion

Figure 3.35 illustrates the operation of analog-digital converters (ADC). ADCs are included
in automation hardward, but they are also available as separate electronic components.

128

CHAPTER 3. COMPONENTS OF CONTROL SYSTEMS

Trans-
ducer

Power
supply

24 VDC
_

+

R

+
_

Device with
analog
input

(voltage)

Current loop

Transmitter

i

v

4-20 mA

Resistor
v = Ri

220 VAC

Example:
Controller

Example:
Data acquisition

device

Sensor

Figure 3.34: Current loop.

In process control applications, the sampling time dt of an ADC is typically less than 1 sec,
e.g. 0.1 s.

The AD converter will use a certain number of bits, n pieces, each with value either 0 or 1,
to represent the analog signal. n = 12 is a typical value for AD converters. What is the
meaning of these bits? They are coefficients for the digital value expressed in the total
system. As an example, let’s assume that n = 12. Assume that the AD converter will be
used to convert analog values ya which are in the range [yamin , yamaks

], e.g. [4, 20] mA. It can
be shown that the digital value can be expressed as a function of these bits as:

yd =
b112

11 + b102
10 + ...+ b12

1 + b02
0

212 − 1
(yamaks

− yamin) + yamin (3.24)

where the numerator is actually the representation of the number in the total system. Since
it is the values of the bits that vary as ya varies, the digital signal can be represented in a
more compact way as a set of bits:

yd ∼ b11b10...b1b0 2 (3.25)

where subindex 2 means that this set of bits is actually a binary number in the binary
number system.

129

CHAPTER 3. COMPONENTS OF CONTROL SYSTEMS

Conversion

from

sampled

analog to

digital signalt

yd(tk)

Analog signal Digitalt signal

ya(t)

dt
tk

dt

Sampling

AD converter

Sampling

time

Figure 3.35: Analog-digital converter (ADC).

Bit bn−1 = b11 is called MSB (most significant bit), while bit b0 is called LSB (least
significant bit).

Example 3.3 Digital representation of analog value

Assume that the bit set is
yd ∼ 010...002 (3.26)

Inserting into (3.24) gir

yd =
0 · 211 + 1 · 210 + 0 · 29...+ 0 · 21 + 0 · 20

212 − 1
(yamaks

− yamin) + yamin (3.27)

=
210

212 − 1
(20− 4) + 4 = 8.001 (3.28)

[End of Example 3.3]

ADC resolution

AD converters are of course very useful since they make analog signals available as digital
numbers for computers. But not all information is retained in the digital numers. The finite
number of bits limits how accurately the digital signal can represent the analog signal. This
accuracy is in terms of the resolution of the ADC. From the specified resolution you select
an appropriate ADC.

From (3.24) we can calculate the smallest change in ya that yd can detect. Assume that
only the least significant bit in the digital signal, i.e. bit b0 (LSB), changes value from 0 to
1. This change is ∆b0 = 1. From (3.24), where n is the number of bits, we see that the
corresponding change in yd becomes

∆yd =
∆b0 = 1

2n − 1
(yamax − yamin) =

yamax − yamin

2n − 1
= R (3.29)

So, the resolution is

R =
yamax − yamin

2n − 1
(3.30)

130

CHAPTER 3. COMPONENTS OF CONTROL SYSTEMS

Figure 3.36 illustrates the resolution R.

Analog value

Digital value

Resolution, R

Analog

Digital

Figure 3.36: The resolution R.

The relative resolution calculated as a fraction of the analog signal range is

Rrel =
1

2n − 1
(3.31)

Example 3.4 Resolution

Given a 12-bit AD converter which covers the analog signal range from yamin = 4 mA to
yamax = 20 mA. The resolution is then

R =
yamax − yamin

2n − 1
=

20− 4

212 − 1
= 0.0039 mA (3.32)

The relative resolution is

R0 =
1

2n − 1
=

1

212 − 1
=

1

4095
= 0.24 · 10−3 = 0.024 % (3.33)

In the old times 8-bit AD converters were common. They had a relative resolution of

R0 =
1

28 − 1
=

1

255
= 0.39 % (3.34)

[End of Example 3.4]

Example 3.5 Simulation of analog-digital conversion

The simulations in this example are made with the following SimView simulator:

http://techteach.no/simview/signal quantizer

131

http://techteach.no/simview/signal_quantizer

CHAPTER 3. COMPONENTS OF CONTROL SYSTEMS

Figure 3.37 shows a signal, u, in range 0-100 % and the corresponding quantized signal,
with just n = 4 bits ADC conversion.

Figure 3.37: n = 4 bits ADC conversion.

Figure 3.38 shows the signals with n = 12 bits ADC conversion. The resolution is clearly

Figure 3.38: n = 12 bits ADC conversion.

better with more bits.

[End of Example 3.5]

3.4.4 Scaling of measurement signals

We have already, in Section , seen how to scale a measurement signal with a linear scaling
function. I will not repeat it here. Instead, I will present some new terms which are relevant

132

CHAPTER 3. COMPONENTS OF CONTROL SYSTEMS

to measurement scaling. Figure 3.39 shows an assumed linear measurement characteristic
which expresses the process value p as a function of the measurement signal m:

p = a ·m+ b (3.35)

with slope

a =
p2 − p1
m2 −m1

(3.36)

and intercept or constant (calculated from point 1; alternatively point 2 could have been
used) is

b = p1 − a ·m1 (3.37)

Process value, p

Measurement value, m

Measurement span
= p2 -p1

Lower process value (p1)
= measurement zero

Upper process value (p2)

Measurement range Measurement
characteristic

20 mA4 mA
(m1,p1)

(m2,p2)

Figure 3.39: Measurement characteristic.

In Figure 3.39, several measurement parameters are defined: Span, zero, and range. These
parameters may be adjustable on the transmitter of the sensor.

3.4.5 Accuracy of measurement signals

Measurement accuracy is the largest difference – as an absolute value – between the
measurement and the real process value, see Figure 3.40.

133

CHAPTER 3. COMPONENTS OF CONTROL SYSTEMS

Process value
(e.g. deg C)

Measurement signal
expressed in units of

process variable
(e.g. deg C)

Accuracy

a

Ideal
measurement

curve

Real
measurement curve

(exaggerated)

Figure 3.40: Measurement accuracy.

The accuracy of a sensor can be found in the data sheet. The accuracy is usually expressed
either as a fraction of the maximum measurement value (Upper Range Limit – URL), or of
the full scale (FS) value to which the sensor has been adjusted to measure.

Example 3.6 Measurement accuracy

Given a gas flow rate sensor with URL = 600 L/d (liters per day). The sensor has an
accuracy of 1.5 % of URL, i.e. 600 · 1.5/100 = 9 L/d. So you must assume that any
measurement value has an error of 9 L/d.

[End of Example 3.6]

A couple of other types of accuracy terms are:

• Temperature drift . For example, the zero point (the lowest point) of the measurement
range may change with temperature with an amount equal to the temperature drift.

• Age drift. For example, the zero point of the measurement range may change during 2
years with an amount equal to the age drift.

134

CHAPTER 3. COMPONENTS OF CONTROL SYSTEMS

3.4.6 Measurement filters

A measurement lowpass filter is used to attenuate noise in the process measurement signal.
In control systems, the following two lowpass filter types are common:

• Moving average (MA) filter, which you met in Section 1.4.3.

• Time constant filter

These two filters can be realized with the same discrete time filter algorithm, so it does not
matter much which one you use. Still, I like to present both filters since both are popular.
They are presented in the following sections.

3.4.6.1 Moving averaging (MA) measurement filter (revisited)

The MA filter algorithm

The MA filter algorithm was already presented in Section 1.4.3, but is repeated here for
convenience:

ymf,k =
1

Nf

Nf−1∑
i=0

ym,k−i (3.38)

Recursive implementation

To implement (3.38) we need to store Nf − 1 old samples. Although computers are powerful
nowadays, it is regarded a good habit to minimize data storage. To this end, let’s develop a
recursive version of (3.38) which requires storage of only one variable.

(3.38) can be written as

ymf,k =
Nf − 1

Nf

 1

Nf − 1

Nf−1∑
i=1

ym,k−i

+
1

Nf
ym,k (3.39)

=
Nf − 1

Nf
ymf,k−1 +

1

Nf
ym,k (3.40)

where ymf,k−1 is the filter output from the previous time step. In (3.40) the previous filter
output is updated with the present “raw” filter input.

(3.40) can be written as
ymf,k = (1− a) ymf,k−1 + aym,k (3.41)

where the filter parameter a is

a =
1

Nf
=

dt

Tw + dt
(3.42)

135

CHAPTER 3. COMPONENTS OF CONTROL SYSTEMS

How to tune an MA filter

The tuning factor of the filter is the filter length, Nf . From (1.8) we can conclude:

• The larger Nf , the more samples are averaged, giving stronger filtering. Another way
to see this, is that a large Nf gives a small a (closer to 0), which gives stronger
filtering, cf. (3.41).

• The smaller Nf , the larger a (closer to 1), and the weaker filtering.

Thus, Nf should be as large as possible, to obtain strong noise filtering. But, it must not be
set so large that also relevant process (e.g. temperature) information is filtered. In practice,
various values of Nf can be tried until an ok value is found. Think in terms of the filter time
window (Tw), in the process industries, an appropriate Tw may be some seconds. As an
example, assume that Tw = 2.0 s and that the sampling time of the filter is dt = 0.1 s, then

Nf =
Tw

dt
+ 1 =

2.0

0.1
+ 1 = 21 (3.43)

Example 3.7 MA filter implemented in Python

Figure 3.41 shows a noisy sinusoidal input (blue curve) and the filter output (red curve)
with an MA filter. The measurement noise is filtered effectively (the red curve is much
smoother than the blue curve).

Comments to the simulations:

• The noise-free measurement, or “pure process signal, is

yp(t) = A cos(2πt/tp) (3.44)

with amplitude A = 1 and period tp = 100 s.

• Measurement noise is added to the noise-free measurement. This noise is random and
uniformly distributed between ±An where An = 0.05.

• Filter time step is dt = 0.1 s.

• Filter time window is Tw = 2.0 s.

• There is a small lag between the input signal and the output signal. A lag is
inavoidable for online or real-time filters where the filter acts on new samples as they
come. (For offline or batch filters the lag can be eliminated.)

• The initial value of the filter output, yf , (red) is the same as the unfiltered input, or
noisy measurement, ym (blue) – namely approximately 1.0. Hence, the filter is
“bumpless”. In general, filters in control system should be bumpless, since the
controller acts upon the filter output. Setting the initial filter output to e.g. zero
would give an unfortunate control signal behaviour.

136

CHAPTER 3. COMPONENTS OF CONTROL SYSTEMS

0 20 40 60 80 100 120 140
t_k [s]

1.0

0.5

0.0

0.5

1.0 ym
ymf

Figure 3.41: Input and output of an MA filter.

The MA filter is implemented in program 3.1.

http://techteach.no/python/files/ma filter.py

Listing 3.1: ma filter.py

"""

Moving average filter

Finn Aakre Haugen , TechTeach. finn@techteach.no

2022 12 28

"""

%% Import

import matplotlib.pyplot as plt

import numpy as np

%% Filter function

def fun_ma_filter(ym_k , yf_km1 , Nf):

a = 1/Nf

yf_k = (1 - a)* yf_km1 + a*ym_k

return yf_k

137

http://techteach.no/python/files/ma_filter.py

CHAPTER 3. COMPONENTS OF CONTROL SYSTEMS

%% Simulation time settings

dt = 0.1 # [s]

t_start = 0 # [s]

t_stop = 150 # [s]

N_sim = int((t_stop - t_start)/dt) + 1 # Num time -steps

%% Preallocation of arrays for plotting

t_array = np.zeros(N_sim)

ym_array = np.zeros(N_sim)

ymf_array = np.zeros(N_sim)

%% Params of signals

A = 1 # Amplitude of cosine

tp = 100 # [s] Period of cosine

An = 0.05 # Ampl of uniformly distributed random noise

num_samples = 1 # Number of samples from random generator

%% Filter param

Nf = 21 # Filter length

%% Simulation loop

for k in range(0, N_sim):

t_k = k*dt # Time

Signals:

yp_k = A*np.cos (2*np.pi*t_k/tp) # Noise free measurement

n_k = np.random.uniform(-An , An , num_samples)[0] # Meas noise

ym_k = yp_k + n_k # Noisy measurement

MA filter:

if k == 0: ymf_km1 = ym_k # Initially , filter out = filter in

ymf_k = fun_ma_filter(ym_k , ymf_km1 , Nf)

Arrays for plotting:

t_array[k] = t_k

ym_array[k] = ym_k

ymf_array[k] = ymf_k

Time index shift:

ymf_km1 = ymf_k

%% Plotting

plt.close(’all ’)

plt.figure (1)

plt.plot(t_array , ym_array , ’b’, label=’ym ’)

plt.plot(t_array , ymf_array , ’r’, label=’ymf ’)

138

CHAPTER 3. COMPONENTS OF CONTROL SYSTEMS

plt.legend ()

plt.xlabel(’t_k [s]’)

plt.grid()

plt.savefig(’response_ma_filt.pdf ’)

plt.show()

[End of Example 3.7]

3.4.6.2 Time constant filter

3.4.6.3 Continuous-time filter function

The time constant filter can be represented by the following differential equation:

y′mf = (ym − ymf) /Tf (3.45)

where:Tf [s] is the filter time constant. ym is the unfiltered (raw) measurement signal, and
ymf is the filtered measurement signal.

Sometimes, the filter is represented by a transfer function corresponding to (3.45):

ymf (s)

ym(s)
= Hf (s) =

1

Tfs+ 1
(3.46)

(In (3.46), s is the Laplace variable. Transfer functions are described in Ch. 8.)

The tuning parameter of the filter is the filter time constant, Tf . How to set Tf? That
depends on how much noise smoothing you want and the dynamic properties of the process.
If you do not have any other requirements, you can initially set it equal to one tenth of the
time constant of the process to be controlled to avoid the filter adding too much
sluggishness to the control loop. It turns out that a time constant of a few seconds is a
typical value in industrial control loops (of e.g. temperature loops).7

A SimView simulator of a time constant filter is available on:

http://techteach.no/simview/lowpass filter

Discrete-time time constant filter

In computer-based automation systems the filter is available as a function block containing
program code that implements the filter algorithm. We will derive a filter algorithm with
(3.45) as the basis. Let us assume that the time step of the filter algorithm is dt [s]. It is

7In one of the Fuji PID temperature controllers the preset value of the filter time constant is 5 sec.

139

http://techteach.no/simview/lowpass_filter

CHAPTER 3. COMPONENTS OF CONTROL SYSTEMS

tradition to discretize a time constant filter using the Euler Backward method.
Approximating the time derivative in (3.45) with Euler Backward approximation, gives

Tf
ymf,k − ymf,k−1

dt
+ ymf,k = ym,k (3.47)

We need a formula for the filter output at time index k. Solving (3.47) with respect to ymf,k

gives the filter algorithm:

ymf,k = (1− a)ymf,k−1 + aym,k (3.48)

with

a =
dt

Tf + dt
(3.49)

The filter algorithm (3.48) is sometimes denoted the exponentially weighted moving average
(EWMA) filter.

Comparing time constant filter with moving average filter

Filter algorithm (3.48) is identical to the MA filter algorithm (3.41) if

Tf = Tw (3.50)

and the time step dt of each of the filters is the same. Therefore, as long as you implement
(3.48), or (3.41), you can say that you implement an MA filter or (equally correct) a time
constant filter.

How to tune a time constant filter

The tuning factor of the filter is the time constant Tf . From (3.48) and (3.49), we can
conclude:

• The larger Tf ,the smaller a (closer to 0), giving stronger filtering.

• The smaller Tf ,the larger a (closer to 1), and the weaker filtering.

It is important that Tf is considerably larger than dt, or in other words, that dt is
considerably smaller than Tf . Otherwise, the filter algorithm (3.48) may behave quite
differently from the continuous-time filter (3.45) from which it is derived. We may set the
lower bound on Tf as 10 · dt, i.e.

Tf ≥ 10dt (3.51)

How can we choose an appropriate value of Tf? It should be as large as possible, to obtain
noise filtering. But, it must not be set so large that also relevant process (e.g. temperature)
information is filtered. In practice, various values of Tf should be tried until an ok value is

140

CHAPTER 3. COMPONENTS OF CONTROL SYSTEMS

found. In the process industries, typical Tf values are some seconds. At one particular
industrial plant in Norway, the default value of Tf is 2 sec. And PID temperature
controllers by Fuji Electric have Tf = 5.0 s as default. On processes with very fast
dynamics, as motors, Tf should probably be set to a fraction of a second.

3.4.6.4 Analog RC circuit filter

Figure 3.42 shows an analog time constant filter implemented with a resistor and capacitor,
often denoted an RC filter.

vout [V]

++

_ _

vin [V] C [F]Input Output

R [Ω]

Figure 3.42: RC filter.

It can be shown, cf. Example 4.5, that the filter model is

vout
′ = (vin − vout) / (RC) (3.52)

Comparing with (3.45) we see that the filter time constant is

Tf = RC (3.53)

So, you can obtain a specified filter time constant by chosing appropriate sizes of the
resistor and the capacitor.

3.5 Actuators

3.5.1 Introduction

The automation equipment uses actuators to operate or manipulate the process to be
controlled. In the following subsections, we will look at some of the most commonly used
actuators:

• Control valve

• Pumps

• Motors

• Heaters

141

CHAPTER 3. COMPONENTS OF CONTROL SYSTEMS

3.5.2 Valves

3.5.2.1 Structure and operation

Control valves control valves are used to manipulate liquid flow rates and gas flow rates.
Figure 3.43 shows a pneumatically controlled control valve. By manipulating the air
pressure, the diaphragm and thus the valve stem and plug are moved up or down. In this
way, the liquid or gas flow rate can be manipulated using air pressure.

P
I

4-20
mA

IP converter

1.2 bar

Pressure supply

0.2-1.0
bar

Control
signal

Air
Air

Principal sketch:

Diaphragm

Spring
Stem

Plug

Body

Seat

P
I

Control signal

Flow

Figure 3.43: Pneumatically controlled control valve. (Valve image: Samson-Matek AS)

3.5.2.2 Valve equation and valve characteristics

Valve equation

The valve equation expresses the relationship between liquid flow rate Q, valve opening z,
and pressure drop pv across a valve. (In this presentation, liquid is assumed; we do not go
into gas valves.) The valve equation can be written as

Q = Kvf(z)

√
pv
G

(3.54)

142

CHAPTER 3. COMPONENTS OF CONTROL SYSTEMS

where:

• Q [m3/h] is the liquid flow rate.

• pv [bar] is the pressure drop across the valve.

• G is specific (relative) density in relation to water. For water, G = 1. For oil,
G ≈ 0.85.

• Kv is the valve constant or the capacity index.

• z is normalized valve opening. z = 0 means fully closed valve. z = 1 means fully open
valve.

• f(z) is the valve function which has a value between 0 and 1. f = 1 means maximum
flow rate for a given pressure drop pv. The valve function constitutes the valve
characteristics, see below.

Let’s assume f = 1, i.e. maximum flow rate. The valve equation (3.54) is then

Qmax = Kv

√
pv
G

(3.55)

Therefore, the valve equation (3.54) can be written as

Q = Qmaxf(z) (3.56)

which gives

f(z) =
Q

Qmax
(3.57)

In other words, f is the normalized flow rate.

Definition (or meaning) of valve constant Kv

From (3.55) we see that
Kv = Qmax (3.58)

assuming the pressure drop pv is 1 bar, and water as medium. (3.58) defines Kv. It is
assumed that Qmax is observed at temperature 15.5 oC = 60 oF. In other words, Kv is the
water flow through a fully open valve at the specific temperature 15.5 oC = 60 oF.

Valve size selection

When you are to select the valve size for a given application, you select Kv = Qmax. A
capacity margin of e.g. 50 % should be taken into account.

143

CHAPTER 3. COMPONENTS OF CONTROL SYSTEMS

Inherent valve characteristics

The valve function (3.57) defines the inherent valve characteristics, which is the valve
characteristics when the valve is not connected to a process, i.e. when the valve “stands
alone”. For control valves, there are three relevant inherent characteristics, see below. They
are plotted in Figure 3.44.

Figure 3.44: Various inherent valve characteristics (valve function).

Linear valve characteristics

The linear characteristic is given by
f(z) = z (3.59)

Equal percentage valve characteristic

This is a logarithmic characteristic, and hence a nonlinear characteristic. The equal
percentage characteristic is given by

f(z) = R1−z (3.60)

where R is the rangeability, which typically has a value of 50.

Square root valve characteristic

This is also a nonlinear characteristic, given by the square root function:

f(z) =
√
z (3.61)

144

CHAPTER 3. COMPONENTS OF CONTROL SYSTEMS

Valves with this valve characteristic are denoted “quick opening valves”. They are
particularly relevant for safety operations, and not so relevant for usual feedback control.

Installed valve characteristic

Figure 3.45 shows a feedback control system of a process with valve as actuator. The
control system may be e.g. a temperature control system or a level control system. The

Process
Q QQ

Control
valve

ps

pppv

SensorContr.

Figure 3.45: Feedback control system of a process with valve as actuator.

installed valve characteristic, finst(z), that expresses the relationship between valve opening
z and flow rate Q when the valve is connected to the process:

Q = Qmaxfinst(z)

or

finst(z) =
Q

Qmax
(3.62)

finst(z) may be different from f(z) if the pressure drop pv in the valve equation (3.54)
depends on the flow rate Q.

Example 3.8 Inherent and installed valve characterics

The difference between finst(z) and f(z) is illustrated with the application depicted in
Figure 3.46 where the temperature of a simulated heat exchanger is controlled with a control
valve (V-1 in the figure) as an actuator. The valve adjusts the hot water flow rate used to
heat the cold process fluid. Both the inherent characteristic and the installed characteristic
for both the linear valve and the equal percentage valve are shown in the valve characteric
diagram at the left side of the figure. This diagram is shown enlarged in Figure 3.47.

145

CHAPTER 3. COMPONENTS OF CONTROL SYSTEMS

Figure 3.46: Heat exchanger where a control valve manipulates the hot water flow rate into
the heat exchanger.

• The dashed curves are the inherent valve characteristics for both types of valves.

• The solid curves are the installed valve characteristics for both types of valves.

• The dots in the diagram represents the present operating point.

From the curves in Figure 3.47 we see that, in this application, the installed characteristic
of the nonlinear, equal percentage valve is more linear than the installed characteristic of
the linear valve! This is because the pressure drop over the heat exchanger – the process –
depends largely on the flow through the process. This is explained further after this
example.

[End of Example 3.8]

Selection of valve characteristic

I will here not go into a further, detailed analysis of how the installed versus differs from
the inherent valve characteristic, but present guidelines for selecting between a linear valve
and an equal percentage valve.

In general, it is advantageous for the control system that the installed characteristic is as
linear as possible. Below are some guidelines for selecting a proper valve characteristic:

146

CHAPTER 3. COMPONENTS OF CONTROL SYSTEMS

Figure 3.47: Inherent characteristic and the installed characteristic for both the linear valve
and the equal percentage valve used in a simulated heat exchanger.

• A valve with linear characteristic should be selected if the pressure drop across the
valve is approximately constant even if the flow rate varies. This is the case when the
pressures on each side of the valve are approximately constant. An example is when a
valve in the inlet is used to fill a tank with liquid.

• A valve with equal percentage characteristic should be selected if the pressure drop
across the valve varies significantly with the flow. This is the case when the pressure
after (downstream) the valve, or the “resistance pressure”, varies significantly with
the flow rate. Example 3.8 illustrates this case. There, flow resistance varies with flow
rate due to the pipes and/or plates inside the heat exchanger, and concequently, an
equal percentage characteristic should be chosen.

147

CHAPTER 3. COMPONENTS OF CONTROL SYSTEMS

3.5.3 Pumps

3.5.3.1 Centrifugal pumps

Centrifugal pumps, see Figure 3.48, are the most common pump type in industry, for both
liquids and gases. The pump is driven by a motor, typically an alternating current (AC)

Figure 3.48: Centrifugal pump. (http://en.wikipedia.org/wiki/Pump).

motor. The flow through the pump is given by both the pump speed (pump engine speed),
and the pressure drop across the pump. This pressure drop again depends on the pressure
(flow resistance) from the plant itself. This pressure drop will increase with the flow
through the system and depend on e.g. of the valve opening etc. in the plant.

In pump operations, pressure is often expressed in terms of head H, which is the
hydrostatic pressure due to water column height, H:

p = ρgH

where p [Pa] is pressure, H [mH2O = meter water column] is head, ρ [kg/m3] is density, and
g [m/s2] is gravity.

148

CHAPTER 3. COMPONENTS OF CONTROL SYSTEMS

Flow control

The flow through centrifugal pumps is a function of both the speed of the impeller and the
pressure difference across the pump. The pressure difference changes if the pressure (flow
resistance) from the plant changes. Centrifugal pumps are therefore often flow controlled to
ensure that the pump delivers the desired flow despite such pressure variations, see Figure
3.49.

FC FT

Flow
reference
(setpoint)

rF

Fu

Control
signal

Figure 3.49: Centrifugal pump with flow rate control.

Select pump or valve?

Both control valves and pumps are actuators that are be used to manipulate the rate of
liquid or gas flow to a plant. Should you use valve or pump? The company Siemens has
made calculations that show that it is more economical to use a (speed-controlled) pump
rather than a control valve (a supply pump is assumed to provide a suitable supply pressure
for the valve). Using a pump can provide 50 % energy savings compared to using a valve.
This is not so surprising. Using a pump corresponds to controlling the speed of a car with
gas and brake, but never at the same time, while a supply pump plus a control valve is like
pressing the gas pedal fully in to have a high fuel supply to the engine, and using the brake
to obtain the desired speed, i.e.using gas and brake at the same time – which is obviously
not an optimal way to drive a car.

3.5.3.2 Displacement pumps

Displacement pumps provide a liquid flow that is proportional to the pump speed –
regardless of the pressure drop across the pump. Figure 3.50 shows a displacement pump –
a so-called peristaltic pump – for small liquid flows. A roller pushes the liquid forward

149

CHAPTER 3. COMPONENTS OF CONTROL SYSTEMS

through a flexible plastic tube. The speed can be controlled with a voltage or current
signal.

Roller

Figure 3.50: Peristaltic pump, which is a type of displacement pump.
(http://en.wikipedia.org/wiki/Pump)

Other examples of displacement pumps are gear pumps and piston pumps.

Particles in the fluid can cause greater problems for positive displacement pumps than for
centrifugal pumps. In general, positive displacement pumps can work at greater load
pressure (resistance pressure) than centrifugal pumps can.

3.5.4 Electrical motors

3.5.4.1 AC motors

AC motors (AC = alternating current) is the most used motor type in industrial
applications. AC motors are used for the operation of fans, pumps, screws, compressors, etc.

AC motors are manipulated by frequency converters, see Figure 3.51.

150

CHAPTER 3. COMPONENTS OF CONTROL SYSTEMS

P
LC

Three phase mains

Frequency
converter

AC motor

Digital
communication

Amplitude and
frequency is

manipulated by
frequency converter

Figure 3.51: Sinamics V-20 frequency converter and Simotics GP AC motor. (Simatic S7-
1200 PLC. Siemens AS.)

The frequency converter converts the alternating voltage from the fixed network (1- or
3-phase network, 230 V, 50 Hz) into an alternating voltage with variable voltage and
frequency suitable for controlling the speed of the AC motor. The frequency converters are
controlled by automation equipment such as PLCs.

3.5.4.2 DC motors

To appear

3.5.5 Electrical heaters

Electrical heating elements in the form of heaters and resistance wires are widely used to
manipulate the temperature in various types of processes. The heat is generated when an

151

CHAPTER 3. COMPONENTS OF CONTROL SYSTEMS

electric current passes through the resistor in the heating element. Figure 3.52 shows some
commercial products.

Heaters Resistance wire

Application of resistance wire

Figure 3.52: Heating elements. (Kanthal products. Sandvik AB, Sweden).

If the heating element is to be included as an actuator in a temperature control system, the
mains voltage may be switched on/off over the heating element using pulse width
modulation, cf. Section 3.6.3.

To select a proper heating element in terms of resistance value, you must first decide the
average power Paverage [W] the component is required to emit, and then calculate the
resistance value R [Ω]. If you are going to use the AC voltage from the mains as a voltage
source, you can use the effective value Ueff [V] of the AC voltage to calculate the resistance
value. The following fundamental formulas of electrical power apply:

Paverage =
Ueff

2

R
(3.63)

which gives

R =
Ueff

2

Paverage
(3.64)

For mains voltage in e.g. Norway, Ueff ≈ 226 V.

152

CHAPTER 3. COMPONENTS OF CONTROL SYSTEMS

Resistance wires are characterized with their length-specific resistance value:

Rs =
R

L
[Ω/m] (3.65)

Rs can be used to select the appropriate resistance wire, as demonstrated in Example 3.9.

Example 3.9 Calculating a proper resistance value

Given a biogas reactor which is to be heated with a heating wire wound around the reactor.
The heater must be able to emit 200 W when the mains voltage is switched on. Assume
that a length of L = 10 m is appropriate. What value of Rs meets the specifications?

From (3.64) we get

R =
Ueff

2

Pmean
=

(226 V)2

200 W
= 255 Ω

which gives

Rs =
R

L
=

255 Ω

10 m
= 25.5

Ω

m

[End of Example 3.9]

3.6 Signal conditioning of control signals

3.6.1 Scaling of control signals

We will now focus on the control signal scaling function (block) in Figure 3.1. This function
scales or transforms the control signal calculated by the controller into a control signal to be
applied to the actuator – typically a milliampere (mA) current signal.

Figure 3.53 plots a linear scaling function. The units and values used in the figure are just
examples. Other units and values may apply in other cases.

The linear scaling function in Figure 3.53 can be expressed mathematically as

v = a · u+ b (3.66)

where the slope is

a =
v2 − v1
u2 − u1

(3.67)

and the constant (based on point 1; alternatively point 2 could have been used) is

b = v1 − a · u1 (3.68)

Example 3.10 Control signal scaling

153

CHAPTER 3. COMPONENTS OF CONTROL SYSTEMS

Control signal
from controller

100 %
0 %

(u1,ua1)

u

Control signal
to actuator

v

(u2,ua2)

0 mA

20 mA

Figure 3.53: Control signal scaling.

Assume a control system with control signal scaling as shown in Figure 3.53.

What are the values of a and b?

What is the control signal, v, to the actuator if the control signal, u, from the controller is
50 %?

(3.67) becomes

a =
v2 − v1
u2 − u1

=
20 mA− 0 mA

100 %− 0 %
=

20

100

mA

%
= 0.2

mA

%
(3.69)

(3.68) becomes

b = v1 − a · u1 = 0 mA− 0.2
mA

%
· 0 % = 0 mA (3.70)

If u = 50 %, (3.66) gives

v = a · u+ b = 0.2
mA

%
· 50 % + 0 mA = 10 mA (3.71)

[End of Example 3.10]

154

CHAPTER 3. COMPONENTS OF CONTROL SYSTEMS

3.6.2 Digital-analog (DA) conversion

Figure 3.1 shows the place of the DA converter (DA = digital-analog) in a feedback control
system. The DA converter is an electronic component that converts the digital control
signal into an analog (physical) control signal, which is typically a current signal in the
range of 0-20 mA, or 4-20 mA, or a voltage signal, e.g. 0-5 V, acting on the actuator.

Figure 3.54 illustrates DA conversion. The DA converter operates with a fixed time step, or

uan(t)

DA converter with
hold circuit with
sampling time

dt [sec].

tk

udig(tk)

tk

Analog
signal

Digital signal Time delay of
approx. dt/2

Figure 3.54: DA (digital-analog) conversion.

sampling time, dt [sec], which is typically set equal to the sampling interval in the AD
converter, cf. Figure 3.1. The digital control signal is converted to an analog current or
voltage signal, and is held in an electronic component denoted the hold circuit until the
next digital control signal is available. This means that the analog output signal from the
DA converter is actually a staircase-shaped signal, see Figure 3.1. In practice, the actuator
controlled by this staircase-shaped signal is a slow system compared with the sampling time,
and the actuator can hardly “feel” the steps but instead an almost smooth control signal.

As illustrated in Figure 3.1, the holding results in the average analog signal being
approximately time-delayed by half the sampling time, i.e.

τ ≈ dt

2
(3.72)

If dt, and therefore τ , is very small compared to the time constant, T (the time constant is
defined precisely in Ch. 9.3), of the actuator, this time delay makes no impact on the
performance of the control system. “Very small” may be interpreted as dt ≲ T/10.

3.6.3 Pulse-width modulation

Pulse-width modulation (PWM) is an “actuator” technique to obtain in average a specified
control signal with just an on/off signal, which we can denote upwm. This signal is typically
the closed/open state of a mechanical relay or a solid state relay (SSR), which is a
semiconductor-based relay without any mechanical parts.

155

CHAPTER 3. COMPONENTS OF CONTROL SYSTEMS

PWM is typically an option in industrial process controllers (Section 3.2.2). In
microcomputer systems as Raspberry Pi and Arduino, PWM is used implement “analog
output”.

The principle of PWM is to keep upwm at constant values Uon and Uoff for such a duration
that the resulting average control signal, umean, is as specified. PWM elements operates
with a given fixed period, tp, e.g. 1.0 sec, see Figure 3.55. (In the figure, Uoff is assumed 0,

t

Duty cycle: D [%] = ton/tp

Period, tp

Uon

upwm

Uoff=0

PWM

(Pulse Width Modulation)

upwm

umean

≈ D·Uon

D

[%]

Uontp

ton=D·tp

Uoff

(constant)

Figure 3.55: The principle of pulse-width modulation (PWM).

but it can be set to a nonzero value.) The part of the period where upwm = Uon is denoted
the duty cycle, D, which is given in percent:

D =
ton
tp

[%] (3.73)

For a given (specified) D, the on-time is then

ton = D · tp (3.74)

Note that D can have any value in terms of percentage, e.g. 12.3 %, or 45.6 %.

Figure 3.56 shows how PWM can be used in a temperature control system. In the figure,
the PID controller and the PWM element are shown as individual blocks. However, a PID
controller (as an automation components) may have the PWM and a mechanical relay or an
SSR integrated.

Example 3.11 Simulation of control system with PWM

Figure 3.57 shows the front panel of a SimView simulator of a control system with PWM.

The simulator is available on:

156

CHAPTER 3. COMPONENTS OF CONTROL SYSTEMS

PWM
= D [%]

UonTp

PID
uPID

~

230 V
Process

TT

Temperature

reference

SSR
(Solid State

Relay)

Heater

Uoff

Figure 3.56: PWM in temperature control.

http://techteach.no/simview/pwm control

[End of Example 3.11]

3.6.4 Converting current to voltage

Suppose you have a PID controller which generates a control signal in the form of a current
signal, and the controller will be used to control an actuator which requires a voltage
control signal. Then you need to convert the current signal into a voltage signal. How? By
letting the current pass through a resistor, and using the voltage drop across the resistor as
control signal, see Figure 3.58. You can find the resistance R with Ohm’s Law:

R =
U

I
[Ω] (3.75)

For example, the resistance to convert 0-20 mA into 0-5 V is 5 V/20 mA = 250 Ω.

157

http://techteach.no/simview/pwm_control

CHAPTER 3. COMPONENTS OF CONTROL SYSTEMS

Figure 3.57: Control system with PWM.

3.7 Problems for Chapter 3

Problem 3.1 Control and monitoring equipment

A number of different control and motitoring applications are indicated below. What type
of equipment might be suitable for each?

1. A laboratory rig that requires an advanced program for control, measurement and
analysis. Standard Windows software must be able to be used on the system. It is
acceptable if the control system locks for a period as long as the last sent control
signals (e.g. the voltage signals) are maintained (“frozen”).

2. A relatively small facility that does not require particularly advanced control. There
will be little need for changes to the control program after start-up.

3. A relatively large plant that does not require particularly advanced monitoring and
control. It is neccessary to have effective data communication between different levels
in the company.

4. A small facility that requires fairly advanced, but still standard control. There is no
need to implement advanced mathematical functions.

5. A relatively small plant that must be controlled in a safe way, i.e. that it is not
acceptable for the control system to fail. There is a need to implement some advanced
mathematical functions.

158

CHAPTER 3. COMPONENTS OF CONTROL SYSTEMS

+

_

U [V]I [A]

PID controller

Analog
output
(AO)

Actuator

Figure 3.58: Converting current from a controller to voltage for an actuator.

6. A relatively large facility that requires advanced monitoring and control using
pre-programmed functions. There is a need for effective data communication between
different levels in the company.

Problem 3.2 Pt100

Assume that the resistance value of a Pt100 element is measured as R = 161.4Ω (with a
Wheatstone’s bridge circuit). What is the measured temperature T?

Problem 3.3 Which thermometer?

Assume that the reference of a given temperature control system is 80 ◦C. Should you then
choose a thermocouple or resistance temperature sensor as sensor?

Problem 3.4 Level measurement with dp-cell

Assume a dp cell (differential pressure sensor) is used to measure the level of oil in an oil
tank where there is atmospheric pressure above the oil surface. The sensor measures the
static pressure at a point in a closed pipeline out of the bottom of the tank. The pressure
measurement point is located 0.5 meters below the bottom level of the oil. The density of
the oil is assumed to be 850 kg/m3. Assume that the measurement signal is 0.1 bar. What
is then the oil level, h?

Problem 3.5 Alternative pressure units

Pressure values can be represented in a number of alternative units. Assume that the gas
pressure, p, in a vessel is 0.5 bar above atmospheric pressure. Express p in the following
units (if you are unsure what some of the units below stand for, please try to find
information on the internet):

159

CHAPTER 3. COMPONENTS OF CONTROL SYSTEMS

1. bar, also denoted bara and bar(a)

2. barg, also denoted bar(g)

3. Pa (Pascal)

4. mmH2O, i.e. hydrostatic pressure as mm water column pressure

Problem 3.6 Selection of flow rate sensor

Which type of sensor(s) (you may specify one or more types in the answer) for measuring
liquid flow rate in a pipeline is (possibly) most relevant in each of these cases:

1. The volumetric flow rate is to be measured. It is not relevant \aa to make
interventions in the pipeline for \aa f\aa m\aa lt the current.

2. The volumetric flow rate is to be measured. A very high accuracy in the measurement
is required, and you have a lot of money.

3. The volumetric flow rate is to be measured. Intervention in the pipeline is acceptable.
There is no requirement for very high accuracy.

4. The mass flow rate is to be measured (directly).

5. The density of the liquid is to be measured (directly), and also the mass flow is to be
measured.

Problem 3.7 Methane gas flow rate measurement

For a given experimental biogas reactor, assume that the produced biogas flow rate is 258
L/d (measured with a thermal sensor). The methane gas concentration in the biogas is
approximately 73 % (measured with a spectroscopic sensor). What is the methane gas flow
rate in unit L/d?

Problem 3.8 Encoder resolution

Assume that an encoder is used to measure the rotation d [mm] of a measuring point at the
end of a arm that can rotate (turn). The distance from the center of the arm – where the
encoder is mounted – to the measuring point is L = 1 m. Assume that the encoder has 1024
bits.

1. What is the resolution, rd [mm/pulse] in the measurement of d?

2. If the resolution found in part task 1 is not sufficiently small, how can you change the
measurement system (but keep the encoder) to get an improved resolution?

160

CHAPTER 3. COMPONENTS OF CONTROL SYSTEMS

Problem 3.9 Calculation of speed from position measurements

Given the following two values of a position measurement: s(t0) = 1.235 m and
s(t1) = 1.238 m. The time interval between times t0 and t1 is 0.05 s. Calculate the speed
v(t1) from these position measurements.

Problem 3.10 Alternative sensors

Briefly describe two or three measurement principles – in addition to those in the book – for
the following process variables (you should use the internet if necessary):

• Temperature

• Pressure

• Level

• Liquid or gas flow

• Position

Problem 3.11 Measurement parameters

Assume that a level sensor of a wood chips tank produces a measurement signal (m) in the
range 4-20 mA, corresponding to a process value (p) in the range 5-15 m with a linear
measurement characteristic.

1. What is the values of the following measurement parameters?

• Upper process value

• Lower process value

• Zero

• Span

2. What are the parameters a and b in the following linear measurement characteristic?

p = a ·m+ b (3.76)

3. What is p if m = 12 mA?

Problem 3.12 Sensor accuracy

Given a thermal gas flow sensor with measurement range 0-10 mln/min. (The subindex n
means at the normal conditions, i.e. atmospheric pressure and temperature 20 ◦C. The
sensor accuracy is specified as ±1 % FS. What is the accuracy in mln/min? What
measurement error should you assume that every measurement reading has?

161

CHAPTER 3. COMPONENTS OF CONTROL SYSTEMS

Problem 3.13 ADC resolution

Given a 12 bit AD converter covering the analog signal range from yamin = 0 V to
yamax = 10 V.

1. What is the resolution in volt?

2. Assume that the sensor is a level sensor with a range of 0.5-5 m which corresponds to
a signal in the range of 0-10 V. What is the resolution in metres?

3. What is the relative resolution?

4. Assume that the 12 bit ADC is replaced by a 16 bit ADC. What is the relative
resolution of the 16 bit ADC?

Problem 3.14 Resistance for a current loop

In a specific current loop including data acquisition device, the sensor outputs a current
value in the range 4-20 mA. The data acquisition device can record voltage signals in the
range 0-10 V. Find an appropriate resistance value R for the current loop.

Problem 3.15 Dimensioning a control valve

Dimension a control valve for a pipeline with oil based on the following specifications:

• The pressure drop across the valve is mainly constant and equal to 0.5 bar.

• The temperature is about 15oC.

• The maximum oil flow rate through the valve is 15 L/min under normal conditions,
but there should be a capacity margin of 50 %, i.e. the valve should be sized for 50 %
greater flow than the assumed maximum flow rate.

Problem 3.16 Dimensioning an electrical heater

Assume that the water in a tank must be heated with a heating element. The heating
element must be able to emit 1 kW when the mains voltage is switched on. Find the
resistance value, R, of the heating element.

Problem 3.17 Scaling of control signal

Given a biogas reactor with a biogas flow rate control system. The biogas flow rate
controller adjusts the biological feed to the reactor using a feeding pump. The controller
calculates a flow rate in the range 0-80 L/d. The pump is controlled by a voltage signal in
the range 0-5 V covering the aforementioned feed flow range, with a linear relationship
between the ranges.

Assume that the controller at a given point of time demands a flow rate, u, of 43.5 L/d.
What is the corresponding control signal value, v, in volts?

162

CHAPTER 3. COMPONENTS OF CONTROL SYSTEMS

Problem 3.18 PWM

Given an electrical heater (resistor) controlled with PWM with period or cycle time period
0.5 s. When the PWM in the On state, the mains voltage is connected to heater which then
delivers 1 kW. When the PWM is in the Off state, the heater delivers zero power.

Assume that at the PWM is operated so that the heater delivers 400 W (in average).

1. What is then the duty cycle, D?

2. And what is the On time, ton?

Problem 3.19 Pump control: Analog or PWM?

Assume that a pump will used to generate a feed flow of biological material into a biogas
reactor, and that there are the following two alternative ways to control the pump:

• Analog control: The pump is controlled with an analog milliampere signal.
Unfortunately, it turns out to be practically difficult to obtain precise (repeatable)
small feed flow rates.

• Approximately analog control with PWM with period time 60 s, which is a very short
time compared to the slow response in biogas production in the biogas reactor. The
biogas reactor will therefore hardly “feel” that it is actually receiving the feed flow in
the form of flow pulses, but instead feel an approximately analog (smooth) flow.

The pump must be calibrated before it can be used. With analog control, it is necessary to
calibrate at, say, 5 points within the operating flow rate range of the pump.

1. How many operating points is it necessary to calibrate the pump for with PWM?

2. For the pump, would you recommend analog control or PWM?

163

CHAPTER 3. COMPONENTS OF CONTROL SYSTEMS

3.8 Solutions to problems for Chapter 3

Solution to Problem 3.1

1. PC-based control and monitoring system with a standard PC

2. PLC

3. DCS/SCADA

4. Process controller

5. PAC

6. DCS/DCS

Solution to Problem 3.2

From (3.4) we get

T =
R
R0

− 1

a
=

161.4 Ω
100 Ω − 1

3.9083 · 10−3oC−1 = 157.1oC (3.77)

Solution to Problem 3.3

A resistance thermometer, because it is (far) more accurate than a thermocouple
thermometer in the pertinent temperature range.

Solution to Problem 3.4

h =
p

ρg
− h0 =

0.1 · 100000 N/m2

850 kg/m3 · 9.81 m/s2
− 0.5 m = 0.70 m (3.78)

Solution to Problem 3.5

1. bar is a unit of absolute pressure, i.e. zero pressure (as in vacuum) is the pressure
reference. 1 bar (approx.) is the atmospheric pressure. So, p = 1.513 bar.

2. barg stands for “bar gauge” where gauge represents any measuring sensor (e.g. a
Bourdon tube) which measures pressure with atmospheric pressure as pressure
reference. So, p = 0.5 barg.

3. 1 bar is per definition equal to 100000 Pa. So, p = 151300 Pa.

4. mmH2O (mm water column) is the pertinent water height in mm. The hydrostatic
pressure is

p = ρgh [Pa] (3.79)

164

CHAPTER 3. COMPONENTS OF CONTROL SYSTEMS

where ρ = 1000 kg/m3, g = 9.81 m/s2 and h is in meters. We get

h [mm] =
p

ρg
=

151300 Pa

1000 kg/m3 · 9, 81 m/s2
· 1000 = 15423 mm (3.80)

So, p = 15423 mmH2O.

Solution to Problem 3.6

1. Ultrasound.

2. Coriolis.

3. Orifice with dp cell; Thermal; Ultrasound; Magnetic; Vortex.

4. Coriolis; Thermal.

5. Coriolis.

Solution to Problem 3.7

The methane gas flow rate is 0.73·251 L/d = 183 L/d.

Solution to Problem 3.8

1. The resolution is

r =
360 deg

1024 pulse
(3.81)

The relationship between the rotation b [m] and the angle a [deg] is given by

b = a
π

180
L (3.82)

which gives
b

a

m

deg
=

π

180 deg
L m

The resolution rd then becomes

rd = r
b

a
= r

π

180o
L =

360 deg

1024 pulse
· π

180 deg
· 1 m = 0.0061359

m

pulse
= 6.1359

mm

pulse
(3.83)

2. A gear can provide better resolution.

Solution to Problem 3.9

From (3.21) we get

v(t1) ≈
s(t1)− s(t0)

Ts
=

1.238 m− 1.235 m

0.05 s
= 0.06 m/s (3.84)

165

CHAPTER 3. COMPONENTS OF CONTROL SYSTEMS

Solution to Problem 3.10

• Temperature:

– Thermistor : A semiconductor component that has a temperature-sensitive
resistance value. The resistance decreases with temperature. A measurement of
the resistance indicates the temperature.

– Bimetal : Two different metals with different temperature-dependent expansions
are assembled (e.g. welded) together. The sensor will be bent more towards one
of the sides as the temperature increases, or decreases. A measurement of the
bend indicates the temperature.

– Pyrometer : The higher the temperature in an object, the greater the heat
radiation from that object. The pyrometer determines the temperature based on
a measurement of the radiation.

• Pressure:

– Bourdon tube: The expansion of a circular tube filled with gas or liquid varies
with the pressure. A pointer connected to the tube indicates the pressure.

– Manometer : The liquid level in each of the two tube legs of a U-shaped tube
varies with the pressure difference in the tube legs. The difference between the
level measurement of each of the levels indicates the pressure difference.

– Piezoelectric sensor : In certain crystals, such as quartz, an electrical charge is
generated that varies with the pressure the crystal is exposed to. (Piezoelectric
means “electrical charge generated by pressure”.) A voltage measurement
indicates the pressure.

• Level:

– Buoyancy : The buoyancy force of a partially submerged fixed body varies with
the liquid level. A measurement of this force indicates the liquid level.

– Radioactive radiation: An emitter on one side of a liquid tank emits radioactive
radiation. The radiation detected by a rod-shaped receiver on the other side of
the tank indicates the level of the liquid in the tank.

– Weight : The total weight of a tank with material is measured. The material
weight is equal to the measured total weight minus the weight of the tank itself.
The material weight indicates the level of the material.

• Liquid or gas flow rate:

– Turbine: A (small) turbine is mounted inside the pipe where the gas or liquid
flows. A measurement of the rotational speed of the turbine indicates the flow
rate.

– Rotameter : A free-floating plug is placed in a vertical section of the pipe where
the liquid to be read flows. The vertical position of the plug increases if the fluid
flow rate increases. A meassurement of the position indicates the flow rate.

– Clock : The time it takes to fill up a chamber of known volume is detected. When
the chamber is full it is automatically emptied, and a new filling starts. The
volumetric flow rate is calculated as the chamber volume divided by the time
between each time the chamber is emptied.

166

CHAPTER 3. COMPONENTS OF CONTROL SYSTEMS

• Position:

– Resolver : The position of a shaft is measured from the induced current/voltage
in electric coils which have a relative angular position depending on the angular
rotation of the shaft.

– Potentiometer : A variable resistor – a potensiometer – is fixed to the body
whose position is to be measured. The resistance varies with the position of the
body. The resistance can be detected with a small electrical circuit consisting of
interconnected resistors called a voltage divider. The output voltage of the
voltage divider indicates the position of the body.

Solution to Problem 3.11

1.

• Upper process value: 15 m.

• Lower process value: 5 m.

• Zero: 5 m.

• Span: 15 m − 5 m = 10 m.

2. Measurement characteristic parameters:

a =
p2 − p1
m2 −m1

=
15 m− 5 m

20 mA− 4 mA
=

10

16

m

mA
= 0.625

m

mA
(3.85)

b = p1 − a ·m1 = 5 m− 0.625
m

mA
· 4 mA = 2.5 m (3.86)

3. With m = 12 mA:

p = a ·m+ b = 0.625
m

mA
· 12 mA + 2.5 m = 10 m (3.87)

Solution to Problem 3.12

FS is 10 mln/min. The accuracy in mln/min then becomes ±1 % of 10 mln/min which is
±0.1, which is the measurement error you have to assume for any measurement reading.

Solution to Problem 3.13

1. Resolution in volt:

R =
yamax − yamin

2n − 1
=

10 V− 0 V

212 − 1
= 0.0024 V = 2.4 mV (3.88)

2. Resolution in meter:

R =
5 m− 0, 5 m

212 − 1
= 0.0011 m = 1.1 mm (3.89)

167

CHAPTER 3. COMPONENTS OF CONTROL SYSTEMS

3. Relative resolution (12 bits ADC):

Rrel =
1

212 − 1
= 2.44 · 10−4 (3.90)

4. Relative resolution (16 bits ADC):

Rrel =
1

216 − 1
= 1.53 · 10−5 (3.91)

Solution to Problem 3.14

From (3.23) we get

R =
U

I
=

10 V

20 mA
= 500 Ω (3.92)

Solution to Problem 3.15

The valve must be able to deliver a flow rate equal to Q = 15 L/min + 50 % of 15 L/min =
22.5 L/min. Oil has a relative density of G = 0.85. The valve equation (3.54) is solved with
respect to the valve constant to give

Kv =
Q√
pv
G

=
22.5 [L/min]√

0.5 bar
0.85

=
22.5 [0.001 m3/(h/60)]√

0.5 bar
0.85

= 1.76 m3/h (3.93)

Solution to Problem 3.16

From (3.64) we get

R =
Ueff

2

Paverage
=

(226 V)2

1 kW = 1000 W
= 51.1 Ω (3.94)

Solution to Problem 3.17

(3.67) becomes

a =
v2 − v1
u2 − u1

=
5 V− 0 V

80 L/d− 0 L/d
= 0.0625

V

L/d
(3.95)

(3.68) becomes

b = v1 − a · u1 = 0 V− 0.0625
V

L/d
· 0 L

d
= 0 V (3.96)

If u = 43.5 L/d, (3.66) gives

v = a · u+ b = 0.0625
V

L/d
· 43.5 L/d + 0 V = 2.72 V (3.97)

168

CHAPTER 3. COMPONENTS OF CONTROL SYSTEMS

Solution to Problem 3.18

1. Duty cycle:

D =
umean

Uon
=

400 W

1000 W
= 0.4 = 40 % (3.98)

2. On-time:
ton = Dtp = 0.4 · 0.5 s = 0.2 s (3.99)

Solution to Problem 3.19

1. One operating point!

2. PWM. Reasons: (1) It is sufficient to calibrate the pump at only one operating point,
namely the feed flow rate when the pump is in the On state. (2) With PWM, the
pump may deliver more precise small feed flow rates (in average) than with analog
control.

169

Part III

MODELING and SIMULATION
OF DYNAMIC SYSTEMS

170

Chapter 4

Mechanistic modeling

4.1 Introduction

This chapter describes basic principles of mathematical modeling of dynamic systems. A
mathematical model is the set of equations which describes the behavior of the system. The
chapter focuses on how to develop dynamic models, and you will see that the models are
differential equations. The differential equations can be represented on various forms, for
example state space models (Ch. 5), mathematical block diagrams (Ch. 7), or transfer
functions (Ch. 8). One very important application of models is creating simulators (Ch. 6).

Unfortunately we can never make a completely precise model of a physical system. There
are always phenomena which we will not be able to model. Thus, there will always be
model errors or model uncertainties. But even if a model describes just a part of the reality
it can be very useful for analysis and design – if it describes the dominating dynamic
properties of the system. A saying is “All models are wrong, but some are useful.”

This chapter describes modeling based on physical principles. Such modeling has
alternative names:

• Mechanistic modeling

• First principles modeling

• White-box modeling, as opposed to black-box modeling where the models are just
mathematical expressions capable to represent the dynamic relation between the
output and input of the system, like transfer functions.

4.2 What is a dynamic system?

Dynamic means “which has to do with the movement and change”. Dynamic systems are
systems where the variables can vary or develop with time. We say that dynamic systems
have dynamic responses. Figure 4.1

171

CHAPTER 4. MECHANISTIC MODELING

Dynamic
system

u(t)

t

y(t)

t

Input
variable

Output
variable

Figure 4.1: Dynamic systems are systems where the variables can vary or develop as functions
of time.

gives an illustration. The figure shows a block diagram of a dynamic system. The input
variable is here a step function, and the response in the output variable is dynamic since it
changes with time. In general, dynamic systems may have more than one input variable
and more than one output variable.

Here are some examples of dynamic systems:

• A liquid tank.

– Input (variable): Inflow.

– Output (variable): Level.

• A motor.

– Input: Motor control voltage.

– Output: Speed.

• A heated water tank.

– Input : Supplied heat.

– Output : Temperature in the water in the tank.

• A robot manipulator.

– Input : Control signal to motor.

– Output : Arm position.

• A ship.

– Input : Thruster force.

– Output : Ship position.

• A signal filter:

– Input : Filter input to be filtered (smoothed).

– Output : Filter output signal.

• A control system for a physical process:

– Input : Setpoint.

– Output : Process output variable.

172

CHAPTER 4. MECHANISTIC MODELING

4.3 A procedure for mathematical modeling

Below is described a procedure for developing dynamic mathematical models for physical
systems:

1. Define systems boundaries. All physical systems works in interaction with other
systems. Therefore it is necessary to define the boundaries of the system before we
can begin developing a mathematical model for the system, but in most cases defining
the boundaries is done quite naturally.

2. Make simplifying assumptions. One example is to assume that the temperature
in a tank is the same everywhere in the tank, that is, there are homogeneous
conditions in the tank.

3. Use the Balance Law for the physical balances in the system. See Figure 4.2.

Accumulation

(Acc)Inflow Outflow

Generation

Figure 4.2: Illustration of the Balance Law.

In the figure, “Accumulation” is a general term. Specifically, it can be accumulated
mass, mole, energy, momentum, or electric charge in a physical system. “Inflow”
represents possibly several inflows. “Outflow” represents possibly several outflows.
“Generation” can be e.g. material generated by chemical reactions, or generated
energy in an exothermal reactor.

The accumulation in the system at time t is given by the following integral, where the
term Acc is used for short:

Acc(t) = Acc(0) +

ˆ t

0
Acc’(θ) dθ (4.1)

where t = 0 is the initial time. The integrand, Acc’, is the rate of change, or time
derivative, of the Acc, and is given by the following differential equation, which is
often termed the the Balance Law of the system:

Acc′ = Inflow−Outflow + Generation (4.2)

Usually, only the (4.2) is said to be the mathematical model of the system, although
(4.1) is also essential to calculate the Accumulation.

173

CHAPTER 4. MECHANISTIC MODELING

4. Draw an overall block diagram showing inputs, outputs and parameters. A
block diagram makes the model appear more clearly. Figure 4.3 shows a general
overall block diagram. In the figure, the single lines can represent a number of
variables. The output variables are typically the accumulations, or accumulations

System
y

Environmental

variables

(disturbances)

u Output

variables

Manipulating

variables

Parameters

d

p

Figure 4.3: Overall block diagram.

multiplied by some constants. The input variables are of two kinds: (1) Manipulating
(adjustable) variables which you can use to manipulate or control the system (like
power from a heater), and (2) environmental variables which you can not manipulate
(like environmental temperature). In the context of control systems, environmental
variables are often denoted disturbance variables.

Mathematically, the input variables are independent variables, and the output
variables are dependent variables.

The parameters of the model are quantities in the model which typically (but not
necessarily) have constant values, like liquid density and spring constant. If a
parameter have a varying value, it may alternatively be regarded as an environmental
variable.

5. Present the model on a proper form. The choice of model form depends on the
application of the model. The most common model forms are:

(a) Differential equation with the highest order of the time derivative alone on the
left side of the equation. This is the model form used in examples and problems
in the present chapter.

(b) State space models (Ch. 5.2), which are just the differential equations written
with the time derivates alone on the left side of the equation. (If the model is a
differential equation of order two or higher, the state space model is an
equivalent set of first order differential equation.)

(c) Mathematical block diagrams (Ch. 7).

(d) Transfer functions (Ch. 8) which applies only for linear differential equation
models.

174

CHAPTER 4. MECHANISTIC MODELING

The following sections contain several examples of mathematical modeling. In those
examples, items 1 and 2 above are applied more or less implicitly.

Comments on notation

For simplicity, I write the time-varying variables without the time as argument. For
example, I write m instead of m(t). However, in cases where time delay is involved, it is
important to show the time argument explicitly, for example u(t− τ) where τ is the time
delay. This is the case in Problem 4.2 at the end of this chapter, where there is a time delay
due to a conveyor belt.

4.4 Mathematical modeling of material systems

In a system where the mass may vary, mass is the “accumulation” in the (4.2) which now
becomes a mass balance:

m′ =
∑
i

Fi (4.3)

where m [kg] is the mass, and Fi [kg/s] is mass inflow (no. i).

Example 4.1 Mass balance of a liquid tank

Figure 4.4 shows a liquid tank with inflow and outflow. Assume that the inflow can be
manipulated with e.g. a pump. The outflow is due to some consumption which here is
regarded as an environmental variable.

A [m2]

 [kg/m3]

h [m]

0

m [kg] V [m3]

Fin [kg/s]

Fout [kg/s]

ρ

Figure 4.4: Example 4.1: Liquid tank.

The tank has straight, vertical walls. Fin and Fout are mass flows. h is liquid level. V is
liquid volume. m is mass. A is cross sectional area. The density of the liquid, ρ, is assumed
the same in the inlet, the outlet, and the tank.

175

CHAPTER 4. MECHANISTIC MODELING

The mass balance for the mass in the tank is:

m′ = Fin − Fout (4.4)

which is a differential equation for m. An additional condition for the differential equation
is m ≥ 0.

Now, m is the integral of m′:

m(t) = m(0) +

ˆ t

0
m′(θ) dθ (4.5)

with the condition 0 ≤ h ≤ mmax where mmax is the maximum liquid mass in the tank.

A model of the level

Maybe you are more interested in how level h varies than how m varies? The relation
between h and m is a given by

m = ρV = ρAh (4.6)

We insert this into the mass balance (4.4), which then becomes

m′ = (ρV)′ = (ρAh)′ = ρAh′ = Fin − Fout (4.7)

where parameters ρ and A have been moved outside the derivation (they are assumed
constant).

By dividing by ρA we get the following differential equation of h:

h′ =
1

ρA
(Fin − Fout) (4.8)

The level h is the integral of h′:

h(t) = h(0) +

ˆ t

0
h′(θ) dθ (4.9)

with the condition 0 ≤ h ≤ hmax.

Figure 4.5 shows an overall block diagram of the model (4.8). Note that Fout is an input
variable despite it represents a physical outflow from the tank!

[End of Example 4.1]

4.5 Mathematical modeling of thermal systems

Mathematical modeling of thermal systems is based on the to set up energy balances. The
term energy covers temperature-dependent energy, which we can call thermal energy, and
kinetic and potential energy. In general we must assume that there is a transformation from

176

CHAPTER 4. MECHANISTIC MODELING

Fout

Liquid tank

Fin h

Manipulating variable Output variable

Environmental variable

(disturbance)

A

Parameters

ρ

Figure 4.5: Example 4.1: Overall block diagram of the liquid tank.

one energy form to another within a given system. For example, kinetic energy can be
transformed to thermal energy via friction. For many thermal systems we can assume that
the energy consists of only thermal energy and we can neglect the transformation from
kinetic and potential energy to thermal energy.

For thermal systems, the “accumulation” in the Balance Law (4.2) is thermal energy. Thus,
the Balance Law becomes an energy balance:

E′ =
∑
i

Qi (4.10)

where E [J] is the thermal energy, and Qi [J/s] is energy inflow no. i. The energy E is often
assumed to be proportional to the temperature and the mass (or volume):

E = cmT = cρV T = CT (4.11)

where T [K] is the temperature, c [J/(kg K)] is specific heat capacity, m [kg] is mass, V [m3]
volume, ρ [kg/m3] is density, C [J/K] is total heat capacity.

Example 4.2 Heated liquid tank

Figure 4.6 shows a liquid tank with continuous liquid inflow and outflow. There is heat
transfer with the environment through the walls. The liquid receives power through a
heating element. P is power from the heating element. T is temperature in the tank and in
the outlet flow. Ti is the temperature in the inlet flow. F is mass flow. m is mass of liquid
(constant). c is specific heat capacity. G is heat transfer coefficient.

We will now set up an energy balance for the liquid in the tank to find the differential
equation which describes the temperature T (t). We will then make the following
assumptions:

• The temperature in the liquid in the tank is homogeneous (due to the stirring
machine).

177

CHAPTER 4. MECHANISTIC MODELING

c [J/(kg K)]

Ti [K]

F [kg/s]

m [kg]

T [K]

P [W]

F

T

Mixer

Te [K]
G [W/K]

V [m3]

P [W]

Figure 4.6: Example 4.2: Heated liquid tank.

• The inflow and in the outflow are equal, and the tank is filled by liquid.

• There is no storage of thermal energy in the heating element itself. This means that
all of the supplied power to the heating element is supplied (immediately) to the
liquid. (Thus, we do not write an energy balance for the heating element.)

The energy balance is based on the following energy transports (power):

1. Power from the heating element:
P = Q1 (4.12)

2. Power from the inflow:
cFTi = Q2 (4.13)

3. Power removed via the outflow:
−cFT = Q3 (4.14)

4. Power via heat transfer from (or to) the environment:

G (Te − T) = Q4 (4.15)

The energy balance is
E′ = Q1 +Q2 +Q3 +Q4 (4.16)

where the energy is given by
E = cmT

The energy balance can then be written as

(cmT)′ = P + cFTi − cFT +G (Te − T) (4.17)

If we assume that c and m are constant, we can move cm outside the derivative term.
Furthermore, we can combine the terms on the right side. The result is

cmT ′ = P + cF (Ti − T) +G (Te − T) (4.18)

178

CHAPTER 4. MECHANISTIC MODELING

or:

T ′ =
1

cm
[P + cF (Ti − T) +G (Te − T)] (4.19)

The temperature T is the integral of T ′:

T (t) = T (0) +

ˆ t

0
T ′(θ) dθ (4.20)

Figure 4.7 shows an overall block diagram of the model (4.19).

P
Heated

liquid tank
T

Ti Te

c m F G

Parameters

Manipulating

variable

Environmental

variables

Output variable

(inventory)

Figure 4.7: Example 4.2: Overall block diagram of heated tank.

[End of Example 4.2]

4.6 Mathematical modeling of kinetic systems

4.6.1 Systems with linear motion

For kinetic systems in the form of a body with linear motion (we will soon study rotational
motion), the “accumulation” term in the Balance Law (4.2) is momentum. Thus, the
Balance Law becomes a momentum balance, which is often denoted force balance:

I ′ = (mv)′ =
∑
i

Fi (4.21)

where I [Ns] is the momentum (mass times speed), and Fi is force (no. i). I is

I = mv = mx′ (4.22)

where m [kg] is mass, v [m/s] is speed, and x [m] is position.

179

CHAPTER 4. MECHANISTIC MODELING

If m is constant, m can be moved outside the derivative term in (4.21), which then becomes

mv′ = mx′′ = ma =
∑
i

Fi (4.23)

where v′ = x′′ = a is acceleration. (4.23) is the well-known Newton’s second law (the sum of
forces is equal to mass times acceleration).

Often the mass m is constant. Then (4.23) can be used for mathematical modeling. But if
m is time-varying, (4.21) must be used. One example of a system with varying mass is a
conveyor belt where the mass on the belt is varying.

Example 4.3 Block diagram of mass-spring-damper system

Figure 4.8 shows a mass-spring-damper-system.1 y is position. u is applied force. d is

m

k [N/m]

d [N/(m/s)]

u [N]

0 y [m]

Figure 4.8: Mass-spring-damper.

damping constant. d is spring constant. It is assumed that the damping force Fd is
proportional to the speed:

Fd = dy′ (4.24)

and that the spring force Fs is proportional to the position of the mass:

Fs = ky (4.25)

The spring force is assumed to be zero when y is zero. Force balance (Newton’s 2. Law)
yields2

my′′ = u− Fd − Fs

= u− dẏ − ky (4.26)

which is a second order differential equation, which we can write as

y′′ = (u− dẏ − ky) /m (4.27)

1The mass-spring-damper system is not a typical system found in process control. It is chosen here because
it is easy to develop a mathematical model using well known physical principles, here the Newton’s second
law. Examples of more relevance to process control are described in Chapter 4.

2Double-dot represents second order time-derivative: ÿ(t) ≡ d2y(t)/dt2

180

CHAPTER 4. MECHANISTIC MODELING

Speed y′ is the integral of acceleration y′′:

y′(t) = y′(0) +

ˆ t

0
y′′(θ) dθ (4.28)

And position y is the integral of speed y′:

y(t) = y(0) +

ˆ t

0
y′(θ) dθ (4.29)

In other words, position is double-integral of the acceleration.

Figure 4.9 shows an overall block diagram for the model (4.26). The applied force u is the
input variable, and the position y is the output variable.

y [m]u [N] Mass-spring-
damper

k [N/m] d [N/(m/s)]

Figure 4.9: Overall block diagram of mass-spring-damper system.

[End of Example 4.3]

4.6.2 Systems with rotational motion

4.6.2.1 Momentum balance

Systems with rotational motion can be modelled in the same way as systems with linear
motion (see above), but we must use momentum balance, which is often denoted torque
balance for rotational systems:

S′ = (Jω)′ =
∑
i

Ti (4.30)

Here, S [Nms] is momentum, J [kgm2] is inertia, ω [rad/s] is rotational speed, and Ti is
torque (no. i). If J is constant, (4.30) can be written

Jω′ = Ja′′ =
∑
i

Ti (4.31)

where ω′ = a′′ is angular acceleration, and a [rad] is angular position.

(4.31) can be written as:

a′′ =

(∑
i

Ti

)
/J (4.32)

181

CHAPTER 4. MECHANISTIC MODELING

Angular speed a′ is the integral of angular acceleration a′′:

a′(t) = a′(0) +

ˆ t

0
a′′(θ) dθ (4.33)

And angular position a is the integral of angular speed a′:

a(t) = a(0) +

ˆ t

0
a′(θ) dθ (4.34)

In other words, angular position is double-integral of the angular acceleration.

4.6.2.2 Relations between rotational and linear motion

In mathematical modeling of mechanical systems which consists of a combination of
rotational and linear systems, the following relations are useful: Torque T is force F times
arm L:

T = FL (4.35)

Arc b is angle a (in radians) times radius r:

b = ar (4.36)

4.6.2.3 Coupled mechanical systems

Mechanical systems often consist of coupled (sub)systems. Each system can have linear
and/or rotational motion. Some examples: (1) A robot manipulator where the arms are
coupled. (2) A traverse crane where a wagon moves a pending load. (3) A motor which
moves a load with linear motion, as in a lathe machine.

A procedure for mathematical modeling of such coupled systems is as follows:

1. The force or torque balance is put up for each of the (sub)systems, and internal forces
and torques acting between the systems are defined.

2. The final model is derived by eliminating the internal forces and torques.

This procedure is demonstrated in Example 4.4. An alternative way of modeling coupled
systems is to use Lagrange mechanics where the model (the equations of motion) are
derived from an expression which contains kinetic and potential energy for the whole
system (this method is not described here).

Example 4.4 Modeling coupled rotational and linear motion systems

Figure 4.10 shows an electric motor (which can be a current-controlled DC-motor) which
moves a load with linear motion via a gear and a rod.

182

CHAPTER 4. MECHANISTIC MODELING

im [A]

Tm = Kmim [Nm]

m [kg]

r [m]

 [rad]

y [m]0

Rod

Gear

Motor

Load

FL [N]

(radius)

a

Figure 4.10: Example 4.4: Motor moving a linear load via a gear and a rod.

We set up a torque balance for the rotational part of the system and a force balance for the
linear part, and then combines the derived equations. We shall finally have model which
expresses the position y of the tool as a function of the applied motor current im. FL is a
load force acting on the load by the environment. (For simplicity the time argument t is
excluded in the expressions below.)

1. Torque and force balance: The torque balance for the motor becomes

Ja′′ = Kmim − T1 (4.37)

where T1 is the torque which acts on the motor from the rod and the load via the
gear. The force balance for rod and load becomes

my′′ = F1 − FL (4.38)

where F1 is the force which acts on the rod and the load from the motor via the gear.
The relation between T1 and F1 is given by

T1 = F1r (4.39)

The relation between y and θ is given by

y = ar (4.40)

which yields

a′′ =
y′′

r
(4.41)

By setting (4.41) and (4.39) into (4.37), (4.37) can be written

J
y′′

r
= Kmim − F1r (4.42)

2. Elimination of internal force: By eliminating the internal force F1 between (4.38)
and (4.42), we get (

m+
J

r2

)
y′′ =

Km

r
im − FL (4.43)

183

CHAPTER 4. MECHANISTIC MODELING

or:

y′′ =

(
Km

r
im − FL

)/(
m+

J

r2

)
(4.44)

which is a mathematical model for the coupled system.

Speed y′ is the integral of acceleration y′′:

y′(t) = y′(0) +

ˆ t

0
y′′(θ) dθ (4.45)

And position y is the integral of speed y′:

y(t) = y(0) +

ˆ t

0
y′(θ) dθ (4.46)

Figure 4.11 shows an overall block diagram for the model (4.43). im and FL are input
variables, and y is the output variable.

im Motor
with rod
and load

y

FL

Figure 4.11: Overall block diagram of motor with rod and load.

[End of Example 4.4]

4.7 Mathematical modeling of electric systems

This section gives a summary of some fundamental formulas for electric systems which you
will probably use in mathematical modeling of electric systems.

4.7.1 Kirchhoff’s law

4.7.1.1 Kirchhoff’s Current Law

See the left part of Figure 4.12. The sum of currents into a junction in an electric circuit is
zero:

i1 + i2 + i3 + · · · = 0 (4.47)

184

CHAPTER 4. MECHANISTIC MODELING

+

+

+

v2

v3v1

i2

i3

i1
Closed
circuit

Junction

Figure 4.12: Kirchhoff’s laws.

4.7.1.2 Kirchhoff’s Voltage Law

: See the right part of Figure 4.12. The sum of voltage drops over the components on a
closed electric loop is equal to zero:

v1 + v2 + v3 + · · · = 0 (4.48)

4.7.2 Resulting resistance

Figure 4.13 shows series and parallel combination of resistors.

R1 R2

R1

R2

Series connection:

Rseries
Rparallel

Parallel connection:

Figure 4.13: Series and parallel combination of resistors.

4.7.2.1 Resistors in series

Given two resistors R1 and R2 [Ω] in a series combination. The resulting resistance is

Rseries = R1 +R2 (4.49)

4.7.2.2 Resistors in parallel

Given two resistors R1 and R2 [Ω] in a parallel combination. The resulting resistance is

Rparallel =
R1R2

R1 +R2
(4.50)

185

CHAPTER 4. MECHANISTIC MODELING

4.7.3 Models of resistor, capacitor, and inductor

See Figure 4.14.

i [A]

C [F]

+ _v [V]

i

+ _v

L [H]i

+ _v

Resistor

Capacitor

Inductor

Figure 4.14: Resistor, capasitor and inductor.

Suppose that the current through a component is i [A] and that the corresponding voltage
drop over the component v [V]. Current and voltage are then related as follows.

Resistor
v = Ri (Ohm’s law) (4.51)

Capacitor
i = Cv′ (4.52)

Inductor
v = Li′ (4.53)

Example 4.5 Mathematical modeling of an RC-circuit

Figure 4.15 shows an RC-circuit (the circuit contains the resistor R and the capacitor C).

The RC-circuit is frequently used as an analog lowpass filter: Signals of low frequencies
passes approximately unchanged through the filter, while signals of high frequencies are
approximately filtered out (stopped).

We will now find a mathematical model relating vout to vin. First we apply the Kirchhoff’s
voltage law in the circuit which consists the input voltage terminals, the resistor, and the
capacitor (we consider the voltage drops to be positive clockwise direction):

−vin + vR + vout = 0 (4.54)

186

CHAPTER 4. MECHANISTIC MODELING

v2 [V]

++

_ _

v1 [V]
C [F]

i [A]

Input

voltage

Output

voltage

iC

i2+
_

vR [V]

Figure 4.15: RC-circuit.

(vout equals the voltage drop over the capacitor.) In (4.54) vR is given by

vR = Ri (4.55)

We assume that there is no current going through the output terminals. (This is a common
assumption, and not unrealistic, since it it typical that the output terminals are connected
to a subsequent circuit which has approximately infinite input impedance, causing the
current into it to be approximately zero. An operational amplifier is an example of such a
load-circuit.) Thus, jf. (4.52),

i = iC = Cv′out (4.56)

The final model is achieved by using i as given by (4.56) in (4.55) and then using vR as
given by (4.55) for vR in (4.54). The model becomes

RCv′out = vin − vout (4.57)

or:
vout

′ = (vin − vout) / (RC) (4.58)

vout is is the integral of v′out:

vout(t) = vout(0) +

ˆ t

0
vout(θ)

′ dθ (4.59)

Figure 4.16 shows a block diagram for the model (4.57). vin is the input variable, and vout is
the output variable.

v1 RC-
circuit

v2

Figure 4.16: Overall block diagram of an RC-circuit.

[End of Example 4.5]

187

CHAPTER 4. MECHANISTIC MODELING

4.7.4 Power

4.7.4.1 Instantaneous power

When a current i flows through a resistor R, the instantaneous power delivered to the
resistor is

P = ui (4.60)

where u = Ri is the voltage drop across the resistor.

4.7.4.2 Mean power

When an alternating (sinusoidal) current of amplitude I flows through a resistor R (for
example a heating element), the mean or average value of the power delivered to the
resistor is

P̄ =
1

2
UI =

1

2
RI2 =

1

2

U2

R
(4.61)

where U is the amplitude of the alternating voltage drop across the resistor. (4.61) is
independent of the frequency.

4.8 Physical component based simulators

To appear.

4.8.1 OpenModelica

To appear.

4.8.2 Aspentech Hysys

To appear.

4.8.3 Simscape

To appear.

188

CHAPTER 4. MECHANISTIC MODELING

4.9 Problems for Chapter 4

Problem 4.1 Mass balance with volumetric flows

In Example 4.1 the inflow and outflow are mass flows. Now, assume that the flows are
instead volumetric flows, qin[m

3/s] and qout[m
3/s], respectively. Derive the differential

equation of h under this assumption.

Problem 4.2 Modeling of wood chips tank

Figure 4.17 shows a wood chips tank with a feed screw and conveyor belt (the belt has
constant speed).3

To the

cookery

0 m

Chip

Screw control

signal

u [mA]

Conveyor b
elt

Chip tank

wout [kg/min]

Level

h [m]

Mass flow

ws [kg/min]

win [kg/min]

Feed screw

Screw constant

Ks [(kg/min)/mA]

Time delay

 [min]

Chip

Chip density

 [kg/m3]

A [m2]

Figure 4.17: Wood chips tank.

There is an outflow of chip via an outlet at the bottom of the tank. The mass flow ws from
the feed screw to the belt is proportional to the screw control signal u:

ws = Ksu (4.62)

The mass flow win into the chip tank is equal to ws but time delayed time τ :

win(t) = ws(t− τ) (4.63)

1. Draw an overall input-output block diagram of the system. Define the input and
output variables (it is assumed that the level is of particular interest).

2. Develop a mathematical model describing the behaviour of the chip level h.

Problem 4.3 Mole balance

189

CHAPTER 4. MECHANISTIC MODELING

Mixer

q [m3/s]

Raw material Component A

wA [mol/s]

V [m3]
cA [mol/m3]

Product cA

q

Figure 4.18: Problem 4.3: Blending tank.

Figure 4.18 shows a stirred blending tank where the material A is fed into a tank for
blending with a raw material. The symbols in Figure 4.18 are as follows: V is the liquid
volume in the tank. q is the volumetric inflow of the raw material. q is also the volumetric
outflow. cA is the mole density or concentration of material A in the tank. wA is the mole
flow of material A.

Assumptions:

• The contents of the tank has constant volume.4

• The volumetric flow of material A is very small (negligible) compared to the
volumetric flow of the raw material.

• There are homogeneous conditions (perfect stirring) in the tank.

• The raw material does not contain A.

1. Develop a mathematical model which expresses how the concentration cA varies.

2. Draw an overall block diagram of the system.

Problem 4.4 Modeling of blending tank

Figure 4.19 shows a tank with cold water inflow and heated (blended) water outflow. The
tank is constantly full, and the volumetric flow is thus equal to the sum of the inflows.

Assume homogeneous conditions in the tank. Develop a mathematical model of the water
temperature T in the tank.

Problem 4.5 Modeling of a ship

190

CHAPTER 4. MECHANISTIC MODELING

Mixer

qk [m
3/s]

Cold water Hot water

qv [m
3/s]

V [m3]

c [J/kgK]

Blended

water

q [m3/s]

T [K]

Tk [K] Tv [K]

T [K]

Figure 4.19: Tank with cold water inflow and heated (blended) water outflow.

Figure 4.20 shows a ship.

In this problem we concentrate on the so-called surge (forward) direction, i.e., the
movements in the other directions are disregarded. The wind acts on the ship with the force
Fw. The absolute value of the hydrodynamic force Fh (force from water acting on the ship)
is proportional to the square of the difference between the ship speed u and the water
current speed uc.

5 Assume that the proportionality constant is D (a positive number).

1. What is the mathematical relation between speed u and position y?

2. Develop a mathematical model of the ship expressing the motion (the position y) in
the surge direction.
Note: It is important to get the direction of the hydrodynamic force correct. Let us
assume all speeds are positive in the positive surge direction (forwards). If the water
current speed is larger than the ship speed, the hydrodynamic force acts on the ship
in the forward direction. If the water current speed is smaller than the ship speed the
hydrodynamic force acts on the ship in the backward direction. Your model must
express this correctly.

3. Draw an input-output block diagram of the system. Assume that the ship position is
the variable of particular interest.

Problem 4.6 Modeling of a satellite

Figure 4.21 shows a satellite with manoeuvering motors.

Develop a model of the angular motion of the satellite.

3Typically, there is such a wood chips tank in the beginning of the production line of a paper mass factory.
4This can be accomplished with for example a level control system.
5In the context of ship modeling, it is usual to use the symbol u for speed. In the control theory, however,

u often represents the control signal, but control is not a topic in this problem.

191

CHAPTER 4. MECHANISTIC MODELING

Wind force

Fw [N]

Hydrodynamic

force Fh [N]

Propeller force

Fp [N]

Ship speed (relative to earth) u [m/s]

Mass m [kg]

Position y [m]

Water current speed (rel. to earth) uc [m/s]

Figure 4.20: Ship.

Problem 4.7 Modeling of a pendulum

Figure 4.22 shows a cart with the pendulum. A motor (in the cart) acts on the cart with a
force F .6

You can use the following variables and parameters in the model to be derived in this
problem:

• I – the moment of inertia of the pendulum about it’s center of gravity. For the
pendulum shown in Figure 1,

I =
mL2

12
(4.64)

• V and H – vertical and horizontal forces, respectively, in the pivot.

• d – a damping coefficient.

Derive a mathematical model of the motion of the system based on the following principles:

1. Force balance (Newton’s Second Law) applied to the horizontal movement of the
center of gravity of the pendulum.

6This force can be manipulated by the controller to stabilize the pendulum in a standing position or in a
hanging position at a specified position of the cart, but this problem is not about control. The system can
be well controlled with model-based control, for example optimal control based on state-variable feedback (cf.
e.g. Lecture notes on Modes, Estimation and Control, TechTeach/F. Haugen).

192

CHAPTER 4. MECHANISTIC MODELING

Angular position

 [rad] 

Inertia

J [kgm2]

Torque

T [Nm]

Figure 4.21: Satellite.

a [rad]

mg [N]

2L [m]

m [kg]

M [kg]

V [N]

H [N]

L

F [N]

y [m]0 m

-dy [N]

Figure 4.22: Pendulum.

2. Force balance applied to the vertical movement of the center of gravity of the
pendulum.

3. Torque balance (the rotational version of the Newton’s Second Law applied to the
center of gravity of the pendulum.

4. Force balance applied to the cart.

(When using the model for developing a simulator or design of a stabilizing controller, it
will probably be necessary to eliminate the internal forces V and H, but this elimination is
not a part of this problem. Hence, it is ok that the resulting model in this problem contains
V and H.)

Problem 4.8 Modeling of resistors

Figure 4.23 shows a combination of resistors.

What is the resulting resistance R4?

193

CHAPTER 4. MECHANISTIC MODELING

R1

R2

R3

R4

Figure 4.23: Combination of resistors.

Problem 4.9 Calculation of resistance

Given a lamp which receives P = 100 W mean (average) power when it is connected to the
mains, which is an alternate voltage of amplitude U = 220 V. Calculate the lamp
restistance R.

Problem 4.10 Modeling of electric circuit (highpass filter)

Figure 4.24 shows an (analog) highpass filter. (It attenuates low-frequent signals, while
high-frequent signals pass through the filter.)

v2 [V]

++

_ _

v1 [V]
C [F]

i [A]

Input OutputiR

i2+
_vR [V]

Figure 4.24: High-pass filter.

Find a mathematical model describing the behaviour of the output voltage v2.

194

CHAPTER 4. MECHANISTIC MODELING

4.10 Solutions to problems for Chapter 4

Solution to Problem 4.1

With volumetric flows, the mass balance (4.4) becomes:

m′ = (ρAh)′ = ρAh′ = ρqin − ρqout (4.65)

which gives

h′ =
1

A
(qin − qout) (4.66)

Solution to Problem 4.2

1. Figure 4.25 shows the overall block diagram.

Chip tank

with conveyor

belt

hu

wout

Figure 4.25: Overall block diagram of wood chips tank model.

2. Since there is a time delay in the system (due to the transport delay of the conveyor
belt) it is important to include the time argument in the equations. The mass balance
if the wood chips contents of the tank is

[ρAh(t)]′ = ρAh(t)′ = win(t)− wout(t)
= ws(t− τ)− wout(t)
= Ksu(t− τ)− wout(t)

(4.67)

h(t) is given by the integral of h′:

h(t) = h(0) +

ˆ t

0
h′(θ) dθ (4.68)

Solution to Problem 4.3

1. The “accumulation” is the total mole number is V cA. The Balance Law (4.2) is in
terms of a mole balance:

(V cA)
′ = wA − cAq (4.69)

A state space model of cA:

c′A =
1

V
(wA − cAq) (4.70)

cA(t) is given by the integral of cA
′:

cA(t) = cA(0) +

ˆ t

0
cA

′ (θ) dθ (4.71)

2. Figure 4.26 shows an overall block diagram of the model (4.70). wA and q are input
variables, and cA is the output variable.

195

CHAPTER 4. MECHANISTIC MODELING

q

Blending
tank

cA

wA

Figure 4.26: Problem 4.3: Overall block diagram for stirred blending tank.

Solution to Problem 4.4

Energy balance of the liquid in the tank:

(cρV T)′ = cρV T ′ = cρqkTk + cρqvTv − cρqT (4.72)

Cancelling ρ:
cV T ′ = cqkTk + cqvTv − cqT (4.73)

Diving by cV gives a state space model of T :

T ′ = (cqkTk + cqvTv − cqT) /(cV) (4.74)

Here, q is given by
q = qk + qv (4.75)

T (t) is given by the integral of T ′:

T (t) = T (0) +

ˆ t

0
T ′(θ) dθ (4.76)

Solution to Problem 4.5

1. The relation between position y and speed u is

y′ = u (4.77)

2. Force balance:

mu′ = Fp + Fh + Fw (4.78)

= Fp −D|u− uc| (u− uc) + Fw (4.79)

(4.77) and (4.79) constitutes the model.

Alternatively, since
u′ = y′′ (4.80)

the model can be expressed as

my′′ = Fp −D|y′ − uc|
(
y′ − uc

)
+ Fw (4.81)

or:
y′′ =

(
Fp −D|y′ − uc|

(
y′ − uc

)
+ Fw

)
/m (4.82)

196

CHAPTER 4. MECHANISTIC MODELING

Speed y′ is the integral of acceleration y′′:

y′(t) = y′(0) +

ˆ t

0
y′′(θ) dθ (4.83)

And position y is the integral of speed y′:

y(t) = y(0) +

ˆ t

0
y′(θ) dθ (4.84)

3. We can regard Fp, Fw and uc as input variables, and y as the output variable.
Figure 4.27 shows the block diagram.

Ship

Fp y
Fw

uc

Figure 4.27: Overall block diagram of the ship model.

Solution to Problem 4.6

Torque balance:
Jθ′′ = T (4.85)

or:
θ′′ = T/J (4.86)

Angular speed θ′ is the integral of angular acceleration θ′′:

θ′(t) = θ′(0) +

ˆ t

0
θ′′(θ) dθ (4.87)

And angular position θ is the integral of angular speed θ′:

θ(t) = θ(0) +

ˆ t

0
θ′(θ) dθ (4.88)

Solution to Problem 4.7

1. Force balance (Newton’s Second Law) applied to the horizontal movement of the
center of gravity of the pendulum.

m (y + L sin a)′′ = H (4.89)

(The differentiation of the additive term (y + L sin a) must be carried out in
applications of this model, but it is not shown here.)

197

CHAPTER 4. MECHANISTIC MODELING

2. Force balance applied to the vertical movement of the center of gravity of the
pendulum:

m (L cos a)′′ = V −mg (4.90)

(The differentiation of the additive term (L cos a) is not shown here.)

3. Torque balance (the rotational version of the Newton’s Second Law applied to the
center of gravity of the pendulum:

Ia′′ = V ’L sin a−HL cos a (4.91)

4. Force balance applied to the cart:

My′′ = F −H − dy′ (4.92)

(From Eq. (4.89) – (4.92), the internal forces V and H can be eliminated, resulting in two
differential equations not containing V and H.)

Solution to Problem 4.8

The circuit consists of two resistors in parallel in series with the third resistor. The
resulting resistance is

R4 =
R1R2

R1 +R2
+R3 (4.93)

Solution to Problem 4.9

Mean power is

P =
1

2

U2

R
(4.94)

which solved for R gives

R =
1

2

U2

P
=

1

2

2202

100
= 242 Ω (4.95)

Solution to Problem 4.10

There are many ways to find a mathematical model. Here is one: Kirchhoff’s voltage law
gives

−v1 + vC + v2 = 0 (4.96)

or
vC = v1 − v2 (4.97)

198

CHAPTER 4. MECHANISTIC MODELING

Kirchhoff’s current law applied to the upper node gives

0 = iC − iR +

=0︷︸︸︷
i2 (4.98)

= C vC
′ − v2

R
(4.99)

= C (v1 − v2)
′ − v2

R
(4.100)

= C
(
v1

′ − v2
′)− v2

R
(4.101)

Getting v′2 alone on the left side:

v2
′ = v1

′ − v2/ (RC) (4.102)

v2(t) is given by the integral of v2
′:

v2(t) = v2(0) +

ˆ t

0
v2(θ)

′ dθ (4.103)

199

Chapter 5

State space models

5.1 Introduction

A state space model is just a structured form or representation of the differential equations
for a system. Typically, the differential equations stem from mechanistic modeling of
dynamic systems as explained in Ch. 4.

State space models are useful in a number of situations:

• Linearization of non-linear models

• Calculation of time-responses – both analytically and numerically

• Using simulation tools: Python, MATLAB, LabVIEW, Octave, and Scilab have
simulation functions that assumes state space models.

• Analysis of dynamic systems, e.g. stability analysis

• Analysis and design of advanced controllers and estimators: Controllability
and observability analysis; Design of LQ optimal controllers, Model-based predictive
control; Design of state estimators (Kalman Filters).

5.2 The state space model

Most dynamic models can be represented with the following two equations:

• The state space model, which is a set of first order differential equations of the state

200

CHAPTER 5. STATE SPACE MODELS

variables1:

x1
′ = f1(x, u, d, p)

...
...

... (5.1)

xn
′ = fn(x, u, d, p)

• The output model, which is a set of algebraic equations defining the output variables:

y1 = g1(x, u, d, p)

...
...

... (5.2)

ym = gm(x, u, d, p)

The variables are (the indexes are dropped here, for simplicity):

• x is the state variable.

• y is the output variable.

• u is the input variable. In context of control, u represents the control variable (or
signal).

• d is the disturbance, which also may be denoted the environmental variable, or the
load variable.

• p is the parameter.

(5.1) and (5.2) can be written compactly on a vector form as:

x′ = f(x, u, d, p) = f(·) (5.3)

y = g(x, u, d, p) = g(·) (5.4)

In (5.3) and (5.4), x, u, d, p, y are vectors. For example,

x =

 x1
...
xn

 (5.5)

which also can be written as x = [x1, · · · , xn]T where super-index T means transpose.

In (5.3) and (5.4), f and g are vector functions:

f =

 f1
...
fn

 (5.6)

1Alternative symbols to x′ are ẋ and dx
dt
.

201

CHAPTER 5. STATE SPACE MODELS

g =

 g1
...
gm

 (5.7)

The model (5.3) and (5.4) is often referred to as a nonlinear state space model because the
vector functions f(·) and g(·) may contain nonlinear functions.

In many cases the mathematical modelling results in one or more first order differential
equations. In such cases it is straighforward to write the model as a state space model; All
you have to do is to ensure that the time derivatives appear alone on the left-hand side of
the differential equations. However, when modeling kinetic systems, the model may consist
of second order differential equations due to Newton’s Second Law (since accelaration is the
second order derivative of position). Example 5.1 demonstrates how to write a second order
differential equation as a state space model.

Example 5.1 Mass-spring-damper-model written as a state space model

Figure 5.1 shows a mass-spring-damper-system. z is position. u is applied force. D is

m

K [N/m]

D [N/(m/s)]

F [N]

0 z [m]

Figure 5.1: Mass-spring-damper.

damping constant. K is spring constant. It is assumed that the damping force Fd is
proportional to the speed, and that the spring force Fs is proportional to the position of the
mass. The spring force is assumed to be zero when z is zero. Force balance (Newton’s
Second Law) yields

mz′′ = F − Fd − Fs

= F −Dz′ −Kz (5.8)

which is a second order differential equation.

We define the following new variables: x1 for position z, x2 for speed z′ and u for force F .
Then the model (5.8) can be written as the following equivalent set of two first order
differential equations:

x1
′ = x2 (5.9)

m x2
′ = −Dx2 −Kfx1 + u (5.10)

202

CHAPTER 5. STATE SPACE MODELS

which can be written on the standard form (5.1) as follows:

x1
′ = x2︸︷︷︸

f1

(5.11)

x2
′ = (−Dx2 −Kfx1 + u) /m︸ ︷︷ ︸

f2

(5.12)

Let us regard the position x1 as the output variable y:

y = x1︸︷︷︸
g

(5.13)

The initial position, x1(0), and the initial speed, x2(0), define the initial state of the system.

(5.11) and (5.12) and (5.13) constitute a second order state space model which is equivalent
to the original second order differential equation (5.8).

[End of Example 5.1]

5.3 The response of a state space model

5.3.1 Dynamic response

The output equation, (5.4), or (5.2), expresses that y is a function of x. So, x must exist.
But x does not appear explicitly in the model (5.3) – (5.4)! So how is x is obtained? It is
obtained by solving the differential equations, i.e. by integrating the differential equations.
Let’s asssume that the state space model on the vector form (5.3). The response is:

x(t) = x(0) +

ˆ t

0
x′(θ) dθ (5.14)

where x′ is known from the differential equations:

x′(t) = f [x(t), u(t), d(t), p] (5.15)

The response in the output variable, y(t), is:

y(t) = g [x(t), u(t), d(t), p] (5.16)

See Figure 5.2. The state vector x(t) = [x1(t), · · · , xn(t)]T defines or spans the state space
of the system, with x1(t), · · · , xn(t) as the coordinates of the space. x(t) is the state of the
system as a function of time. As time evolves, x(t) creates a state trajectory. x(t1) is the
state of the system at point of time t1, and x(t2) is the state of the system at point of time
t2, etc.

203

CHAPTER 5. STATE SPACE MODELS

x1

x2

x3

x(0)

State space

State trajectory

● State x(t1)

● State x(t2)

Initial state

Figure 5.2: The notion of state.

5.3.2 Static response

In some situations it is useful to calculate the static response of a dynamic system, e.g. to
check that the simulated response is correct. The static response is the steady-state value of
the output variable of the model when the input variables have constant values. This
response can be calculated directly from the model after the time-derivatives have been set
equal to zero, since then the variables have constant values, their time-derivatives equal
zero, i.e.

xs
′ = 0 = f(xs, us, ds, p) (5.17)

which is an algebraic equation relating the static values of the variables x, u, and d, and the
model parameters p.

Example 5.2 Calculation of static response for mass-spring-damper

The mass-spring-damper system described in Example 4.3 has the following model:

my′′ = −Dy′ −Ky + F (5.18)

Suppose the force F is constant of value Fs. The corresponding static response in the
position y can be found by setting the time-derivatives equal to zero and solving with
respect to y. The result is

ys =
Fs

K
(5.19)

[End of Example 5.2]

Can you calculate the static response in the process variable (the process output) for any
differential equation model? No! Because there may be models for which there is no static
response, as demonstrated in Example 5.3.

204

CHAPTER 5. STATE SPACE MODELS

Example 5.3 Failed attempt to calculate static response

See Example 4.1 where (4.8) is the model of the liquid tank, repeated here for convenience:

h′ = (qi − qo) /A (5.20)

Assume that both qi and qo have constant values, Qi and Qo, respectively. Assuming there
is a static response in h, called hs. Its time derivative is h′s = 0. Then, (5.20) gives

0 = (Qi −Qo) /A ̸= 0

which make no sense unless Qi = Qo, and even in that case, no value of hs is given. We
know from physical insight that there is no static response in h (unless Qi = Qo); h will
change all the time (unless Qi = Qo).

Only asymptotically stable systems have well-defined steady state responses which can be
calculated from the static version of the mathematical model, as in Example 5.2.
Asymptotic stability is defined in Ch. 19.

[End of Example 5.3]

5.4 Linear state space models

5.4.1 Standard model form of linear state space models

Linear state space models are a special case of the general state space model (5.3)-(5.4).
Many methods for analysis of differential equation models, as stability analysis, response
calculation and model transformations, are based on linear state space models. Let us study
a general second order linear state space model to see how linear state space models are
defined. The model has two state-variables, x1 and x2, and two input variables, u1 and u2:

x1
′ = a11x1 + a12x2 + b11u1 + b12u2 (5.21)

x2
′ = a21x1 + a22x2 + b21u1 + b22u2 (5.22)

where the a and b coefficients are parameters (constants).

(5.21)-(5.22) can written on matrix-vector form as follows:

[
x1

′

x′2

]
︸ ︷︷ ︸

ẋ

=

 a11 a12

a21 a22


︸ ︷︷ ︸

A

[
x1
x2

]
︸ ︷︷ ︸

x

+

 b11 b12

b21 b22


︸ ︷︷ ︸

B

[
u1
u2

]
︸ ︷︷ ︸

u

(5.23)

or, more compact:
x′ = Ax+Bu (5.24)

where x is the state vector and u is the input vector. A is called the system-matrix, and is
square in all cases.

205

CHAPTER 5. STATE SPACE MODELS

Let us assume that the system has two output variables, which generally can be functions of
both the state variables and the input variables. The output function can then be written
on the form

y1 = c11x1 + c12x2 + d11u1 + d12u2 (5.25)

y2 = c21x1 + c22x2 + d21u1 + d22u2 (5.26)

which can be written on matrix-vector form as follows:[
y1
y2

]
︸ ︷︷ ︸

y

=

 c11 c12

c21 c22


︸ ︷︷ ︸

C

[
x1
x2

]
︸ ︷︷ ︸

x

+

 d11 d12

d21 d22


︸ ︷︷ ︸

D

[
u1
u2

]
︸ ︷︷ ︸

u

(5.27)

or, more compact:
y = Cx+Du (5.28)

Example 5.4 Mass-spring-damper model as a state space model on matrix-vector form

The state space model (5.11), (5.12), (5.13) is linear. We get[
x1

′

x2
′

]
︸ ︷︷ ︸

ẋ

=

 0 1

− k
m − d

m


︸ ︷︷ ︸

A

[
x1
x2

]
︸ ︷︷ ︸

x

+

 0

1
m


︸ ︷︷ ︸

B

u (5.29)

y =
[
1 0

]︸ ︷︷ ︸
C

[
x1
x2

]
︸ ︷︷ ︸

x

+
[
0
]︸ ︷︷ ︸

D

u (5.30)

[End of Example 5.4]

5.4.2 Linearization of non-linear models

5.4.2.1 When do we have to linearize?

In many cases the mathematical model contains one or more non-linear differential
equations. If the mathematical model is non-linear, there may be good reasons to linearize
it, which means to develop a local linear model which approximates the original model
about a given operating point. The reasons may be the following:

• We want to study the behavior of the system about an operating point, which is one
specified state where the system can be. It is then the deviations from this operating
point we study. Examples of such operating points are the level of 8.7 m in a tank,
the temperature of 50 degrees Celcius in a heat exchanger, etc. It can be shown (and
we will do it soon) that a model which describes the behavior of the deviations about
the operating point, is approximately linear.

206

CHAPTER 5. STATE SPACE MODELS

• We can use the large number of the methods which are available for analysis and
design of linear systems, e.g. for stability analysis, frequency response, controller
design and signal filter design. The number of methods for linear models are much
larger than for non-linear models.s

Note: If you have a non-linear model of a (physical) system, do not use the linearized
model for simulation unless you have a good reason for using it. Instead, use the (original)
non-linear model since it gives a more accurate representation of the system.

Figure 5.3 illustrates the relation between the original non-linear system and the local linear
system (model).

Non-linear system
(model)

dx/dt = f(x,u)

+

Operating point values
(usually constant)

Local linear model
d(Δx)/dt=AΔx+BΔu

Δu Δxx

x0u0

u

Figure 5.3: Illustration of the relation between the original non-linear system and the local
linear system (model)

The input variable which excites the non-linear system is assumed to be given by

u = u0 +∆u (5.31)

where u0 is the value in the operating point and ∆u is the deviation from u0. Similarly,

x = x0 +∆x (5.32)

If you are going to experiment with the system to develop or adjust a linear model about
the operating point, you must adjust ∆u and observe the corresponding response in ∆x (or
in the output variable ∆y).

5.4.2.2 Deriving the linearization formulas

We assume that the model is a non-linear state space model:

x′ = f(x, u) (5.33)

Suppose that the system is in an operating point defined by

x0
′ = f(x0, u0) (5.34)

207

CHAPTER 5. STATE SPACE MODELS

If the input variable u is changed by ∆u from the operating point value u0, the
state-variable x is changed by ∆x from x0. (5.34) can then be written

d(x0 +∆x)

dt
= f(x0 +∆x, u0 +∆u) (5.35)

↓

x0
′ +∆x′ ≈ f(x0, u0) +

∂f

∂x

∣∣∣∣
0

∆x+
∂f

∂u

∣∣∣∣
0

∆u (5.36)

On the left side of (5.35) we have applied the summation rule of differentiation and on the

right side we have used a first order Taylor series expansion of f(·). The expression ∂f
∂x

∣∣∣
0

means the partial time-derivative of f with respect to x, calculated in the operating point,

that is, with x0 and u0 inserted into ∂f
∂x . The same applies to ∂f

∂u

∣∣∣
0
. Now we will exploit the

fact that x0
′ is equal f(x0, u0), cf. (5.34). This implies that these two terms are cancelled

against each other in (5.36). (5.36) then becomes

∆x′ =
∂f

∂x

∣∣∣∣
0︸ ︷︷ ︸

A

∆x+
∂f

∂u

∣∣∣∣
0︸ ︷︷ ︸

B

∆u (5.37)

= A∆x+B∆u (5.38)

or, in more detail, ∆x′1
∆x′2
...

 =


∂f1
∂x1

∂f1
∂x2

· · ·
∂f2
∂x1

∂f2
∂x2

· · ·
...

...
. . .


∣∣∣∣∣∣∣
0︸ ︷︷ ︸

A

·

 ∆x1
∆x2
...

+


∂f1
∂u1

∂f1
∂u2

· · ·
∂f2
∂u1

∂f2
∂u2

· · ·
...

...
. . .


∣∣∣∣∣∣∣
0︸ ︷︷ ︸

B

·

 ∆u1
∆u2
...

 (5.39)

which is the local linear model. A and B becomes Jacobi-matrices (which are partial
derivative matrices) which generally are functions of the operating point. If the operating
point is constant, A and B will be constant matrices, which can be calculated once and for
all.

Similarly, linearization of the output equation

y = g(x, u) (5.40)

gives

∆y =
∂g

∂x

∣∣∣∣
0︸ ︷︷ ︸

C

∆x+
∂g

∂u

∣∣∣∣
0︸ ︷︷ ︸

D

∆u = C∆x+D∆u (5.41)

or  ∆y1
∆y2
...

 =


∂g1
∂x1

∂g1
∂x2

· · ·
∂g2
∂x1

∂g2
∂x2

· · ·
...

...
. . .


∣∣∣∣∣∣∣
0︸ ︷︷ ︸

C

·

 ∆x1
∆x2
...

+


∂g1
∂u1

∂g1
∂u2

· · ·
∂g2
∂u1

∂g2
∂u2

· · ·
...

...
. . .


∣∣∣∣∣∣∣
0︸ ︷︷ ︸

D

·

 ∆u1
∆u2
...

 (5.42)

208

CHAPTER 5. STATE SPACE MODELS

If the operating point is a static equilibrium point, all variables have constant values and all
time-derivatives are zero. Thus,

x0
′ = 0 = f(x0, u0) (5.43)

The values of the model variables in the static operating point can be found by solving the
algebraic equation (5.43) with respect to the unknown variables.

Example 5.5 Linearization of a non-linear tank model

The nonlinear model

Figure 5.4 shows a liquid tank with inlet via a pump and outlet via a valve with fixed
opening.

qi = Kpu [m3/s]

At [m
2]

 [kg/m3]

qu = [m3/s]

x [m]

0

m [kg]
V [m3]

u [V]

Figure 5.4: Liquid tank with non-linear mathematical model

The outflow is assumed to be proportional to the square root of the pressure drop over the
valve, and this pressure is assumed to be equal to the hydrostatic pressure ρgh at the
outlet. The mass balance becomes:

ρAtx
′ = ρqi − ρqu

= ρKpu− ρKv
√
ρgx

which can written:

x′ =
Kp

At
u− Kv

At

√
ρgx ≡ f(x, u) (5.44)

Static operating point

Before we linearize the original model, we will find the static operating point. Let us
assume that the pump control signal is constant: u = u0 (constant). We calculate the

209

CHAPTER 5. STATE SPACE MODELS

corresponding static level, x = x0 (constant), by setting x′ = 0 in the dynamic model (5.44):

0 =
Kp

At
u0 −

Kv

At

√
ρgx0 ≡ f(x0, u0) (5.45)

Solving (5.45) with respect to x0 gives:

x0 =
1

ρg

(
Kpu0
Kv

)2

(5.46)

Linearization

Now that we have found the static operating point (u0, x0), we can derive the local linear
model by linearizing (5.44):

∆x′ =
∂f

∂x

∣∣∣∣
0

∆x+
∂f

∂u

∣∣∣∣
0

∆u

= −Kv

At

ρg

2
√
ρgx0︸ ︷︷ ︸

A

∆x+
Kp

At︸︷︷︸
B

∆u (5.47)

= A∆x+B∆u

[End of Example 5.5]

210

CHAPTER 5. STATE SPACE MODELS

5.5 Problems for Chapter 5

Problem 5.1 State space model of a system of tanks

Figure 5.5 shows two coupled liquid tanks. u1 and u2 are control signals.

q1 [m
3/s]

A1 [m
2]

 [kg/m3]
q2

h1 [m]

q3A2 [m
2]

Tank 1

Tank 2

 [m3/s]

 [m3/s]

Valve 1

Valve 2

u2

u1

Pump 1

h2 [m]

Figure 5.5: Two coupled liquid tanks

Material balance of the liquid in tank 1 gives:

ρA1 h1
′ = ρKpu1︸ ︷︷ ︸

q1

− ρKv1

√
ρgh1
G︸ ︷︷ ︸

q2

(5.48)

Material balance of the liquid in tank 2 gives:

ρA2 h2
′ = ρKv1

√
ρgh1
G︸ ︷︷ ︸

q2

− ρKv2u2

√
ρgh2
G︸ ︷︷ ︸

q3

(5.49)

Valve 1 has fixed opening. Valve 2 is a control valve with control signal u between 0 and 1.
The square root functions stems from the common valve characteristic which expresses that
the flow is proportional to the square root of the pressures drop across the valve. Here, the
pressure drops are assumed to be equal to the hydrostatic pressures at the bottom the
tanks. For example, for tank 1 the hydrostatic pressure is ρgh1. The parameter G is the
relative density of the liquid.2

Assume that the input variables are u1 and u2, and that the output variables are y1 = h1
and y2 = h2. Write the model (5.48) – (5.49) as a state space model. Is the state space
model linear or nonlinear?

Problem 5.2 Calculation of static response of thermal system

Calculate the static response in the temperature T from the thermal model (4.19).

2G = ρ/ρwater.

211

CHAPTER 5. STATE SPACE MODELS

Problem 5.3 State space model on matrix-vector form

Write the following model as a state space model on matrix-vector form:

x1
′ = x2

2 x2
′ = 8u2 − 6x2 − 2x1 + 4u1
y = 5x1 + 7u1 + 6x2

(5.50)

Problem 5.4 Linearization

Given the state space model (5.51) – (5.53) which are solutions to Problem (5.1). Linearize
the model.

212

CHAPTER 5. STATE SPACE MODELS

5.6 Solutions to problems for Chapter 5

Solution to Problem 5.1

Density ρ can be cancelled. (5.48) becomes

h1
′ =

f1(·)︷ ︸︸ ︷
1

A1

(
Kpu1 −Kv1

√
ρgh1
G

)
(5.51)

(5.49) becomes

h2
′ =

f2(·)︷ ︸︸ ︷
1

A2

(
Kv1

√
ρgh1
G

−Kv2u2

√
ρgh2
G

)
(5.52)

The measurement equations become

y1 =

g1(·)︷︸︸︷
h1 (5.53)

y2 =

g2(·)︷︸︸︷
h2 (5.54)

The state space model is nonlinear due to the square root functions.

Solution to Problem 5.2

We start by setting
T ′ = 0 (5.55)

in the model (4.19), which then becomes:

0 =
1

cm
[P + cF (Ti − T) + Uh (Te − T)] (5.56)

Solving for T gives the static response:

Ts =
P + cFTi + UhTe

cF + Uh
(5.57)

Solution to Problem 5.3

Firstly, we isolate the first order derivatives on the left side, and list the variables in the
proper order to prepare for the matrix-vector form:

x1
′ = x2

x2
′ = −x1 − 3x2 + 2u1 + 4u2
y = 5x1 + 6x2 + 7u1

(5.58)

213

CHAPTER 5. STATE SPACE MODELS

Finally, [
x1

′

x2
′

]
︸ ︷︷ ︸

ẋ

=

[
0 1
−1 −3

]
︸ ︷︷ ︸

A

[
x1
x2

]
︸ ︷︷ ︸

x

+

[
0 0
2 4

]
︸ ︷︷ ︸

B

[
u1
u2

]
︸ ︷︷ ︸

u

(5.59)

and

y =
[
5 6

]︸ ︷︷ ︸
C

[
x1
x2

]
︸ ︷︷ ︸

x

+
[
7 0

]︸ ︷︷ ︸
D

[
u1
u2

]
︸ ︷︷ ︸

u

(5.60)

or, compactly:
x′ = Ax+Bu (5.61)

y = Cx+Du (5.62)

Solution to Problem 5.4

Linearization of the differential equations:[
∆ h1

′

∆ h2
′

]
=

[
∂f1
∂h1

∂f1
∂h2

∂f2
∂h1

∂f2
∂h2

]∣∣∣∣∣
0

·
[
∆h1
∆h2

]
(5.63)

+

[
∂f1
∂u1

∂f1
∂u2

∂f2
∂u1

∂f2
∂u2

]∣∣∣∣∣
0

·
[
∆u1
∆u1

]
(5.64)

=

 −Kv1
A1

√
ρg
G

1
2
√
h1

0

Kv1
A2

√
ρg
G

1
2
√
h1

−Kv2u2

A2

√
ρg
G

1
2
√
h2

∣∣∣∣∣∣
0︸ ︷︷ ︸

A

·
[
∆h1
∆h2

]
(5.65)

+

[Kp

A1
0

0 −Kv2
A2

√
ρgh2

G

]∣∣∣∣∣
0︸ ︷︷ ︸

B

·
[
∆u1
∆u2

]
(5.66)

Linearization of the output equation:[
∆y1
∆y2

]
=

[
∂g1
∂h1

∂g1
∂h2

∂g2
∂h1

∂g2
∂h2

]∣∣∣∣∣
0

·
[
∆h1
∆h2

]
(5.67)

+

[
∂g1
∂u1

∂g1
∂u2

∂g2
∂u1

∂g2
∂u2

]∣∣∣∣∣
0

·
[
∆u1
∆u2

]
(5.68)

=

[
1 0
0 1

]∣∣∣∣
0︸ ︷︷ ︸

C

·
[
∆h1
∆h2

]
(5.69)

+

[
0 0
0 0

]∣∣∣∣
0︸ ︷︷ ︸

D

·
[
∆u1
∆u2

]
(5.70)

214

Chapter 6

Simulation algorithms of state
space models

6.1 Why simulate?

Why simulate? Some good reasons are:

• Education and training: A simulator can be a very good educational and training
tool! Simulations can give students, operators and other people an experience of how
systems behave, without running physical experiments. While running physical
experiments is often the dream scenario, it may simply not be possible to run physical
experiments – it can be too expensive or risky, and perhaps the physical system does
not even exist!

• Testing: Different Scenarios – like “if-then” scenarios - may be tested without any
risk to the environment. Just think about the benefits of being able to check whether
an oil platform or aircraft management system will work without actually doing
experiments with the platform or plane.

• Analyze: With simulations, you can observe how variables which you may not
actually measure will develop in reality. This can give new deep insight into, and
understanding of the system.

• Design: You can use a simulator to design – or redesign – a real system. For
example, you can find out if a wastewater magazine in a so-called combined drainage
system, where rain and sewage are mixed, is large enough to be able to collect the
wastewater due to heavy rainfall.

Is simulation important and useful? You can think about it.

A modern term used for simulators is digital twin. (Maybe a buzzword, but quite a
descriptive one.)

215

CHAPTER 6. SIMULATION ALGORITHMS OF STATE SPACE MODELS

6.2 Simulation algorithm for state space models

6.2.1 Introduction

A textual simulation algorithm is an algorithm that you can program in a textual
programming tool as Python, MATLAB, Octave, JavaScript, C, etc. Although there are
simulation tools (functions) – i.e. differential equation solvers – in Python and MATLAB
etc., I will here show how you can develop a simulation algorithm completely from scratch.
Your own implementation may run faster than with the simulation tools, and your
implementation will become completely transparent, which may be useful for testing and
documentation. (Personally, I usually develop simulation code from scratch in my projects.)

We will focus on developing a simulation algorithm ready for programming based on the
state space model (5.3). Including the output model (5.4) in the simulator algorithm is
straightforward since that model comprises only algebraic expressions.

Thus, we assume that the model of the system to be simulated has the form of(5.3), which
is repeated here for convenience:

x′ = f(x, u, d, p) (6.1)

The simulation algorithm which we will develop, and eventually implement in a program in
Python, will calculate the state, x(tk), at any discrete point of time, tk. as illustrated in
Figure 6.1. A simulation algorithm is based on some method of discretization of the given
continuous-time model, (6.1).

Figure 6.1: Discrete-time values of h, with three alternative symbols

Some comments about the symbols shown in Figure 6.1:

• Ts [s] is the time step, which defines the resolution along the simulation time axis.

216

CHAPTER 6. SIMULATION ALGORITHMS OF STATE SPACE MODELS

• k is the time index, which is an integer, which counts the number of time steps
corresponding to a given point of time, tk. Example: Assume that Ts = 0.1 s. How
many time steps are there from t = 0 to 5.0 s? Answer: 50. Then, we have the
following alternative ways to represent the point of time t = 5.0 s:

t = 5.0 ⇔ t50 ⇔ k = 50

• Often, tk means “now”, the present point of time. Then, tk−1 means the previous
point of time, and tk+1 means the next (future) point of time.

• The following symbols are equivalent:

x(tk) ⇔ x(k) ⇔ xk

In the following, I will mainly use the symbol xk. This makes the algorithm which we write
on the “paper” look quite similar to the algorithm to appear in the program.

6.2.2 The simulation algorithm

Figure 6.2 illustrates the simulation algorithm.

Figure 6.2: Simulation algorithm.

The following assumptions are made for the simulation algorithm based on (6.1):

1. The time-step of the algorithm is specified as Ts [s]. (How to select Ts will be
discussed below.)

2. At the present time tk, the following have known values:

217

CHAPTER 6. SIMULATION ALGORITHMS OF STATE SPACE MODELS

(a) The state, xk.

(b) The input, uk.

(c) The disturbance, dk.

(d) The parameter, pk.

With these assumptions, we can predict xk+1 by integrating x′k given by (6.1) between tk
and tk+1:

xk+1 = xk +

ˆ tk+1

tk

xk
′ dt (6.2)

where xk
′ is

xk
′ = f (xk, uk, dk, pk) (6.3)

The simulation program running on a computer must calculate (6.2) numerically. There are
many ways to do that. It is my experience from a long life with models and simulations
that the Euler Forward method of calculating (6.2) numerically is sufficient in, by far, the
most cases, and I will therefore concentrate on that method here.

The Euler Forward regarded as an integration method

The Euler Forward method implies that the integrand of (6.2) is kept constant during the
integration time interval. Thus,

xk+1 = xk + Tsx
′
k (6.4)

where xk
′ is given by (6.3). This corresponds to approximating the integral with rectangle

integration, see Figure 6.3.

Figure 6.3: Euler Forward approximation, or rectangle approximation, of the integral of x′

between tk and tk+1.

The Euler method regarded as a prediction method

Another graphical interpretation of the Euler Forward method is shown in Figure 6.4. xk+1

is predicted by assuming that the slope at time tk is constant until tk+1.

218

CHAPTER 6. SIMULATION ALGORITHMS OF STATE SPACE MODELS

Figure 6.4: Graphical interpretation of the Euler Forward method: xk+1 is predicted by
assuming that the slope at time tk is constant until tk+1.

Summary of the similation algorithm:

Before the simulation loop:

• Initializations: Time settings, parameter values, preallocation of arrays for storing
data.

• In particular, initialization of the state variable:

xk = xinit (6.5)

Inside the simulation loop:

• Assuming state variable xk is known from initialization or from previous iteration of
simulation loop:

– State limitation: xk must be limited between xminand xmax to avoid unrealistic
values (e.g. a negative liquid level):

xk ∈ [xmin, xmax] (6.6)

• Assuming that the following quantities have known values at time tk:

– Set inputs:

∗ Control variable (or manipulating variable) uk.

∗ Disturbance (or load or environmental variable) dk.

– Set parameter pk.

• Apply xk for storing in an array1 for later plotting or analysis, signal processing, file
saving, etc.

1which should be preallocated to save computational time

219

CHAPTER 6. SIMULATION ALGORITHMS OF STATE SPACE MODELS

• Calculate the time derivative at time tk:

xk
′ = f (xk, uk, dk, pk) (6.7)

• Calculate the state prediction for the next time step, tk+1, i.e. the Euler integration
step:

xk+1 = xk + Ts xk
′ (6.8)

• Make a time index shift of x (to prepare for the next iteration of the algorithm):

xk = xk+1 (6.9)

After the simulation loop:

• Plotting, analysis, saving data to file, etc.

When presenting a simulation algorithm briefly, you may present it in terms of (6.5), (6.7),
(6.8), and (6.9).

Example 6.1 Simulation algorithm of temperature of a kettle

We will now develop a simulation algorithm of the kettle presented in Ch. For your
convenience, some of the information is repeated below.

Figure 6.5 shows the kettle.

Figure 6.5: Kettle.

Figure 6.6 shows a sketch of the kettle.

220

CHAPTER 6. SIMULATION ALGORITHMS OF STATE SPACE MODELS

Figure 6.6: Sketch of a kettle.

The mathematical model to be used in the simulator is the following differential equation
which stems from thermal energy balance of the water in the kettle:

T ′ = [P +G (Troom − T)] /C (6.10)

where:

• C = 2101 J/K is the heat capacity of water in kettle.

• G = 2.34 W/K is the thermal conductivity of plastic jacket.

• Troom = 20 ◦C is the room (ambient) temperature.

Figure 6.7 shows an overall block diagram with main variables and parameters of the kettle.

P [W] Kettle T [deg C]

Parameters

Input Output

C G

Troom

Environmental variable

Figure 6.7: Overall block diagram of the kettle.

221

CHAPTER 6. SIMULATION ALGORITHMS OF STATE SPACE MODELS

The initial temperature is
Tinit = 20◦C (6.11)

In the simulation, the supplied power will be changed as a step from 0 to 700 W at time
t = 0 s.

The core of the simulation algorithm is:

• The calculation of the time derivative at time index k:

Tk
′ = [P +G (Troom − T)] /C (6.12)

• The state prediction (the Euler step) at time index k + 1:

Tk+1 = Tk + dt Tk
′ (6.13)

The time step will be set as
dt = 1.0 s

but later in this chapter we will observe what happens if it is set too large.

Python code

Python program 6.1 implements the simulator.

http://techteach.no/control/python/sim kettle.py

Listing 6.1: sim kettle.py

"""

Simulation of kettle

Finn Aakre Haugen , TechTeach. finn@techteach.no

2022 12 31

"""

%% Import of packages:

import matplotlib.pyplot as plt

import numpy as np

%% Model parameters:

T_room = 20 # [oC]

%% Derived parameters:

C = 2101 # [J/K] Heat capacity of water in kettle

G = 2.34 # [W/K] Thermal conductivity

%% Simulation time settings:

222

http://techteach.no/control/python/sim_kettle.py

CHAPTER 6. SIMULATION ALGORITHMS OF STATE SPACE MODELS

dt = 1.0 # [s]

t_start = 0 # [s]

t_stop = 400 # [s]

N_sim = int((t_stop - t_start)/dt) + 1 # Num time -steps

%% Params of input signals:

P_on = 700 # [W]

P_off = 0 # [W]

%% Preallocation of arrays for plotting:

t_array = np.zeros(N_sim)

T_array = np.zeros(N_sim)

T_room_array = np.zeros(N_sim)

P_array = np.zeros(N_sim)

%% State limits:

T_min = 0 # [oC]

T_max = 100 # [oC]

%% Initialization:

T_k = T_init = 20.0 # [oC]

%% Simulation loop:

for k in range(0, N_sim):

Limitation of state:

T_k = np.clip(T_k , T_min , T_max)

Time:

t_k = k*dt

Setting input:

if (0 <= t_k <= 0):

P_k = P_off

else:

P_k = P_on

T_room_k = T_room

Time derivative:

dT_dt_k = (1/C)*(P_k + G*(T_room - T_k))

Euler step (prediction):

T_kp1 = T_k + dt*dT_dt_k

Updating arrays for plotting:

t_array[k] = t_k

T_array[k] = T_k

223

CHAPTER 6. SIMULATION ALGORITHMS OF STATE SPACE MODELS

T_room_array[k] = T_room

P_array[k] = P_k

Time index shift:

T_k = T_kp1

%% Plotting:

plt.close(’all ’)

plt.figure (1)

plt.subplot(2, 1, 1)

plt.plot(t_array , T_array ,’b’, label=’T’)

plt.plot(t_array , T_room_array ,’g’, label=’T_room ’)

plt.legend ()

plt.grid()

plt.ylabel(’[deg C]’)

plt.subplot(2, 1, 2)

plt.plot(t_array , P_array , ’r’, label=’P’)

plt.legend ()

plt.grid()

plt.xlabel(’t [s]’)

plt.ylabel(’[W]’)

plt.savefig(’plot_sim_kettle.pdf ’)

plt.show()

Figure 6.8 shows a plot from the simulation.

[End of Example 6.1]

6.2.3 How to test the simulator

The simulations that we run in the previous sections seems reasonable. If the responses had
looked strange, we would of course have tried to search for the error and made sure to fix it.
But regardless of whether the responses look correct or incorrect, we should test the
simulator with our own test scenarios, possibly by checking whether the simulations we
have already carried out are in accordance with manual calculations from the model. In
general, we should test both static simulations and dynamic simulations.

6.2.3.1 Static test of the simulator

In static testing, we assume that the system is influenced by constant input signals and that
all variables in the model have constant values, which means that time derivatives are zero.
We manually calculate the static response. Hopefully this this value is equal to the static
value from a simulation.

224

CHAPTER 6. SIMULATION ALGORITHMS OF STATE SPACE MODELS

0 50 100 150 200 250 300 350 400
25

50

75

100

[d
eg

 C
]

T
T_room

0 50 100 150 200 250 300 350 400
t [s]

0

200

400

600

[W
]

P

Figure 6.8: Plots from the simulation

Manual calculation

Let’s calculate Tstatic manually. We set the supplied power P so low that T does not reach
the limit of 100 degrees C. P = 100 W is ok. We set T ′

static = 0 in the model (6.10), which
then becomes

0 = P +G (Troom − Tstatic) (6.14)

which gives

Tstatic = Troom +
P

G
= 20 +

100

2.34
= 62.7 ◦C (6.15)

Simulation

Figure 6.9 shows the simulated response with tstop = 8000 s. T is approximately static at
the end of the simulation. The simulation is run with the following Python program.

http://techteach.no/control/python/sim kettle static test.py

In the program, the final value of T , which we assume is the static value, is found with the
Python code T array[–1]. The result is 62.7◦C, the same as the manually calculated value.

225

http://techteach.no/control/python/sim_kettle_static_test.py

CHAPTER 6. SIMULATION ALGORITHMS OF STATE SPACE MODELS

We can therefore conclude that it seems that the simulator is correctly implemented as far
as static simulations are concerned.

0 1000 2000 3000 4000 5000 6000 7000 8000
20

40

60

[d
eg

 C
]

T
T_room

0 1000 2000 3000 4000 5000 6000 7000 8000
t [s]

0

50

100

[W
]

P

Figure 6.9: Simulation of the kettle until an approximate static state is obtained.

6.2.3.2 Dynamic test of the simulator

In a dynamic test of the simulator, we ensure that T ′ is different from zero, and then we
check whether the simulated T ′ agrees with manually calculated T ′.

Manual calculation

Let’s manually calculate T ′ just after t = 0, i.e. T ′(0). From model (6.10) we get:

T ′(0) =
1

C
[P (0) +G (Troom − T (0))] (6.16)

Let us assume that T (0) = Troom and that the supplied power, P , is a step from 0 to 100
W. We then get:

T ′(0) =
P (0)

C
=

100

2101
= 0.0476 oC/s (6.17)

226

CHAPTER 6. SIMULATION ALGORITHMS OF STATE SPACE MODELS

Simulation

Due to the heat loss through the plastic jacket, T (t) starts to flatten immediately after
t = 0. If we are to read off T ′(0) graphically, we should therefore simulate with a very small
tstop. Let’s set tstop = 1 s, and use s very small simulation time step, namely dt = 0.01 s.
The simulator is implemented in the following Python program.

http://techteach.no/control/python/sim kettle dynamic test.py

Figure 6.10 shows the simulated step response. We can now read off T ′(0) manually from
the plot. However, it is more accurate to use Python code to find T ′(0). You may use the
following code (which is already in the program above):

(np.diff(T array)/dt)[1]

The result of the above expression is 0.0476 oC/s, which is the same as with manual
calculations. We can therefore conclude that it seems that the simulator is correctly
implemented as far as dynamic simulations are concerned.

0.0 0.2 0.4 0.6 0.8 1.0
20.00

20.02

20.04

[d
eg

 C
]

T
T_room

0.0 0.2 0.4 0.6 0.8 1.0
t [s]

0

50

100

[W
]

P

Figure 6.10: Simulation of the kettle with a very short stop time (1 sec) to find the initial
slope, T ′(0).

227

http://techteach.no/control/python/sim_kettle_dynamic_test.py

CHAPTER 6. SIMULATION ALGORITHMS OF STATE SPACE MODELS

6.2.3.3 Conclusion of static and dynamic testss

We have now successfully accomplished both a static and a dynamic test of the simulator of
the kettle. However, these test does not prove that the simulator is correctly implemented,
although there are indications that it is. Maybe we just had luck with the test scenarios!

6.2.4 How to choose the simulation time step, dt?

As part of the discretization, we must select an appropriate value of the time step, dt, which
specifies the resolution along the simulation time axis. As illustrated in Figure 6.11, a
“small” dt provides greater (better) resolution along the simulation axis – which is a
benefit. On the other hand, the computational demand on the computer is larger since it
has to perform more calculations (more frequently), and also produce more simulated data.

Figure 6.11: The importance of the time step dt in simulations. Top: Relatively large dt.
Bottom: Relatively small dt.

If we are so unfortunate to choose dt too large, the simulation algorithm itself may become
unstable, so that the simulated responses “take off” and become completely different from
the correct response. This is illustrated in Figure 6.12.

A general rule is to select dt as large as possible (to minimize both the computation
demand and the data generated during the simulation), but the simulation must be
insensitive to dt. The simulation is insensitive to dt is the simulated response is
approximately the same with a somewhat larger dt and with a somewhat smaller dt.

You must expect some trial and error to find a suitable dt. If you have some insight into
how fast or slow the simulated system is, I think you can get a reasonable value of dt by
following the following guidelines:

228

CHAPTER 6. SIMULATION ALGORITHMS OF STATE SPACE MODELS

Figure 6.12: With a large dt, the simulation algorithm may become unstable.

• Select dt so that the simulation gives an accurate expression of the responses as they
would actually have been in the original physical system (to be simulated).

• For a fast system, select a relatively small dt.

• For a slow system, you can choose a relatively large dt, but a small dt will also work
well, except that the computer will have a larger computational demand during the
simulation, and more simulation data will be produced for plotting and/or file storage.

If you know the approximate time constant, Tconst, of the system to be simulated, cf. Ch.
9.3, you can try

dt = Tconst/100 (6.18)

If you have no idea what to choose as dt, you can start with

dt = 0.01 s (6.19)

and then make some adjustment of dt if necessary.

Example 6.2 How the simulation depends on the time step

It can be shown that the time constant of the kettle is approx. 900 s. From (6.18), a
reasonable dt is then dt = 900/100 = 9 s. A simulation with dt = 9.0 s gives a response
which is very similar to the response with dt = 1.0 s which is already shown in Figure 6.8.
Instead of showing the response with dt = 9.0 s, let’s do some more exciting changes,
namely setting dt to considerably larger values.

In the program linked to below the simulation time step is set relatively large, namely
dt = 1200 s. To avoid saturations and the consequently clipping of the temperature
response, the supplied power is set as 100 W instead of 700 W as in earlier simulations.

229

CHAPTER 6. SIMULATION ALGORITHMS OF STATE SPACE MODELS

Inaccurate simulation

http://techteach.no/control/python/sim kettle dt inaccurate.py

Figure 6.13 shows the step response in the temperature, T . The temperature oscillates
someehat, which is a result of numerical inaccuracy in the simulation algorithm due to the
large dt. With large dt the prediction of Tk+1 based on T ′

k becomes inaccurate.

0 2000 4000 6000 8000 10000 12000
20

40

60

[d
eg

 C
]

T
T_room

0 2000 4000 6000 8000 10000 12000
t [s]

0

50

100

[W
]

P

Figure 6.13: Step response in temperature, T , when simulation time step is dt = 1200 s. The
simulation is numerically inaccurate.

Unstable simulation

Let’s see what happens with an even larger time step, namely dt = 2000 s. The following
program runs the simulation.

http://techteach.no/control/python/sim kettle dt unstable.py

Figure 6.14 shows the step response in T . The simulation oscillates with larger and larger

230

http://techteach.no/control/python/sim_kettle_dt_inaccurate.py
http://techteach.no/control/python/sim_kettle_dt_unstable.py

CHAPTER 6. SIMULATION ALGORITHMS OF STATE SPACE MODELS

amplitude – the simulation is numerically unstable, while the kettle itself is stable, of
course!

0 2000 4000 6000 8000 10000 12000

0

100

[d
eg

 C
]

T
T_room

0 2000 4000 6000 8000 10000 12000
t [s]

0

50

100

[W
]

P

Figure 6.14: Step response in temperature T with time step is dt = 2000 s. The simulation
is numerically unstable!

[End of Example 6.2]

6.2.5 Simulation along real time or scaled real time?

If you want a “live” simulation – which can be very effective educationally, you need to run
the simulation in real time so you can see that the simulation progresses as the simulated
time runs. Also, if you want the simulator to run in parallel with the real system, maybe for
monitoring purposes, you need to run the simulator in real time.

However:

• For systems that are very slow, real-time simulation will hardly be popular. Then it is
better with scaled real time, so that the simulation runs eg. 100 times faster than real
time.

• For systems that are very fast, real-time system is of little uses since there will be no
time to experience the live simulation. In this case it may be suitable to run the
simulation for example 100 times slower than real time.

231

CHAPTER 6. SIMULATION ALGORITHMS OF STATE SPACE MODELS

Figure 6.15 illustrates the above (it is assumed 2 times faster and 2 times slower than real
time, respectively).

Figure 6.15: Real-time, or scaled real-time simulation

How do you implement real-time, or possibly, scaled real-time simulation? Here is a
procedure:

1. Select a proper value of the simulation time step, dt. Note: The selection of dt shall
be independent of the speed of the simulator!

2. If you want the simulator to run k times faster than real time, then ensure to
implement the real cycle time, or iteration time, of your simulation algorithm,
tcycle,real, according to

tcycle,real =
dt

k
(6.20)

How to implement tcycle,real, depends on the programming tool you are using, and I
will not discuss this further here.

6.2.6 Why predict?

Why calculate xk+1 when we actually need xk? After all, it is xk we need. So why calculate
the predicted value xk+1? Why not just subtract 1 from all of the time indexes in the
algorithm above to get a formula for xk instead of xk+1? Let us try. Then (6.7) becomes

xk−1
′ = f (xk−1, uk−1, dk−1, pk−1) (6.21)

and (6.7) becomes
xk = xk−1 + dt xk−1

′ (6.22)

While this may look ok as the basis of a simulation algorithm, a drawback is that the
delayed values uk−1 and dk−1 and pk−1 are required. It is much more common to use the
“prediction” algorithm (6.7) – (6.8).

232

CHAPTER 6. SIMULATION ALGORITHMS OF STATE SPACE MODELS

6.2.7 Euler Forward vs. Euler Backward

The approximation (6.8), on which we have based the simulation algorithm, is the Euler
Forward approximation of the time-derivative of x. As you may have guessed, or know
already, there is also the Euler Backward method of calculating (approximating) the
integral of (6.2):

xk = xk−1 + Ts xk
′ = xk−1 + dtf (xk, uk, dk, pk) (6.23)

Actually, if the function f() is linear in xk we will certainly be able to obtain a formula for
xk by solving (6.23) for xk. This is actually the Euler Backward method. However, often
process models are nonlinear, i.e. f() is a nonlinear function of xk, and then we may get
problems. As an example, assume the following model:2

x′ = −Kv

√
x (6.24)

Then, (6.23) becomes:
xk = xk−1 + dt xk

′ = xk−1 − dtKv
√
xk (6.25)

Do you see the problem? It is that xk appears at both sides of the nonlinear equation
(6.25), making it difficult (but not impossible) to calculate xk, which we need in the
simulation algorithm! With the Euler Forward method, the problem does not even appear –
not for any function f().

It can be shown that the Euler Forward method is somewhat less accurate than the Euler
Backward method. But if we choose a small enough time step, dt, the two methods give
almost identical results.

Above, we have actually got a demonstration of why the Euler Backward method is also
called the Euler Implicit method: (6.25) gives an implicit solution of xk. And the Euler
Forward method is also denoted the Euler Explicit method.

6.3 Simulation of second order differential equation models

In Section 6.2, the simulation algorithm assumed a first order differential equation. What if
the model consists of a second order differential equation, like when you apply the Newton’s
Second Law to model the motion of a mechanical system?3 One common way to obtain a
simulation algorithm for second order differential equation is to represent this differential
equation by two first order differential equations, and applying the Euler method to each of
them. This procedure is demonstrated in Example 6.3 where we develop a simulation
algorithm for a mass-spring-damper system. Both the speed and the position of the system
will be simulated.

Example 6.3 Simulator of a mass-spring-damper

2A model of a water tank with a valve in the outlet may be modelled like this. The outflow through the
valve is the cause of the square root function.

3Differential equation of higher order than two are very rare. You may meet them in e.g. signal processing
and state estimator design, but such applications are not relevant here.

233

CHAPTER 6. SIMULATION ALGORITHMS OF STATE SPACE MODELS

Figure 6.16 shows a mass-spring-damper system. The damping force Fd is assumed

Figure 6.16: Mass-spring-damper system.

proprtional with the speed (i.e. so-called viscous damping is assumed):

Fd = −Dv (6.26)

The spring force is assumed proportional with the position of the body relative to position
s = 0:

Fs = −Ks (6.27)

The Newton’s 2nd law (force balance) is:

ms′′ = mv′ = F − Fd − Fs = F −Dv −Ks (6.28)

The state space model is:
s′ = v (6.29)

v′ =
1

m
[F −Dv −Ks] (6.30)

The simulation algorithm is:

Before the simulation loop:

• Initialization:
sk = sinit (6.31)

vk = vinit (6.32)

Inside the simulation loop:

• State limitation:
sk ∈ [smin, smax] (6.33)

vk ∈ [vmin, vmax] (6.34)

• Time derivatives (the differential equations):

sk
′ = vk (6.35)

vk
′ =

1

m
[Fk −Dvk −Ksk] (6.36)

234

CHAPTER 6. SIMULATION ALGORITHMS OF STATE SPACE MODELS

• Euler integration:
sk+1 = sk + dt · sk ′ (6.37)

vk+1 = vk + dt · vk ′ (6.38)

• Time index shift:
sk = sk+1 (6.39)

vk = vk+1 (6.40)

Program 6.2 shows an implementation of the simulator, including various numerical settings
(I do not show these values in the text). Figure 6.17 shows simulated responses due to a
step change of the applied force F .

0 2 4 6 8 10
t [s]

0.00

0.05

0.10

0.15

[m
]

s

0 2 4 6 8 10
t [s]

0.2

0.1

0.0

0.1

0.2

0.3

[m
/s

]

v

0 2 4 6 8 10
t [s]

0.0

0.2

0.4

0.6

0.8

1.0

[N
]

F

Figure 6.17: Simulation of a mass-spring-damper.

http://techteach.no/control/python/prog sim mfd.py

Listing 6.2: prog sim mfd.py

import matplotlib.pyplot as plt

import numpy as np

m = 1 # [kg]

K = 10 # [N/m]

D = 0.5 # [N/(m/s)]

For state limitation , but not effective here.

s_min = -np.inf; s_max = np.inf ,

v_min = -np.inf; v_max = np.inf

235

http://techteach.no/control/python/prog_sim_mfd.py

CHAPTER 6. SIMULATION ALGORITHMS OF STATE SPACE MODELS

Ts = 0.001 # [s]

t_start = 0 # [s]

t_stop = 10 # [s]

N_sim = int((t_stop - t_start)/Ts) + 1

t_array = np.zeros(N_sim)

s_array = np.zeros(N_sim)

v_array = np.zeros(N_sim)

F_array = np.zeros(N_sim)

s_k = s_init = 0 # [m]

v_k = s_init = 0 # [m/s]

for k in range(0, N_sim):

t_k = k*Ts

if 0 <= t_k <= 1: F_k = 0 # [N]

else: F_k = 1 # [N]

s_k = np.clip(s_k , s_min , s_max)

v_k = np.clip(v_k , v_min , v_max)

ds_dt_k = v_k

dv_dt_k = (1/m)*(F_k - D*v_k - K*s_k)

s_kp1 = s_k + Ts*ds_dt_k

v_kp1 = v_k + Ts*dv_dt_k

t_array[k] = t_k

s_array[k] = s_k

v_array[k] = v_k

F_array[k] = F_k

s_k = s_kp1

v_k = v_kp1

plt.close(’all ’)

plt.figure(1, figsize =(12, 9))

plt.subplot(3, 1, 1)

plt.plot(t_array , s_array , ’b’, label=’s’)

plt.xlabel(’t [s]’)

plt.ylabel(’[m]’)

plt.grid()

plt.legend ()

plt.subplot(3, 1, 2)

plt.plot(t_array , v_array , ’g’, label=’v’)

plt.grid()

plt.xlabel(’t [s]’)

plt.ylabel(’[m/s]’)

plt.legend ()

236

CHAPTER 6. SIMULATION ALGORITHMS OF STATE SPACE MODELS

plt.subplot(3, 1, 3)

plt.plot(t_array , F_array , ’r’, label=’F’)

plt.grid()

plt.xlabel(’t [s]’)

plt.ylabel(’[N]’)

plt.legend ()

plt.savefig(’plot_sim_mfd.pdf ’)

plt.show()

[Slutt p̊a eksempel 6.3]

6.4 Simulation algorithm of time delays

Time delays – also denoted transportation time and time delay – appear in various systems:

• Transportation of material on conveyor belt or through pipelines.

• Apparent time delay due to imperfect mixing in tanks, e.g. a delayed response in the
measured temperature of liquid in a tank after some change in the supplied power to
the liquid.

• Delay of information through communication channels.

How to make a simulation algorithm of a time delay? Let us make a simulator of the
transportation taking place on the conveyor belt shown in Figure 6.18. The belt runs with
fixed speed.

Figure 6.18: Conveyor belt

There is a time delay from inflow Fin to the belt to the outflow Fout from the belt.
Example: Suppose the time delay is 45 seconds. A change in the inflow at 12:30:00 will
then give the same change in the outflow at 12:30:45. Mathematically, the relationship
between Fin and Fout can be expressed as:

Fout(t) = Fin(t− td) (6.41)

237

CHAPTER 6. SIMULATION ALGORITHMS OF STATE SPACE MODELS

where td = 45 s is the time delay (transportation time).

Let us imagine that the conveyor belt in Figure 6.18 is represented by an array, where the
input signal to the array is put into the first element of the array, and the time delayed
signal is taken out from from the last element of the array. At each discrete time in the
simulation, the value of each element in the array is moved one step toward the end of the
array. This is illustrated in Figure 6.19 where yin is the input to the array and yout is the
output of the array. The mathematical relationship between yout and yin is

yout(t) = yin(t− td) (6.42)

What should be the length of the array? If the time delay is td [s] and the simulation time
step is dt [s], the length of the array should be

Nf =
td
dt

(6.43)

or rounded upwards to the nearest integer if this fraction is not an integer (rounding
upwards is safer than rounding downwards assuming it is safer to overstate the time delay
than to understate it).

We can now state a simulation algorithm as follows. The algorithm is executed at each
point of simulation time.

1. The time delayed signal, yout(t) = yin(t− td), is the value of the last element of the
array.

2. In principle, all the elements of the array are moved one step towards the end of the
array. (The program example below shows a way to implement the move, but there
are other ways.)

3. The value of the variable to be delayed, yin(t), is entered into the first element of the
array.

Figure 6.19: Realization of a time delay using an array. At each simulation point of time, all
the elements of the array are moved one step toward the end of the array.

Example 6.4 A Python program for simulation of a time delay

238

CHAPTER 6. SIMULATION ALGORITHMS OF STATE SPACE MODELS

Python program 6.3 implements the simulator of a time delay.

http://techteach.no/control/python/prog sim time delay.py

Listing 6.3: prog sim time delay.py

%% Import of packages:

import matplotlib.pyplot as plt

import numpy as np

%% Model parameters:

t_delay = 1.0 # [s]

%% Simulation time settings:

Ts = 0.01 # [s]

t_start = 0 # [s]

t_stop = 5 # [s]

N_sim = int((t_stop - t_start)/Ts) + 1

%% Preallocation of arrays for plotting:

t_array = np.zeros(N_sim)

y_in_array = np.zeros(N_sim)

y_out_array = np.zeros(N_sim)

%% Initialization:

Y_out_init = 0.5

%% Preallocation of array for time -delay:

Nd = int(round(t_delay/Ts)) + 1

delay_array = np.zeros(Nd) + Y_out_init

%% Simulation loop:

for k in range(0, N_sim):

t_k = k*Ts

Excitation:

if (t_start <= t_k < 2.0):

y_in_k = 0

if (2.0 <= t_k):

y_in_k = 1.0

Time delay:

y_out_k = delay_array [-1]

delay_array [1:] = delay_array [0: -1]

delay_array [0] = y_in_k

239

http://techteach.no/control/python/prog_sim_time_delay.py

CHAPTER 6. SIMULATION ALGORITHMS OF STATE SPACE MODELS

Writing values to arrays for plotting:

t_array[k] = t_k

y_in_array[k] = y_in_k

y_out_array[k] = y_out_k

%% Plotting:

plt.close(’all ’)

plt.figure (1)

plt.grid()

plt.plot(t_array , y_out_array , ’b’)

plt.plot(t_array , y_in_array , ’r’)

plt.xlabel(’t [s]’)

plt.legend(labels=(’y_out ’, ’y_in ’))

plt.savefig(’plot_sim_time_delay.pdf ’)

plt.show()

The specifications of the simulator are as follows:

• Time step: dt = 0.01 s

• Time delay: td = 1 s

• The input signal, yin, is changed as a step at time t0 = 2 s.

• The array representing the time delay is initially filled with values Y out init = 0.5.
This causes the time delay value, yout, to have value Y out init until the simulation
time has become greater than the time delay.

Figure 6.20 shows the results of a simulation with the program.

0 1 2 3 4 5
t [s]

0.0

0.2

0.4

0.6

0.8

1.0 y_out
y_in

Figure 6.20: Simulation of a time delay

Comments to the above program:

240

CHAPTER 6. SIMULATION ALGORITHMS OF STATE SPACE MODELS

• The code Y out init = 0.5 defines a constant to fill the array with an initial value.

• The code Nd = int(round(td/Ts)) + 1 calculates the number of elements of the array
needed to represent the time delay.

• The code delay array = np.zeros(Nd) + y out init creates the array, and gives all the
elements the initial value of y out init.

• The code beneath # Excitation: generates a step change of the input signal.

• The code beneath # Time delay: realizes the time delay accordiing to the algorithm
presented above:

– Step 1 of the algorithm: The code y out k = delay array[-1] assigns the time
delayed variable, y out k, the value of the last element of the array. Index −1
addresses the last element.

– Step 2 of the algorithm: The code delay array[1:] = delay array[0:-1] moves each
of the elements one step towards the right. The access code 0:-1 means “all
elements but the last one”. The access code 1: means “all elements starting with
element of index 1 (i.e. the element of index 0 is excluded)”.

– Step 3 of the algorithm: The code delay array[0] = y in k assigns the element of
index 0 (the leftmost element) of delay array the value of the input variable,
y in k.

• The code beneath # Writing values to arrays for plotting: writes values to the arrays
to be used for plotting (but the code for plotting is not shown here).

[End of Example 6.4]

241

CHAPTER 6. SIMULATION ALGORITHMS OF STATE SPACE MODELS

6.5 Problems for Chapter 6

Problem 6.1 Simulator of a heated water tank

A mathematical model of a heated water tank with initial model parameter values is
presented in Ch. 38.4. The model (38.9) includes a time delay of the supplied power P .
However, in the problems below you can (for simplicity) disregard this time delay, i.e. not
implement it in the simulator.

1. “Pseudo” simulation algorithm

Derive a “pseudo” simulation algorithm for the temperature (more or less ready to be
implemented in a program).

2. Calculation of static operating point:

Calculate from the model the constant power, P0, needed to bring the temperature to a
constant value of 25 deg C.

3. Programming and simulation:

Program a simulator in Python of the tank heater. The simulator must be implemented
with “native” code in a For loop based on the Euler Forward discretization of the model (a
built-in simulation function of Python should not be used). You can set the time-step to 1
s. The following variables should be plotted: T , Tin, and Tenv in one subplot, and P in
another subplot. Assume that the initial temperature is Tinit = 20 deg C. Run a simulation
with P = P0 as calculated above. Is the static T the same as specified in Problem 2 above?

4. Stability of the simulator:

Demonstrate that the simulator becomes numerically inaccurate if you select a (too) large
simulator time step. Also, run a simulation with such a large time step that the simulation
becomes numerically unstable.

Problem 6.2 Simulation of a time delay

This problem is a continuation of Problem 6.1.

Modify program 6.5 (which is in the solution of Problem 6.1) as follows: Set the time step
to 1 sec. Include a time delay of 60 sec in P .

Verify with a simulation that you have implemented the time delay correctly.

Problem 6.3 Simulator of a ship

A mathematical model of the surge or longitudal motion of a ship is presented in Ch. 38.2.
Program a simulator of the ship according to the following specifications:

242

CHAPTER 6. SIMULATION ALGORITHMS OF STATE SPACE MODELS

• Time step is 1 s.

• Stop time is 1000 s.

• Position is initially 0 m, and speed is initially 0 m/s.

• The propeller force is initially 0 kN. It is changed as a step from 0 to 200 kN at time
200 s, and back to 0 kN at time 400 s.

• Water current can be assumed zero.

• Wind speed can be assumed zero.

• Position, speed, propeller force, and hydrodynamic force together with wind force are
plotted in individual plots (four plots, altogether).

Hint: Write the model as a second order state space model with the following state
variables: Position x1, and speed x2.

243

CHAPTER 6. SIMULATION ALGORITHMS OF STATE SPACE MODELS

6.6 Solutions to problems for Chapter 6

Solution to Problem 6.1

1. “Pseudo” simulation algorithm

The model (38.18) without the time delay (i.e., τ = 0) is:

cρV T ′(t) = P (t) + cρF [Tin(t)− T (t)] + U [Tenv(t)− T (t)] (6.44)

We write this model as a state space model:

T ′ = {P (t) + cρF [Tin(t)− T (t)] + U [Tenv(t)− T (t)]} /(cρV) (6.45)

The model simulation algorithm:

• Before the simulation loop:

– Initialization: T k = T init

• Inside the simulation loop:

– Limitation of T k between T min = 0 deg C and T max = 100 deg C (using e.g.
the numpy.clip function)

– Setting input signals P k, and T in k, and T env k

– Any use of T k, e.g. storing in an array for later plotting

– Time derivative: dT dt k = (1/(c*rho*V))*(P k + c*rho*F*(T in k - T k) +
U*(T env k - T k))

– Prediction or integration (Euler forward): T kp1 = T k + dt*dT dt k

– Time index shift: T k = T kp1

• After the simulation loop:

– Plotting, analysis, saving simulation data to file, etc.

2. Calculation of static operating point:

Python program 6.4 implements a solution.

http://techteach.no/control/python/sim heated tank 1.py

Listing 6.4: sim heated tank 1.py

#%% Model params:

c = 4200 # [J/(kg*K)]

rho = 1000 # [kg/m3]

V = 0.2 # [m3]

244

http://techteach.no/control/python/sim_heated_tank_1.py

CHAPTER 6. SIMULATION ALGORITHMS OF STATE SPACE MODELS

U = 1000 # [W/K]

F = 0.25e-3 # [m3/s]

T_in = 20 # [deg C]

T_env = 20 # [deg C]

#%% Calculation of power giving specified static temp:

T_static = 25 # [deg C] Static temp

From model after t’ is set to zero (static value):

P0 = - (c*rho*F*(T_in -T_static) + U*(T_env -T_static)) # [W]

print(’P0 [W] =’, P0)

The result is:

P0 [W] = 10250.0

3. Programming and simulation:

Python program 6.5 implements a solution.

http://techteach.no/control/python/sim heated tank 2.py

Listing 6.5: sim heated tank 2.py

#%% Imports:

import numpy as np

import matplotlib.pyplot as plt

#%% Model params:

c = 4200 # [J/(kg*K)]

rho = 1000 # [kg/m3]

V = 0.2 # [m3]

U = 1000 # [W/K]

F = 0.25e-3 # [m3/s]

T_in = 20 # [deg C]

T_env = 20 # [deg C]

T_min = 0

T_max = 100

#%% Calculation of power giving specified static temp:

T_static = 25 # [deg C] Static temp

From model after t’ is set to zero (static value):

P0 = - (c*rho*F*(T_in -T_static) + U*(T_env -T_static)) # [W]

#%% Sim time settings:

dt = 1 # [s]

245

http://techteach.no/control/python/sim_heated_tank_2.py

CHAPTER 6. SIMULATION ALGORITHMS OF STATE SPACE MODELS

t_start = 0 # [s]

t_stop = 6000 # [s]

N_sim = int((t_stop - t_start)/dt) + 1

#%% Preallocation of arrays for storing:

t_array = np.zeros(N_sim)

T_array = np.zeros(N_sim)

T_in_array = np.zeros(N_sim)

T_env_array = np.zeros(N_sim)

P_array = np.zeros(N_sim)

#%% Sim loop:

T_k = T_init = 20 # [deg C] Initial temp

for k in range(0, N_sim):

State limitation:

T_k = np.clip(T_k , T_min , T_max)

t_k = k*dt

P_k = P0

T_in_k = T_in

T_env_k = T_env

t_array[k] = t_k

T_array[k] = T_k

T_in_array[k] = T_in_k

T_env_array[k] = T_env_k

P_array[k] = P_k

Time derivative:

dT_dt_k = ((1/(c*rho*V))

*(P_k

+ (c*rho*F)*(T_in -T_k)

+ U*(T_env -T_k)))

T_kp1 = T_k + dt*dT_dt_k

Time index shift:

T_k = T_kp1

%% Plotting:

plt.close(’all ’)

plt.figure (1)

plt.subplot(2, 1, 1)

plt.plot(t_array , T_array , ’r’, label=’T’)

plt.plot(t_array , T_in_array , ’b’, label=’T_in ’)

plt.plot(t_array , T_env_array , ’g’, label=’T_env ’)

plt.legend ()

plt.grid()

246

CHAPTER 6. SIMULATION ALGORITHMS OF STATE SPACE MODELS

plt.xlabel(’t [s]’)

plt.ylabel(’[deg C]’)

plt.subplot(2, 1, 2)

plt.plot(t_array , P_array , ’m’, label=’P’)

plt.legend ()

plt.grid()

plt.xlabel(’t [s]’)

plt.ylabel(’[W]’)

plt.show()

plt.savefig(’plot_sim_heated_tank_2.pdf ’)

Figure 6.21 shows the simulated responses.

0 1000 2000 3000 4000 5000 6000
t [s]

20

21

22

23

24

25

[d
eg

 C
] T

T_in
T_env

0 1000 2000 3000 4000 5000 6000
t [s]

9800

10000

10200

10400

10600

10800

[W
]

P

Figure 6.21: Problem 6.1: Simulated responses.

Comments:

• The static value of T can be read off from the plot in Figure 6.21, and can be found
more precisely with the code T array[-1], and is 25.00, which is the same as the
specified value, cf. Problem 2.

247

CHAPTER 6. SIMULATION ALGORITHMS OF STATE SPACE MODELS

4. Stability of the simulator:

Python program 6.6 runs a simulation with time step

dt = 700 s

http://techteach.no/control/python/sim heated tank 2.py

Listing 6.6: sim heated tank 3.py

#%% Imports:

import numpy as np

import matplotlib.pyplot as plt

#%% Model params:

c = 4200 # [J/(kg*K)]

rho = 1000 # [kg/m3]

V = 0.2 # [m3]

U = 1000 # [W/K]

F = 0.25e-3 # [m3/s]

T_in = 20 # [deg C]

T_env = 20 # [deg C]

T_min = 0

T_max = 100

#%% Calculation of power giving specified static temp:

T_static = 25 # [deg C] Static temp

From model after t’ is set to zero (static value):

P0 = - (c*rho*F*(T_in -T_static) + U*(T_env -T_static)) # [W]

#%% Sim time settings:

dt = 700 # [s]

t_start = 0 # [s]

t_stop = 10000 # [s]

N_sim = int((t_stop - t_start)/dt) + 1

#%% Preallocation of arrays for storing:

t_array = np.zeros(N_sim)

T_array = np.zeros(N_sim)

T_in_array = np.zeros(N_sim)

T_env_array = np.zeros(N_sim)

P_array = np.zeros(N_sim)

#%% Sim loop:

T_k = T_init = 20 # [deg C] Initial temp

248

http://techteach.no/control/python/sim_heated_tank_2.py

CHAPTER 6. SIMULATION ALGORITHMS OF STATE SPACE MODELS

for k in range(0, N_sim):

State limitation:

T_k = np.clip(T_k , T_min , T_max)

t_k = k*dt

P_k = P0

T_in_k = T_in

T_env_k = T_env

t_array[k] = t_k

T_array[k] = T_k

T_in_array[k] = T_in_k

T_env_array[k] = T_env_k

P_array[k] = P_k

Time derivative:

dT_dt_k = ((1/(c*rho*V))

*(P_k

+ (c*rho*F)*(T_in -T_k)

+ U*(T_env -T_k)))

T_kp1 = T_k + dt*dT_dt_k

Time index shift:

T_k = T_kp1

%% Plotting:

plt.close(’all ’)

plt.figure (1)

plt.subplot(2, 1, 1)

plt.plot(t_array , T_array , ’r’, label=’T’)

plt.plot(t_array , T_in_array , ’b’, label=’T_in ’)

plt.plot(t_array , T_env_array , ’g’, label=’T_env ’)

plt.legend ()

plt.grid()

plt.xlabel(’t [s]’)

plt.ylabel(’[deg C]’)

plt.subplot(2, 1, 2)

plt.plot(t_array , P_array , ’m’, label=’P’)

plt.legend ()

plt.grid()

plt.xlabel(’t [s]’)

plt.ylabel(’[W]’)

plt.savefig(’plot_sim_heated_tank_3.pdf ’)

plt.show()

Figure 6.22 shows the simulated response. The simulation is (numerically) inaccurate.

249

CHAPTER 6. SIMULATION ALGORITHMS OF STATE SPACE MODELS

0 2000 4000 6000 8000 10000
t [s]

20.0

22.5

25.0

27.5

[d
eg

 C
]

T
T_in
T_env

0 2000 4000 6000 8000 10000
t [s]

10000

10500

[W
]

P

Figure 6.22: Problem 6.1: Simulated response with time step dt = 700 s.

Figure 6.23 shows the simulated response with time step dt = 900 s. The simulation is
(numerically) unstable.

Solution to Problem 6.2

Python program 6.7 implements a solution.

http://techteach.no/control/python/sim heated tank time delay.py

Listing 6.7: sim heated tank time delay.py

#%% Imports:

import numpy as np

import matplotlib.pyplot as plt

#%% Model params:

c = 4200 # [J/(kg*K)]

rho = 1000 # [kg/m3]

V = 0.2 # [m3]

U = 1000 # [W/K]

F = 0.25e-3 # [m3/s]

T_in = 20 # [deg C]

250

http://techteach.no/control/python/sim_heated_tank_time_delay.py

CHAPTER 6. SIMULATION ALGORITHMS OF STATE SPACE MODELS

0 2000 4000 6000 8000 10000
t [s]

0

20

40

[d
eg

 C
]

T
T_in
T_env

0 2000 4000 6000 8000 10000
t [s]

10000

10500

[W
]

P

Figure 6.23: Problem 6.1: Simulated response with time step dt = 900 s.

T_env = 20 # [deg C]

T_min = 0

T_max = 100

#%% Sim time settings:

dt = 1 # [s]

t_start = 0 # [s]

t_stop = 10000 # [s]

N_sim = int((t_stop - t_start)/dt) + 1

#%% Defining a step change in power P. A step is a

convenient test signal to demonstrate the time delay

of the system:

T_static = 25 # [deg C] Static temp

From model after t’ is set to zero (static value):

P0 = - (c*rho*F*(T_in -T_static) + U*(T_env -T_static)) # [W]

dP = 0.1*P0 # [W] Step amplitude of 10 percent

P1 = P0 + dP # [W] Power after step change

print(’P0 [W] =’, P0)

print(’P1 [W] =’, P1)

251

CHAPTER 6. SIMULATION ALGORITHMS OF STATE SPACE MODELS

#%% Array for transport delay of power:

t_delay = 60 # [s]

P_delayed_init = P0 # [W]

N_delay = int(round(t_delay/dt)) + 1

P_delay_array = np.zeros(N_delay) + P_delayed_init

#%% Preallocation of arrays for storing:

t_array = np.zeros(N_sim)

T_array = np.zeros(N_sim)

T_in_array = np.zeros(N_sim)

T_env_array = np.zeros(N_sim)

P_array = np.zeros(N_sim)

#%% Sim loop:

T_k = T_init = 25 # [deg C]

t0 = 5000 # [s] Time of step in P

for k in range(0, N_sim):

State limitation:

T_k = np.clip(T_k , T_min , T_max)

t_k = k*dt

if (0 <= t_k <= t0):

P_k = P0

T_in_k = T_in

T_env_k = T_env

else:

P_k = P1

T_in_k = T_in

T_env_k = T_env

Moving delay array elements one step:

P_delayed_k = P_delay_array [-1]

P_delay_array [1:] = P_delay_array [0:-1]

P_delay_array [0] = P_k

t_array[k] = t_k

T_array[k] = T_k

T_in_array[k] = T_in_k

T_env_array[k] = T_env_k

P_array[k] = P_k

dT_dt_k = ((1/(c*rho*V))

*(P_delayed_k

+ (c*rho*F)*(T_in -T_k)

+ U*(T_env -T_k)))

T_kp1 = T_k + dt*dT_dt_k

252

CHAPTER 6. SIMULATION ALGORITHMS OF STATE SPACE MODELS

Time index shift:

T_k = T_kp1

%% Plotting:

plt.close(’all ’)

plt.figure (1)

Defining time intervals for plotting:

Start time for plotting:

t_plot_start = 4900 # [s]

Stop time for plotting:

t_plot_end = 5200 # [s]

Array index for start of plotting:

i_start = int(t_plot_start/dt) # [s]

Array index for start of plotting

i_end = int(t_plot_end/dt) # [s]

Index interval for plotting

i_interval = np.arange(i_start , i_end , dt)

plt.subplot(2, 1, 1)

plt.plot(t_array[i_interval], T_array[i_interval], ’b’,

label=’T’)

plt.legend ()

plt.grid()

plt.xlabel(’t [s]’)

plt.ylabel(’[C]’)

plt.subplot(2, 1, 2)

plt.plot(t_array[i_interval], P_array[i_interval], ’m’, label=’P’)

plt.legend ()

plt.grid()

plt.xlabel(’t [s]’)

plt.ylabel(’[W]’)

plt.savefig(’plot_sim_heated_tank_with_delay.pdf ’)

plt.show()

Figure 6.24 shows the simulated response. The time delay of 60 s is apparent in the plot.

Solution to Problem 6.3

With the following definitions:

• Position
y = x1 (6.46)

• Speed:
y′ = x2 (6.47)

253

CHAPTER 6. SIMULATION ALGORITHMS OF STATE SPACE MODELS

4900 4950 5000 5050 5100 5150 5200
t [s]

25.00

25.05

25.10

[C
]

T

4900 4950 5000 5050 5100 5150 5200
t [s]

10500

11000

[W
]

P

Figure 6.24: Problem 6.2: Simulated response.

the original model, (38.3), can be represented with the following two first order differential
equations:

x1
′ = x2 (6.48)

x2
′ = (Fp + Fh + Fw) /m (6.49)

where:

Fh = Dh (uc − x2) |uc − x2| (6.50)

Fw = Dw (Vw − x2) |Vw − x2| (6.51)

Python program 6.8 implements a simulator based on (6.48)-(6.49).

http://techteach.no/control/python/sim ship.py

Listing 6.8: sim ship.py

#%% Importing packages:

import matplotlib.pyplot as plt

import numpy as np

254

http://techteach.no/control/python/sim_ship.py

CHAPTER 6. SIMULATION ALGORITHMS OF STATE SPACE MODELS

#%% Model parameters:

m = 71164*1000 # [kg]

Dh = 8.4*1000 # [N/(m/s)^2]

Dw = 0.177*1000 # [N/(m/s)^2]

#%% State limits:

x1_min = -np.inf

x1_max = np.inf

x2_min = -np.inf

x2_max = np.inf

#%% Simulation time settings:

dt = 1 # [s]

t_start = 0 # [s]

t_stop = 1000 # [s]

N_sim = int((t_stop - t_start)/dt) + 1

#%% Preallocation of arrays for plotting:

t_array = np.zeros(N_sim)

x1_array = np.zeros(N_sim)

x2_array = np.zeros(N_sim)

Fp_array = np.zeros(N_sim)

Fh_array = np.zeros(N_sim)

Fw_array = np.zeros(N_sim)

#%% Initialization:

x1_init = 0

x2_init = 0

x1_k = x1_init

x2_k = x2_init

#%% Simulation loop:

for k in range(0, N_sim):

State limitation:

x1_k = np.clip(x1_k , x1_min , x1_max)

x2_k = np.clip(x2_k , x2_min , x2_max)

Time:

t_k = k*dt

Excitations:

if t_start <= t_k < 200:

Fp_k = 0 # [N]

uc_k = 0

Vw_k = 0

if 200 <= t_k:

255

CHAPTER 6. SIMULATION ALGORITHMS OF STATE SPACE MODELS

Fp_k = 200*1000

uc_k = 0

Vw_k = 0

if 400 <= t_k:

Fp_k = 0

uc_k = 0

Vw_k = 0

Forces from water and wind:

Fh_k = Dh*(uc_k - x2_k)*np.abs(uc_k - x2_k)

Fw_k = Dw*(Vw_k - x2_k)*np.abs(Vw_k - x2_k)

Time derivatives:

dx1_k = x2_k

dx2_k = (1/m)*(Fp_k + Fh_k + Fw_k)

State prediction (Euler step):

x1_kp1 = x1_k + dx1_k*dt

x2_kp1 = x2_k + dx2_k*dt

Arrays for plotting:

t_array[k] = t_k

x1_array[k] = x1_k

x2_array[k] = x2_k

Fp_array[k] = Fp_k

Fh_array[k] = Fh_k

Fw_array[k] = Fw_k

Time shift:

x1_k = x1_kp1

x2_k = x2_kp1

#%% Plotting:

plt.close(’all ’) # Closes all figures before plotting

plt.figure (1)

plt.subplot(4, 1, 1)

plt.plot(t_array , x1_array , ’r’, label=’y’)

plt.legend ()

plt.grid()

plt.ylabel(’[m]’)

plt.subplot(4, 1, 2)

plt.plot(t_array , x2_array , ’b’, label=’dydt ’)

plt.legend ()

plt.grid()

plt.ylabel(’[m/s]’)

plt.subplot(4, 1, 3)

plt.plot(t_array , Fp_array /1000 , ’g’, label=’Fp ’)

plt.legend ()

plt.grid()

plt.ylabel(’[kN]’)

256

CHAPTER 6. SIMULATION ALGORITHMS OF STATE SPACE MODELS

plt.subplot(4, 1, 4)

plt.plot(t_array , Fh_array /1000 , label=’Fh ’)

plt.plot(t_array , Fw_array /1000 , label=’Fw ’)

plt.legend ()

plt.grid()

plt.ylabel(’[kN]’)

plt.xlabel(’t [s]’)

#%% Saving the plot figure as a pdf file:

plt.savefig(’plot_simulation_ship.pdf ’)

plt.show()

Figure 6.25 shows the simulated responses.

0 200 400 600 800 1000
0

250

[m
] y

0 200 400 600 800 1000
0.0

0.5

[m
/s

] dydt

0 200 400 600 800 1000
0

200

[k
N] Fp

0 200 400 600 800 1000
t [s]

2

0

[k
N] Fh

Fw

Figure 6.25: Problem 6.3: Simulated responses.

Comments to the simulation:

• The speed increases relatively fast between t = 200 and 400 s, which is due to the
relatively large propeller force.

• The speed decreases relatively slowly after t = 400 s, which is due to the relatively
small forces from water and wind.

257

Chapter 7

Block diagram models

7.1 Introduction

The differential equation models in Ch. 5 can be represented with block diagrams which
display graphically the structure of the model. A block diagram may enhance your
understanding of the model. Simulink, LabVIEW and OpenModelica are examples of
simulation tools for block diagram models, cf. Section 7.3.

7.2 How to draw block diagrams

Assume that you have derived a state space model of some dynamic system. The
differential equations are:

x1
′ = f1(x, u, d, p)

...
...

... (7.1)

xn
′ = fn(x, u, d, p)

The states are given by integrals:

x1(t) = x1(0) +

ˆ t

0
f1(·) dτ

...
...

... (7.2)

xn(t) = xn(0) +

ˆ t

0
fn(·) dτ

where x1(0) = x1,init, xn(0) = xn,init are the initial states.

We can represent (7.1)-(7.2) with a (mathematical) block diagram. The block diagram
shows the state variables as solutions to their differential equations (the solutions are
obtained with integrations), see Figure 7.1.

258

CHAPTER 7. BLOCK DIAGRAM MODELS

Figure 7.1: Mathematical block diagram of the model consisting of (5.1). In some models,
namely pure integrator models, the dashed feedbacks do not exist.

In Figure 7.1, x1, ..., xn, which are the integrator outputs, are fed back to the inputs of the
block where f1, ..., fn are calculated. However, in some models, namely so-called pure
integrator models, those feedbacks do not exist. Therefore, I have drawn these feedbacks as
dashed lines in Figure 7.1.

Example 7.1 Model with block diagram of water tank

Figure 7.2 shows a water tank with inlet and outlet.

Figure 7.2: Water tank with inlet and outlet

In Figure 7.2:

• h [m] is the water level.

259

CHAPTER 7. BLOCK DIAGRAM MODELS

• Fin [m3/s] is volumetric inflow. It can not be adjusted; its value is given, and it is here
regarded as an environmental variable or a process disturbance.

• Fout [m
3/s] er volumetric outflow. It can be manipulated by the user or a computer.

• A [m2] is the inner cross sectional area of the tank, which is also the water surface
area.

• ρ (rho) [kg/m3] is the water density.

We will develop a mathematical model which expresses how the level in the tank varies.
The model will be based on a mass balance of the water in the tank:

The rate of change of mass of water [kg/s] = water inflow [kg/s] − water outflow [kg/s]

In mathematical terms, the mass balance is:

m′ = ρFin − ρFout (7.3)

Since we want the level h to appear explicitly in the model, we express the mass m [kg] as a
function of level h and area A:

m = ρAh (7.4)

By using this m in (7.3), (7.3) becomes:

(ρAh)′ = ρFin − ρFout (7.5)

Here, we move the constants ρ and A outside the differentiation, and then divide all terms
by ρA. The result is:

h′ =
1

A
(Fin − Fout) (7.6)

which is the state equation of the model.

The level h is the integral of h′:

h(t) = h(0) +

ˆ t

0
h′(θ) dθ (7.7)

with initial condition h(0) = hinit.

Eqs. (7.6)-(7.7) constitute a mathematical model of the tank.

With general model terms:

• h is the state variable.

• h is also the process output variable.

• Fin is a process disturbance, or environmental variable, or process load.

• Fout is an input variable. Are you confused by thinking about the outflow Fout as an
input variable? It is correct from a systems perspective.

260

CHAPTER 7. BLOCK DIAGRAM MODELS

Figure 7.3: Mathematical block diagram of the model of the water tank.

• A is a model parameter.

Figure 7.3 shows a mathematical block diagram of the model (7.6)-(7.7) of the water tank.

[End of Example 7.1]

Using elementary mathematical blocks instead of textual math

In Figure 7.3, a textual mathematical expression is used to represent the mathematical
expression making up the time dervative. Alternatively, you can use use elementary
mathematical blocks. Figure 7.4 shows various blocks. There is no standard about how to
design mathematical blocks, so you may actually invent blocks yourself.

Example 7.2 Block diagram model of water tank using elementary blocks

Figure 7.5 shows a block diagram of the model (7.6) using some elementary mathematical
blocks, here: summation and division, in addition to the integration block.

The block diagrams in Figures 7.3 and 7.5 have different forms, but are functionally
equivalent. So, which form to select? That’s up to you.1

[End of Example 7.2]

7.3 Simulation with block diagram models

Earlier in this chapter, you have seen how mathematical models can be illustrated with
block diagrams. Here are some relatively well-known simulation tools using block diagram
models:

1I often prefer the block diagram form of Figure 7.3 since I find it easier, and more flexible in the case of
changes, to represent mathematical formulas with text (rather than with blocks).

261

CHAPTER 7. BLOCK DIAGRAM MODELS

K
u y

Gain

u2 y
Sum

u3

u = y’ y
Integrator

y0

u y
Time delay

u1

MULT
y

Multiplication

u1

u2

DIV
y

Division

u1

u2

y = u1 + u2 – u3

y = u1u2

y = u1/u2

y = Ku

y(t) = Ku

y(t) = y0 + u(t)dt
t

0

u y
Rate (slope) limiter

Dead zone

u ySaturation

(signal limiter)

Relay (with

deadband)

Switch

(selector)

u y

Control

signal, c

y

u y

u1

u2

y = f(u1, u2, u3)

yu1

u2

u3

Formula

Linear functions: Nonlinear functions:

Figure 7.4: Elementary mathematical blocks.

• OpenModelica

• Simulink

• LabVIEW

Some characteristics of such tools are:

• They come with a library of blocks which you connect to construct the model. The
blocks comprise blocks for elementary mathematical functions, and blocks to represent
state space models and transfer functions.

• They offer alternative simulation algorithms.

Block diagram-based simulation tools are user-friendly since the model to be simulated has
a graphical representation, as opposed to the textual representation you are using when you
program simulators in native textual programming code like Python, cf. Ch. 6.

This book concentrates on using OpenModelica (because this is a free tool). A tutorial to
OpenModelica is in Appendix 43.

262

CHAPTER 7. BLOCK DIAGRAM MODELS

Figure 7.5: A block diagram of the model (7.6) using elementary mathematical blocks.

7.4 Problems for Chapter 7

Problem 7.1 Mathematical block diagram of an accumulation

In Ch. 4, the general model of dynamic systems are presented as (4.1)-(4.2), which are
repeated here for convenience:

Acc(t) = Acc(0) +

ˆ t

0
Acc’ dθ (7.8)

where:
Acc′ = Inflow−Outflow + Generation (7.9)

Draw a mathematical block diagram of (7.8)-(7.9).

Problem 7.2 Mathematical block diagram of water tank

Figure 7.6 shows a water tank with pump inflow and valve outflow.

Fin [m
3/s]

A [m2]

Fout [m
3/s]

h [m]

0

V [m3]

u [mA]

Ku

Pump

ValveKv

Figure 7.6: Water tank with pump inflow and valve outflow.

263

CHAPTER 7. BLOCK DIAGRAM MODELS

A mathematical model of the level in a water tank is:

Ah′ = Fin − Fout (7.10)

where:
Fin = Kuu (7.11)

Fout = Kv

√
ρgh (7.12)

Draw a mathematical block diagram of the model using one block with textual
mathematical expressions for representing h′, and another block diagram of the model using
elementary mathematical blocks for representing h′.

7.5 Solutions to problems for Chapter 7

Solution to Problem 7.1

See Figure 7.7.

Acc

Integrator

Initial accumulation;

Acc(0)

Inflow

Outflow

Generation

Acc’

ꭍ
+
_

+

Adder

Figure 7.7: Mathematical block diagram of accumulation.

Solution to Problem 7.2

Figures 7.8 and 7.9 show the block diagrams.

264

CHAPTER 7. BLOCK DIAGRAM MODELS

u h

Input

variable Output

variableh
.

Integrator

grhoA

hinit

Ku Kv

Parameters

h

Formula block

Figure 7.8: A mathematical block diagram of the model using one block with textual math-
ematical expressions for representing h′.

u

h
DIV

Sum

Input

variable

Output

variabledh/dt = h
.

SQRT MULT

Integrator

h
g

rho

A

×

÷

hinit

MULTKu

Kv

MULT

Figure 7.9: A mathematical block diagram of the model using elementary mathematical
blocks for representing h′.

265

Chapter 8

Transfer functions

8.1 Introduction

Transfer functions is a model form based on the Laplace transform (The Laplace transform
is presented in Ch. 39.) Transfer functions are very useful in analysis and design of linear
dynamic systems, in particular controller functions and signal filters. The main reasons why
transfer functions are useful are as follows:

• Compact model form: If the original model is a higher order differential equation,
or a set of first order differential equations, the relation between the input variable
and the output variable can be described by one transfer function, which is a rational
function of the Laplace variable s, without any time-derivatives.

• Representation of standard models: Transfer functions are often used to
represent standard models of controllers and signal filters.

• Simple to combine systems: For example, the transfer function for a combined
system which consists of two systems in a series combination, is just the product of
the transfer functions of each system.

• Simple to calculate time responses: The calculations will be made using the
Laplace transform, and the necessary mathematical operations are usually much
simpler than solving differential equations. Calculation of time-responses for transfer
function models is described in Chapter 8.5.

• Simple to find the frequency response: The frequency response is a function
which expresses how sinusoid signals are transfered through a dynamic system.
Frequency response is an important tool in analysis and design of signal filters and
control systems. The frequency response can be found from the transfer function of
the system. However, frequency response theory is not a part of this book (a reference
is ?).

Before we start, I must say something about the mathematical notation: In the following
sections, and in the reminder of the book, I use the same symbol (letter) for the time

266

CHAPTER 8. TRANSFER FUNCTIONS

function, say y(t), as for the Laplace transform of y(t), here y(s) – although it is
mathematically incorrect to do it. The reason is to simplify the presentation. Now, only one
variable name (symbol) is needed for both the Laplace domain and the time domain. For
example, assume that y(t) is the time function of the level y in a water tank. Then I write
y(s), although I formally should have written Y (s) or y∗(s) or y(s) (or something else that
is different from y(s)) for L{y(t)}. It is my experience (from many years together with
transfer functions) that this simplifying notation causes no problems.

8.2 Definition of the transfer function

The first step in deriving the transfer function of a system is taking the Laplace transform
of the differential equation (which must be linear). Let us go on with an example, but the
results are general. Given the following mathematical model having two input variables u1
and u2 and one output variable y. (I think you will understand from this example how to
find the transfer function for systems with different number of inputs and outputs.)

y′(t) = ay(t) + b1u1(t) + b2u2(t) (8.1)

a, b1 and b2 are model parameters (coefficients). Let the initial state (at time t = 0) be y0.
We start by taking the Laplace transform of both sides of the differential equation:

L
{
y′(t)

}
= L{ay(t) + b1u1(t) + b2u2(t)} (8.2)

By using the linearity property of the Laplace transform, cf. (39.17), the right side of (8.2)
can be written as

L{ay(t)}+ L{b1u1(t)}+ L{b2u2(t)} (8.3)

= aL{y(t)}+ b1L{u1(t)}+ b2L{u2(t)} (8.4)

= ay(s) + b1u1(s) + b2u2(s) (8.5)

The left side of (8.2) will be Laplace transformed using the differentiation rule, cf. (39.20),
on L{ẏ(t)}:

L{ẏ(t)} = sy(s)− y0 (8.6)

Thus, we have found that the Laplace transformed (8.2) is

sy(s)− y0 = ay(s) + b1u1(s) + b2u2(s) (8.7)

Solving for the output variable y(s) gives

y(s) =

yinit(s)︷ ︸︸ ︷
1

s− a
y0 +

y1(s)︷ ︸︸ ︷
b1

s− a︸ ︷︷ ︸
H1(s)

u1(s) +

y2(s)︷ ︸︸ ︷
b2

s− a︸ ︷︷ ︸
H2(s)

u2(s) (8.8)

In (8.8),

• y1 is the contribution from input u1 to the total response y,

267

CHAPTER 8. TRANSFER FUNCTIONS

• y2 is the contribution from input u2 to the total response y,

• yinit is the contribution from the initial state y0 to the total response y.

Of course, these contributions to the total response are in the Laplace domain. The
corresponding responses in the time domain are found by calculating the inverse Laplace
transforms.

Now we have the following two transfer functions for our system:

• The transfer function from u1 to y is

H1(s) =
b1

s− a
(8.9)

• The transfer function from u2 to y is

H2(s) =
b2

s− a
(8.10)

Thus, the transfer function from a given input variable to a given output variable is the
s-valued function with which the Laplace transformed input variable is multiplied to get its
contribution to the response in the output variable. In other words: The transfer function
expresses how the input variable is transferred through the system.

The transfer functions derived above can be illustrated with the block diagram shown in
Figure 8.1

H1(s)
u1(s)

y(s) = y1(s) + y2(s)

H2(s)

y1(s) = H1(s)u1(s)

y2(s) = H2(s)u2(s)

u2(s)

Figure 8.1: Block diagram representing the transfer functions H1(s) and H2(s) in (8.8).

One alternative way to express the definition of transfer function

From (8.8) we have

H1(s) =
b1

s− a
=

y1(s)

u1(s)
(8.11)

So, we can define the transfer functions as the ratio between the Laplace transformed
contribution to the total response in the output variable, here y1(s), and the Laplace
transformed input variable, here u1(s). We may also say that the transfer functions is the
ratio between the Laplace transformed total response in the output variable, here y(s), and
the Laplace transformed input variable, here u1(s), when all other inputs are set to zero
and the initial state is zero.

268

CHAPTER 8. TRANSFER FUNCTIONS

8.3 Characteristics of transfer functions

A transfer function can be written on a factorized form – often called a zero-pole form:

H(s) = K
(s− z1)(s− z2) · · · (s− zr)

(s− p1)(s− p2) · · · (s− pn)
=

b(s)

a(s)
(8.12)

Here z1, . . . , zr are the zeros and p1, . . . , pn are the poles of the transfer function. For
example, the transfer function

H(s) =
4s− 4

s2 + 5s+ 6
= 4

s− 1

(s+ 3)(s+ 2)
(8.13)

have two poles, −3 and −2, one zero, 1, and the gain is 4. (As shown in Ch. 19, the values
of the poles determines the stability property of a system. The system is stable only if all
the poles have negative real parts, in other words if all the poles lie in the left half part of
the complex plane.)

The s-polynomial in the denominator of H(s), which is a(s) in (8.12), is denoted the
characteristic polynomial. The poles are the roots of the characteristic polynomial, that is

a(s) = 0 for s = s1, s2, ..., sn (the poles) (8.14)

The order of a transfer function is the order of the characteristic polynomial. For example,
the transfer function (8.13) has order 2.

8.4 Combining transfer functions blocks in block diagrams

Transfer function blocks may be combined in a block diagram according to the rules shown
in Figure 8.2.

One possible purpose of such a combination is to simplify the block diagram, or to calculate
the resulting or overall transfer function. For example, the combined transfer function of
two transfer functions connected in series is equal to the product of the individual transfer
functions, jc. the Series connection rule in Figure 8.2.

8.5 How to calculate responses from transfer function
models

It is quite easy to calculate responses in transfer function models manually (by hand).
Assume given the following transfer function model:

y(s) = H(s)u(s) (8.15)

To calculate the time-response y(t) for a given input signal u(t), we can do as follows:

269

CHAPTER 8. TRANSFER FUNCTIONS

H1(s) H2(s) H2(s)H1(s)
u(s) u(s)y(s) y(s)

H1(s)

H1(s)+H2(s)
u(s) y(s)

Series
connection

H2(s)

u(s) y(s)
Parallel connection

u1(s)

u2(s)

u3(s)

u1(s)
u2(s)

u3(s)

y(s) y(s)

Splitting
sum junction

H1(s)
u1(s)

H2(s)
u2(s)

y(s) Moving
sum junction H1(s)

u2(s)

u1(s)

H2(s)
H1(s)

y(s)

H1(s)
y(s)

H2(s)

Negative
feedback

u(s)
H1(s)

1+H1(s)H2(s)
y(s)u(s)

Figure 8.2: Rules for combining transfer function blocks.

1. First, find u(s) – the Laplace transform of the input signal. u(s) can be found from
precalculated Laplace transform pairs, cf. Section 39.3, possibly combined with one or
more of the Laplace transform properties, cf. Section 39.4, where particularly the
linearity property (39.17) is useful.

2. The Laplace transform of the output signal, y(s), is calculated from (8.15), that is,

y(s) = H(s)u(s) (8.16)

where u(s) is found as explained above.

3. The time-function y(t) is calculated as the inverse Laplace transform of y(s), cf. Ch.
39.

Example 8.1 Calculation of time-response for transfer function model

Given the transfer function model

y(s) =
3

s+ 0.5︸ ︷︷ ︸
H(s)

u(s) (8.17)

Suppose that u(t) is a step from 0 to 2 at t = 0. We shall find an expression for the
time-response y(t). The Laplace transform of u(t) is, cf. (39.7),

u(s) =
2

s
(8.18)

270

CHAPTER 8. TRANSFER FUNCTIONS

Inserting this into (8.17) gives

y(s) =
3

s+ 0.5
· 2
s
=

6

(s+ 0.5)s
=

12

(2s+ 1)s
(8.19)

(8.19) has the same form as the Laplace transform pair (39.11) which is repeated here:

k

(Ts+ 1)s
⇐⇒ k

[
1− e−t/T

]
(8.20)

Here k = 12 and T = 2. The time-response becomes

y(t) = 12
[
1− e−t/2

]
(8.21)

Figure 8.3 shows y(t). The steady-state response is 12, which can be calculated from y(t) by
setting t = ∞.

Figure 8.3: Example 8.1: The time-response y(t) given by (8.70)

[End of Example 8.1]

8.6 Static transfer function and static response

Suppose that the input signal to a system is a step of amplitude us. The corresponding
static time-response can found from the Final Value Theorem:

ys = lim
s→0

s · y(s) = lim
s→0

s ·H(s)
us
s

= lim
s→0

H(s)︸ ︷︷ ︸
Hs

us (8.22)

where Hs is the static transfer function. That is,

Hs = lim
s→0

H(s) (8.23)

271

CHAPTER 8. TRANSFER FUNCTIONS

Thus, the static transfer function, Hs, is found by letting s approach zero in the transfer
function, H(s).

Once we know the static transfer function Hs the static (steady-state) response ys due to a
constant input of value us, is

ys = Hsus (8.24)

Example 8.2 Static transfer function and static response

See Example 8.1. The transfer function is

H(s) =
3

s+ 0.5
(8.25)

The corresponding static transfer function becomes

Hs = lim
s→0

H(s) = lim
s→0

3

s+ 0.5
= 6 (8.26)

Assume that the input u has the constant value of us = 2. What is the corresponding static
response ys in the output? It can be calculated from the static transfer function as

ys = Hsus = 6 · 2 = 12 (8.27)

which is the same result as found in Example 8.1.

[End of Example 8.2]

8.7 Simulation with transfer functions

8.7.1 Introduction

In the following sections, two alternative tools for simulation of responses in the output of
transfer functions are presented:

• Python Control Package, using Python code.

• OpenModelica, based on a block diagram representation of the transfer function.

There are simulation tools also in LabVIEW, Matlab and Simulink, but they are not
presented in this book.

8.7.2 Simulation with Python Control Package

This is described in Ch. 42.2.4.

272

CHAPTER 8. TRANSFER FUNCTIONS

8.7.3 Simulation with OpenModelica

This is described in Ch. 43.

8.8 From transfer function to differential equation

Assume you have a transfer function from inut u to output y:

H(s) =
y(s)

u(s)

You can find an equivalent differential equation relating y and u as demonstrated in
Example 8.3.

Example 8.3 Converting a transfer function to an equivalent differential equation

Given the transfer function

H(s) =
y(s)

u(s)
=

2s

5s+ 1
(8.28)

Here is how to find an equivalent differential equation:

1. Cross-multipy to get:
(5s+ 1)y(s) = 2su(s)

2. Dissolve the parenthesis to get:

5sy(s) + y(s) = 2su(s)

3. Apply the pertinent Laplace transform properties, cf. Section 39.4, to get:

5y′ + y = 2u′

which is the differential equation.

[End of Example 8.3]

8.9 From transfer function to state space model

Some times we want to find a standard linear state space model which is equivalent to a
given transfer function. We assume that the transfer function is:

H(s) =
y(s)

u(s)
=

bns
n + bn−1s

n−1 + · · · b1s+ b0
sn + an−1sn−1 + · · · a1s+ a0

(8.29)

273

CHAPTER 8. TRANSFER FUNCTIONS

ꭍ ꭍ ꭍ ꭍ
u

y

bn b0b1bn-1

a1 a0

xn xn-1 x2 x1

bn-2

an-2an-1

Figure 8.4: Canonical block diagram

It can be shown, e.g. using the block diagram manipulation rules presented in Figure 8.2,
that the block diagram shown in Figure 8.4 has the transfer function (8.29) from u to y.
Then, from the block diagram, you can write down a state space model. Hence, using the
block diagram, you can transform a given transfer function into an equivalent state space
model.

The block diagram in Figure (8.4) is just one of an infinitely number of possible block
diagram with (8.29) as transfer function. This block diagram has a special form denoted
controller canonical form. (Canonical means “according to the rules”.).

Example 8.4 From transfer function to state space model

Given this transfer function:

H(s) =
y(s)

u(s)
=

4s+ 5

s2 + 2s+ 3
=

0s2 + 4s+ 5

s2 + 2s+ 3
(8.30)

Figure 8.5 shows a corresponding block diagram.

From the block diagram, we find the following state space model:

x′1 = x2 (8.31)

x′2 = −3x1 − 2x2 + u (8.32)

y = 5x1 + 4x2 (8.33)

[End of Example 8.4]

274

CHAPTER 8. TRANSFER FUNCTIONS

ꭍ ꭍ
u

y

0 4

x2 x1

5

32

Figure 8.5: Block diagram corresponding to the transfer function (8.30).

8.10 From state space model to transfer function

Given a state space model:

x′ = Ax+Bu (8.34)

y = Cx+Du (8.35)

We can derive the transfer function from u to y as follows: Take the Laplace transform of
(8.34) – (8.35) to get (I is the identity matrix of equal dimension as of A)

sIx(s)− x0 = Ax(s) +Bu(s) (8.36)

y(s) = Cx(s) +Du(s) (8.37)

We neglect the initial state x0, as we always can do when deriving transfer functions from
differential equation models. Solving (8.36) for x(s) gives

x(s) = (sI −A)−1Bu(s) (8.38)

Inserting this x(s) into (8.37) gives

y(s) =
[
C(sI −A)−1B +D

]
u(s) (8.39)

from which we get the following transfer function from u to y:8.10

H(s) =
y(s)

u(s)
= C(sI −A)−1B +D (8.40)

= C
adj(sI −A)

det(sI −A)
B +D (8.41)

=
1

det(sI −A)
· C · adj(sI −A) ·B +D (8.42)

One interesting observation: The poles of H(s) are the roots of the denominator:

a(s) = det(sI −A) = 0 (8.43)

275

CHAPTER 8. TRANSFER FUNCTIONS

which is the characteristic equation. (8.43) defines the eigenvalues of A.1 So, the poles of
the transfer function are the same as the eigenvalues of A.

Example 8.5 Calculating the transfer function of a state space model

Given the following state space model:[
x′1
x′2

]
︸ ︷︷ ︸

x′

=

[
0 1
−2 −3

]
︸ ︷︷ ︸

A

[
x1
x2

]
︸ ︷︷ ︸

x

+

[
0
1

]
︸ ︷︷ ︸

B

u (8.44)

y =
[
3 1

]︸ ︷︷ ︸
C

x+ [0]︸︷︷︸
D

u (8.45)

The transfer function from u to y using (8.42) is:

H(s) =
y(s)

u(s)
= C(sI −A)−1B +D

=
1

det(sI −A)
· C · adj(sI −A) ·B +D

=
1

s2 + 3s+ 2
·
[
3 1

]
· adj

(
sI −

[
0 1
−2 −3

])
·
[
0
1

]
+ [0]

=
1

s2 + 3s+ 2
·
[
3 1

]
·
[
s+ 3 1
−2 s

]
·
[
0
1

]
+ [0]

=
s+ 3

s2 + 3s+ 2

[End of Example 8.5]

1In mathematics litterature it is more common to use the symbol λ instead of s for eigenvalues.

276

CHAPTER 8. TRANSFER FUNCTIONS

8.11 Problems for Chapter 8

Problem 8.1 From second order differential equation to transfer function

Given the following differential equation model:

y′′ = −a1y
′ − a0y + b0u+ c0d (8.46)

where y is the output variable, u is the input variable, d is the interference variable, and a1,
a0, b0 and c0 are parameters. Find the transfer function from u to y. What is the order of
the transfer function?

Problem 8.2 Transfer function of of a wood-chip tank

In Problem 4.2 the mathematical model of a wood-chip tank was derived. The model is

ρAh′(t) = Ksu(t− τ)− wout(t) (8.47)

Calculate the transfer function H1(s) from the screw control signal u to the level h and the
transfer function H2(s) from the outflow wout to the level h.

Problem 8.3 Transfer function of a mass-spring-damper-system

Figure 8.6 shows a mass-spring-damper-system.

m

k [N/m]

d [N/(m/s)]

u [N]

0 y [m]

Figure 8.6: Mass-spring-damper-system.

y is position. u is applied force. d is damping constant. k is spring constant. It is assumed
that the damping force Fd is proportional to the speed, and that the spring force Fs is
proportional to the position of the mass. The spring force is assumed to be zero when y is
zero. Force balance (Newtons 2. Law) yields

my′′ = u−Dy′ −Ky (8.48)

Calculate the transfer function from force u to position y.

277

CHAPTER 8. TRANSFER FUNCTIONS

Problem 8.4 Simulation of transfer function using Python Control
Package

In Problem 8.3, you are to derive the transfer function from force F to position y.

Assume the following model parameters: m = 20 kg, D = 4 N/(m/s), and K = 2 N/m.

Simulate the response in y due to a step of 5 N at time zero in F . The initial position and
speed have zero values.

Problem 8.5 Characteristics of transfer function

Given the following transfer function:

H(s) =
s+ 3

s2 + 3s+ 2
(8.49)

1. What is the order?

2. What is the characteristic equation?

3. What is the characteristic polynomial?

4. What are the poles and the zeros?

Problem 8.6 Transfer function block diagrams

Given a thermal process with transfer function Hp(s) from supplied power P to
temperature T as follows:

T (s) =
bp

s+ ap︸ ︷︷ ︸
Hp(s)

P (s) (8.50)

The transfer function from temperature T to temperature measurement Tm is as follows:

Tm(s) =
bm

s+ am︸ ︷︷ ︸
Hm(s)

T (s) (8.51)

ap, bp, am, and bm are parameters.

1. Draw a transfer function block diagram of the system (process with sensor) with P as
input variable and Tm as output variable.

2. What is the transfer function from P to Tm? (Derive it from the block diagram.)

278

CHAPTER 8. TRANSFER FUNCTIONS

Problem 8.7 Calculation of step response using transfer function

Given the transfer function model

y(s) =
5

s︸︷︷︸
H(s)

u(s) (8.52)

Suppose that the input u is a step from 0 to 3 at t = 0. Calculate the response y(t) due to
this input.

Problem 8.8 Static transfer function

See Problem 8.3. It can be shown that the transfer function from force u to position y is

H(s) =
y(s)

u(s)
=

1

ms2 + ds+ k
(8.53)

Calculate the static transfer function Hs. From Hs calculate the static response ys
corresponding to a constant force, Fs.

Problem 8.9 From transfer function to state space model

The transfer function of a first order high-pass filter can be written as:

H(s) =
y(s)

u(s)
=

s
ωc

s
ωc

+ 1
=

s

s+ ωc
(8.54)

where ωc [rad/s] is the crossover or corner frequency.

Find an equivalent state space model from a canonical block diagram corresponding to
(8.54).

279

CHAPTER 8. TRANSFER FUNCTIONS

8.12 Solutions to problems for Chapter 8

Solution to Problem 8.1

Taking the Laplace transformation of the differential equation gives (here, any non-zero
initial values of y and y′ are neglected):

s2y(s) = −a1sy(s)− a0y(s) + b0u(s) + c0d(s) (8.55)

Solving for y(s) gives:

y(s) =
b0

s2 + a1s+ a0
u(s) +

c0
s2 + a1s+ a0

d(s) (8.56)

Hence, the transfer function from u to y is:

y(s)

u(s)
=

b0
s2 + a1s+ a0

(8.57)

Solution to Problem 8.2

The Laplace transform of (8.47) is

ρA [sh(s)− h0] = Kse
−τsu(s)− wout(s) (8.58)

Solving for output variable h gives

h(s) =
1

s
h0 +

Ks

ρAs
e−τs︸ ︷︷ ︸

H1(s)

u(s) +

(
− 1

ρAs

)
︸ ︷︷ ︸

H2(s)

wout(s) (8.59)

Thus, the transfer functions are

H1(s) =
Ks

ρAs
e−τs (8.60)

and

H2(s) = − 1

ρAs
(8.61)

Solution to Problem 8.3

Laplace transform of (19.27) gives

m
[
s2y(s)− sy′0 − y0

]
= F (s)−D [sy(s)− y0]−Ky(s) (8.62)

Setting initial values y0 = 0 and y′0 = 0, and then solving for y(s) gives

y(s) =
1

ms2 +Ds+K︸ ︷︷ ︸
H(s)

F (s) (8.63)

The transfer function is

H(s) =
y(s)

F (s)
=

1

ms2 +Ds+K
(8.64)

280

CHAPTER 8. TRANSFER FUNCTIONS

Solution to Problem 8.4

Python program 8.1 implements the simulator.

http://techteach.no/control/python/sim msd tf python control package.py

Listing 8.1: sim msd tf python control package.py

%% Import:

import numpy as np

import matplotlib.pyplot as plt

import control

#%% Defining Laplace variable for def of transfer func:

s = control.tf(’s’)

#%% Model

m = 20 # [kg]

D = 4 # [N/(m/s)]

K = 2 # [N/m]

H = 1/(m*s**2 + D*s + K)

%% Simulation of unit step response:

ampl_F = 5

t_final = 50

(t, y_unit_step) = control.step_response(H, t_final)

y = y_unit_step*ampl_F

F = np.zeros(len(t)) + ampl_F

%% Plotting:

plt.close(’all ’)

plt.figure (1)

plt.subplot (2,1,1)

plt.plot(t, F, color=’blue ’, label=’F’)

plt.legend ()

plt.grid()

plt.xlabel(’t [s]’)

plt.ylabel(’[N]’)

plt.subplot (2,1,2)

plt.plot(t, y, color=’red ’, label=’y’)

plt.legend ()

plt.grid()

plt.xlabel(’t [s]’)

plt.ylabel(’[m]’)

plt.savefig(’plot_sim_msd.pdf ’)

plt.show()

281

http://techteach.no/control/python/sim_msd_tf_python_control_package.py

CHAPTER 8. TRANSFER FUNCTIONS

Figure 8.7 shows the simulation.

0 10 20 30 40 50
t [s]

4.8

5.0

5.2

[N
]

F

0 10 20 30 40 50
t [s]

0

1

2

3

[m
]

y

Figure 8.7: Problem 8.4: Simulation of mass-spring-damper.

Solution to Problem 8.5

1. Order: 2.

2. s2 + 3s+ 2 = 0

3. s2 + 3s+ 2

4. We write the transfer function on pole-zero-form:

H(s) =
s+ 3

s2 + 3s+ 2
=

s+ 3

(s+ 1)(s+ 2)
(8.65)

We see that the poles are −1 and −2, and the zero is −3.

Solution to Problem 8.6

1. Figure 8.8 shows the block diagram.

2. According to the series combination rule the transfer function becomes

H(s) =
Tm(s)

P (s)
= Hm(s)Hp(s) =

bm
s+ am

bp
s+ ap

(8.66)

282

CHAPTER 8. TRANSFER FUNCTIONS

bpP T bm

s+ams+ap

Tm

Figure 8.8: Block diagram of transfer functions in series.

Solution to Problem 8.7

The Laplace transform of u(t) is (cf. the Laplace transform pair (39.7):

u(s) =
3

s
(8.67)

Inserting this into (8.52) gives

y(s) =
5

s
· 3
s
=

15

s2
(8.68)

which has the same form as in the Laplace transform pair (39.8), which is repeated here:

k

s2
⇐⇒ kt (8.69)

We have k = 15, so the response is
y(t) = 15t (8.70)

Solution to Problem 8.8

Setting s = 0 in the transfer function gives

Hs = H(0) =
1

K
(8.71)

The static response ys corresponding to a constant force, Fs, is

ys = HsFs =
Fs

K
(8.72)

Solution to Problem 8.9

Figure 8.9 shows a canonical block diagram corresponding to (8.54). From the block
diagram, we find the following state space model:

x′ = −ωcx+ u = Ax+Bu (8.73)

y = −ωcx+ u = Cx+Du (8.74)

283

CHAPTER 8. TRANSFER FUNCTIONS

0

ꭍ
u

y

1

ωc

xx’

Figure 8.9: A canonical block diagram corresponding to (8.54).

284

Chapter 9

Process dynamics

9.1 Introduction

In this chapter a number of standard dynamic models in the form of transfer functions will
be defined. With such standard models you can characterize the dynamic properties of a
physical system in terms of for example gain, time constant, and time delay. These terms
are also useful for controller tuning, as in the Skogestad tuning method which is described
in Section 14.8.

9.2 Integrators

9.2.1 Integrator model

9.2.1.1 Differential equation

An integrator is a system where the output variable y is the time integral of the input
variable u, multiplied with the integrator gain Ki:

y(t) = Ki

ˆ t

0
u(θ) dθ (9.1)

Taking the time derivative of both sides of (9.1) yields the following differential equation
describing an integrator:

y′(t) = Kiu(t) (9.2)

9.2.1.2 Block diagram

Figure 9.1 shows a block diagram of the integrator model (9.2).

285

CHAPTER 9. PROCESS DYNAMICS

u

y0

yy’

y’ = Ki*u

Ki

Figure 9.1: Block diagram of the integrator (9.17).

9.2.1.3 Transfer function

Taking the Laplace transform using (39.23) gives

sy(s) = Kiu(s) (9.3)

which gives the following transfer function of an integrator:

H(s) =
y(s)

u(s)
=

Ki

s
(9.4)

9.2.1.4 Pole

From (9.4) we find that the pole of an integrator is

p = 0 (9.5)

which is in the origin of the complex plane, see Figure 9.2.

Re

Im

x

p = 0

Figure 9.2: The pole of an integrator.

9.2.2 Dynamics in terms of step response

Let us now find the step response of the integrator. We assume that u(t) is a step of
amplitude U at t = 0. From (39.7) u(s) = U

s . Thus,

y(s) = H(s)u(s) =
Ki

s
· U
s

=
KiU

s2
(9.6)

286

CHAPTER 9. PROCESS DYNAMICS

which, inverse Laplace transformed using (39.8), is

y(t) = KiUt (9.7)

Thus, the step response of an integrator is a ramp with rate of change KiU .

Figure 9.3 shows a simulated response of an integrator. The response is with the following
settings:

Ki = 0.5 (9.8)

U = 4 (9.9)

0 1 2 3 4 5
0

5

10
y

0 1 2 3 4 5
t [s]

0

2

4 u

Figure 9.3: Simulated response of an integrator.

The following Python program implements the simulator which produces the response
shown in Figure 9.3.

http://techteach.no/control/python/sim integrator elementary code.py

The program above contains elementary programming code implementing an Euler forward
simulation algorithm. Alternatively, you can simulate the step response with the
forced response() function of the Python Control package, as in the following program:

http://techteach.no/control/python/sim integrator forced response py con.py

You can also use the step response() function of the Python Control package.

A SimView simulator of an integrator is available on:

287

http://techteach.no/control/python/sim_integrator_elementary_code.py
http://techteach.no/control/python/sim_integrator_forced_response_py_con.py

CHAPTER 9. PROCESS DYNAMICS

http://techteach.no/simview/integrator

Example 9.1 An physical integrator: A liquid tank

See Example 4.1 on page 175 which describes a liquid tank. Assume for simplicity that
there is no outflow from the tank. The mathematical model of this system is then

h′(t) =
1

A
qi(t) (9.10)

Taking the Laplace transform of (9.10) gives

sh(s)− h0 =
1

A
qi(s) (9.11)

which gives

h(s) =
h0
s

+
1

As︸︷︷︸
H(s)

qi(s) (9.12)

So, the transfer function is

H(s) =
h(s)

qi(s)
=

1

A
· 1
s

(9.13)

The system is an integrator!

It is actually quite naturally that the liquid tank is an integrator, since the level is
proportional to the integral of the inflow. This can be seen by integrating (9.10), which gives

h(t) = h(0) +

ˆ t

0

1

A
qi(θ) dθ (9.14)

Whenever you need a concrete example of an integrator, recall the tank!

A SimView simulator of the tank is available on:

http://techteach.no/simview/liquid tank

Figure 9.4 shows the result of a simulation where the inflow is changed step-wise.

[End of Example 9.1]

288

http://techteach.no/simview/integrator
http://techteach.no/simview/liquid_tank

CHAPTER 9. PROCESS DYNAMICS

Figure 9.4: Example 9.1: Simulation where the inflow is changed step-wise.

9.3 Time constant systems

9.3.1 The standard model of time constant systems

9.3.1.1 Differential equation

Many mathematical models, for material systems, thermal systems, mechanical systems and
electric systems, are first order differential equations, which can be written on the following
general form:

y′ = ay + bu (9.15)

where y is the output variable, and u is the input variable. a and b are parameters. It has
become a tradition within the field of automatic control to write (9.15) on a different form
when the purpose is to analyse the dynamic properties of (9.15). That form is

Ty′ = Ku− y (9.16)

where K is the gain and T is the time constant .

An alternative but equivalent way of writing (9.16) is

y′ = (Ku− y) /T (9.17)

which is on a state space form, to be used in e.g. a simulation algorithm.

Both (9.16) and (9.17) can be regarded as a standard time constant model.

289

CHAPTER 9. PROCESS DYNAMICS

The relations between the parameters of (9.15) and (9.16) are:

K = − b

a
(9.18)

T = −1

a
(9.19)

The parameters K and T give useful information about the dynamic properties of first
order differential equations, as you will see soon.

9.3.1.2 Block diagram

Figure 9.5 shows a block diagram of the time constant model (9.17). The block diagram
contains an integrator which calculates y from y′, while the integrator is not presented in
Section 9.3.1.1. The feedback from y has a stabilizing effect on the system, as can be seen
in the step response shown in Figure 9.7.

u

y0

yy’

y’ = (K*u – y)/T

+

_

K
1/T

Figure 9.5: Block diagram of the time constant model (9.17).

9.3.1.3 Transfer function

Often the time constant model is in the form of a transfer function. To find the transfer
function, we take the Laplace transform of both sides of (9.16), which gives

Tsy(s) = Ku(s)− y(s) (9.20)

Solving for the output variable y gives

y(s) =
K

Ts+ 1︸ ︷︷ ︸
H(s)

u(s) (9.21)

where H(s) is the transfer function corresponding to (9.16).

Here is an example showing how to find K and T from the transfer function:

H(s) =
y(s)

u(s)
=

3

4s+ 2
=

1.5

2s+ 1
(9.22)

290

CHAPTER 9. PROCESS DYNAMICS

The gain is K = 1.5, and the time constant is T = 2 (in a proper time unit, e.g. seconds).
The clue is to write the transfer function on the standard form of (9.21), i.e. with 1 as the
constant in the denominator.

9.3.1.4 Pole

From (9.21) we find that the pole of a time constant system is

p = − 1

T
(9.23)

If T is positive, as it is for stable systems, the pole is in the left half plane, see Figure 9.6.

Re

Im

x

p = -1/T

Figure 9.6: The pole of a a time constant system.

9.3.1.5 Dynamics in terms of step response

To analyse the dynamic properties of (9.16), or (9.21), it is common to study the step
response of the system. We assume that the input signal u(t) is changed as a step of
amplitude U at time t = 0. From (39.7) u(s) = U

s . The Laplace transformed response
becomes

y(s) = H(s)u(s) =
K

Ts+ 1
· U
s

(9.24)

Taking the inverse Laplace transform using (39.11) gives the system step response:

y(t) = KU(1− e−t/T) (9.25)

This step response is shown in plotted in Figure 9.7. The annotations on the plot are
explained in the following.

The response is actually generated from a simulation of the differential equation model
(9.17) assuming the input u is a step, but the response is the same as (9.25). The response
is with the following settings:

K = 0.5 (9.26)

T = 1 s (9.27)

U = 4 (9.28)

291

CHAPTER 9. PROCESS DYNAMICS

U

Y = K*U
63 %

100 %

T

Figure 9.7: Step response of a time constant system.

The following Python program implements the simulator which produces the response
shown in Figure 9.7.

http://techteach.no/control/python/sim time const sys.py

The program above contains elementary programming code implementing an Euler forward
simulation algorithm. Alternatively, you can simulate the step response with the
forced response() function of the Python Control package:

http://techteach.no/control/python/sim time const forced response py con.py

You can also use the step response() function of the Python Control package.

A SimView simulator of a time constant system is available on:

http://techteach.no/simview/time constant

292

http://techteach.no/control/python/sim_time_const_sys.py
http://techteach.no/control/python/sim_time_const_forced_response_py_con.py
http://techteach.no/simview/time_constant

CHAPTER 9. PROCESS DYNAMICS

The impact of K on the steady-state step response

The steady-state response due to the input step is

Y = lim
t→∞

y(t) = KU (9.29)

which can be found from (9.25) with t → ∞. The steady-state response can also be found
from the static version of (9.17), i.e. with the time derivative (y′) assumed zero. Thus, the
step U is amplified with the gain K to get the steady-state output value. This can be seen
in Figure 9.7, where

Y = KU = 0.5 · 4 = 2 (9.30)

In Section 8.6 the static transfer function Hs was defined. What is Hs of a time constant
system? We get

Hs =
Y

U
=

KU

U
= K (9.31)

So, Hs is equal to the gain K.

The impact of T on the transient step response

It has become common to analyse the impact of T on the step response by setting t = T in
(9.25):

y(T) = KU(1− e−T/T) (9.32)

= KU(1− e−1) (9.33)

= 0.63 ·KU (9.34)

= 0.63 · Y (9.35)

Thus, at time t = T the step response has reached 63 % of the steady state response Y .
This is shown in Figure 9.7 where T = 1 s. This suggests a practical way to read off the
time constant from a step response curve, namely as the 63 % rise time of the step response.

Qualitatively, we can state the importance of the time constant as follows: The less T , the
faster the system.

Does the steady-state response depend on the time constant? No, because the steady-state
response is equal to Y = KU which is independent of T .

Above, we saw that the time constant is the 63 % rise time of the step response. Here is
another interpretation of the time constant: It is the 98 % rise time, and therefore, we may
say it is the approximate “settling time” since 98 is very close to 100. This can be seen by
setting t = 4T in (9.36):

y(t = 4T) = KU(1− e−4T/T) = KU(1− e−4) = 0.98 (9.36)

If you take a look at Figure 9.7, you will see that the step response is indeed very close to
the steady state response at t = 4T = 4 · 1 s.

293

CHAPTER 9. PROCESS DYNAMICS

The impact of K and T on the initial slope of the step response

The initial slope, S0 = y′(0+), of the step response is indicated with the tangent shown in
Figure 9.8.

0 1 2 3 4 5 6
0

1

2KU

T

y
Tangent

0 1 2 3 4 5 6
t [s]

0

2

4 u

Figure 9.8: Step response with initial slope.

The value of S0 is can be derived (9.37) from (9.17) as follows. The initial value of y is 0.
Then, (9.17) becomes

S0 = y′(0+) = (KU − 0) /T = KU/T (9.37)

As indicated in Figure 9.8, the tangent representing the initial slope crosses the steady-state
response, which is KU , at t = T .

9.3.1.6 Step response of time constant systems when initial state is non-zero

In Section 9.3.1.5 we assumed that the system initially was “at rest” with input u and
output y having values zero before the step change in u. However, in practical situations u
and y may initially be at rest but with non-zero values before the step change. Assume that
u is nonzero:

u = u0 (9.38)

Then, the corresponding static response can be calculated from (9.17) with y′ set to zero,
giving

y0 = Ku0 (9.39)

294

CHAPTER 9. PROCESS DYNAMICS

The model (9.17) can be used to express the dynamics of the deviations from the static
operating point (u0, y0):

dy′ = K · du− dy (9.40)

where
dy = y − y0 (9.41)

and
du = u− u0 (9.42)

Assume that u is changed from u0 as a step of amplitude U , i.e.

du(t) = U

Then the step response is
dy(t) = KU(1− e−t/T)

or, by using (9.41),
y(t) = y0 +KU(1− e−t/T)

where y0 is given by (9.39).

Figure 9.9 shows the simulated step response of a system with the following parameters:

K = 0.5 (9.43)

T = 1 s (9.44)

u0 = 2 (9.45)

U = 4 (9.46)

The initial, static value of y is
y0 = Ku0 = 0.5 · 2 = 1 (9.47)

The following Python program implements the simulator. (No program listing is presented
here since it is almost identical to the program shown earlier in this chapter.)

http://techteach.no/control/python/sim time const sys nonzero init state.py

9.3.2 Time constant model expanded with process disturbance as input

Above we assumed that the time constant system has one input variables, cf. (9.16). Let us
assume that the system has two input signals, namely the control signal u and the process
disturbance d, and that the model is

Ty′ = Kuu+Kdd− y (9.48)

295

http://techteach.no/control/python/sim_time_const_sys_nonzero_init_state.py

CHAPTER 9. PROCESS DYNAMICS

0 1 2 3 4 5 6
1

2

3
y

0 1 2 3 4 5 6
t [s]

2

4

6 u

Figure 9.9: Simulation with a non-zero operating point.

Figure 9.10 shows a block diagram of (9.48).

Taking the Laplace transform and gives

Tsy(s) = −y(s) +Kuu(s) +Kdd(s) (9.49)

from which we find two transfer functions, Hy,u(s) and Hy,d(s):

y(s) =
Ku

Ts+ 1︸ ︷︷ ︸
Hy,u(s)

u(s) +
Kd

Ts+ 1︸ ︷︷ ︸
Hy,d(s)

d(s) (9.50)

The system has one time constant: T , and two gains: Ku and Kd.

Above the system has two inputs, u and d. If the system has more than two inputs, the
model is expanded naturally (not described in detail here).

Example 9.2 First order system: Heated liquid tank

In Example 4.2 we developed a mathematical model of heated liquid tank (a thermal
system). The model is repeated here, but with θ instead of T as temperature as I prefer to
reserve T as symbol of time constant:

cmθ′ = P + cF (θi − θ) +G(θe − θ) (9.51)

296

CHAPTER 9. PROCESS DYNAMICS

u

y0

yy’

y’ = (Ku*u + Kd*d – y)/T

+

_

Ku

d
Kd

+

1/T

Figure 9.10: Block diagram of (9.48).

Let us for simplicity assume that the tank is well isolated so that

G ≈ 0 (9.52)

We will now calculate the transfer functions from P to θ and from θi to θ. Taking the
Laplace transform of (9.51) while setting the initial value θ0 to zero gives

cmsθ(s) = P (s) + cF [θi(s)− θ(s)] (9.53)

From (9.53) we will find

θ(s) =
K1

Ts+ 1︸ ︷︷ ︸
H1(s)

P (s) +
K2

Ts+ 1︸ ︷︷ ︸
H2(s)

θi(s) (9.54)

The gains and the time constant of each of the two transfer functions are

K1 =
1

cF
(9.55)

K2 = 1 (9.56)

T =
m

F
=

Mass

Flow
(9.57)

Comments:

• The time constant, which represents the “dynamics”, is the same for both transfer
functions H1(s) and H2(s).

• In many applications the flow F may change. Assume that the flow is decreased. The
dynamic properties of the system then change:

– According to (9.55) the gain from P to θ increases, and hence the θ becomes
more sensitive to P , giving higher value of θ for a given change of P .

– According to (9.57) the time constant increases, causing a more sluggish response
in θ to a change in P .

• In chemistry (incl. bioprocesses like biogas reactor technology), the ratio mass/flow in
(9.57) is denoted the hydraulic retention time.

297

CHAPTER 9. PROCESS DYNAMICS

A SimView simulator of the heated tank is available on:

http://techteach.no/simview/heated tank

Figure 9.11 shows the simulation of the step response of the heated tank.

Figure 9.11: Example 9.2: Simulation of the step response of a heated tank.

[End of Example 9.2]

9.4 Second order systems

9.4.1 Mathematical model

9.4.1.1 Transfer function model

A standard second order transfer function model (with u as input variable and y as output
variable) is

y(s) =
Kω0

2

s2 + 2ζω0s+ ω0
2
u(s) ≡ K(

s
ω0

)2
+ 2ζ s

ω0
+ 1

u(s) (9.58)

where K is the gain, ζ (zeta) [dimension 1] is the relative damping factor, and ω0 [rad/s] is
the undamped resonance frequency.

298

http://techteach.no/simview/heated_tank

CHAPTER 9. PROCESS DYNAMICS

9.4.1.2 Differential equation

A differential equation model which corresponds to the transfer function (9.58) can be
found as follows: Cross-multiplying (9.58) by the denominator gives(

s2 + 2ζω0s+ ω0
2
)
y(s) = Kω0

2u(s)

Taking the inverse Laplace transform, and neglecting the initial values, gives

y′′ + 2ζω0y
′ + ω0

2y = Kω0
2u

or
y′′ = Kω0

2u− 2ζω0y
′ − ω0

2y (9.59)

9.4.1.3 State space model

A state space model corresponding to (9.59) can be found by defining the following two
state variables:

x1 = y (9.60)

x2 = y′ (9.61)

(9.59) can then be written as the following linear state space model:

[
x1

′

x2
′

]
︸ ︷︷ ︸

ẋ

=

 0 1

−ω0
2 −2ζω0


︸ ︷︷ ︸

A

[
x1
x2

]
︸ ︷︷ ︸

x

+

 0

Kω0
2


︸ ︷︷ ︸

B

u (9.62)

y =
[
1 0

]︸ ︷︷ ︸
C

[
x1
x2

]
︸ ︷︷ ︸

x

+
[
0
]︸ ︷︷ ︸

D

u (9.63)

Example 9.3 Second order system: Mass-spring-damper

In Problem 8.3 the transfer function from force u to position y of a mass-spring-damper
system is to be found. The transfer function is repeated here:

H(s) =
1

ms2 + ds+ k
(9.64)

To find the standard parameters, we must transform the transfer function to one of the
equivalent standard forms given by (9.58). Let us here choose the first one:

H(s) =

Kω0
2︷︸︸︷

1

m

s2 +
d

m
s+

k

m︸ ︷︷ ︸
s2+2ζω0s+ω0

2

(9.65)

299

CHAPTER 9. PROCESS DYNAMICS

By equating the coefficients and using the following parameters values: m = 20 kg, d = 4
N/(m/s) and k = 2 N/m, we get

K =
1

k
= 0.5 [m/N] (9.66)

ω0 =

√
k

m
=
√

0, 1 = 0.32 [rad/s] (9.67)

ζ =
d

2
√
mk

= 0.32 (9.68)

A SimView simulator of the mass-spring-damper system is available on:

http://techteach.no/simview/mass spring damper

Figure 9.12 shows the result of a simulation.

Figure 9.12: Example 9.3: Simulation of mass-spring-damper system.

[End of Example 9.3]

300

http://techteach.no/simview/mass_spring_damper

CHAPTER 9. PROCESS DYNAMICS

9.4.2 Classification of second order systems

We will classify second order systems from the shape of the step response. We assume that
the input variable u(t) is a step of amplitude U , which Laplace transformed is u(s) = U/s.
Then the Laplace transformed time-response becomes

y(s) = H(s)u(s) =
Kω0

2

s2 + 2ζω0s+ ω0
2

U

s
(9.69)

The shape of the time-response y(t), which is calculated as the inverse Laplace transform of
y(s), depends on the poles, cf. Section 8.5. The poles are the roots of the characteristic
equation a(s):

a(s) = s2 + 2ζω0s+ ω0
2 = 0 (9.70)

The poles p1 and p2 are the roots of a(s) and becomes

p1, p2 = −ζω0 ±
√
ζ2 − 1 ω0 (9.71)

x

x

Im

Re

p1

p2

Figure 9.13: Pole placement of second order systems when the poles are complex conjugate.
The poles are given by (9.72).

The value of ζ determines whether the poles are real or complex conjugate:

• If ζ ⩾ 1, the poles are real and given by (9.71).

• If 0 ≤ ζ < 1, the poles are complex conjugate:

p1, p2 = −ζω0︸ ︷︷ ︸
Re

± j
√

1− ζ2 ω0︸ ︷︷ ︸
Im

(9.72)

Figure 9.13 shows the pole placement when the poles are complex conjugate.

Figure 9.14 classifies second order systems by the value of ζ. (This is a common way to do
the classification.) The step responses referenced in the figure can be calculated by taking
the inverse Laplace transform of (9.69), but the detailed calculations are not shown here.

301

CHAPTER 9. PROCESS DYNAMICS

x
Im

Re
x

Pos. real part

x
Im

Rex

Imaginary

x
Im

Rex

Complex conj.

x
Im

Re
x

Real and distinct

x
Im

Re
x

Real and multiple

ζ > 1

Poles p1 and p2
Type of step
response y(t)

ζ = 1

0 < ζ < 1

ζ = 0

ζ < 0

Value
of ζ

Reference
to y(t)

in Appendix

(B.17)

(B.18)

(B.23)

(B.23)

(B.17) or
(B.18) or

(B.23)

Overdamped

t
Critically damped

Underdamped

Undamped

Unstable

Figure 9.14: Classification of second order systems by the value of ζ.

In the following are given simulated step responses and pole plots for representative
examples of overdamped, underdamped, and undamped systems. The parameter values are
shown on the front panels of the simulators in the respective figures.

In all cases the steady-state value of the step response is

ys = KU (9.73)

because the static transfer function is K.

9.4.2.1 Overdamped systems

Figure 9.15 shows the step response and the poles for an example of an overdamped system.
The shown step response is generated with the following Python program9.3 which
simulates a second order system, with model parameter settings as shown in Figure 9.15.

302

CHAPTER 9. PROCESS DYNAMICS

http://techteach.no/control/python/sim 2order sys forced response py con.py

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
t [s]

0.0

0.2

0.4

0.6

0.8

1.0
K = 1; z = 1.5; w0 = 1.

y

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
0.0

0.2

0.4

0.6

0.8

1.0

u

3 2 1 0 1 2 3
Real

1.0

0.5

0.0

0.5

1.0

Im

Poles = [-2.61803399 -0.38196601]
poles

Figure 9.15: Step response and the poles of an example of an overdamped system.

Comments:

• The step response has no overshoot.

• The poles p1 and p2 are real and distinct:

p1, p2 = −ζω0 ±
√
ζ2 − 1 ω0 (9.74)

The transfer function can therefore be written on the form

H(s) =
Kp1p2

(s− p1)(s− p2)
=

K

(T1s+ 1)(T2s+ 1)
(9.75)

This implies that the second order system can be split into two first order subsystems
having time constants T1 and T2, respectively. The largest of these time constants can
be denoted the dominating time constant.

303

http://techteach.no/control/python/sim_2order_sys_forced_response_py_con.py

CHAPTER 9. PROCESS DYNAMICS

9.4.2.2 Underdamped system

Figure 9.16 shows the step response and the poles for an example of an underdamped
system. The shown step response is generated with the Python program9.3 given in Section
9.4.2.1, with the model parameter settings as shown in Figure 9.16.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
t [s]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
K = 1; z = 0.2; w0 = 1.

y

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
0.0

0.2

0.4

0.6

0.8

1.0

u

3 2 1 0 1 2 3
Real

1.0

0.5

0.0

0.5

1.0

Im

Poles = [-0.2+0.9797959j -0.2-0.9797959j]
poles

Figure 9.16: Step response and poles of an example of an underdamped system.

Comments:

• The poles are complex conjugate:

p1, p2 = −ζω0 ± j
√

1− ζ2 ω0 (9.76)

• The less ζ, the less damping in the step response. It can be shown that the less ζ, the
more dominating imaginary part over the real part of the poles. This is a general
property of poles: The larger imaginary part relative to the real part, the less damping
in the time-response. Figure 9.17 shows the step-response for various values of ζ.

• The overshoot factor δ of the step response is defined as

δ =
ymax − ys

ys
(9.77)

304

CHAPTER 9. PROCESS DYNAMICS

Figure 9.17: Step-response for various values of ζ of second order systems.

where ys is the steady-state value of the step-response. It can be shown that δ is a
function of the relative damping factor ζ, as follows:

δ = e−ζπ/
√

1−ζ2 (9.78)

δ is plotted as a function of ζ in Figure 9.18.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

/

Figure 9.18: Overshoot factor δ plotted as a function of the relative damping factor ζ, cf.
(9.78).

The inverse function of (9.78) is

ζ =
|ln δ|√

π2 + (ln δ)2
(9.79)

A few examples: Overshoot δ = 0.1, that is, 10% overshoot, corresponds to ζ = 0.6.
Overshoot δ = 0 (zero overshoot) corresponds to ζ = 1 (critically damped system).

• Simulations shows that the 63% response-time of the step response is approximately

Tr ≈
1.5

ω0
(9.80)

305

CHAPTER 9. PROCESS DYNAMICS

ω0 expresses in a way how quick the system is. ω0 is the distance from origin to the
poles, see Figure 9.13. This is a general property of poles: The longer distance from
origin, the faster the dynamics of the system.

• It can be shown that the frequency in the oscillations are

β =
√

1− ζ2 ω0 [rad/s] (9.81)

9.4.2.3 Undamped system

Figure 9.19 shows the step response and the poles for an example of an undamped system.
The shown step response is generated with the Python program9.3 given in Section 9.4.2.1,
with the model parameter settings as shown in Figure 9.19.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
t [s]

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
K = 1; z = 0; w0 = 1.

y

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
0.0

0.2

0.4

0.6

0.8

1.0

u

3 2 1 0 1 2 3
Real

1.0

0.5

0.0

0.5

1.0

Im

Poles = [-0.+1.j 0.-1.j]
poles

Figure 9.19: Step response and the poles of an example of an undamped system.

Comments:

• The step response is undamped, steady-state oscillations:

y(t) = KU (1− cosω0t) (9.82)

306

CHAPTER 9. PROCESS DYNAMICS

The frequency of the oscillations in rad/s is ω0 — therefore the name undamped
resonance frequency.

• The poles are purely imaginary:

p1, p2 = ±jω0 (9.83)

The real part is zero, which is an explanation of why the step response is undamped.
In general, damping is due non-zero real part of poles.

9.5 Time delays

In many systems there is a time delay or dead-time in the signal flow, for example with
material transport on a conveyor belt, see Figure 9.20. In this application, the relation
between the input variable Fin and the output variable Fout is

Fout(t) = Fin(t− τ) (9.84)

where τ is the time delay which is the transportation time on the belt. In other words: The
outflow at time t is equal to the inflow τ time units ago.

Fin(t) [kg/s]

Fout(t) = Fin(t-τ) [kg/s]

Conveyor belt

Figure 9.20: Time delay on a conveyor belt.

What is the transfer function of a time delay? Taking the Laplace transform of (9.84) using
(39.19):

Fout(s) = e−τs︸︷︷︸
H(s)

Fin(s) (9.85)

Thus, the transfer function of a time delay of τ [time unit] is

H(s) = e−τs (9.86)

Figure 9.21 shows a simulation of a time delay. The time delay is τ = 1 sec.

The simulation is made with the following SimView simulator:

http://techteach.no/simview/timedelay

307

http://techteach.no/simview/timedelay

CHAPTER 9. PROCESS DYNAMICS

Input Output

Figure 9.21: Output is equal to input, time delayed 1 sec.

9.5.1 Approximation of time delay by Padé approximation

Some times it is difficult to use the irrational transfer function e−τs in calculations and
simulations with transfer functions. A Padé-approximation of e−τs can then help as it
approximates e−τs with a rational transfer function, i.e. a transfer function with
polynomials of s in both the numerator and the denominator. A Padé-approximation is a
function of

• the time delay τ

• the order n you select for the approximation

For example, a Padé-approximation of order n = 2 is

e−τs ≈
1− τ

2s+
τ2

12s
2

1 + τ
2s+

τ2

12s
2

(9.87)

Ch. 42.2.6 shows how to create Padé-approximations with the Python Control package, and
how to use them in simulations.

9.6 Higher order systems

Systems having higher order of the denominator polynomial of the transfer function than
one, are so-called higher order systems, or more specifically, second order systems, third
order systems and so on. A serial connection of first order systems results in a higher order
system. (But not all possible higher order systems can be constructed by serial connection
of first order systems.) When transfer functions are connected in series, the resulting
transfer function is the product of the individual transfer functions, cf. Figure 8.2. As an

308

CHAPTER 9. PROCESS DYNAMICS

Figure 9.22: Step responses in a second order system

example, Figure 9.22 shows a second order system consisting of “two time constants”
connected in series.

The combined transfer function becomes

H(s) =
1

(T1s+ 1) (T2s+ 1)
=

y2(s)

u(s)
(9.88)

The figure also shows the step responses in the system. It is assumed that T1 = 1, T2 = 1
and K = 1. Observe that each first order systems makes the response become more
sluggish, as it has a smoothing effect.

Let us define the response-time Tr as the time it takes for a step response to reach 63% of
its steady-state value. For time constant systems, the response-time is equal to the time
constant:

Tr = T (9.89)

For higher order systems (order larger than one) it turns out that the response-time can be
roughly estimated as the sum of the time constants of the assumed serial subsystems that
make up the higher order system:

Tr ≈
∑
i

Ti (9.90)

As an example, the response-time of the system shown in Figure 9.22 is

Tr ≈ 1 + 1 = 2 s (9.91)

Does the simulation shown in Figure 9.22 confirm this?1

A SimView simulator of the following second order transfer function with a zero, i.e. a
system with two poles and one zero,

H(s) =
y(s)

u(s)
=

b1s+ b0
s2 + a1s+ a0

(9.92)

is available on:

1Yes

309

CHAPTER 9. PROCESS DYNAMICS

http://techteach.no/simview/transferfunction

310

http://techteach.no/simview/transferfunction

CHAPTER 9. PROCESS DYNAMICS

9.7 Problems for Chapter 9

Problem 9.1 Dynamic response in tank

See Problem 8.2. The transfer function from wout to h is

h(s)

wout(s)
= − 1

ρAs
= H2(s) (9.93)

1. Does this transfer function represent integrator dynamics?

2. Assume that wout(t) is a step from 0 to W at time t = 0. Calculate the response h(t)
that this excitation causes in the level h. You are required to base your calculations
on the Laplace transform.

Problem 9.2 Tank as integrator

Figure 9.23 shows an isolated tank (having zero heat transfer through the walls).

Isolation

(zero heat transfer)

P [J/s]

T [K]

V [m3]

c [J/(kg K)]

Stirring motor

Figure 9.23: Isolated tank

Show that the tank dynamically is an integrator with the power P as input variable and the
temperature T as output variable. (Hint: Study the transfer function from P to T .)

Problem 9.3 Time constant dynamics

Given a system with gain K, time constant T , and time delay Td. The system is initially in
steady (static) state, with the value of the output variable, y, equal to y0. At time t0, the
system is affected by a step change from u0 to u1 at the input, u. Plot principally u(t) and
y(t) manually in their respective plots, showing how the given information appears in the
plots. The origin (0, 0) shall appear in both plots.

311

CHAPTER 9. PROCESS DYNAMICS

Problem 9.4 Time constant dynamics - 2

Assume a system with gain −3, time constant 10 s, and time delay 2 s. Sketch (manually)
principally the step response of the system assuming the input step has amplitude 4
appearing at time 50 s. Before the step appears, the system output is at rest with value 15.

Problem 9.5 Time constant dynamics from transfer function

Calculate the gain and the time constant of the following transfer function:

H(s) =
y(s)

u(s)
=

2

4s+ 8
(9.94)

Draw by hand roughly the step response of y(t) due to a step of amplitude 6 in u from the
following information:

• The steady-state value of the step response

• The time constant

• The initial slope of the step response

Problem 9.6 Deriving transfer function from step response

Figure 9.24 shows the temperature response T of a thermal system due to a step of
amplitude 1 kW in the supplied power P .

0 50 100 150 200 250

t [min]

18

20

22

24

26

28

30

32

T
 [d

eg
re

es
]

Figure 9.24: Problem 9.6: Temperature response due to step in supplied power

Find the transfer function from ∆P (power) to ∆T (temperature) where ∆ indicates
deviations from the steady-state values. Assume that the system is of first order (a time
constant system).

312

CHAPTER 9. PROCESS DYNAMICS

Problem 9.7 Time constant dynamics of kettle

A kettle and a mathematical model based on energy balance are presented in Ch. 38.6. The
model is repeated here:

T ′ = [P +G (Troom − T)] /C (9.95)

1. Derive the transfer function, H(s), from power P to temperature T .

2. What is the gain, K, and the time constant, tconst? (In Section 9.3 the symbol T is
used for time constant. To avoid misunderstandings, I use the symbol tconst in this
problem.) What are their numerical values? (Parameter values are given in Table
38.6.)

Problem 9.8 Dynamics of an RC circuit

Figure 9.25 shows an RC-circuit (the circuit contains the resistor R and the capacitor C).

v2 [V]

++

_ _

v1 [V]
C [F]

i [A]

Input

voltage

Output

voltage

iC

i2+
_

vR [V]

Figure 9.25: Problem 9.8: RC-circuit.

The RC-circuit is frequently used as an analog lowpass filter: Signals of low frequencies
passes approximately unchanged through the filter, while signals of high frequencies are
approximately filtered out (stopped). It can be shown that a mathematical model of the
RC circuit is

RCv′out = vin − vout (9.96)

1. Calculate the transfer function H(s) from vin to vout, and calculate the gain and the
time constant of H(s).

2. Assume that the RC circuit is used as a signal filter. Assume that the capacitance C
[F] is fixed. How can you adjust the resistance R (increase or descrease) so that the
filter performs stronger filtering or, in other words: is more sluggish.

A SimView simulator of the RC circuit is available on:

http://techteach.no/simview/rc circuit

Figure 9.26 shows results of a simulation with the simulator.

313

http://techteach.no/simview/rc_circuit

CHAPTER 9. PROCESS DYNAMICS

Figure 9.26: Problem 9.8: Simulation of an RC circuit.

Problem 9.9 Second order system: Position control system

Figure 9.27 shows an angular position control system of an electric motor.

ym [rad]

Angular
position
reference

Controller
u [V]

Motor
r [rad]

y [rad]

Measurement

Position Load torque
d [Nm]

Angular
position
sensor

Figure 9.27: Problem 9.9: Angular position control system of an electric motor.

Figure 9.28 shows a block diagram with transfer functions of the control system.

Assume that the transfer functions are as follows:

P (s) =
Ku

(Ts+ 1) s
=

1

(s+ 1) s
(9.97)

D(s) =
Kd

(Ts+ 1) s
=

−1

(s+ 1) s
(9.98)

C(s) = Kc (proportional controller) (9.99)

Comments about P (s): The factor Ku/(Ts+ 1), which represents a time constant system,
is the transfer function from control signal u to speed, say v. The factor 1/s, which is an
integrator, is the transfer function from v to (measured) position y. The process to be
controlled is thus a “time constant with integrator” process.

314

CHAPTER 9. PROCESS DYNAMICS

e
C(s) P(s)

ur

D(s)

d
Motor incl. sensor

= process

ym

Controller

Figure 9.28: Problem 9.9: Block diagram of the positional control system.

1. Derive the transfer function, T (s), from position reference r to position measurement
ym. You can use the numerical model parameters given in (9.97). (This transfer
function is generally denoted the tracking transfer function. Its symbol happens to be
the same as that of the time constant.)

2. T (s) turns out to be a second order transfer function. What are the parameters K, ζ
and ω0 of T (s) (possibly) in terms of the controller gain Kc.

3. You will see that both ζ and ω0 are functions of Kc, and you may calculate Kc from
either a specified ζ or from a specified ω0. Of these two parameters, it is ζ that
determines the stability. Since it is necessary that a control system has acceptable
stability, Kc should be calculated from a specified ζ rather from a specified ω0. Let us
say that ζ = 0.6 is a good value. ζ = 0.6 gives 10% overshoot (δ = 0.1) in the step
response, cf. (9.79). Calculate Kc so that this specification is obtained.

4. With the value of Kc that you have calculated above, what is the 63 % response time
of the control system?

5. Make a Python program which simulates the solution above (you may simulate with
the forced response function of the Python Control package). Simulate the step
response of the control system, i.e. r is a step, and you simulate the response in ym.
Are the overshoot and response time confirmed with the simulations?

Problem 9.10 Time delay of pipeline

For a pipeline of length 0.5 m and cross sectional area of 0.01 m2 filled with liquid which
flows with a volumetric flow 0.001 m3/s, calculate the time delay (transport delay) from
inlet to outlet of the pipe.

Problem 9.11 Response time of compound system

315

CHAPTER 9. PROCESS DYNAMICS

Assume that a system can be well described by 3 time constant systems in series, with the
following time constants respectively: 0.5, 1.0, and 2.0 sec. What is the approximate
response time of the system?

Problem 9.12 Simulation of Padé approximation with Python Control
Package

Given a “time constant with time delay” system, with gain 2, time constant 4, and time
delay 1 sec. Assume that the system input is a step of amplitude 5. Simulate the response
of the system with the forced response() function of the Python Control Package. The time
delay should be represented by a Padé approximation of order 10.

316

CHAPTER 9. PROCESS DYNAMICS

9.8 Solutions to problems for Chapter 9

Solution to Problem 9.1

1. Yes! Because the transfer function has the form of Ki/s.

2. The Laplace transform of the response is

h(s) = H2(s)wout(s) = − 1

ρAs
wout(s) (9.100)

Since wout(t) is a step of amplitude W at t = 0, wout(s) becomes, according to (39.7),

wout(s) =
W

s
(9.101)

With this wout(s), (9.100) becomes

h(s) = − 1

ρAs

W

s
(9.102)

According to (39.8),

h(t) = −W

ρA
t (9.103)

That is, the response is a ramp with negative slope.

Comment: This h(t) is only the contribution from the outflow to the level. To
calculate the complete response in the level, the total model (8.47), where both u and
wout are independent or input variables, must be used.

Solution to Problem 9.2

Energy balance:
cρV T ′ = P (9.104)

Laplace transformation:
cρV [sT (s)− T0] = P (s) (9.105)

which yields

T (s) =
1

s
T0 +

1

cρV s︸ ︷︷ ︸
H(s)

P (s) (9.106)

The transfer function is

H(s) =
T (s)

P (s)
=

1

cρV s
=

K

s
(9.107)

which is the transfer function of an integrator with gain K = 1/cρV .

Solution to Problem 9.3

See Figure 9.29.

317

CHAPTER 9. PROCESS DYNAMICS

Figure 9.29: Problem 9.3: Time constant dynamics.

Solution to Problem 9.4

See Figure 9.30.

Solution to Problem 9.5

We manipulate the transfer function so that the constant term of the denominator is 1:

H(s) =
2

4s+ 8
=

2/8

(4/8) s+ 8/8
=

0.25

0.5s+ 1
=

K

Ts+ 1
(9.108)

Hence,
K = 0.25

and
T = 0.5

We base the drawing of the step response on the following information:

• The steady-state value of the step response:

ys = KU = 0.25 · 6 = 1.5 (9.109)

318

CHAPTER 9. PROCESS DYNAMICS

Figure 9.30: Problem 9.4: Time constant dynamics.

• The time constant:
T = 0.5 (9.110)

which is the time when the step response has reached value

0.63 · ys = 0.63 · 1.5 = 0.95 (9.111)

• The initial slope of the step response:

S0 = y′(0+) =
KU

T
=

0.25 · 6
0.5

= 3 (9.112)

Figure 9.31 shows the step response.

t [s]0 1

1

1.5 = KU

0.95 = 0.63 * 1.5

0.5 = T

Slope = 3

0

Figure 9.31: Problem 9.5: Step response.

319

CHAPTER 9. PROCESS DYNAMICS

Solution to Problem 9.6

From Figure 9.24 we see that the gain is

K =
∆T

∆P
=

30 K− 20 K

1 kW
= 10

K

kW
(9.113)

and that the time constant (the 63% rise time) is

T1 = 50 min (9.114)

The transfer function becomes

∆T (s)

∆P (s)
=

10

50s+ 1

K

kW

Solution to Problem 9.7

1. We can neglect Troom in (9.95). We also neglect the initial temperature, T (0). Taking
the Laplace transform gives

sT (s) = P (s)−GT (s)/C

Solving for T (s) gives

T (s) =
1

Cs+G
P (s) =

1
G

C
Gs+ 1

P (s) (9.115)

2. The gain is

K =
1

G
=

1

2.34 W/K
= 0.427 K/W (9.116)

The time constant is

tconst =
C

G
=

2101 J/K

2.34 W/K
= 898 s (9.117)

Solution to Problem 9.8

1. Laplace transformation of the differential equation (9.96) gives

RCsvout(s) = vin(s)− vout(s) (9.118)

Solving for vout(s) gives

vout(s) =
1

RCs+ 1
vin(s) (9.119)

The transfer function is

H(s) =
1

RCs+ 1
=

K

Ts+ 1
(9.120)

The gain is
K = 1 (9.121)

The time constant is
T = RC (9.122)

2. The filtering is stronger (time constant larger) if R is increased.

320

CHAPTER 9. PROCESS DYNAMICS

Solution to Problem 9.9

1. From Figure 9.28 (for simplicity dropping the Laplace variable as argument):

ym = P · C · (r − ym) (9.123)

Solving for ym:

ym =
PC

1 + PC
r = Tr (9.124)

So,

T (s) =
P (s)C(s)

1 + P (s)C(s)
=

Kc · 1
(s+1)s

1 +Kc · 1
(s+1)s

=
Kc

s2 + s+Kc
(9.125)

2. (9.125) is on the standard form (9.58):

T (s) =
Kc

s2 + s+Kc
=

Kω0
2

s2 + 2ζω0s+ ω0
2

(9.126)

Equating coefficients in (9.126) gives

K = 1 (9.127)

ω0 =
√
Kc (9.128)

ζ =
1

2
√
Kc

(9.129)

3. From (9.129):

Kc =
1

4ζ2
=

1

4 · 0.62
= 0.69 (9.130)

4. The 63 % response time is given by (9.80):

Tr ≈
1.5

ω0
=

1.5√
Kc

=
1.5√
0.69

= 1.8 s (9.131)

5. The following Python program implements a simulator of the control system using the
forced response() function of the Python Control package. Figure 9.32 shows the
simulated step response. From the step response we can read off the 63 % response
time as approximately 1.9 s, which is in good accordance with the estimated value
(9.131).

http://techteach.no/control/python/sim control dcmotor 2ord forced resp py con.py

Solution to Problem 9.10

Given: L = 0.5 m, A = 0.01 m2, F = 0.001 m3/s. The the time delay becomes

τ =
AL

F
=

0.01 m2 · 0.5 m

0.001 m3/s
= 5 s (9.132)

321

http://techteach.no/control/python/sim_control_dcmotor_2ord_forced_resp_py_con.py

CHAPTER 9. PROCESS DYNAMICS

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
t [s]

0.0

0.2

0.4

0.6

0.8

1.0

r
ym

Figure 9.32: Problem 9.9: Simulated step responses of the control system.

Solution to Problem 9.11

The approximate response time is

T = 0.5 + 1 + 2 = 3.5 s (9.133)

Solution to Problem 9.12

Python program 9.1 implements the simulator.

http://techteach.no/control/python/sim pade forced resp python control.py

Listing 9.1: sim pade forced resp python control.py

%% Imports:

import numpy as np

import control

import matplotlib.pyplot as plt

%% Generating transfer function:

Transfer function without time delay:

s = control.tf(’s’)

322

http://techteach.no/control/python/sim_pade_forced_resp_python_control.py

CHAPTER 9. PROCESS DYNAMICS

K = 2

T = 4

H_without_delay = K/(T*s + 1)

Transfer function of Pade approx:

T_delay = 1

n_pade = 10

(num_pade , den_pade) = control.pade(T_delay , n_pade)

H_pade = control.tf(num_pade , den_pade)

Transfer function with time delay:

H_with_delay = H_without_delay * H_pade

%% Simulation setup:

t0 = 0

t1 = 20

dt = 0.01

nt = int(t1/dt) + 1 # Number of points of sim time

t = np.linspace(t0, t1, nt)

%% Defining input signal:

U = 2

u = U * np.ones(nt)

%% Simulation:

(t, y) = control.forced_response(H_with_delay , t, u)

%% Plotting:

plt.close(’all ’)

plt.figure (1)

plt.subplot(2, 1, 1)

plt.plot(t, y, color=’blue ’, label=’y’)

plt.legend ()

plt.xlabel(’t [s]’)

plt.grid()

plt.subplot(2, 1, 2)

plt.plot(t, u, color=’green ’, label=’u’)

plt.plot([0, dt], [0, U], ’green ’) # Plotting vertical line of step

plt.legend ()

plt.xlabel(’t [s]’)

plt.grid()

plt.show

plt.savefig(’sim_pade.pdf ’)

Figure 9.33 shows the simulation.

323

CHAPTER 9. PROCESS DYNAMICS

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
t [s]

0

2

4
y

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
t [s]

0

1

2 u

Figure 9.33: Problem 9.12: Simulation of time constant with time delay-system.

324

Chapter 10

Adaptation of models to data

10.1 Introduction

Assume that you have a mathematical model of a system with parameters that
characterizes the model. The model can be static or dynamic:

• Static models are models not containing time-derivatives. Thus, differential
equations are not static models. One example of a static model is

y = a1x1 + a2x2 (10.1)

where y is the output and xj are inputs, and ai are parameters to be estimated from
known data of output and inputs.

• Dynamic models may be in the form of:

– Differential equations (continuous-time models), linear or nonlinear, possibly in
the form of a state space model

– Difference equations (discrete-time models), linear or nonlinear, possibly in the
form of a state space model

– Transfer functions:

∗ Laplace-transform based transfer functions (i.e. continuous-time transfer
functions)

∗ Z-transform based transfer functions (i.e. discrete-time transfer functions)

Model adaptation is calculation of values of model parameters so that the model behaves in
as good accordance as possible to given observations or measurements from the real system.
“as good as possible” indicates that the model adaptation problem can be solved with
optimization! Indeed, we will do that in Section 10.2.

But why do we want a model when we already have data? Good question! And here are
two good answers:

325

CHAPTER 10. ADAPTATION OF MODELS TO DATA

• Prediction or simulation: We can use the model for prediction, ie to predict
(predict) or simulate what may happen in the future, which we have no observations
from yet.

• Analysis: We can use the model to analyse the data we already have, e.g. calculate
increments for a trend that is in the data.

Throughout this chapter are application of optimization methods. If you do not have any
background in optimization methods, you may take look at Appendix 40 Optimization
methods.

10.2 Model adaptation as an optimization problem

10.2.1 How to find the best model

We assume given a time series of observations or measurements of the system. The
observations may consist of a time series of the input variable or signal and a time series of
the output variable or signal, see Figure 10.1. In some cases we have no input excitation
signal; only “data” or measurements, e.g. statistical data.

Physical
system

Parameter
estimator

for mathematical
model

Input signal Output signal
u(t) y(t)

Model parameters
(parameter vector)

Figure 10.1: Estimation of parameters of a mathematical model from time-series of the
observations which may consist of the input variable or signal (u in the figure) and the
output variable or signal (y).

The formulation of the parameter estimation problem as an optimization problem is
typically as follows:

• The objective function to be minimized is the sum of squared prediction errors – also
denoted a least squares criterion:

SSPE =
N∑
k=1

e(k)2 (10.2)

326

CHAPTER 10. ADAPTATION OF MODELS TO DATA

where e(i) is the prediction error which is the difference between the observations
(measurements) and the model-based predicted or calculated observations:

e(i) = yobs(i)− ypred(i) (10.3)

Figure 10.2 illustrates the prediction error. It is assumed that a linear model is to be
adapted to the observerations. ypred is calculated in simulations, using the model.
Therefore, ypred is a function of the parameters to be estimated, and SSPE is a also a
function of the parameters.

• The parameters to be estimated are used as optimization variables. All the
parameters may be collected in a parameter vector:

P = [p(1), p(2), ..., p(r)]T (10.4)

• In each iteration, the optimizer runs a simulation with parameter values that are
adjusted based on previous iterations (simulations). The iterations stops when when
the parameter values that minimizes the SSPE, are found. These “best” values are
then used as the parameter estimates.

x

z

0 1 2 3 4

1

0

2

3

4

z = 1.6x-0.6

(0.8, 1)

(2, 3)
(3, 4)

e1

e2

e3

Figure 10.2: Illustration of the prediction error, e(i). A linear model is assumed.

Mathematical formulation of the parameter estimation problem

Mathematically, the optimization problem can be stated as:

min
P=[p(1),p(2),...,p(r)]

SSPE (10.5)

s.t. (subject to) the given mathematical model.

Figure 10.3 illustrates the principle of optimization-based parameter estimation.

Any nonlinear optimizer can be used to implement the parameter estimation, e.g. the slsqp
optimizer in the Scipy package of Python or the fmincon optimizer in the Optimization
toolbox of Matlab.

Selecting the best model among several model candidates

In some applications there are several candidates of models, for example, a first order
differential equation and a second order differential equation that are both assumed to
represent the real system. You can select the best model as the one that minimizes the

327

CHAPTER 10. ADAPTATION OF MODELS TO DATA

p(1)

y = f[u, p(1), p(2)]

(optimization

variables)

⁝

p(r)

uk

Parameters

ypred,k

Inputs

(known)

Model

outputs

(calculated

or predicted

from model)

Real system with

assumed mathematical

model y = f()

(•)

Square

ymeas,k

∑

Accumul-

ation

ek ek
2

2 e1
2 ek

2e2
2

+ + +

p(2) ...

Measured

(observed)

outputs

{ } { }

{ }

{ } { }

{•} means series or sequence of •

SSPE =

Figure 10.3: The principle of parameter estimation using optimization. The ultimate (esti-
mated) parameter values are those that minimize SSPE. (SSPE = sum of squared prediction
errors.)

SSPE index (10.2) calculated from a validation data set. The validation data set may be a
part, e.g. a half of the original data set, while the data set used for parameter estimation is
the other half of the original data set. This is illustrated in Figure 10.4.

Note that if you have only one (fixed) mathematical model that you want to adapt to the
given data, there is no need to validate the model with any validation data set. In that
case, you can use the whole data set for estimation. An example: If you assume that the
following transfer function model:

H(s) =
y(s)

u(s)
=

K

Ts+ 1
(10.6)

is appropriate to represent the dynamics of a given system, then you can use the whole data
for estimation of parameters K and T . In other words, model validation is not necessary.
But if you have two model candidates, say model (10.6) and the following second order
transfer function:

H2(s) =
y(s)

u(s)
=

K

(T1s+ 1) (T2s+ 1)
(10.7)

then you must use a validation data set to select among the two model candidates.

10.2.2 Good excitation is necessary!

Assume, as an example, that you want to estimate the time constant T of a first order
transfer function. You can not estimate T , which is related to the dynamics of the system,
if y and u have constant values all the time. Thus, it is necessary that the excitation signal,
u(t), has sufficiently rich variation to give the LS-method enough information about the
dynamics of the system to produce an accurate estimate of T .

328

CHAPTER 10. ADAPTATION OF MODELS TO DATA

Real

system

Input sequence, utotal(k)

System

identification

uestim(k)

Measured response, ytotal(k)

Model

candidates,

M1,..., Mr

Real

system

Model

M1

1. Excite the real system, and log input and output:

Logging

3. Estimate model candidates:

4. Select best model among candidates:

Split data

(e.g. into

two

halves)

utotal(k)

ytotal(k)

uestim(k)

yestim(k)
uvalid(k)

yvalid(k)

yestim(k)

uvalid(k) yvalid(k)

ysim,1(k)

Simulations

2. Split data, for estimation and for validation:

Model

Mr

.

.

.

.

.

.

ysim,r(k)

.

.

.

Figure 10.4: Procedure for selecting the best among several model candidates.

The up-down-up signal is a good excition signal, see Figure 10.5. This signal is simple to
generate manually during the experiment. This signal gives in many cases enough
excitation for the estimator to calculate accurate parameter estimates, but the period of the
signal shift must be large enough to give the system output a chance to approximately
stabilize between the steps.

10.3 Adaptation of static models to data

10.3.1 Adaptation using grid optimization

10.3.1.1 Introduction

If the number of model parameters to be estimated is not so large, e.g. 5 or less, the
straightforward brute force method (or grid method) of optimization, can be used to find
the estimates (the best values). As optimization criterion, we can use minimum of the
squared sum of prediction error (sspe), cf. Section 10.5.

329

CHAPTER 10. ADAPTATION OF MODELS TO DATA

Figure 10.5: A good excition signal: Up-down-up signal.

10.3.1.2 Model adaptation of static models using native grid optimization

The following examples demonstrates how to adapt a static model to given data using the
brute force method:

• Example 10.1: Adaptation of a model to data about greenhouse gas emission in
Norway using the brute force method implemented from scratch with nested for loops.

• Example 10.2: The same as Example 10.1, but using Python’s scipy.optimize.brute()
function which implements the brute force method, cf. Section 10.3.1.1. The brute()
function has an option to obtain an accurate optimal estimate with simplex
optimization method started from the grid optimal solution. In the example, this
option is activated.

As objective function (optimization criterion) we use the least squares deviation between
observations and predictions. Often, the term regression is used on the least squares static
model adaptation.

Example 10.1 Adaptation of a static model to greenhouse gas emission data using the
brute force method

Statistics Norway1 has an overview of total greenhouse gas emissions in Norway since 1990.
An extract of the overview, for the period 2000 – 2018, is shown in Table 10.1. The data are
plotted in Figure 10.6.

We assume the following linear model (but a linear model is not necessarily a good model in
all applications):

y = ax+ b (10.8)

1Statistisk sentralbyr̊a (SSB)

330

CHAPTER 10. ADAPTATION OF MODELS TO DATA

Table 10.1: Total greenhouse gas emissions in Norway over years 2000 – 2018.
Source: Statistics Norway:
https://www.ssb.no/statbank/table/08940/tableViewLayout1/

Index i Time, x Emission, yobs Index i Time, x Emission, yobs
[year] [106 tons CO2-equiv.] [year] [106 tons CO2-equiv.]

0 2000 54.8 10 2010 55.5

1 2001 56.1 11 2011 54.6

2 2002 55.0 12 2012 54.1

3 2003 55.7 13 2013 54.0

4 2004 56.2 14 2014 54.1

5 2005 55.4 15 2015 54.4

6 2006 55.3 16 2016 53.6

7 2007 57.0 17 2017 52.7

8 2008 55.6 18 2018 52.9

9 2009 53.2 - - -

As objective function we select the minimum SSPE, or least squares, function with a and b
as optimization variables:

min
a, b

f(a, b) (10.9)

where

f =
N−1=18∑

i=0

[e(i)]2 (10.10)

N = 19 is the number of observations. e(i) is the prediction error:

e(i) = yobs(i)− ypred(i) (10.11)

where yobs(i) is given in Table 10.1, and ypred(i) is predicted from the modell (10.8). Thus,

ypred = ax+ b (10.12)

In detail, the objective function, (10.10), is:

f(a, b) =

N−1∑
i=0

[e(i)]2 (10.13)

=

N−1∑
i=0

[yobs(i)− ypred(i)]
2 (10.14)

=
N−1∑
i=0

{yobs(i)− [ax(i) + b]}2 (10.15)

where yobs(i) og x(i) are given in Table 10.1.

Python program 10.1 solves this optimization problem using the brute force method.

http://techteach.no/control/python/prog grid optim greenhouse gas.py

331

https://www.ssb.no/statbank/table/08940/tableViewLayout1/
http://techteach.no/control/python/prog_grid_optim_greenhouse_gas.py

CHAPTER 10. ADAPTATION OF MODELS TO DATA

Listing 10.1: prog grid optim greenhouse gas.py

%% Import of packages:

import numpy as np

import matplotlib.pyplot as plt

import time

%% Definition of objective function:

def fun_obj(params):

a = params [0]

b = params [1]

y_pred_array = a*x_array + b

e_array = y_obs_array - y_pred_array

sspe = sum(e_array*e_array)

return sspe

%% Data:

x_array = np.arange (2000, 2019)

y_obs_array = np.array ([54.8 , 56.1, 55.0, 55.7, 56.2,

55.4, 55.3, 57.0, 55.6, 53.2,

55.5, 54.6, 54.1, 54.0, 54.1,

54.4, 53.6, 52.7, 52.9])

%% Initialization:

N_resol_param = 1000

a_lb = -0.3

a_ub = 0

a_array = np.linspace(a_lb , a_ub , N_resol_param)

b_lb = 300

b_ub = 500

b_array = np.linspace(b_lb , b_ub , N_resol_param)

sspe_min = np.inf

a_opt = 0

b_opt = 0

%% Starting the timer:

tic = time.time()

%% Grid optimization:

for a in a_array:

for b in b_array:

Calc of objective function:

params = np.array ([a, b])

sspe = fun_obj(params)

332

CHAPTER 10. ADAPTATION OF MODELS TO DATA

Improvement of solution:

if (sspe < sspe_min):

sspe_min = sspe

a_opt = a

b_opt = b

%% Stopping the timer:

toc = time.time()

t_elapsed = toc -tic

%% Presentation of result:

print(f’a_opt = {a_opt :.3e}’)

print(f’b_opt = {b_opt :.3e}’)

print(f’sspe_min = {sspe_min :.3e}’)

print(f’Elapsed time = {t_elapsed :.3e}’)

%% Plotting:

y_pred = a_opt*x_array + b_opt

plt.close(’all ’)

plt.figure(num=1, figsize =(12, 9))

plt.plot(x_array , y_obs_array , ’ro ’)

plt.plot(x_array , y_pred ,’b-’)

plt.xlim (2000 , 2018)

plt.xlabel(’x [year]’)

plt.ylabel(’[mill tons CO2 -equiv]’)

plt.grid()

plt.legend(labels=(’y_obs ’, ’y_pred ’),)

plt.savefig(’prog_optim_grid_greenhouse_gas.pdf ’)

plt.show()

In the program, I have used the following value ranges of a and b:

• Value range of a: Since a is the slope of the linear function (10.12), we can estimate a
value of a as the slope between two appropriate data point in Table 10.1. I select

a ≈
52.9− 56.1

2018− 2001
= −0.188 (10.16)

Now, the value range of a may be set as

−0.3 ≤ a ≤ 0 (10.17)

• Value range of b: Let us take e.g. the data set (2018, 52.9): By setting y = 52.9 and
x = 2018 in (10.8) with a = −0.188, we get an estimate of b as

b = y − ax = 52.9− (−0.188) · 2018 = 432 (10.18)

333

CHAPTER 10. ADAPTATION OF MODELS TO DATA

Now, the value range of b may be set as

300 ≤ b ≤ 500 (10.19)

Since we have only two optimization variables (a and b), we can allow a fairly high
resolution of the optimization variables. I set Nresolution = 1000 for both a and b, which
gives 1000000 calculations.

The result:

a opt = –0.1553
b opt = 366.7
sspe min = 11.75

In Example 10.4, a og b are calculated with an exact implementation of the least squares
method. The result, which can be regarded as the exact or true optimum, is a = −0.1517
and b = 359.6, see Table 10.2 which shows the results with a number of optimization
methods. The grid estimates shown above are in good accordance with the exact values.

Figure 10.6 shows the observations yobs from Table 10.1 and the prediction ypred calculated
with the model (10.8) with the optimal parameter values, aopt and bopt, inserted.

Models can be used, and abused. Let us calculate the year in which Norway does not emit
greenhouse gases: We set y = 0 in (10.8):

0 = ax+ b

which gives

x = − b

a
= − 366.7

−0.155
= 2366

– a trustworthy result?

[End of Example 10.1]

10.3.1.3 Model adaptation of static models with Python’s brute() function

As alternative to implementing the brute force method from scratch, Python has a built-in
optimization function based on the brute force method, namely scipy.optimize.brute(). You
may be able to save some programming time using this feature compared to programming
the brute force method from scratch, but probably not much. And the execution time is
almost the same.

However, scipy.optimize.brute() has one strong feature which is offered as an option: It can
invoke an accurate iterative optimization method, namely a Nelder-Mead algorithm (also
denoted downhill simplex algorithm), following after the grid optimization, to find an
accurate optimal solution (i.e. a minimum). The starting point of this Nelder-Mead
algorithm is the optimal solution that brute() function found from its built-in brute force
method. So, this option gives a final improvement of the optimal solution. Figure 10.7
illustrates this.

334

CHAPTER 10. ADAPTATION OF MODELS TO DATA

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018
x [year]

53

54

55

56

57

[m
ill

to
ns

 C
O2

-e
qu

iv
]

y_obs
y_pred

Figure 10.6: Plot of observations (y obs) and prediction (y pred)

Example 10.2 Adaptation of a static model to data using Python’s brute() function

This example is based on the data and model used in Example 10.1.

In the present example I will use Python’s scipy.optimize.brute() function which implements
the brute force method, cf. Section 10.3.1.1. The standard use of brute() gives exactly the
same result as a brute force method implemented from scratch.

The brute() function has an option to obtain an accurate optimal estimate with the
Nelder-Mead optimization algorithm started from the grid optimal solution. The options –
without and with final optimization – can be selected as follows:

• With input argument finish=None to the brute() function, only grid optimization is
calculated.

• With input argument finish=optimize.fmin to the brute() function, the Nelder-Mead
algorithm is run with the grid solution as starting point.

I try both options in this example.

335

CHAPTER 10. ADAPTATION OF MODELS TO DATA

Figure 10.7: The starting point of the Nelder-Meads algorithm is the optimal solution that
brute() function found from its built-in brute force method.

Program 10.2 implements the brute force method using the brute() function.

http://techteach.no/control/python/prog scipy brute estim co2.py

Listing 10.2: prog scipy brute estim co2.py

%% Import of packages:

import numpy as np

from scipy import optimize

import time

%% Definition of objective function:

def fun_obj(params):

a = params [0]

b = params [1]

y_pred_array = a*x_array + b

e_array = y_obs_array - y_pred_array

sspe = sum(e_array*e_array)

return sspe

%% Data:

x_array = np.arange (2000, 2019)

y_obs_array = np.array ([54.8 , 56.1, 55.0, 55.7, 56.2,

55.4, 55.3, 57.0, 55.6, 53.2,

55.5, 54.6, 54.1, 54.0, 54.1,

54.4, 53.6, 52.7, 52.9])

336

http://techteach.no/control/python/prog_scipy_brute_estim_co2.py

CHAPTER 10. ADAPTATION OF MODELS TO DATA

%% Initialization:

N_resol_param = 100

a_lb = -0.3

a_ub = 0

a_step = (a_ub - a_lb)/(N_resol_param - 1)

b_lb = 300

b_ub = 500

b_step = (b_ub - b_lb)/(N_resol_param - 1)

params_ranges = (slice(a_lb , a_ub , a_step),

slice(b_lb , b_ub , b_step))

%% Starting timer to calculate execution time:

tic = time.time()

%% Solving the optim problem with optimize.brute ():

finish_setting = None

finish_setting = optimize.fmin # Nelder -Mead optim

result_optim = optimize.brute(fun_obj , params_ranges ,

full_output=True ,

finish=finish_setting)

params_optim = result_optim [0]

sspe_min = result_optim [1]

%% Optimal parameter values:

a_opt = params_optim [0]

b_opt = params_optim [1]

%% Stopping timer:

toc = time.time()

t_elapsed = toc -tic

%% Presentation of result:

print(’a_opt =’, f’{a_opt :.3e}’)

print(’b_opt =’, f’{b_opt :.3e}’)

print(’sspe_min =’, f’{ sspe_min :.3e}’)

print(’Elapsed time =’, f’{ t_elapsed :.3e}’)

The result is shown in Table 10.2, which also shows other results for comparison. Also, the
execution time as measured with the time() function of the time module is shown in the
table.

Comments to the results shown in Table 10.2:

337

CHAPTER 10. ADAPTATION OF MODELS TO DATA

Table 10.2: Results of parameter estimation of greenhouse gas emission model obtained with
alternative optimization methods. The execution times, t, may vary substantially between
computers, but their ratios should not differ so much.

Method Nresolution a b sspe t [s]

Grid optim in native code

(Example 10.1)
1000 –0.1553 366.7 11.75 ∼12.8

Grid optim in native code

(Example 10.1)
100 –0.1242 304.0 14.00 ∼0.12

Scipy’s brute() without final optim

(Ex. 10.2)
1000 –0.1553 366.7 11.75 ∼13.2

Scipy’s brute() without final optim

(Ex. 10.2)
100 –0.1242 304.0 14.00 ∼0.14

Scipy’s brute() with final optim

(Ex. 10.2)
100 –0.1518 359.6 11.74 ∼0.14

Scipy’s minimize(); Nelder-Mead solver

(Ex. 10.3)
– –0.1518 359.6 11.74 ∼0.005

LS (exact optimum) in native code

(Ex. 10.4)
– –0.1518 359.6 11.74 ∼0

• The Python’s brute() function with N = 100 and the option of accurate optimization
with the Nelder-Mead algorithm activated, produces an accurate optimal solution,
and with almost 1/100 of execution time comparing with the brute() function with
N = 1000 which gives comparable, however somewhat less accurate, results.

• The least squares (LS) method is extremely fast. A limitation of the LS method is
that it works only on models which are linear in its parameters.

Comments to program 10.2:

• The function fun sspe defines the function which calculates (returns) the optimization
objective to be minimized.

• The list theta = [a, b] represents the parameters to be estimated. theta is the input
argument to fun sspe.

• fun sspe is used by the brute() function which adjusts theta until a minimum of sspe
is found.

• The brute() function returns the results of the optimization in a tuple named
result optim.

• The optimal solution, i.e. the optimal parameters, are the elements of the array
theta optim which is the element with index 0 in the tuple named result optim.

• The minimum of the optimization objective is the element with index 1 in the tuple
named result optim.

[End of Example 10.2]

338

CHAPTER 10. ADAPTATION OF MODELS TO DATA

10.3.2 Adaptation of static models using nonlinear programming (NLP)

An nonlinear programming (NLP) solver can find the optimum (minimum) of an objective
function which is a nonlinear function of the optimization variables.

Example 10.3 Adaptation of a static model to CO2 data using an NLP solver of Scipy

Table 10.1 in Example 10.1 presents CO2 emission data in Norway over the years
2000-2018. In that example, I used the brute force method of optimization to estimate
parameters a and b in this linear model:

y = ax+ b (10.20)

where: y are CO2 emissions and x is year. How will the estimation go if I instead use an
NLP solver? The Python program 10.3 estimates a and b using the
scipy.optimize.minimize() function in the Scipy package of Python. There are several
alternative solvers that the minimize() function can use. In program 10.3 I have selected
the Nelder-Mead solver (also denoted the downhill simplex method) which finds the
minimum after a kind of geometrical search for minimum based on subsequent calculations
of objective function values.

http://techteach.no/control/python/prog scipy nelder mead adapt static model co2.py

Listing 10.3: prog scipy nelder mead adapt static model co2.py

%% Import:

import numpy as np

import scipy.optimize

%% Defining functions:

def fun_objective(params):

a = params [0]

b = params [1]

co2_pred_array = a*year_array + b

e_array = co2_obs_array - co2_pred_array

sspe = sum(e_array*e_array)

return sspe

%% Data:

year_array = np.arange (2000 , 2019)

co2_obs_array = np.array ([54.8 , 56.1, 55.0, 55.7, 56.2,

55.4, 55.3, 57.0, 55.6, 53.2,

55.5, 54.6, 54.1, 54.0, 54.1,

54.4, 53.6, 52.7, 52.9])

%% Guessed values (initial values) of optim variables:

339

http://techteach.no/control/python/prog_scipy_nelder_mead_adapt_static_model_co2.py

CHAPTER 10. ADAPTATION OF MODELS TO DATA

a_guess = -0.188

b_guess = 432

x_guess = np.array([a_guess , b_guess])

%% Solving the optim problem:

res = scipy.optimize.minimize(fun_objective , x_guess ,

method = ’nelder -mead ’,

options = {’ftol ’: 1e-9, ’disp ’: True})

%% The results of the optimization:

(a_optim , b_optim) = res.x

sspe_optim = res.fun

%% Displaying the optimal solution:

print(’Optimal estimates :’)

print(’a_optim =’, f’{ a_optim :.3e}’)

print(’b_optim =’, f’{ b_optim :.3e}’)

print(f’sspe_optim = {sspe_optim :.3e}’)

As guessed or initial values for search, I selected the same values as (10.16) and (10.18) as
derived in Example 10.1, namely:

aguess = −0.188 (10.21)

bguess = 432 (10.22)

The results of the estimation are:
aest = −0.1518 (10.23)

best = 359.6 (10.24)

with
SSPE = 11.74 (10.25)

These results are great as they are equal to the correct values as found with the Least
Squares method – with the selected number of digits.

I have also tried the solver named “slsqp’”(Sequential Least Squares Programming) in
minimize(). It turned out that the resulting optimal values, which are the estimates, were
quite sensitive to the selection of the guessed parameter values, i.e. the initial or starting
point, used by the slsqp algorithm. For some guessed values, the results were accurate,
while for other guessed values, the results were quite inaccurate.

[End of Example 10.3]

340

CHAPTER 10. ADAPTATION OF MODELS TO DATA

10.3.3 Adaptation of static models using standard least squares method

10.3.3.1 The standard regression model

Assume given the following model:

y = φ1θ1 + · · ·+ φnθn (10.26)

=
[
φ1 · · · φn

]︸ ︷︷ ︸
ϕ

 θ1
...
θn


︸ ︷︷ ︸

θ

(10.27)

= ϕθ (10.28)

which is called the regression model. In (10.28):

• φi is the regression variable (with known value).

• ϕ is the regression vector (with known value).

• y is the observed variable (with known value).

• θ is an unknown parameter vector to be estimated with the LS-method.

Note that the regression model is linear in the parameter vector θ. If the model is
nonlinear, you can not use the LS method. Instead, you can use some optimization method
for nonlinear models, e.g. the brute force method, cf. Ch. 10.3.1, or nonlinear
programming, cf. Ch. 10.4.2.

Assume that we have m corresponding values of y and ϕ. Then we can write the following
m equations according to the model:

y1 = φ11θ1 + · · ·+ φ1nθn = ϕ1θ

...

yi = φi1θ1 + · · ·+ φinθn = ϕiθ

...

ym = φm1θ1 + · · ·+ φmnθn = ϕmθ

These m “stacked” equations can more compactly be written as
...
yi
...


︸ ︷︷ ︸

Y

=


...
ϕi
...


︸ ︷︷ ︸

θ

Φ

(10.29)

341

CHAPTER 10. ADAPTATION OF MODELS TO DATA

or just:
Y = Φθ (10.30)

where Y and Φ consist of known data and θ is the unknown parameter of which we will
calculate or estimate a value θ using the LS-method.2

10.3.3.2 The LS problem

We define the equation-error vector or prediction-error vector3, E, as the difference between
the left side and the right side of (10.30):

E =


...
ei
...

 =


...

yi − φiθ
...

 = Y − Φθ (10.31)

Figure 10.8 illustrates the equation-errors or prediction errors for the case of the model

y = ϕθ (10.32)

to be fitted to two data points.

y

y1

y2

Figure 10.8: Equation-errors or prediction errors e1 and e2 for a simple case.

The problem is to calculate a value – an estimate – of the unknown parameter-vector θ so

2In matematical literature, (10.30) is more often written on the form b = Ax. I have used symbols which
are common in the field of system identification.

3The name prediction-error vector is because the term Φθ can be regarded as a prediction of the observed
(known) “output” y.

342

CHAPTER 10. ADAPTATION OF MODELS TO DATA

that the following quadratic criterion function, V (θ), is minimized:

V (θ) = e1
2 + e2

2 + · · ·+ em
2 (10.33)

= ETE (10.34)

= (Y − Φθ)T (Y − Φθ) (10.35)

=
(
Y T − θTΦT

)
(Y − Φθ) (10.36)

= Y TY − Y TΦθ − θTΦTY + θTΦTΦθ (10.37)

In other words, the problem is to estimate θ so that the sum of quadratic prediction errors
is minimized.

10.3.3.3 The LS solution

Since V (θ) is a quadratic function of the unknown parameters θ, the minimum value of
V (θ) can be calculated by setting the derivative of V with respect to θ equal to zero. This
is illustrated in Figure 10.9.

Figure 10.9: The LS solution θest corresponds to the minimum value of the quadratic function
V (θ), and can be calculated by setting the derivative V (θ)/dθ to zero.

Using the differentiation rule (45.5) on (10.37), and then setting the derivative equal to
zero, gives

dV (θ)

dθ
= 2ΦTΦθ − 2ΦTY

!
= 0 (vector) (10.38)

or
ΦTΦθ = ΦTY (10.39)

(10.39) is called the normal equation. The θ-solution of (10.39) can be found by
pre-multiplying (10.39) with (ΦTΦ)−1. The result is

θest = (ΦTΦ)−1ΦTY (10.40)

which is the LS-solution of (10.30)4. All right side terms in (10.30) are known. We may
denote (10.40) as the “batch LS formula”.

4(ΦTΦ)−1ΦT is the so-called pseudo-inverse of Φ.

343

CHAPTER 10. ADAPTATION OF MODELS TO DATA

Note: To apply the LS-method, the model must be written on the regression model form
(10.30), which consists of m (10.28) “stacked”.

Example 10.4 LS-estimation of parameters of a greenhouse gas emission model

In Example 10.1 we estimated the a linear model to the given data using the grid
optimization method. The data are shown in Figure 10.6 in Example 10.1. The assumed
model is

y = ax+ b (10.41)

Since this model is linear in its parameters a and b, we can estimate the parameters a and b
using the LS method.

We start by writing the model on the standard regression form:

y = ax+ b =
[
x, 1

] [a
b

]
= φθ (10.42)

The values of y and x are given in Table 10.1.

The estimate is given by (10.40), which is repeated here:

θLS = (ΦTΦ)−1ΦTY (10.43)

In (10.43):

Y =

 y0
...

y18

 =

 54.8
...

52.9



Φ =

 φ0
...

φ18

 =

 x0 1
...

...
x18 1

 =

 2000 1
...

...
2018 1


Program 10.4 implements the above calculations.

The results are:

a est = –1.518e-01
b est = 3.596e+02
sspe = 1.174e+01

The results are also shown in Table 10.2 togheter with the results obtained with several
other optimization methods.

Comparing with the brute force method and the brute() function, one benefit of the LS
method is that there is no need to define any range of the values of the parameters to be
estimated. A drawback of the LS method is that the model has to be linear in the
parameters, i.e. the LS method is selective regarding applicable models.

344

CHAPTER 10. ADAPTATION OF MODELS TO DATA

http://techteach.no/control/python/prog ls native estim co2.py

Listing 10.4: prog ls native estim co2.py

%% Import of packages:

import numpy as np

%% Data:

x_obs_array = np.arange (2000, 2019)

y_obs_array = np.array ([54.8 , 56.1, 55.0, 55.7, 56.2,

55.4, 55.3, 57.0, 55.6, 53.2,

55.5, 54.6, 54.1, 54.0, 54.1,

54.4, 53.6, 52.7, 52.9])

%% Regression model:

Phi_col_0 = np.array(x_obs_array)

Phi_col_1 = np.array(np.ones (19))

Phi = np.array([Phi_col_0 , Phi_col_1]).T

Y = np.array ([y_obs_array]).T

%% Calculating LS estimate:

theta = np.linalg.inv(Phi.T @ Phi) @ Phi.T @ Y

a_est = theta[0, 0]

b_est = theta[1, 0]

%% Calculating value of objective function:

y_pred_array = a_est*x_obs_array + b_est

pe = y_obs_array - y_pred_array # prediction error

sspe = sum(pe*pe)

%% Presentation of result:

print(’a_est =’, f’{a_est :.3e}’)

print(’b_est =’, f’{b_est :.3e}’)

print(’sspe =’, f’{sspe :.3e}’)

Comments to Program 10.4:

• The LS estimate () is calculated with the code theta = np.linalg.inv(Phi.T @ Phi) @
Phi.T @ y which implements the batch LS formula ().

• The np.linalg.inv() function belongs to the linalg module in the numpy package.

• The @ operator performs matrix multiplication of matrices represented as 2D-arrays
in Python.

LS estimate with the np.linalg.lstsq() in Numpy

345

http://techteach.no/control/python/prog_ls_native_estim_co2.py

CHAPTER 10. ADAPTATION OF MODELS TO DATA

Of course, there is a built-in function in Python which implements least squares estimation,
namely lstsq() in Numpy. Program 10.5 uses this function to estimate a and b in the CO2

model. The results are as with our native LS code:

a est = –1.518e-01
b est = 3.596e+02
sspe = 1.174e+01

http://techteach.no/control/python/prog lstsq params estim co2.py

Listing 10.5: prog lstsq params estim co2.py

%% Import of packages:

import numpy as np

%% Data:

x_obs_array = np.arange (2000, 2019)

y_obs_array = np.array ([54.8 , 56.1, 55.0, 55.7, 56.2,

55.4, 55.3, 57.0, 55.6, 53.2,

55.5, 54.6, 54.1, 54.0, 54.1,

54.4, 53.6, 52.7, 52.9])

%% Regression model:

phi_0 = np.array(x_obs_array)

phi_1 = np.array(np.ones (19))

Phi = np.array([phi_0 , phi_1]).T

Y = np.array ([y_obs_array]).T

%% Results of LS estimate with lstsq () function:

ls_result = np.linalg.lstsq(Phi , Y, rcond=None)

theta = ls_result [0]

sspe_array = ls_result [1]

a_est = theta [0][0]

b_est = theta [1][0]

sspe = sspe_array [0]

%% Presentation of results:

print(’a_est =’, f’{a_est :.3e}’)

print(’b_est =’, f’{b_est :.3e}’)

print(’sspe =’, f’{sspe :.3e}’)

[End of Example 10.4]

346

http://techteach.no/control/python/prog_lstsq_params_estim_co2.py

CHAPTER 10. ADAPTATION OF MODELS TO DATA

10.3.3.4 Properties of the LS estimate

The variance of θLS is:

Var(θest) ≡ diag
{
Cov (θest) ≡ E

[
(θest − θ0) (θest − θ0)

T
]
= σ2

e

(
ΦTΦ

)−1
}

(10.44)

where sub-index “e” represents prediction (or model) error. θ0 are the “true” parameter
values.σe

2 is the variance of the measurement noise (or model error). What do we mean
with “variance of θLS”? It is the variance of a large (ideally: infinite) number of θLS
estimates where each θLS is calculated with some realization of the random model error e.

If you do not know the value of σe
2, you can estimate it with:

σe
2 =

V (θest)

N − n
(10.45)

where: N is the number of observations. n is the number of parameters to be estimated.
V (θest) is given by (10.37), i.e.:

V (θest) = (Yobs − Φθest)
T (Yobs − Φθest) (10.46)

You can use (10.45) together with (10.46) to calculate confidence intervals of θest if you
assume that θest is normally distributed. For example, as you may know from the field of
statistics, the 95 % confidence interval of a random estimate θest given the known, or
estimated σe given by (10.45), is

θest − 2σe ≦ θest ≦ θest + 2σe (10.47)

The 95 % confidence interval is the interval in which there is 95% probability that the true
parameter values is, assuming that the statistical properties of the given data (time series)
is representative for data from any other experiment.

Note that the confidence interval does not express any certainty of the calculated estimate
itself. Actually, there is no uncertainty at all related to that estimate as the estimate is just
a number calculated from the observations with given formulas.

10.3.3.5 Criterion for convergence of estimate towards the true value

The prediction-error vector is
E = Y − Φθest (10.48)

It can be shown that the LS-estimate θLS converges towards the true value θ0 of the
parameter vector as the number m of sets of observations goes to infinity, only if E is
so-called white noise, which is defined in Ch. 31.3.1. White noise means that the elements
of E are random numbers, and the vector E has zero mean value. The “opposite” of white
noise is coloured noise. E becomes coloured if there are systematic equation errors. Such
systematic equation errors can be reduced or eliminated by choosing a more accurate model
structure.

A special example of coloured noise is a constant or bias, say b, having value different from
zero. For example, a model like (10.49) includes the bias, b.

y = ax+ b (10.49)

347

CHAPTER 10. ADAPTATION OF MODELS TO DATA

10.4 Adaptation of dynamic models to data

10.4.1 Adaptation of dynamic models using grid optimization

10.4.1.1 Introduction

The brute force method of optimization can be used for adaptation of dynamic models to
given data. In Python, you can program the brute force method from scratch as shown in
Example 10.5, or using the built-in function scipy.optimize.brute() of the Scipy package, as
shown in Example 10.6.

10.4.1.2 Adaptation of dynamic models using grid optimization

Example 10.5 DC motor model adaptation to simulated data with grid optimization

Figure 10.10 shows a DC-motor with tachogenerator which is presented in Ch. 38.7.

Figure 10.10: DC motor.

One reasonable mathematical model of the motor is the following time constant model:

TS′ = K[u+ L]− S (10.50)

where: S [krpm = kilo revolutions per minute] is the er rotational speed. u [V] is the
control signal to the motor. L [V] is a voltage which represents the load torque acting on
the motor. K [krpm/V] is the motor gain. T [s] is the motor time constant.

We will estimate K and T from a simulated experiment. We assume for simplicity that
both L and the initial state Sinit are known and have values zero, although we may estimate
both L and Sinit.

348

CHAPTER 10. ADAPTATION OF MODELS TO DATA

The objective function to the be minimized, is:

sspe =

N∑
k=1

ek
2 (10.51)

where:
ek = Sobs,k − Spred,k (10.52)

where Sobs,k is here the observed (but simulated) S, and Spred,k is the predicted S.

We use grid optimization with the following intervals of K and T :

K ∈ [0.05, . . ., 0.55] (10.53)

T ∈ [0.1, . . ., 1.1] (10.54)

We assume that the true values of the model parameters are:

Ktrue = 0.15 (10.55)

Ttrue = 0.30 (10.56)

In the simulated experiment we vary the control signal, u, as an up-down-up-signal.

The Python program 10.6 implements the parameter estimation. Firstly, the program
generates a simulated “experimental” data series, and then uses this data series as the basis
of the parameter estimation.

http://techteach.no/control/python/prog grid motor K T estim sim.py

Listing 10.6: prog grid motor K T estim sim.py

%% Import of packages:

import matplotlib.pyplot as plt

import numpy as np

%% Definition of objective function:

def fun_calc_objfun(params , S_init , S_obs_array ,

u_array , N, Ts):

(K, T) = params

S_pred_k = S_init

pe_array = np.zeros(N)

for k in range(0, N):

Simulation algorithm (Euler step):

dS_sim_Ts_k = (1/T)*(- S_pred_k + K*u_array[k])

S_pred_kp1 = S_pred_k + Ts*dS_sim_Ts_k

349

http://techteach.no/control/python/prog_grid_motor_K_T_estim_sim.py

CHAPTER 10. ADAPTATION OF MODELS TO DATA

Updating prediction error (pe):

pe_array[k] = S_obs_array[k] - S_pred_k

Time shift:

S_pred_k = S_pred_kp1

sspe = sum(pe_array*pe_array)

return sspe

%% Definition of simulation function:

def fun_sim(params , S_init , u_array , N, Ts):

(K, T) = params

S_sim_k = S_init

S_sim_array = np.zeros(N)

for k in range(0, N):

Simulation algorithm (Euler step):

dS_sim_Ts_k = (1/T)*(- S_sim_k + K*u_array[k])

S_sim_kp1 = S_sim_k + Ts*dS_sim_Ts_k

S_sim_array[k] = S_sim_k

S_sim_k = S_sim_kp1 # Time shift

return S_sim_array

%% Time settings:

t_start = 0 # [s]

t_stop = 7

Ts = 0.02

N = int(((t_stop - t_start)/Ts)) + 1

t_array = np.linspace(t_start , t_stop , N)

%% Create input signal:

u_array = np.zeros(N)

for k in range(N):

t_k = k*Ts

if t_start <= t_k < 1: u_array[k] = 0

elif 1 <= t_k < 3: u_array[k] = 1

elif 3 <= t_k < 5: u_array[k] = -1

else: u_array[k] = 0

%% Creating simulated observation data:

K_true = 0.15

T_true = 0.30

params = (K_true , T_true)

S_init = 0

350

CHAPTER 10. ADAPTATION OF MODELS TO DATA

S_sim_array = fun_sim(params , S_init , u_array , N, Ts)

S_obs_array = S_sim_array

%% Arrays of candidates of estimated param values:

N_params = 10

K_lb = 0.05 # Lower bound

K_ub = 0.55 # Upper bound

T_lb = 0.1

T_ub = 1.1

K_array = np.linspace(K_lb , K_ub , N_params)

T_array = np.linspace(T_lb , T_ub , N_params)

%% For loop implementing estimation with grid optim:

sspe_optim = np.inf # Initialization of sspe

for K in K_array:

for T in T_array:

params = (K, T) # params with candidate K and T

#Calculating objective function (sspe):

sspe = fun_calc_objfun(params , S_init ,

S_obs_array ,

u_array , N, Ts)

#Improving the previous optim solution:

if sspe <= sspe_optim:

sspe_optim = sspe

K_est = K

T_est = T

%% Displaying the optimal solution = param estimates:

print(’K_true =’, f’{ K_true :.4f}’)

print(’T_true =’, f’{ T_true :.4f}’)

print(’K_est =’, f’{K_est :.4e}’)

print(’T_est =’, f’{T_est :.4e}’)

print(’sspe_optim =’, f’{ sspe_optim :.7f}’)

%% Simulation with estimated parameters in the model:

S_init = 0

params = (K_est , T_est)

S_sim_adapted_model_array = fun_sim(params , S_init ,

u_array , N, Ts)

%% Plotting:

351

CHAPTER 10. ADAPTATION OF MODELS TO DATA

plt.close("all")

plt.figure(1, figsize =(12, 9))

plt.subplot(2, 1, 1)

plt.plot(t_array , S_obs_array , ’b’, label=’S_obs ’)

plt.plot(t_array , S_sim_adapted_model_array , ’r’,

label=’S_sim ’)

plt.grid()

plt.xlabel(’t [s]’)

plt.ylabel(’[krpm]’)

plt.legend ()

plt.subplot(2, 1, 2)

plt.plot(t_array , u_array , ’g’, label=’u’)

plt.grid()

plt.xlabel(’t [s]’)

plt.ylabel(’[V]’)

plt.legend ()

plt.savefig(’plot_grid_K_T_dcmotor_simdata.pdf ’)

plt.show()

Figure 10.11 shows a plot of the control signal u and the simulated speed S.

0 1 2 3 4 5 6 7
t [s]

0.15

0.10

0.05

0.00

0.05

0.10

0.15

[k
rp

m
]

S_obs
S_sim

0 1 2 3 4 5 6 7
t [s]

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

[V
]

u

Figure 10.11: Plots of the control signal u and the simulated speed S used in the parameter
estimation.

Table 10.3 shows the result of the parameter estimation with two different resolutions of the
parameters K and T .

352

CHAPTER 10. ADAPTATION OF MODELS TO DATA

Table 10.3: Results of estimation of parameters K and T using grid optimization.

Parameter Nresolution K [krpm/V] T [s] sspe

True value – 0.150 0.300 –

Estimated 10 0.161 0.322 0.0164

Estimated 100 0.151 0.302 0.000137

Above, the true values of K and T are not among the candidate values. If we had ensured
that the true values were among the candidate values, the estimated values by the brute
force method would have been these true values.

[End of Example 10.5]

10.4.1.3 Model adaptation of dynamic models with Python’s brute() function

In Example 10.5, the brute force method was implemented from scratch. Alternatively, we
can use the scipy.optimize.brute() function of the Python Scipy package which implements
the brute force method, cf. Section 10.3.1.3.

Example 10.6 DC motor model adaptation to simulated data with the
scipy.optimize.brute() function

The parameter estimation problem is as in Example 10.5.

The intervals of K and T are the same as in Example 10.5, namely:

K ∈ [0.05, . . ., 0.55] (10.57)

T ∈ [0.1, . . ., 1.1] (10.58)

The Python program 10.7 below implements the parameter estimator. A resolution of 10 is
selected for each of the parameters K and T . The brute() function is set to run a final
Nelder-Mead optimization algorithm to obtain an accurate optimal solution (optimal
parameter estimates). Example 10.2 explains how to set this option.

http://techteach.no/control/python/prog scipy brute motor K T estim sim.py

Listing 10.7: prog scipy brute motor K T estim sim.py

%% Import of packages:

import numpy as np

from scipy import optimize

%% Definition of functions:

def fun_objective(x):

353

http://techteach.no/control/python/prog_scipy_brute_motor_K_T_estim_sim.py

CHAPTER 10. ADAPTATION OF MODELS TO DATA

K = x[0]

T = x[1]

S_pred_k = S_init

pe_array = np.zeros(N)

for k in range(0, N):

Simulation algorithm (Euler step):

dS_sim_Ts_k = (1/T)*(- S_pred_k + K*u_array[k])

S_pred_kp1 = S_pred_k + Ts*dS_sim_Ts_k

Updating prediction error (pe):

pe_array[k] = S_obs_array[k] - S_pred_k

Time shift:

S_pred_k = S_pred_kp1

sspe = sum(pe_array*pe_array)

return sspe

def fun_sim(modelparams , S_init , u_array , N, Ts):

(K, T) = modelparams

S_sim_k = S_init

S_sim_array = np.zeros(N)

for k in range(0, N):

Simulation algorithm (Euler step):

dS_sim_Ts_k = (1/T)*(- S_sim_k + K*u_array[k])

S_sim_kp1 = S_sim_k + Ts*dS_sim_Ts_k

S_sim_array[k] = S_sim_k

S_sim_k = S_sim_kp1 # Time shift

return S_sim_array

%% Time settings:

t_start = 0 # [s]

t_stop = 7

Ts = 0.02

N = int(((t_stop - t_start)/Ts)) + 1

t_array = np.linspace(t_start , t_stop , N)

%% Create input signal:

u_array = np.zeros(N)

for k in range(N):

t_k = k*Ts

if t_start <= t_k < 1: u_array[k] = 0

elif 1 <= t_k < 3: u_array[k] = 1

elif 3 <= t_k < 5: u_array[k] = -1

else: u_array[k] = 0

354

CHAPTER 10. ADAPTATION OF MODELS TO DATA

%% Creating simulated observation data:

K_true = 0.15

T_true = 0.3

params = (K_true , T_true)

S_init = 0

S_sim_array = fun_sim(params , S_init , u_array , N, Ts)

S_obs_array = S_sim_array

%% Creating arrays of candidate parameter values:

N_resolution_params = 10

K_ub = 0.55 # Upper bound

K_lb = 0.05 # Lower bound

K_step = (K_ub - K_lb)/(N_resolution_params - 1)

T_ub = 1.1

T_lb = 0.1

T_step = (T_ub - T_lb)/(N_resolution_params - 1)

x_ranges = (slice(K_lb , K_ub , K_step),

slice(T_lb , T_ub , T_step))

%% Solving the optim problem with optimize.brute ():

Options for the finish argument:

finish_setting = optimize.fmin

finish_setting = None

result_est = optimize.brute(fun_objective , x_ranges ,

full_output=True ,

finish=finish_setting)

params_optim = result_est [0]

sspe_optim = result_est [1]

%% The optimal parameters values:

K_est = params_optim [0]

T_est = params_optim [1]

%% Displaying the results:

print(’Optimal estimates :’)

print(’K_true =’, f’{ K_true :.4f}’)

print(’T_true =’, f’{ T_true :.4f}’)

print(f’K_est = {K_est :.4f}’)

print(f’T_est = {T_est :.4f}’)

print(f’sspe_optim = {sspe_optim :.4f}’)

355

CHAPTER 10. ADAPTATION OF MODELS TO DATA

The result of the parameter estimation is shown in Table 10.4. The brute() function was
able to estimate the parameters accurately despite the realtively poor resolution of 10 for
each of the parameters. The good result is due to the final optimization with the
Nelder-Mead optimization algorithm (selected as an option in brute() function).

Table 10.4: Result of estimation of parameters K and T with the brute() function with a
final Nelder-Mead optimization.

Parameter Nresolution K [krpm/V] T [s] sspe

True value – 0.150 0.300 –

Estimated 10 0.150 0.300 0.0

[End of Example 10.6]

10.4.2 Adaptation of dynamic models using nonlinear programming
(NLP)

The optimization problem of parameter estimation can be solved with nonlinear
programming.

Example 10.7 DC motor model adaptation to simulated data with the Nelder-Mead
optimizer in Scipy

The parameter estimation problem is as in Example 10.5: We will now use the Nelder-Mead
NLP solver to estimate K and T .

Guessed (initial) values are selected as:

Kguess = 0.3 (10.59)

Tguess = 0.6 (10.60)

Python program 10.8 implements the parameter estimator.

http://techteach.no/control/python/prog minimize nelder mead estim K T sim motor.py

Listing 10.8: prog minimize nelder mead estim K T sim motor.py

%% Import:

import numpy as np

import scipy.optimize

%% Defining functions:

def fun_objective(x):

356

http://techteach.no/control/python/prog_minimize_nelder_mead_estim_K_T_sim_motor.py

CHAPTER 10. ADAPTATION OF MODELS TO DATA

K = x[0]

T = x[1]

S_pred_k = S_init

pe_array = np.zeros(N)

for k in range(0, N):

Simulation algorithm (Euler step):

dS_sim_Ts_k = (1/T)*(- S_pred_k + K*u_array[k])

S_pred_kp1 = S_pred_k + Ts*dS_sim_Ts_k

Updating prediction error (pe):

pe_array[k] = S_obs_array[k] - S_pred_k

Time shift:

S_pred_k = S_pred_kp1

sspe = sum(pe_array*pe_array)

return sspe

%% Definition of simulation function:

def fun_sim(modelparams , S_init , u_array , N, Ts):

(K, T) = modelparams

S_sim_k = S_init

S_sim_array = np.zeros(N)

for k in range(0, N):

Simulation algorithm (Euler step):

dS_sim_Ts_k = (1/T)*(- S_sim_k + K*u_array[k])

S_sim_kp1 = S_sim_k + Ts*dS_sim_Ts_k

S_sim_array[k] = S_sim_k

S_sim_k = S_sim_kp1 # Time shift

return S_sim_array

%% Time settings:

t_start = 0 # [s]

t_stop = 7

Ts = 0.02

N = int(((t_stop - t_start)/Ts)) + 1

t_array = np.linspace(t_start , t_stop , N)

%% Create input signal:

u_array = np.zeros(N)

for k in range(N):

t_k = k*Ts

if t_start <= t_k < 1: u_array[k] = 0

elif 1 <= t_k < 3: u_array[k] = 1

357

CHAPTER 10. ADAPTATION OF MODELS TO DATA

elif 3 <= t_k < 5: u_array[k] = -1

else: u_array[k] = 0

%% Creating simulated observation data:

K_true = 0.15

T_true = 0.30

params = (K_true , T_true)

S_init = 0

S_sim_array = fun_sim(params , S_init , u_array , N, Ts)

S_obs_array = S_sim_array

%% Guessed values (initial values) of optim variables:

K_guess = 0.3

T_guess = 0.6

x_guess = np.array([K_guess , T_guess])

%% Solving the optim problem:

res = scipy.optimize.minimize(fun_objective , x_guess ,

method = ’nelder -mead ’,

options = {’ftol ’: 1e-9, ’disp ’: True})

%% The results of the optimization:

(K_optim , T_optim) = res.x

sspe_optim = res.fun

%% Displaying the optimal solution:

print(’Optimal estimates :’)

print(’K_true =’, f’{ K_true :.4f}’)

print(’T_true =’, f’{ T_true :.4f}’)

print(’K_optim =’, f’{ K_optim :.4f}’)

print(’T_optim =’, f’{ T_optim :.4f}’)

print(f’sspe_optim = {sspe_optim :.4f}’)

The result of the parameter estimation is shown in Table 10.5. The parameter estimates are
virtually identical to the true values.

Table 10.5: Result of estimation of parameters K and T with the minimize() function with
Nelder-Mead optimzation solver.

Parameter K [krpm/V] T [s] sspe

True value 0.150 0.300 –

Estimated 0.150 0.300 0.0

[End of Example 10.7]

358

CHAPTER 10. ADAPTATION OF MODELS TO DATA

10.4.3 Adaptation of dynamic models using the least squares method

Assume that the dynamic model which you want to adapt to data, can be written on the
form of (10.28), which is repeated here for convenience:

y = ϕθ (10.61)

With m observations, the stacked model is:
...
yi
...


︸ ︷︷ ︸

Y

=


...
ϕi
...


︸ ︷︷ ︸

Φ

θ (10.62)

where i ∈ [0, m− 1]. Then, the parameters can be estimated with the ordinary least
squares (LS) method. The parameter estimates are given by (10.40), which is repeated here:

θLS = (ΦTΦ)−1ΦTY (10.63)

Example 10.8 Estimation of parameters of a dynamic model using ordinary LS method

Given the following “time constant” model:

Tx′ = Ku+ d− x

where x is the measurement signal, u is the control signal, and d is the disturbance. K and
T are model parameters. x and u have known values (at the sampling points of time).
Assume that neither K, T , nor d are known. How can we estimate their values with the
ordinary least squares method?

Let us use the Euler Forward (Euler Explicit) method of discretization:

x′k =
xk+1 − xk

Ts

We write the model on the regression model form, which is

yk = φkθ (10.64)

where θ is the parameter vector to be estimated.

Using the Euler Forward (Euler Explicit) approximation of the time-derivative, the model
becomes:

T
xk+1 − xk

Ts
= Kuk + d− xk (10.65)

which can be written as:

xk = Kuk + T
xk+1 − xk

Ts
+ d =

[
uk, −

xk+1 − xk
Ts

, 1

] K
T
d

 (10.66)

359

CHAPTER 10. ADAPTATION OF MODELS TO DATA

which is on the form (10.64) with:
yk = xk

φk =

[
uk, −

xk+1 − xk
Ts

, 1

]
(10.67)

θ =

 K
T
d


The parameter vector estimate is calculated with the LS formula:

θLS =
(
ΦTΦ

)−1
ΦTY (10.68)

[End of Example 10.8]

The model (10.30) is linear in the parameters. If the model is nonlinear in the parameters,
you can not apply the ordinary least squares method. Instead, you can use e.g. the brute
force method, cf. Section 10.4.1, or nonlinear programming, cf. Section 10.4.2. Since the
latter methods can be applied equally well to models being linear in its parameters
(generally, linear models are just a special case of nonlinear models), I recommend that you
consider those methods.

Still, one argument for using ordinary least squares method it that it is an extremely fast
method as it uses a formula, and no iterative algorithm, to find the optimal solution, i.e.
the parameter estimates.

10.5 Recursive (real-time) model adaptation

The parameter estimation described in this section is a batch estimation since it operates on
the whole data series available. An alternative term to batch estimation is full information
estimation. If you assume that the parameters may change continuously during the time
interval of interest, the parameter estimates obtained with batch estimation may not be
good estimates at recent (newest) times. In such cases, you may consider online parameter
estimation where the estimates are updated continuously based on the most recent process
measurement available.

Some alternative methods for online parameter estimation are:

• Kalman Filter, which is presented in Ch. 32.

• Recursive least squares method (RLS), which is not covered by this book. RLS can be
regarded as a special case of using a Kalman Filter for parameter estimation.

• Moving horizon estimation (MHE), which is not presented in this book.

In MHE and Kalman Filter, the parameters are estimated as state variables. The original
state vector is augmented with parameter states. Therefore, the Kalman Filter used for

360

CHAPTER 10. ADAPTATION OF MODELS TO DATA

parameter estimation is denoted augmented Kalman Filter, and the MHE may similarly be
denoted augmented MHE.

Among those two alternatives, I generally recommend the Kalman Filter since it is easier to
implement and executes faster. I have experiences relatively simple cases where MHE fails
to estimate the parameters while the Kalman Filter works well.

361

CHAPTER 10. ADAPTATION OF MODELS TO DATA

10.6 Problems for Chapter 10

Problem 10.1 Characterizing models as linear and nonlinear

Give an example of a model that is linear in the parameters, and an example of a model
that is nonlinear in the parameters.

Problem 10.2 How to check if estimation has a chance to succeed

Assume that you have programmed some parameter estimation method. How can you check
if your estimator is able to produce parameter estimates successfully?

Problem 10.3 Writing the regression model

Assume that the parameters a and b in the differential equation

h(k) + a
√
h(k − 1) = h(k − 1) + bu(k − 1) (10.69)

is to be estimated with the Least Squares (LS) method. Assume that the following samples
of the variables h and u exist:

{h(0), h(1), h(2), h(3), h(4)} (10.70)

{u(0), u(1), u(2), u(3), u(4)} (10.71)

Write the total regression model
Y = Φθ (10.72)

which makes the basis for the LS estimation. However, you shall not calculate the estimate
in this Problem. The regression model contains only the samples of h and u that are
available. (You are to find the vector Y , matrix Φ, and the vector θ.)

Problem 10.4 Bias in LS estimate

This problem demonstrates that a LS-estimate converges towards an erroneous value – in
other words the estimate is biased – if the noise or the model error has a mean value
different from zero.5

The constant K in the model
y = K (10.73)

is be estimated. Assume that the real (true) value of K is K0. The observation yk is

yk = K0 + ek (10.74)

where ek is noise (or equation error or model error or prediction error). Calculate the LS
estimate of K (you can assume that there are N observations). Assume that yk in (10.73) is
given by (10.74).

5In general, the estimate will be biased if the noise is coloured (non-white).

362

CHAPTER 10. ADAPTATION OF MODELS TO DATA

Problem 10.5 Which model order?

Figure 10.12 shows the criterion function V as a function of model order n in a fictitous
problem about parameter estimation.

Model order

V

n1 n2 n3 n4 n4n0

Figure 10.12: The criterion function V as a function of model order n

Which order should be selected?

Problem 10.6 Analysis of LS estimate

In Example 10.4, Program 10.4 uses the ordinary least squares method to estimate the
parameters a and b in the model

y = ax+ b

to given emission data (observations). Modify Program 10.4 to calculate the 95 %
confidence intervals of aestand best.

Problem 10.7 Minimum order at estimation of time delay

Assume that you know in advance that a given physical process has time delay of 2 sec.
You are to estimate a discrete-time transfer function to from experimental input and output
(measurement) sequences. The sampling time is 0.5 sec. You are not sure about the order
of the transfer function, but what is the minimum order that it should have?

Problem 10.8 Mathematical modeling of a DC motor

Here is a mathematical model of an electric motor (a DC motor) with load torque:

Jω′ =
KT

Ra
(va −Keω) + TL (10.75)

363

CHAPTER 10. ADAPTATION OF MODELS TO DATA

Assume that the inertia J and the torque TL will be estimated with the LS method. The
motor is excited with the armature voltage va. The rotational speed ω is measured with a
tachogenerator. KT , Ra and Ke have known values.

Write the model on the standard form y = φθ. Use the center difference method to
calculate ω′ (see below).

The center difference method

Using y as the name of the variable or signal, the center difference method is

y(tk)
′ ≈ y(tk+1)− y(tk−1)

2Ts
(10.76)

For a given time step Ts, the center difference method gives a somewhat more accurate
approximation to y than the forward difference method and the backward difference
method. Actually, the center difference method is the average of those two approximations.

Problem 10.9 Adaption of linear dynamic models

Assume that you want to adapt a linear dynamic model, e.g. a transfer function, to
experimental data. If the model is actually nonlinear, a linear model will give a good
representation of the system only near an operating point. How can you process the input
and output data (the sequences) before using them in system identification to improve the
accuracy of the estimated linear model, assuming the process is nonlinear?

Problem 10.10 Is is possible to estimate parameters of a DC motor
model?

Given the following “time constant” model:

Tx′ = Ku+ d− x

where x is the measurement signal, u is the control signal, and d is the disturbance. K and
T are model parameters. x and u have known values (at the sampling points of time).

In the problems below: “Static” means “constant”. You should explain your answers, but
no rigorous explanations are expected.

1. Assume that both K and d have known values. Is it possible to estimate T from static
data?

2. Assume that T is known. Is it possible to estimate both K and d from static data?

364

CHAPTER 10. ADAPTATION OF MODELS TO DATA

Problem 10.11 LS estimation of dynamic model

Given the model:
xk+1 = axk + buk (10.77)

Explain how you can estimate the assumed constant parameters a and b with the ordinary
least squares method using data series (time series) of sampled values of x and u. In your
answer, you are not expected to actually calculate the estimates, but the formula of the
estimates should be given.

Problem 10.12 Python program for estimation of DC motor load torque
from simulated data

In Example 10.5 we estimated the motor parameters K and T from simulated data.

Write a Python program, starting with the program available in Example 10.5, that also
estimates an assumed constant load torque, L. You can assume that the true value is
Ltrue = −0.5 V (an equivalent voltage which acts on the motor in the same way as a load
torque).

Problem 10.13 Python program for estimation of DC motor load torque
from real data

In Problem 10.12, K, T , and L of a DC motor model are to be estimated from simulated
data. In the present problem, these parameters are estimated from real data.

Real data from an experiment with the motor are available at this link:

http://techteach.no/control/python/data dc motor.txt

The sampling time is 0.02 s (as you can also see in the data file). The file has the following
columns of data:

• Colum 0: Time in seconds.

• Colum 1: The control signal u in voltage, adjusted manually more or less randomly.

• Colum 2: The tachogenerator voltage Stacho, which can be converted to a
corresponding rotational speed in krpm (kilo revolutions per minute) with:

Skrpm = Stacho/Kt (10.78)

where:
Kt = 5.0 V/krpm (10.79)

You can load the data file to Python with e.g. the loadtxt() function of the Numpy package.

Based on the program given in the solution of Problem 10.12, create a program which
estimates K, T , and L from u and Skrpm, and (after the estimation) simulates Skrpm with
the estimated parameters, and plots the simulated S together with the real Skrpm. Does it
look like the represents the real motor well?

365

http://techteach.no/control/python/data_dc_motor.txt

CHAPTER 10. ADAPTATION OF MODELS TO DATA

Problem 10.14 Python program for estimation of DC motor parameters
with ordinary LS method

To appear.

Problem 10.15 Python program for estimation parameters of an air
heater with the scipy.brute() function

Section 38.5 describes a laboratory air heater. A data file from an experiment on the air
heater is available in Section 38.5.5.

Write a Python program which estimates the following variables using the data file: Gain
Kh. Time constant θt. Time delay θd. Environmental temperature Te. Initial value of the
outlet temperature, Tinit. In the call of the brute() function, you can select the option with
final optimization, i.e. setting the finish argument to optimize.fmin.

Simulate the air heater with the control signal of the data file, and plot both the simulated
temperature and the observed (measured) temperature in the same diagram. Does the
adapted model represent the real air heater accurately?

Problem 10.16 Comparing parameter estimation methods

Range the following parameter estimation methods (approaches) in terms of program
(algorithm) execution speed:

• Nonlinear programming (NLP)

• Ordinary Least Squares method

• Gridding (or brute force) method

Also, for each of these methods, give an important applicability limitation.

366

CHAPTER 10. ADAPTATION OF MODELS TO DATA

10.7 Solutions to problems for Chapter 10

Solution to Problem 10.1

Example of a model which is linear in the parameters (a and b):

x′ = au+ bx (10.80)

A model which is nonlinear in the parameters (c and d):

x′ = c(du–x) (10.81)

However, in the latter example, the model can be written as a model being linear in the
parameters e and c where

e = cd (10.82)

The reformulated model is:
x′ = eu− cx (10.83)

Solution to Problem 10.2

1. Generate simulated data using a model with the known, true parameters.

2. Estimate the parameters from the simulated data.

3. Check if the parameter estimate becomes equal to the true parameter values.

Solution to Problem 10.3

Writing the model on standard regression form:

h(k)− h(k − 1) =
[
−
√
h(k − 1) u(k − 1)

] [a
b

]
(10.84)

The total model becomes
h(1)− h(0)
h(2)− h(1)
h(3)− h(2)
h(4)− h(3)


︸ ︷︷ ︸

Y

=


−
√
h(0) u(0)

−
√
h(1) u(1)

−
√
h(2) u(2)

−
√
h(3) u(3)


︸ ︷︷ ︸

Φ

[
a
b

]
︸ ︷︷ ︸

θ

(10.85)

Solution to Problem 10.4

K is given by

yk = K (10.86)

= 1 ·K (10.87)

= φθ (10.88)

367

CHAPTER 10. ADAPTATION OF MODELS TO DATA

The LS estimate is

θLS = KLS (10.89)

= (ΦTΦ)−1ΦT y (10.90)

=

[1 · · · 1
]  1

...
1




−1 [
1 · · · 1

]


K0 + e1
K0 + e2

...
K0 + eN


(10.91)

= N−1 ·

[
N ·K0 +

N∑
k=1

ek

]
(10.92)

= K0 +
1

N

N∑
k=1

ek (10.93)

= K0 +me (10.94)

where me is the mean value of the noise. From (10.94) you can see that KLS does not
converge towards K0 if the mean value me is different from zero.

Solution to Problem 10.5

According to the Parsimony Principle, you should select the smallest order with relatively
small value of the criterion function. So, you should select order n2.

Solution to Problem 10.6

See the following Program:

http://techteach.no/control/python/prog ls optim greenhouse gas estimate analysis.py

The results are shown in the box below.

a opt = –0.152
b opt = 359.622
f min = V = 11.741
std a = 0.035
std b = 69.930
confint a = [–0.221 –0.152 –0.082]
confint b = [219.761 359.622 499.482]

368

http://techteach.no/control/python/prog_ls_optim_greenhouse_gas_estimate_analysis.py

CHAPTER 10. ADAPTATION OF MODELS TO DATA

So, the 95 % confidence intervals are:

aest: [−0.221, −0.082] (10.95)

best: [219.761, 499.482] (10.96)

Solution to Problem 10.7

The order should be large enough to include the time delay. One time step of 0.5 sec
corresponds to a time delay of 0.5 s, and one such time delay is represented by the factor
z−1 in the transfer function. The model should therefore include 2/0.5 = 4 such factors.
Hence, the mimimum order of the transfer function is 4.

Solution to Problem 10.8

The model written on the standard LS form:

KT

Ra
[va(tk)−Keω(tk)]︸ ︷︷ ︸

y

=
[
ω(tk)

′ −1
]︸ ︷︷ ︸

φ

[
J
TL

]
︸ ︷︷ ︸

θ

(10.97)

ω(tk)
′ is calculated with the center difference method:

ω(tk)
′ ≈ ω(tk+1)− ω(tk−1)

2Ts
(10.98)

where Ts is the time step.

Solution to Problem 10.9

You can remove the mean values of both the input and the output signals (time series or
sequences), and use the devations as new input and output. In more detail: Assume that
{u(k)} is the original input signal and {y(k)} is the output signal, and that mu and my are
the respective mean values. The deviation signals are then

{du(k)} = {u(k)−mu} (10.99)

and
{dy(k)} = {y(k)−my} (10.100)

The signals {du(k)} and {dy(k)} are used as input and output signals.

Solution to Problem10.10

Given the following “time constant” model:

Tx′ = Ku+ d− x

369

CHAPTER 10. ADAPTATION OF MODELS TO DATA

where x is the measurement signal, u is the control signal, and d is the disturbance. K and
T are model parameters. x and u have known values (at the sampling points of time).

In the problems below: “Static” means “constant”. You should explain your answers, but
no rigorous explanations are expected.

1. T can not be estimated from static data because dx/dt is zero, effectively removing T
from the model, and therefore, whatever static values of x and u, we can not calculate
an estimate of T .

2. The static model becomes:
0 = Kus + d–xs

giving:
xs = Kus + d

Since xs and us are known, the above equation is one quation with two unknowns, K
and d, so there is no unique solution for K and d. Hence, we can not excpect any
estimate of K and d to be equal to the true value (i.e. the estimates are not
consistent).

Solution to Problem 10.11

The given model must be written on the regression model form, which is

yk = φkθ (10.101)

where θ is the parameter vector to be estimated.

The model written on the regression model form:

yk︷︸︸︷
xk+1 =

φk︷ ︸︸ ︷
[xk, uk]

θ︷ ︸︸ ︷[
a
b

]
The parameter vector estimate is calculated with the LS formula given in the formula list:

θLS =
(
ΦTΦ

)−1
ΦTY

where:

Φ =


...
φi
...



Y =


...
yi
...


For simplicity, the lower and upper indexes of φi and yi are omitted in the vectors (arrays)
above.

370

CHAPTER 10. ADAPTATION OF MODELS TO DATA

Solution to Problem 10.12

The Python program named ’prog grid motor K T L estim sim.py’ which is available via
the link below implements the model adaptation. Firstly, the program generates a simulated
data series, and then uses this data series as the basis of the parameter estimation.

http://techteach.no/control/python/prog grid motor K T L estim sim.py

Figure 10.13 shows a plot of the control signal u and the observed (simulated) S.

0 1 2 3 4 5 6 7
t [s]

0.20

0.15

0.10

0.05

0.00

0.05

[k
rp

m
]

S_obs
S_sim

0 1 2 3 4 5 6 7
t [s]

1.0

0.5

0.0

0.5

1.0

[V
]

u

0 1 2 3 4 5 6 7
t [s]

0.52

0.51

0.50

0.49

0.48

[V
]

L_true

Figure 10.13: Control signal u and observed (simulated) S which is the basis of the model
adaptation.

Table 10.6 shows the resultat of the parameter estimation. The estimated values are equal
to the true values, and sspe is zero – i.e. perfect model adaptation.

Table 10.6: The result of the parameter estimation of K, T , and L.

Parameter Estimated True

K [krpm/V] 0.15 0.15

T [s] 0.30 0.30

L [V] −0.5 −0.5

sspe 0

371

http://techteach.no/control/python/prog_grid_motor_K_T_L_estim_sim.py

CHAPTER 10. ADAPTATION OF MODELS TO DATA

Solution to Problem 10.13

The Python program named ’prog grid motor K T L estim real.py’ which is available via
the link below implements the parameter estimation.

http://techteach.no/control/python/prog grid motor K T L estim real.py

Figure 10.14 shows a plot of the control signal u and the simulated S together with the real
S. It seems that the model represents the motor well.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
t [s]

0.25
0.00
0.25

[k
rp

m
] S_obs

S_sim

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
t [s]

2.5

0.0

[V
]

u

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
t [s]

0.0775
0.0750
0.0725

[V
]

L_est

Figure 10.14: Plots of control signal u, and simulated S and real S.

The results of the parameter estimation are:

• Kest = 0.165 [krpm/V]

• Test = 0.280 s.

• Lest = −0.0750 V (which indicates a breaking torque, to be expected).

372

http://techteach.no/control/python/prog_grid_motor_K_T_L_estim_real.py

CHAPTER 10. ADAPTATION OF MODELS TO DATA

Solution to Problem 10.14

To appear.

Solution to Problem 10.15

The Python program named ’prog estim brute airheater real.py’ which is available via the
link below implements the model adaptation.

http://techteach.no/control/python/prog estim brute airheater real.py

The result of the estimation is shown in the box below.

sspe optim = 32.5108
Kh optim = 3.9730
theta t optim = 27.8173
theta d optim = 2.7852
T env optim = 22.0161
T init optim = 23.1379

Figure 10.15 shows a plot of the control signal u and the simulated T together with the
observed (real) T . It seems that the model represents the air heater well.

Solution to Problem 10.16

Range in terms of program (algorithm) execution speed:

1. Ordinary Least Squares method.
Applicability limitation: The model must be linear in the parameters.

2. Nonlinear programming (NLP).
Applicability limitation: There is a chance that the parameter estimates only satisfy a
local minimum of the optimization criterion, and hence are not the “globally” optimal
estimates.

3. Gridding (or brute force) method.
Applicability limitation: Due to limited resolution in the parameter estimate
candidates, the precicely optimal parameter estimates are not found.

373

http://techteach.no/control/python/prog_estim_brute_airheater_real.py

CHAPTER 10. ADAPTATION OF MODELS TO DATA

0 50 100 150 200
t [s]

22

24

26

28

30

32

[o
C]

T_sim
T_obs

0 50 100 150 200
t [s]

1

0

1

2

3

4

5

6

[V
]

u_obs

Figure 10.15: Plots of control signal u, and simulated T and observed (real) T .

374

Part IV

BASIC CONTROL METHODS

375

Chapter 11

PID control (continued)

11.1 Introduction

You met the PID controller – both in continuous-time form and in discrete-time form – in
Section 1.4.4. The present chapter describes various aspects of the PID controller, building
upon Section 1.4.4.

11.2 Transfer function of the PID controller

The continuous-time PID controller is:

u = uman + Kce︸︷︷︸
up

+
Kc

Ti

ˆ t

0
e dτ︸ ︷︷ ︸

ui

+KcTd ef
′︸ ︷︷ ︸

ud

(11.1)

where ef is the lowpass filtered control error. Assuming a continuous-time time constant
filter, the filter model is

ef
′ = (e− ef) /Tfd (11.2)

where Tdf [s] is the filter time constant.

In some situations, typically analysis and certain forms of simulations, we need the transfer
function from control error e to control signal u of the PID controller. Let’s derive this
transfer function from (11.1) and (11.2).

We take the Laplace transform of (1.12) while omitting the term uman:

u(s) = Kce(s) +
Kc

Ti
· 1
s
· e(s) +KcTd · s · ef (s) (11.3)

Here we need to calculate ef (s). It can be found by calculating the transfer function from e
to ef from (11.2). We get

ef (s) =
1

Tfds+ 1
e(s) (11.4)

376

CHAPTER 11. PID CONTROL (CONTINUED)

Inserting ef (s) from (11.4) for ef (s) in (11.3) gives

u(s) = Kce(s) +
Kc

Ti
· 1
s
· e(s) +KcTd · s · ef (s) (11.5)

= Kce(s) +
Kc

Ti
· 1
s
· e(s) +KcTd · s ·

1

Tfds+ 1
e(s) (11.6)

=

(
Kc +

Kc

Tis
+

KcTds

Tfds+ 1

)
e(s) (11.7)

Thus, the transfer function of the PID controller is

C(s) =
u(s)

e(s)
= Kc +

Kc

Tis
+

KcTds

Tfds+ 1
(11.8)

where
Tfd = aTd (11.9)

where typically
a = 0.1 (11.10)

11.3 Practical aspects of the PID controller

The following sections describe several practical aspects of PID controller.

11.3.1 Reverse or direct controller action?

11.3.1.1 What is meant by reverse action and direct action?

A PID controller shall have either reverse action mode or direct action mode. It is crucial
that you select correctly between these two options. If set incorrectly, the control system
becomes unstable, totally useless, and perhaps even dangerous, since the controller will
adjust the control signal in the wrong direction.

By definition:

• Reverse action mode = Positive Kc

• Direct action mode = Negative Kc

What is behind the terms reverse action and direct action? Assume for simplicity a P
controller:

u = uman +Kc (r − y) (11.11)

Assume there is a change, ∆y, in y. The correesponsing change in the control signal is then
(uman and r are assumed constant):

∆u = −Kc∆y (11.12)

Assume a positive ∆y (i.e. the process variable increases). Then:

377

CHAPTER 11. PID CONTROL (CONTINUED)

• If Kc is positive, ∆u becomes negative, i.e. ∆u and ∆y has the opposite sign – hence
the controller reacts “reversely”.

• If Kc is negative, ∆u becomes positive, i.e. ∆u and ∆y has the same sign – hence the
controller reacts “directly”.

Note that for industrial controllers it is common that the user always enters a positive value
for the controller gain parameter (this is actually the absolute value of the controller gain).
To set the sign of the resulting gain, the user must in addition select either reverse action or
direct action using a dedicated parameter. This is illustrated in Figure 11.1.

Figure 11.1: Setting the controller mode (reverse, direct) and the (absolute value of) the
controller gain

You can practice with reverse and direct action modes with the following SimView
simulator:

http://techteach.no/simview/pid reverse direct

11.3.1.2 How to select between reverse action and direct action modes?

Definition of process gain

Let us start by defining the term process gain, Kprocess. Figure 11.2 shows two processes to
be controlled, Process 1 and Process 2. For both, the control signal is denoted u, and the
process variable, or actually its measurement, is denoted y. The process blocks include the
actuator and the sensor, in addition to the “process” itself (tank, motor, reactor). The
figure shows the responses due to a positive step change, ∆u, in the control signal. The sign
of the change of y, denoted ∆y, decides the sign of Kprocess:

• Assume ∆u > 0. If ∆y > 0, then Kprocess > 0, i.e. positive process gain.

378

http://techteach.no/simview/pid_reverse_direct

CHAPTER 11. PID CONTROL (CONTINUED)

Process 1
uΔu > 0

t t

y

yu

Δy > 0

Kprocess > 0

Process 2
uΔu > 0

t t

y

yu

Δy < 0

Kprocess < 0

Figure 11.2: Step response test to determine the signal of the process gain, Kprocess, for two
processes

• Assume ∆u > 0. If ∆y < 0, then Kprocess < 0, i.e. negative process gain.

So, from a step response test on the process, we can conclude about the sign of Kprocess.

The step response test above does not have to be a real or simulated test. Probably it is
sufficient that you imagine (simulate in your head) a step response test. Alternatively, you
can conclude about the sign of Kprocess directly from a process model, e.g. a transfer
function. Some examples:

• Positive Kprocess, namely 5:

Hp(s) =
y(s)

u(s)
=

5

2s+ 1

• Negative Kprocess, namely −5:

Hp(s) =
−5

2s+ 1

• Positive Kprocess, in the form of the integrator gain, 10:

Hp(s) =
10

s

• Negative Kprocess, in the form of the integrator gain, −10:

Hp(s) =
−10

s

Rule for selection between reverse action and direct action

To ensure that the control loop is stable, it is necessary that the signs of the controller gain,
Kc, and the process gain, Kprocess, are the same. Thus, we can use the sign of Kprocess to
select between reverse and direct actiod mode:

379

CHAPTER 11. PID CONTROL (CONTINUED)

• For Kprocess > 0, select Kc > 0, i.e. reverse action mode.

• For Kprocess < 0, select Kc < 0, i.e. direct action mode.

Example 11.1 Reverse or Direct action in the level controller?

Figure 11.3 shows a level control system for a liquid tank where the control variable
controls the outflow of the tank, and it is assumed that increasing control signal gives
increasing outflow.

LT

LC

u [m^3/s]

y [m]

Figure 11.3: Tank with level manipulated by a pump in the outlet

Shall the level controller, LC, have reverse or direct action mode? To answer the question,
let’s find the signal of Kprocess. Assume a positive step change in the control signal u, i.e. in
the outflow through the pump. Does this change cause a positive or a negative change in the
level y? Negative! Therefore, Kprocess < 0, and we conclude that shall have direct action.

What if the pump was in the inlet instead?1

What if the pump in the outlet is replaced with a valve where the valve opening, and hence
the flow, is reduced if the control signal is increased? (This could be a Fail Open valve, see
Figure 2.4.)2

[End of Example 11.1]

11.3.2 Reducing P-kick and D-kick caused by setpoint changes

Abrupt changes of the setpoint ysp, for example step changes, creates an abrupt change of
the control error, which in turn may cause unfortunate kicks in the control variable. The
problem is related to the P term and, to an even higher degree, to the D term of the PID
controller. These kicks are denoted proportional kick or P-kick and derivative kick or
D-kick, respectively. Such kicks may cause mechanical actuators to move abruptly, resulting
in excessive wear.

1Then the controller shall have reverse action.
2Then the controller shall have reverse action.

380

CHAPTER 11. PID CONTROL (CONTINUED)

Why does these kicks come?

P-term kick

The P-term is:
up = Kp (wpr − ymf) (11.13)

In the standard PID controller, wp = 1. Assume that r changes as a step. Then there is also
a step in up, causing a proportional kick, a P-kick, in the total control signal (in which up is
one additive term).

D-term kick

The D-term is:
ud = KpTd (wdr − y)′ (11.14)

In the standard PID controller the weight wd is 1. Assume that ysp changes as a step. Since
the time-derivative of a step is an impulse, the step causes an impulse in ud – a D-kick – in
the total control signal, u.

How to solve the problems about P-kick and D-kick?

t

ySP

Figure 11.4: The change of the setpoint from one value to another may follow a ramp instead
of a step to avoid kicks in the control signal.

Two solutions are:

• Smooth setpoint changes: Perhaps the best solution to this problem is to allow
only smooth setpoint changes. Commercial controllers have functions to implement
rampwise changes between two setpoint values. This is denoted ramping the setpoint,
see Figure 11.4.

• Reduce setpoint weights: Another solution is to reduce the setpoint weights wp

and wd. Regarding wp, it is not so common to reduce it, but if it is, wp = 0.3 is
suggested Åstrøm & Hägglund (1995). Regardring wd, it is actually quite common to
set wd = 0, causing the setpoint to be removed completely from the derivative term.
In many commercial controllers wd = 0 is a fixed factory setting.

Example 11.2 Avoiding controller kicks during setpoint step change

Figure 11.5 shows simulated responses of a PID control system with and without reduction
of the setpoint weight in the P-term and the D-term, and with setpoint ramping. The

381

CHAPTER 11. PID CONTROL (CONTINUED)

Control signal

Setpoint

Process

response

No reduction of setpoint weights
Reduction of setpoint weights in

both P-term and D-term

No reduction of setpoint weights,

but setpoint ramping

Figure 11.5: Example 11.2: Responses in PID control system with and without reduction of
setpoint weight and with setpoint ramping

reduced weights are wp = 0.3 and wd = 0. The PID parameters are Kc = 3.6, Ti = 2.0 s,
Td = 0.5 s. The simulations demonstrates that the control signal is smoother with reduced
weights and with setpoint ramping.

The simulations in this example are made with the following SimView simulator:

http://techteach.no/simview/control kick

[End of Example 11.2]

11.3.3 Integrator anti wind-up

The problem

Wind-up is a problem related to the integral term of a PID controller – the I-term may get
a large and continuously increasingly value – it winds up – if large disturbances or large
setpoints or sensor failure is causing the actuator to reach its saturation limits, i.e. a
maximum limit and a minimum limit. Examples of such limits are: A power amplifier (for a
heater or a motor) not deliver an infinitely amount of power; A valve can not have an
infinitely large opening and can not be more closed than closed(!). Under normal process
operation the control variable should not reach the saturation limits, but at extreme
conditions, it can reach the limits.

382

http://techteach.no/simview/control_kick

CHAPTER 11. PID CONTROL (CONTINUED)

Let’s study a concrete example.

Example 11.3 Anti wind-up

Figure 11.6 shows the front panel of a simulator for a temperature control system for a
liquid tank with continuously mass flow. The responses shown in the figure are commented
below. The disturbance is here the inlet temperature Tin, which is is changed as a step from

Figure 11.6: Temperature control without anti wind-up.

40 oC to 10 oC at approx. 210 min and back to 40 oC at approx. 300 min. The temperature
setpoint TSP is 70 oC (constant). The controller has been tuned with the Ziegler-Nichols
closed loop method. The maximum value of the control variable is 100 % and the minimum
value is 0 %.

The PID controller used in the simulation shown in Figure 11.6 has no limitation on its
integral term – hence it has no anti wind-up (later we will activate anti wind-up). In the
simulation, Tin is reduced to 10 oC, causing the actuator (heating element) to go into
saturation (100 %) trying to compensate for the (cold) disturbance. It can be shown that
the control variable u should have a value of 122.5 % (which corresponds to more heat
power than what is available) to be able to compensate for Tin = 10 oC. But because of the
limitation of the heater capacity, the controller is not able to compensate fully for the
disturbance, and the control error remains non-zero.

The non-zero error makes the integral term, ui, increase, or: wind up. At t = 300 min, the
disturbance was set back to the normal value of 40 oC. It was observed (but not shown in
Figure 11.6), that the integral term at that time reached appox. 2200 %! Due to the very
large I-term and the disturbance being back at normal (“hot”) value, the total power
delivered to the tanks is too large, causing the temperature to become too large. The
control error has become negative, causing the I-term to decrease, which is good. But, it

383

CHAPTER 11. PID CONTROL (CONTINUED)

takes a long time until the I-term is again within a normal range, and in that time the
temperature is about 17 degrees above the setpoint. Hence, there is a long-lasting large
control error, which is a problem.

The solution

A practical PID controller must be able to cope with the possibility of integrator wind-up,
that is, it must have some integral anti wind-up mechanism. Fortunately, you can assume
that anti wind-up is implemented in commercial controllers.

The principle of an anti wind-up mechanism is simple: Since the problem is that the
integral term increases continuously during actuator saturation, the solution is to halt the
integration of the control error when the control signal reaches either its maximum or its
minimum limit. Figure 11.7 illustrates the solution. The I term is represented with the

Process

Sensor

v

yySP ue

u0

ui

I-term

P-term

D-term

Overflow outlet
implements integrator
anti wind-up

PID controller with anti wind-up

Figure 11.7: An analogy of integrator anti windup: A tank with weir to stop the integration
at a certain level.

tank, and anti windup is realized with a weir so that the integration of the liquid (the error)
is halted at a certain maximum level.

How to realize anti windup in a discrete-time PID algorithm? Recall the I term of the PID
algorithm:

ui,k = ui,k−1 +
KpTs

Ti
ek (11.15)

Anti windup can be realized by stopping the integration (or accumulation) of ui when the
following condition is met, namely that a (preliminary) calculation of u is greater than the
maximum of u, typically 100%, or less than the minimum of u, typically 0%. In (11.15), the
integration is stopped by forcing the term at the right to zero, so that the I term becomes

ui,k = ui,k−1 + 0 · ek (11.16)

Back to the temperature control system. Figure 11.8 shows the responses with integrator
anti wind-up, which means that the updating of the I-term is stopped when the control

384

CHAPTER 11. PID CONTROL (CONTINUED)

signal is at its maximum (here 100 %) or minimum value (here 0 %). The simulations

Figure 11.8: Temperature control with anti wind-up.

clearly show that it is beneficial to use integrator anti wind-up: The temperature returns
much sooner to the setpoint after the disturbance has changed back to its normal value.
This is because the I-term stayed at a reasonable value (in the simulation it was observed
that the I-term had the value of a few %) despite the control error was large due to the
limit of the heater.

The simulations in this example are made with the following SimView simulator:

http://techteach.no/simview/antiwindup

[End of Example 11.3]

11.3.4 Bumpless transfer between manual and auto modes

It is important that the control signal does not jump (too much) when the controller is
switched from automatic to manual mode, or from manual to automatic mode. In other
words, the transfer between the automatic and manual modes should be bumpless.
Bumpless transfer is implemented in commercial controllers.

We can implement bumpless transfer in a PID algorithm as follows:

• Bumpless transfer from manual to automatic mode: Set ui,k−1 = 0 to empty
the I term just before switching between the modes.

385

http://techteach.no/simview/antiwindup

CHAPTER 11. PID CONTROL (CONTINUED)

• Bumpless transfer from automatic to manual mode: Set uman = u, and halt
the I term by setting ui,k = ui,k−1 during manual mode.

You can practice bumpless transfer between manual and automatic modes with the
following SimView simulator:

http://techteach.no/simview/bumpless transfer

386

http://techteach.no/simview/bumpless_transfer

CHAPTER 11. PID CONTROL (CONTINUED)

11.4 Problems for Chapter 11

Problem 11.1 Transfer function of PI controller

What is the transfer function of a PI controller?

Problem 11.2 Reverse or direct action?

Figure 11.9 shows a pressure control system. Assume that increasing the control signal to
the valve increases the valve opening. Will you set the controller to have reverse action or
direct action?

PT PC

Figure 11.9: Pressure control system

Problem 11.3 Derivative kick

A derivative term – or D-term – with the possibility of setpoint weight reduction is

ud = KcTd (wdr − y)′ (11.17)

(It is here, for simplicity, assumed that there is no lowpass filter acting on the D-term.)
Assume that there is no reduced weight of the setpoint, i.e.

wd = 1 (11.18)

Assume that the process measurement y is constant, and that the setpoint r is changed as a
step at time t = 0. Describe (qualitatively) the corresponding response in the control signal
ud due to this step. What kind of signal is this response?

387

CHAPTER 11. PID CONTROL (CONTINUED)

Problem 11.4 Anti windup

One appliaction where it is particularly important with anti windup is limiting control.
Figure 11.10 shows a gas tank with one inlet and two outlets. The purpose of the normal
control loop is to keep the gas pressure at the normal setpoint SP1, say 2 bar. The purpose
of the limiting control loop is to limit the pressure to the higher setpoint SP2, say 4 bar.
What is the control error of controller PC2 under normal conditions? Why is it particularly
important that this controller has anti windup?

PT

2

PC

2

PC

1

PT

1

Limiting

control

SP1SP2

Normal

control

Gas tank

Gas inflow

V2 V1
SP2 > SP1

Gas outflows

Figure 11.10: Limiting control

388

CHAPTER 11. PID CONTROL (CONTINUED)

11.5 Solutions to problems for Chapter 11

Solution to Problem 11.1

By setting Td = 0 in (11.19), we get the transfer function of a PI controller:

C(s) =
u(s)

e(s)
= Kc +

Kc

Tis
=

Kc(Tis+ 1)

Tis
(11.19)

Solution to Problem 11.2

Assume that for some reason the presssure is larger than the pressure reference. The
controller must react to this by ensuring that the valve opening is increase, which means
that the valve control signal is increased. Therefore, the controller must have directe action.

Solution to Problem 11.3

The control signal is

ud = KcTd
d (Setpoint step− constant)

dt
(11.20)

The time-derivative of a setpoint step is an impulse, which is a signal if infinite amplitude
and with infinite duration, see Figure 11.11. So, the stepwise change of the setpoint causes
an impulse-like change of the control signal. That is the derivative kick.

t

Impulse at time t0

t0

Figure 11.11: Impulse.

Solution to Problem 11.4

Under normal conditions the control error of PC2 is

e2 = SP1 − SP2 = 4− 2 bar = 2 bar (11.21)

This sustained non-zero control error would have caused the integral term of controller PC2

to wind up – or, actually, to wind down to a very large negative value, making the

389

CHAPTER 11. PID CONTROL (CONTINUED)

controller virtually inactive if the pressure rises and comes close to SP2, which makes the
controller useless for limiting control.

390

Chapter 12

Transfer functions of feedback
control systems

12.1 Introduction

Transfer functions of feedback control systems can be useful for:

• simulation

• analytical calculation of responses

• frequency response analysis

12.2 Definition of setpoint tracking and disturbance
compensation

Figure 12.1 shows a principal block diagram of a control system.

There are two input signals to the control system, namely the setpoint ysp and the
disturbance d. The value of the control error e is our primary concern (it should be small,
preferably zero). Therefore we can say that e is the (main) output variable of the control
system. The value of e expresses the performance of the control system: The less e, the
higher performance. e is influenced by r and d. Let us therefore define the following two
properties of control systems:

• The setpoint tracking property of the control system concerns the relation
between ysp and e.

• The disturbance compensation property of the control system concerns the
relation between d and e.

391

CHAPTER 12. TRANSFER FUNCTIONS OF FEEDBACK CONTROL SYSTEMS

Process

Sensor

d

yysp u

e

Controller

Control system

ym

Figure 12.1: Principal block diagram of a control system.

Totally, the setpoint tracking and disturbance compensation properties determine the
performance of the control system.

12.3 Sensitivity transfer function

12.3.1 Definition of Sensitivity transfer function

We assume that the control system has a transfer function-based block diagram as shown in
Figure 12.2.

C(s) P(s)
u(s) y(s)

y(s)

r(s)

D(s)

d(s)

Process

Controller

Disturbance

transfer function

Process

transfer function

e(s)

Figure 12.2: Transfer function-based block diagram of a control system.

We regard the reference r and the disturbance d as input variables and the control error e as
the output variable of the system. Thus, we will derive the transfer function from r to e and

392

CHAPTER 12. TRANSFER FUNCTIONS OF FEEDBACK CONTROL SYSTEMS

the transfer function from d to e. From the block diagram in Figure 12.2 we the can write
the following expressions for e(s) (for simplicity, dropping the argument s in the following):

e = r − y (12.1)

= r − (Dd+ Pu) (12.2)

= r − (Dd+ PCe) (12.3)

Solving (12.3) for e gives:

e =

(
1

1 + CP

)
r +

(
− 1

1 + CP
D

)
d (12.4)

Let us define the loop transfer function as the product of the transfer functions in the loop,
i.e.:

L
def
= CP (12.5)

and the sensitivity transfer function::

S
def
=

1

1 + L
(12.6)

With these two definitions, (12.4) can be written:

e = S · r︸︷︷︸
er

+ (−SD) · d︸ ︷︷ ︸
ed

(12.7)

where:
er = S · r (12.8)

and
ed = (−SD) · d (12.9)

12.3.2 Calculation of response in control error

From (12.7) we can calculate the control error for any reference and any disturbance signal
(assuming we know their Laplace transforms).

In the following we discuss er and ed.

12.3.2.1 Response in error due to setpoint

The response in the control error due to the reference (setpoint) is

er(s) = S(s)r(s) =
1

1 + L(s)
r(s) (12.10)

which gives a quantitative expression of the tracking property of the control system.

393

CHAPTER 12. TRANSFER FUNCTIONS OF FEEDBACK CONTROL SYSTEMS

The static tracking property is given by static error when r is constant. This error can be
calculated as follows:1

er,s = lim
t→∞

er(t) (12.11)

= lim
s→0

s · er(s) (12.12)

= lim
s→0

s · S(s)r(s) (12.13)

= lim
s→0

s · S(s)rs
s

(12.14)

= S(0)rs (12.15)

From (12.15) we see that the setpoint tracking property of the control system are good if the
sensitivity transfer function S has small (absolute) value – ideally zero.

12.3.2.2 Response in error due to disturbance

The response in the control error due to the disturbance is

ed(s) = −S(s)D(s)d(s) (12.16)

which expresses the disturbance compensation property of the control system.

The static compensation property is given by

eds = lim
t→∞

ed(t) = lim
s→0

s · ed(s) (12.17)

= lim
s→0

s · [−S(s)D(s)d(s)] (12.18)

= lim
s→0

s ·
[
−S(s)D(s)

ds
s

]
(12.19)

= −S(0)D(0)ds (12.20)

From (12.20) we see that the disturbance compensation property is good if the sensitivity
transfer function S has a small (absolute) value (close to zero).

12.4 Tracking transfer function

12.4.1 Definition of Tracking transfer function

The tracking transfer function T (s) is the transfer function from the setpoint ysp to the
process output measurement ym:

ym(s) = T (s)r(s) (12.21)

or:

T (s) =
y(s)

r(s)
(12.22)

1Here the Final Value Theorem of the Laplace transform is used.

394

CHAPTER 12. TRANSFER FUNCTIONS OF FEEDBACK CONTROL SYSTEMS

Let’s find T (s) in terms of From the block diagram in Figure 12.2, or by setting
er(s) ≡ r(s)− y(s) for er(s) in (12.10), we can find the tracking transfer function T (s) as
the transfer function from r to y:

y(s)

r(s)
= T (s) =

C(s)P (s)

1 + C(s)P (s)
=

L(s)

1 + L(s)
= 1− S(s) (12.23)

12.4.2 Calculation of response in control error

The static tracking property is given by the static tracking transfer function T (0):

ys = lim
t→∞

y(t) (12.24)

= lim
s→0

s · ys(s) (12.25)

= lim
s→0

s · T (s)r(s) (12.26)

= lim
s→0

s · T (s)rs
s

(12.27)

= T (0)rs (12.28)

The tracking property is good if the tracking transfer function T has (absolute) value equal
to or close to 1 (since then y will be equal to or close to r).

12.5 Analytical calculation of responses with transfer
functions

To appear.

395

CHAPTER 12. TRANSFER FUNCTIONS OF FEEDBACK CONTROL SYSTEMS

12.6 Problems for Chapter 12

Problem 12.1 Transfer function of feedback control system

Given a process with the following transfer function from control signal to measurement
signal:

P (s) =
Ki

s
(12.29)

1. Characterize this process in terms of its dynamics (just a single term is expected in
your answer).

2. Calculate the gain Kc of a P controller for the process so that the control system gets
a time constant of Tc [s].

3. What is the pole of the control system?

4. Assuming Ki is negative, does the controller have reverse action or direct action?

Problem 12.2 Block diagram of feedback control system with noise and
filter

Figure 12.1 shows a principal block diagram of a control system. The setpoint ysp and the
disturbance v are two input signals to the control system. There is actually a third input
that is present in practical control systems, namely measurement noise n, which is typically
a random signal. Assume that n is added to the measurement signal which is the output of
the sensor. Most control systems contains a lowpass filter which attenuates the
measurement noise so that the resulting measurement signal entering the controller becomes
smoother.

Draw a block diagram of feedback control system where measurement noise and filter are
included.

Problem 12.3 Finding the loop transfer function

Assume given a control system as shown in Figure 12.2. The transfer functions are as
follows:

P (s) =
Ku

Tus+ 1
e−τs (12.30)

D(s) =
Kd

Tds+ 1
e−τs (12.31)

C(s) = Kc
Tis+ 1

Tis
(PI controller) (12.32)

Find the loop transfer function L(s), the sensitivity transfer function S(s), and the tracking
transfer function T (s).

396

CHAPTER 12. TRANSFER FUNCTIONS OF FEEDBACK CONTROL SYSTEMS

12.7 Solutions to problems for Chapter 12

Solution to Problem 12.1

1. Process dynamics: Integrator.

2. Tuning the P controller: Controller transfer function is

C(s) = Kc (12.33)

Loop transfer function:

L(s) = C(s)P (s) = Kc
Ki

s
(12.34)

Tracking transfer function:

T (s) =
L(s)

1 + L(s)
=

KcKi

s+KcKi
=

1
1

KcKi
s+ 1

=
1

Tcs+ 1
(12.35)

The closed loop time constant is

Tc =
1

KcKi
(12.36)

Solving for Kc gives

Kc =
1

TcKi
(12.37)

3. The pole of control system is the root of the characteristic equation whih is:

s+KcKi = 0 (12.38)

Hence, pole becomes

p = −KcKi = − 1

Tc
(12.39)

4. Assuming K is negative, Kc becomes negative (since Tc must be positive to have a
stable control system). A negative Kc means that the controller has direct action.

Solution to Problem 12.2

Figure 12.3 shows a block diagram where the measurement noise n and a (lowpass) filter is
included.

Solution to Problem 12.3

Loop transfer function:

L(s) = C(s)P (s) = Kc
Tis+ 1

Tis

Ku

Tus+ 1
e−τs (12.40)

397

CHAPTER 12. TRANSFER FUNCTIONS OF FEEDBACK CONTROL SYSTEMS

Process

Sensor

v

yySP u

e

Controller

Measurement noise
n

Filter

Figure 12.3: Block diagram of feedback control system where measurement noise and filter
are included.

Sensitivity transfer function:

S(s) =
1

1 + L(s)
(12.41)

=
1

1 +Kc
Tis+1
Tis

Ku
Tus+1e

−τs
(12.42)

=
Tis (Tus+ 1)

Tis (Tus+ 1) +KcKu (Tis+ 1) e−τs
(12.43)

Tracking transfer function:

T (s) =
L(s)

1 + L(s)
(12.44)

=
Kc

Tis+1
Tis

Ku
Tus+1e

−τs

1 +Kc
Tis+1
Tis

Ku
Tus+1e

−τs
(12.45)

=
KcKu (Tis+ 1) e−τs

Tis (Tus+ 1) +KcKu (Tis+ 1) e−τs
(12.46)

398

Chapter 13

Simulation of PID control systems

13.1 Introduction

This chapter demonstrates three different ways of simulating PID control systems:

• Simulation with elementary code in Python

• Simulation of transfer functions with Python Control package

• Simulation of block-diagrams with OpenModelica

The same control system is simulated in all three cases, namely the level control system of a
wood chips tank, see Figure 13.1.

The mathematical model of the tank is given by (38.2) in Appendix 38.1. The controller is
a PI controller with PI settings according to the Skogestad PI tuning method for
“integrator with time delay” processes (cf. Example 14.6):

Kc = 7.77 [%/m] (13.1)

Ti = 1000 s (13.2)

13.2 Simulation with elementary code in Python

The Python program implementing the simulator is available from the following link:

http://techteach.no/control/python/sim pi control chiptank.py

399

http://techteach.no/control/python/sim_pi_control_chiptank.py

CHAPTER 13. SIMULATION OF PID CONTROL SYSTEMS

To the

cookery

0 m

Wood

chips
Control signal

u [%]

Tank

Fout [kg/s]

Level

h [m]

Mass flow

Fs [kg/s]

Fin [kg/s]

Feed screw

Screw constant

Ks [(kg/s)/%]

Time delay

 [min]

Wood

chipsDensity

 [kg/m3]

A [m2]

LTLC

Level

controller

Level

transmitter

(sensor)

Figure 13.1: Level control system of a wood chips tank.

Comments to the Python program:

• The PI controller is coded in the function fun pi con().

• The process simulator based on the Euler simulation algorithm is coded in the
function fun process sim.

• The above two functions are invoked in the For loop of the simulator.

Figure 13.2 shows the simulated level response due to a step change of the level reference r
at time t = 1000 s and a step change of the outflow Fout at time t = 6000 s.

13.3 Simulation of transfer function model with Python
Control package

The simulator is available from the following link.

http://techteach.no/control/python/sim pi level control woodchip tank pycon.py

Figure 13.3 shows the simulated level response due to a step change of the level reference.

400

http://techteach.no/control/python/sim_pi_level_control_woodchip_tank_pycon.py

CHAPTER 13. SIMULATION OF PID CONTROL SYSTEMS

0 2000 4000 6000 8000 10000 12000

10.0

10.5

11.0

11.5 r [m]
h [m]

0 2000 4000 6000 8000 10000 12000
0

20

40

60

80

100

u [%]
u_min
u_max

0 2000 4000 6000 8000 10000 12000
t [s]

25

26

27

28

29

30 F_out [kg/s]

Figure 13.2: Simulation of level control system of wood chips tank with elementary Python
code.

13.4 Simulation of block-diagram model with OpenModelica

Figure 13.4 shows the block diagram model of the level control system as built in
OpenModelica.

The simulator is available from the following link:

http://techteach.no/control/openmodelica/pi control woodchips tank.mo

Figure 13.5 shows the simulated level response due to a step change of the level reference
and a step change of the outflow.

401

http://techteach.no/control/openmodelica/pi_control_woodchips_tank.mo

CHAPTER 13. SIMULATION OF PID CONTROL SYSTEMS

0 1000 2000 3000 4000 5000 6000
t [s]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

[m
]

r [m]
y [m]

Figure 13.3: Simulation of level control system of wood chips tank with Python Control
package.

13.5 Problems for Chapter 13

To appear.

13.6 Solutions to problems for Chapter 13

To appear.

402

CHAPTER 13. SIMULATION OF PID CONTROL SYSTEMS

Figure 13.4: Block diagram model of the level control system as built in OpenModelica.

Figure 13.5: Simulation of level control system of wood chips tank with Python Control
package.

403

Chapter 14

Tuning of PID controllers

14.1 Introduction

PID controller tuning is to find proper values of the controller parameters Kc, Ti and Td so
that the specifications of the control system are met. Generally, the specifications comprise:

• Stability, which is an absolute requirement to a control system. A control system must
be stable – otherwise it is useless, and it may even be dangerous since variables in the
control system be oscillate or diverge to large, uncontrolled values.

• Speed. In most cases, we want the control system to act as fast as possible. However,
some control systems should act slowly, as in averaging level control, cf. Ch. 16.4. In
averaging control, the level control of a buffer tank or magazine is made slow by
purpose. The slow level control will attenuate variations in the inflow to the
magazine, so the outflow, which is manipulated by the level controller, varies less than
the inflow – therefore the term averaging control.

Let’s look closer at these specifications.

Stability

Stability can be determined from a mathematical model of the control system (as pole
placement, cf. Ch. 20, or stability margins, cf. Ch. 15 and 20), or from the way the control
system behaves in the “time domain” after it has been excited with an appropriate test
signal, typically a step in the reference (setpoint). Let’s take a closer look on control system
stability in the time domain.

Ziegler and Nichols Ziegler & Nichols (1942), who developed a PID controller tuning
method which is later named after them, cf. Section 14.2, defined “ok stability” as “one
quarter decay ratio”, see Figure 14.1. The figure shows the response due to a step change in

404

CHAPTER 14. TUNING OF PID CONTROLLERS

the reference. The ratio between amplitudes A2 and A1 is one quarter:

A2

A1
=

1

4
(14.1)

Figure 14.1: The definition of “one quarter decay ratio”

The one quarter decay ratio is the stability you can expect for a control system where you
have used one of the Ziegler-Nichols tuning methods, however, there is no guarantee that
the ratio is actually one quarter. Most control practitioners are not so happy with such a
stability – it should be better (smaller ratio; i.e. better damping). This chapter presents
several methods that typically gives better stability.

Speed

Typically, there is a compromise between stability and fastness. This is illustrated in Figure
14.2. It shows the response in the process output variable due to a step change of the
setpoint. If you want very good stability in the control system, the system will not be so
fast. If you want very fast control, the system will have poor stability.

Since stability is the most important specification, the controller tuning aims at giving
satisfactory stability, and the obtained fastness must be accepted.

The controller tuning methods

This chapter presents several controller tuning methods. Most of them are experimental
methods. But that does not mean that these methods can be applied only to a physical
system on which you perform experiments; You may use the methods on a simulator of the
control system!

Some times I am asked which of the controller tuning methods is the best, or which do I
recommend trying first. Based on my work is quite a few practical projects, I think the

405

CHAPTER 14. TUNING OF PID CONTROLLERS

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Very stable (good), but slow response (bad)

Very fast response (good), but poor stability (bad)

Setpoint (a step)
Acceptable stability

Figure 14.2: The typical compromise between good stability as fastness of a control systems

Skogestad method, cf. Section 14.8, is the best method overall. It can be used both for fast
control and for slow control, and the controller can be retuned directly from the tuning
formulas if the process dynamics, for example the process gain or the process time delay,
varies. And as an experimental method, it requires in principle only one relatively short
experiment, while other methods typically requires several experiments.

14.2 Ziegler-Nichols closed loop method

Introduction

Ziegler and Nichols published in 1942 a paper Ziegler & Nichols (1942) where they
described two methods for tuning the parameters of P-, PI- and PID controllers. These two
methods go under various names, e.g. the Ziegler-Nichols closed loop method (which is
described in this section) and the Ziegler-Nichols open loop method, cf. Section 14.9. One
may say that the Ziegler-Nichols closed loop method remains as the most known PID
tuning method, despite decades of research and development. The Ziegler-Nichols closed
loop method is also often used as a reference method when new methods are tested.

There is no guarantee that a given control system tuned with one of the Ziegler-Nichols
methods actually gets a stability as “one quarter decay ratio”, but the stability is probably
not very different.

The method

The Ziegler and Nichols closed loop method is based on experiments executed on an
established control loop (a real system or a simulated system), see Figure 14.3.

406

CHAPTER 14. TUNING OF PID CONTROLLERS

Process

with actuator,

sensor, and

meas. filter

ysp
Controller

Pu

d

u

uman

Aut

Man y

Figure 14.3: The Ziegler-Nichols closed loop method is applied to an established control
system.

The tuning procedure is as follows:

Ziegler and Nichols closed loop method

1. Bring the process to (or as close to as possible) the specified operating point of the
control system to ensure that the controller during the tuning is “feeling”
representative process dynamic1 and to minimize the chance that variables during
the tuning reach limits. You can bring the process to the operating point by
manually adjusting the control variable, with the controller in manual mode, until
the process variable is approximately equal to the setpoint.

2. Turn the PID controller into a P controller with gain Kc = 0 (set Ti = ∞ and
Td = 0). Close the control loop by setting the controller in automatic mode.

3. Increase Kc until there are sustained oscillations in the signals in the control
system, e.g. in the process measurement, after an excitation of the system. (The
sustained oscillations corresponds to the system being on the stability limit.) This
Kc value is denoted the ultimate (or critical) gain, Kc,u.

The excitation can be a step in the setpoint. This step must be small, for example
5% of the maximum setpoint range, so that the process is not driven too far away
from the operating point where the dynamic properties of the process may be
different. On the other hand, the step must not be too small, or it may be difficult
to observe the oscillations due to the inevitable measurement noise.

It is important that Kc,u is found without the actuator being driven into any
saturation limit (maximum or minimum value) during the oscillations. If such
limits are reached, you will find that there will be sustained oscillations for any
(large) value of Kc, e.g. 1000000, and the resulting Kc-value (as calculated from
the Ziegler-Nichols formulas, cf. Table 14.1) is useless (the control system will
probably be unstable). One way to say this is that Kc,u must be the smallest Kc

value that drives the control loop into sustained oscillations.

407

CHAPTER 14. TUNING OF PID CONTROLLERS

4. Measure the ultimate (or critical) period Pu of the sustained oscillations.

5. Calculate the controller parameter values according to Table 14.1, and use these
parameter values in the controller.

6. If the stability of the control loop is poor, try to improve the stability by
decreasing Kc by a factor of say 2. If that does not help enough, you may in
addition try to increase Ti by a factor of say 2.

Table 14.1: The Ziegler-Nichols controller settings.

Kc Ti Td

P controller 0.5Kc,u ∞ 0

PI controller 0.45Kc,u
Pu
1.2 0

PID controller 0.6Kc,u
Pu
2

Pu
8 = Ti

4

Example 14.1 PI controller tuning with the Ziegler-Nichols closed loop method

Figure 14.4: The Ziegler-Nichols tuning experiment

Figure 14.4 shows a temperature control system with simulated responses of the
Ziegler-Nichols tuning experiment. The ultimate gain is

Kc,u = 26.5 (14.2)

The ultimate periode is read off as

Pu = 5 min = 300 s (14.3)

408

CHAPTER 14. TUNING OF PID CONTROLLERS

This gives the following Ziegler-Nichols PI settings:

Kc = 0.45Kc,u = 0.45 · 26.5 = 11.9 (14.4)

and

Ti =
Pu

1.2
=

300 s

1.2
= 250 s (14.5)

Figure 14.5 shows the simulated responses with the above PI settings. The excitations are
step changes in setpoint and disturbance (inlet temperature). The stability can be
characterized with an amplitude damping ration of approximately 0.30 which is somewhat
larger (worse) than 0.25 which is the ratio that Ziegler and Nichols prescribed.

Figure 14.5: Simulated temperature control system with PI settings according to the Ziegler-
Nichols method.

[End of Example 14.1]

Some comments to the Ziegler-Nichols closed loop method

1. You do not know in advance the amplitude of the sustained oscillations. The
amplitude depends partly of the initial value of the process measurement. By using
the Åstrøm-Hägglund’s tuning method described in Section 14.5 instead of the
Ziegler-Nichols closed loop method, you have full control over the amplitude, which is
beneficial, of course.

2. For sluggish processes it may be time consuming to find the ultimate gain in physical
experiments. The Åstrøm-Hägglund’s method reduces this problem since the
oscillations come automatically.

409

CHAPTER 14. TUNING OF PID CONTROLLERS

3. If the operating point varies and if the process dynamic properties depends on the
operating point, you should consider using some kind of adaptive control or gain
scheduling, where the PID parameter are adjusted as functions of the operating point.

If the controller parameters shall have fixed value, they should be tuned in the worst
case as stability is regarded. This ensures proper stability if the operation point
varies. The worst operating point is the operation point where the process gain has its
greatest value and/or the time delay has its greatest value.

4. The responses in the control system may become unsatisfactory with the
Ziegler-Nichols method. 1/4 decay ratio may be too much, that is, the damping in the
loop is too small. A simple re-tuning in this case is to reduce the Kc somewhat, for
example by 20%.

In the beginning

The Ziegler and Nichols methods have definitely proven to be useful, but they actually met
some resistance in the beginning. In Blickley (1990) Ziegler reports from a meeting in the
American Society of Mechanical Engineers (ASME): “The questions at the end were pretty
bitter because they (the ‘old-timers’) could not stomach this ultimate sensitivity2. The
questions got worse and worse, and I was answering them. Finally a little guy in the back of
the room got up. He was from Goodyear. Since he was on the committee he had received an
advance copy of the paper. He stuttered some, and stammered out for all to hear: ‘We had
one process in our plant, a very bad one, and so I tried this method and it just worked
perfectly.’ That broke up the meeting.”

14.3 Relaxed Ziegler-Nichols PI settings

It may happen that the stability of the control system becomes somewhat poor with the
Ziegler-Nichols method. In Haugen & Lie (2013), alternative formulas for tuning PI
controllers based on the Ziegler-Nichols oscillations are derived. The method will provide
better stability than tuning with the original Ziegler-Nichols method. We can denote the
resulting settings the Relaxed Ziegler-Nichols settings.

The PI settings are derived from a combination of the Ziegler-Nichols method and the
Skogestad method. The PI setting formulas are:

Kc =
2

π (1 + kr)
Kc,u (14.6)

Ti =
kr + 1

2
Pu (14.7)

where kr is a tuning parameter. With kr = 1, the PI settings are equal to the Skogestad PI
settings for a process assumed to be “integrator with time delay”, cf. Section 14.8. Since
the purpose of the Relaxed Ziegler-Nichols settings is relaxed tuning, I suggest even more
relaxation than with kr = 1, namely

kr = 1.5 (14.8)

2which implies that the control system is on the stability limit and oscillates

410

CHAPTER 14. TUNING OF PID CONTROLLERS

Using kr = 1.5 in (14.6) and (14.7) gives Kc = 0.25Kc,u and Ti = 1.25Pu, which are the
Relaxed Ziegler-Nichols PI settings. They are presented in Table 14.2 together with the
original Ziegler-Nichols PI settings.

Table 14.2: Relaxed Ziegler-Nichols PI settings and the original Ziegler-Nichols settings

PI settings Kc Ti

Relaxed Ziegler-Nichols 0.25Kcu 1.25Pu

Original Ziegler-Nichols 0.45Kcu
Pu
1.2

To summarize:

Relaxed Ziegler-Nichols’ PI tuning method

1. Accomplish the Ziegler-Nichols experiment to find the ultimate gain, Kc,u, and
ultimate period, Pu.

2. Tune the PI controller using
Kc = 0.25Kc,u (14.9)

Ti = 1.25Pu (14.10)

Example 14.2 Relaxed Ziegler-Nichols PI tuning

In Example 14.1 we found the following parameters in the Ziegler-Nichols experiment:

Kc,u = 26.5

Pu = 5 min = 300 s

This gives the following Relaxed Ziegler-Nichols PI settings:

Kc = 0.25Kc,u = 0.25 · 26.5 = 6.63

and
Ti = 1.25Pu = 1.25 · 300 = 375 s

Figure 14.6 shows simulations with these PI settings. The stability is clearly improved
comparing with the stability with the Ziegler-Nichols method, cf. Figure 14.5.

[End of Example 14.2]

411

CHAPTER 14. TUNING OF PID CONTROLLERS

Figure 14.6: Simulation of the temperature control system with PI settings according to the
Relaxed Ziegler-Nichols method.

14.4 Quasi Ziegler-Nichols tuning

Here is another method – called the Quasi Ziegler-Nichols tuning method – to cope with
poor stability of a control loop – assuming PI control.3 The poor stability may be the result
of a Ziegler-Nichols tuning applied to a process which has relatively small time delay, e.g.
less than 10 % of the process time constant. However, the method may be used also on
other control systems showing poor stability.

The method is as follows:

Quasi Ziegler-Nichols tuning method

1. It is assumed that the original PI settings are Kc,0 and Ti,0, found with any PI
tuning method, and that the control system shows poor stability with these
settings. Assume that you can observe poorly damped oscillations with period
Pu,0.

3This method has not a solid scientific background. It stems from an idea I got while working on tuning a
PI controller for biogas production on a pilot plant around year 2012. The method worked out very well on
both a simulator of the plant and the real plant, and it turns out to work well also on other systems.

412

CHAPTER 14. TUNING OF PID CONTROLLERS

2. Improved PI setting may be obtained by applying Ziegler-Nichols PI tuning
pretending that these oscillations are true Ziegler-Nichols oscillations:

Kc = 0.45Kc,0 (14.11)

Ti =
Pu,0

1.2
(14.12)

Note that the original value of Ti,0 is not used in these formulas (although Ti,0 is
mentioned in item 1).

Example 14.3 Quasi Ziegler-Nichols method

In Example 14.1 we found the following PI settings for the temperature control system with
the Ziegler-Nichols method:

Kc = 11.9 (14.13)

Ti = 250 s (14.14)

Figure 14.5 shows simulations with these settings. Assume that we are not happy with the
stability. From Figure 14.5 we read off

Pu,0 = 8 min = 480 s

The Quazi Ziegler-Nichols method gives:

Kc = 0.45Kc,0 = 0.45 · 11.9 = 5.36 (14.15)

Ti =
Pu,0

1.2
=

480 s

1.2
= 400 (14.16)

Figure 14.7 shows simulations with these PI settings. The stability is clearly improved
comparing with the stability with the Ziegler-Nichols method, cf. Figure 14.5.

[End of Example 14.3]

14.5 Åstrøm-Hägglund Relay tuning method

If the process has slow dynamics, the trial-and-error procedure to find the critical gain Kc,u

in the Ziegler-Nichols method may take a long time. Åstrøm and Hägglund Åstrøm &
Hägglund (1995) found a clever solution that may reduce the time considerably as the
trial-and-error procedure is avoided. The PID controller to be tuned is replaced (in the
tuning session) by an On-off controller! As we saw in Ch. 1.4.5, an On-off gives sustained
oscillations in the control loop, and the sustained oscillations come automatically. Figure
14.8 illustrates this solution. An On-off controller behaves like a relay. Hence, the method is
often referred to as the Åstrøm and Hägglund Relay tuning method, or simply the Relay
tuning method

Now, the important questions are:

413

CHAPTER 14. TUNING OF PID CONTROLLERS

Figure 14.7: Simulation of the temperature control system with PI settings according to the
Quasi Ziegler-Nichols method

1. Is the period of the oscillation the same with the On-off controller as with a P
controller with ultimate gain for the given control loop?

2. Can we estimate the ultimate gain, Kc,u, from oscillations with the On-off controller?

Answer to the first question:

It turns out that the period is very similar. Hence, the oscillations with the On-off
controlles can be used as Pu in the Ziegler-Nichols formulas.

Answer to the second question:

In general, the gain of a system can be estimated from the ration

K =
Aout

Ain
(14.17)

where Ain is the amplitude of an assumed sinusoid at the input, and Aout is the amplitude
of the corresponding sinusoid at the output. In Figure 14.8, the amplitude at the input of
the On-off controller is the same the amplitude of the process output. Hence,

Ain = Ay (14.18)

which can estimated from the observed response (with the On-off controller).

414

CHAPTER 14. TUNING OF PID CONTROLLERS

d

yysp ue
PID

uman

Auto

Manual

On-

off
Tuning

with On-off

controller

Normal
Process

with actuator,

sensor, and

meas. filter

2Au

2Ay

Pu

Pu

During On-off control:

2Au,F

2Ay

Pu

Figure 14.8: With an On-off in the place of the PID controller oscillations come automatically.

What is Aout? With On-off control, the control signal, u, is a square wave (created
automatically as a result of the On-off controller function). Åstrøm and Hägglund
approximated this square wave with the basic sinusoid of the Fourier series approximation
to the square wave. According to the Fourier theory, the amplitude of the sinusoid is

Au,F =
4Au

π
(14.19)

where Au is the amplitude of the square wave, cf. Figure 14.8. Often the range of the
control signal is [0%, 100%], giving Au = 50%. Now, Aout in (14.17) is

Aout = Au,F =
4Au

π

As a result of the above, the ultimate gain to be used in the Ziegler-Nichols tuning method
can be estimated as

Kc,u =
4Au
π

Ay
=

4Au

πAy
= 1.27

Au

Ay
(14.20)

To summarize:

The Relay method for PI controller tuning

1. Replace the PI controller with an On-off controller, which automatically causes
the control system to oscillate.

2. Read off the period time, Pu, of the oscillations.

3. Read off the amplitude, Au, of the square-shaped oscillations of the control signal.

4. Read off the amplitude, Ay, of the typically sinusoidal oscillations of the process
output variable.

415

CHAPTER 14. TUNING OF PID CONTROLLERS

5. Calculate the ultimate controller gain:

Kc,u = 1.27
Au

Ay
(14.21)

6. Calculate the PI controller settings (assuming Ziegler-Nichols formulas):

Kc = 0.45Kc,u (14.22)

Ti =
Pu

1.2
(14.23)

7. Replace the on/off regulator with a PI regulator (for normal operation).

Example 14.4 PI controller tuning with the Relay tuning method

See Example 14.1. We will now tune the temperature controller TC as a PI controller using
On-off tuning. Figure 14.9 shows the responses with On-off controller with

Au = 40 kW (14.24)

From the simulation, we read off

Figure 14.9: Simulated responses with On-off controller.

Ay =
41.7 ◦C− 37.5 ◦C

2
= 2.1 ◦C (14.25)

giving

Kc,u =
4Au

πAy
=

4 · 40 kW

π · 2.1 ◦C
= 24.3 kW/◦C

416

CHAPTER 14. TUNING OF PID CONTROLLERS

and
Pu = 5.2 min = 312 s

which are quite similar to the values found with the Ziegler-Nichols method in Example
14.1, namely Kc,u = 26.5 kW/◦C and Pu = 300 s, respectively.

The PI settings may now be calculated using the Ziegler-Nichols formulas, see Table 14.1,
alternatively, the Relaxed Ziegler-Nichols formulas, see Table 14.114.2). Assuming the
Ziegler-Nichols formulas, we get

Kc = 0.45Kc,u = 0.45 · 24.3 kW/◦C = 10.9 kW/◦C (14.26)

Ti =
312 s

1.2
= 260 s (14.27)

[End of Example 14.4]

14.6 Auto-tuning

Auto-tuning is automatic tuning of controller parameters in a well-defined experiment. It is
common that commercial controllers offers auto-tuning. The operator starts the
auto-tuning via some button or menu choice on the controller. The controller then executes
automatically a pre-planned experiment either on the uncontrolled process (i.e. the open
loop system), or on the control loop (i.e. the closed loop system) – depending on the
auto-tuning method implemented. After this experiment, the controller is automatically set
into normal operation with the tuned parameters.

One example of an auto-tuner is the so-called relay tuner which uses an automatic
implementation of the On-off PID tuning method presented in Section 14.5. Such an
auto-tuner is found in e.g. PID controllers by ABB and by Fuji. When the auto-tuning
phase is started, an On-off (or relay) controller is used as the controller in the control loop.
The On-off controller sustained oscillations in control loop come automatically. From the
amplitude and the period of these oscillations, proper PID controller parameters are
calculated by an algorithm in the controller (the algorithm does not necessarily use the
Ziegler-Nichols formulas). Just a couple of periods are needed for the autotuner to have
enough information to accomplish the tuning. The autotuner activates the tuned PID
controller automatically after the tuning has finished.

14.7 Good Gain method

The Good Gain method aims at obtaining acceptable stability as explained above. It is a
simple method which has proven to give good results on laboratory processes and on
simulators. The method is based on experiments on a real or simulated control system, see
Figure 14.10.

417

CHAPTER 14. TUNING OF PID CONTROLLERS

Process

Sensor

w/filter

v

y

ymf

ySP u
P(ID)

u0

Auto

Manual

Figure 14.10: The Good Gain method for PID tuning is applied to the established control
system

The procedure described below assumes a PI controller, which is the most commonly used
controller function. However, a comment about how to include the D-term, so that the
controller becomes a PID controller, is also given.

The Good Gain PI controller tuning method

1. Bring the process to or close to the normal or specified operation point by
adjusting the nominal control signal u0 (with the controller in manual mode).

2. Ensure that the controller is a P controller with Kc = 0 (set Ti = ∞ and Td = 0).
Increase Kc until the control loop gets good (satisfactory) stability as seen in the
response in the measurement signal after e.g. a step in the setpoint or in the
disturbance (exciting with a step in the disturbance may be impossible on a real
system, but it is possible in a simulator). If you do not want to start with Kc = 0,
you can try Kc = 1 (which is a good initial guess in many cases) and then increase
or decrease the Kc value until you observe some overshoot and a barely observable
undershoot (or vice versa if you apply a setpoint step change the opposite way, i.e.
a negative step change), see Figure 14.11. This kind of response is assumed to
represent good stability of the control system. This gain value is denoted Kc,GG.

It is important that the control signal is not driven to any saturation limit
(maximum or minimum value) during the experiment. If such limits are reached
the Kc value may not be a good one – probably too large to provide good stability
when the control system is in normal operation. So, you should apply a relatively
small step change of the setpoint (e.g. 5% of the setpoint range), but not so small
that the response drowns in noise.

3. Set the integral time Ti equal to

Ti = 1.5Tou (14.28)

where Tou is the time between the overshoot and the undershoot of the step
response (a step in the setpoint) with the P controller, see Figure 14.11.4 Note

418

CHAPTER 14. TUNING OF PID CONTROLLERS

that for most systems (those which does not containt a pure integrator) there will
be offset from setpoint because the controller during the tuning is just a P
controller.

4. Because of the introduction of the I-term, the loop with the PI controller in action
will probably have somewhat reduced stability than with the P controller only. To
compensate for this, the Kc can be reduced somewhat, e.g. to 80% of the original
value. Hence,

Kc = 0.8Kc,GG (14.29)

5. If you want to include the D-term, so that the controller becomes a PID
controller5, you can try setting Td as follows:

Td =
Ti

4
(14.30)

which is the Td–Ti relation that was used by Ziegler and Nichols (Ziegler &
Nichols 1942).

6. You should check the stability of the control system with the above controller
settings by applying a step change of the setpoint. If the stability is poor, try
reducing the controller gain somewhat, possibly in combination with increasing
the integral time.

TouSetpoint step

Step response in
process

measurement

Figure 14.11: The Good Gain method: Reading off the time between the overshoot and the
undershoot of the step response with P controller.

Example 14.5 PI tuning with the Good Gain method

419

CHAPTER 14. TUNING OF PID CONTROLLERS

Figure 14.12 shows the Good Gain tuning experiment on the simulated temperature system
shown in Figure 14.4.

Figure 14.12: The Good Gain tuning experiment on the simulated temperature system shown
in Figure 14.4

From the response we read off:
Kc,GG = 8.0 (14.31)

and
Tou = 4 min = 240 s (14.32)

which give the following Good Gain PI settings

Kc = 0.8Kc,GG = 0.8 · 8.0 = 6.4 (14.33)

Ti = 1.5Tou = 1.5 · 240 s = 360 s (14.34)

Figure 14.13 shows simulations with these PI settings. The stability is clearly improved
comparing with the stability with the Ziegler-Nichols method, cf. Figure 14.5.

[End of Example 14.5]

14.8 Skogestad controller tuning method

14.8.1 Background of the Skogestad method

The Skogestad controller tuning method Skogestad (2003) 6 is a model-based tuning method
where the controller parameters are expressed as functions of the process model parameters.
It is assumed that the control system has a block diagram as shown in Figure 14.14.

6I named this method after the originator, Prof. Sigurd Skogestad at NTNU, Norway.

420

CHAPTER 14. TUNING OF PID CONTROLLERS

Figure 14.13: Simulation of the temperature control system with PI settings according to the
Good Gain method.

Comments to this block diagram:

• The transfer function Hp(s) is a combined transfer function of the process, the sensor,
and the measurement lowpass filter. For simplicity we may denote this transfer
function the “process transfer function”, although it is a combined transfer function.

• The process transfer function may stem from a single step-response experiment with
the process, as explained in subsequent sections.

• The block diagram shows a disturbance acting on the process. Information about this
disturbance is not used in the tuning, but if you are going to test the tuning on a
simulator to see how the control system compensates for a process disturbance, you
should add a disturbance at the point indicated in the block diagram, which is at the
process input. It turns out that in most processes the dominating disturbance
influences the process dynamically at the “same” point as the control variable. Such a
disturbance is called an input disturbance. Here are a few examples:

– Liquid tank: The control variable controls the inflow. The outflow is a
disturbance.

– Motor: The control variable controls the motor torque. The load torque is a
disturbance.

– Thermal process: The control variable controls the power supply via a heating
element. The power loss via heat transfer through the walls and heat outflow
through the outlet are disturbances.

421

CHAPTER 14. TUNING OF PID CONTROLLERS

Hc(s) Hp(s)
u yysp

d

Process with

sensor and

measurement

filter

Setpoint

Process

disturbance
Filtered

process

measurement
Control

error

Control

variable

Controller

e

Figure 14.14: Block diagram of the control system in the Skogestad controller tuning method

The design principle of Skogestad method is as follows. The control system tracking
transfer function T (s), which is the transfer function from the setpoint to the (filtered)
process measurement, is specified as a first order transfer function with time delay:

T (s) =
y(s)

r(s)
=

1

Tcs+ 1
e−τs (14.35)

where Tc is the time constant of the control system which the user must specify, and τ is the
process time delay which is given by the process model (the method can however be used
for processes without time delay, too). Figure 14.15 shows as an illustration the response in
y after a step in the setpoint ysp for (14.35).

Figure 14.15: Step response (setpoint step) of the specified tracking transfer function (14.35)
in Skogestad controller tuning method

From the block diagram shown in Figure 14.14 the tracking transfer function is, cf. the

422

CHAPTER 14. TUNING OF PID CONTROLLERS

Feedback rule in Figure 8.2,

T (s) =
Hc(s)Hp(s)

1 +Hc(s)Hp(s)
(14.36)

Here, the only unknown is the controller transfer function, Hc(s). Solving for Hc(s), gives

Hc(s) =
T (s)

[1− T (s)]Hp(s)

By setting (14.36) equal to (14.35) and making some simplifying approximations to the
time delay term, the controller, Hc(s), becomes a PID controller or a PI controller for the
assumed process transfer function, Hp(s).

14.8.2 Controller tuning for “integrator with time delay” processes

14.8.2.1 Mathematical model and dynamics

The process model of an integrator with time delay is

y′(t) = Kiu(t− τ) (14.37)

The corresponding transfer function is

y(s)

u(s)
= Hp(s) =

Ki

s
e−τs (14.38)

Figure 14.16 illustrates the dynamics of “integrator with time delay” processes with a step
response, which is in the form of a delayed ramp. Note that the step is in the control signal
(the step is applied with the controller – if present – in manual mode).

Prosess with

sensor and

measurement filter

t

Slope Su y

Step response in

filtered process output

measurement:

Time delay

Integrator with

time delay

U

t

Step in

control

signal:

t0

y
u

t0

Figure 14.16: Step response of an “integrator with time delay” process.

14.8.2.2 Controller settings

The Skogestad controller settings are:

Kc =
1

Ki (Tc + τ)
(14.39)

423

CHAPTER 14. TUNING OF PID CONTROLLERS

Ti = 2 (Tc + τ) (14.40)

Td = 0 (14.41)

Thus, the controller is a PI controller.

In the original Skogestad formulas, the factor 2 in (14.40) is 4. This gives good setpoint
tracking. But the disturbance compensation may become unneccessarily sluggish. To obtain
faster disturbance compensation, factor 2 can be used Haugen & Lie (2013).7 The drawback
of using 2 instead of 4 is that there will be somewhat more overshoot in the setpoint step
response, and that the stability of the control loop will be somewhat reduced. Also, the
robustness against changes of process parameters (e.g. increase of process gain and increase
of process time delay) will be somewhat reduced.

Skogestad’s suggestion for selecting TC

If you do not know how to specify Tc in (14.39) and (14.40), you may use Skogestad’s advice:

Tc = τ (14.42)

Consequently, (14.39) and (14.40) becomes

The Golden PI settings:

Kc =
1

2Kiτ
(14.43)

Ti = 4τ (14.44)

I have found the PI settings (14.43)-(14.44) very useful in various practical projects, so I
dare to denote them the “Golden PI settings”. I will refer to them many times throughout
the book. They can be used even if the process dynamics is actually not “integrator with
time delay”, as explained in Section 14.8.2.3.

Example 14.6 Skogestad tuning of the level PI controller of a wood chips tank

A level control system of a wood chips tank with conveyor belt is presented in Ch. 13.1.
The P&I D is shown in Figure 13.1.

A mathematical model of the tank with conveyor belt based on mass balance of the wood
chip is described in Ch. 38.1. I repeat the model here:

ρAh′(t) = Ksu(t− τ)− Fout(t) (14.45)

where h [m] is wood chips level, ρ [kg/m3] is chip density, A [m2] is cross-sectional area, Ks

[(kg/s)/%] is feed screw gain, τ [s] is transportation time or time delay of the conveyor belt.

7So, we may denote the above settings as modified Skogestad settings, but I prefer to say just Skogestad
settings.

424

CHAPTER 14. TUNING OF PID CONTROLLERS

I will now show how to apply the Golden PI settings (14.43)-(14.44) to tune the level
controller as a PI controller.

The PI settings are independent of the outflow Fout. That the model relating control signal
u and process output y is then

ρAh′(t) = Ksu(t− τ) (14.46)

which can be written as

h′(t) =
Ks

ρA
u(t− τ) = Kiu(t− τ) (14.47)

which is on the form (14.37) with

Ki =
Ks

ρA
(14.48)

Thus, the model is “integrator with time delay” with the integrator gain given by (14.48).

Although not necessary for the purpose of controller tuning, we may also derive the transfer
function, Hp(s), from u to y from (14.45). It is

Hp(s) =
Ks

ρAs
e−τs =

Ki

s
e−τs (14.49)

which is on the form (14.38).

The PI settings (14.43)-(14.44) become

Kc =
1

2Kiτ
=

1

2Ks
ρAτ

=
1

2 · 0.5 [(kg/s)/%]

145 [kg/m3]·13.4 [m2]
· 250 [s]

= 7.77
(kg/s)

m
(14.50)

Ti = 4τ = 4 · 250 s = 1000 s (14.51)

A Python program implementing a simulator in elementary Python code is available from
the following link:

http://techteach.no/control/python/sim skogestad pi tuning chipstank.py

Figure 14.17 shows the simulated level response due to a step change of the level reference r
and a step change of the outflow Fout. The responses indicate that the stability of the
control loop is satisfactory.

[End of Example 14.6]

425

http://techteach.no/control/python/sim_skogestad_pi_tuning_chipstank.py

CHAPTER 14. TUNING OF PID CONTROLLERS

0 2000 4000 6000 8000 10000 12000
10.00

10.25

10.50

10.75

11.00

11.25

11.50 r [m]
h [m]

0 2000 4000 6000 8000 10000 12000
0

10

20

30

40

50

u [kg/s]
u_min
u_max

0 2000 4000 6000 8000 10000 12000
t [s]

25

26

27

28

29

30 F_out [kg/s]

Figure 14.17: Simulation of level control system of wood chips tank.

14.8.2.3 PI tuning for pretended “integrator with time delay” processes

The PI settings (14.43) – (14.44) may be used even if the process dynamics is not actually
“integrator with time delay”. In such cases, we have to pretend that the process dynamics
is “integrator with time delay”. I have experienced in several practical applications that
this is a useful simple approach to PI controller tuning.

Figure 14.18 shows the actual step response (blue curve) of a process and the step response
(red curve) of a pretended “integrator with time delay” process. From the pretended
response, we read off the pretended time delay, τ , and the slope, S, of the steepest tangent:

• τ is the time measured from the point of time that the step change was made to the
point of time where the tangent crosses the base line of the response.

• S is the slope of the steepest tangent. If the process response is measured in say %,
and the time unit is say seconds, S has the unit of %/s.

For an integrator, the slope of the step response is

S = KiU (14.52)

426

CHAPTER 14. TUNING OF PID CONTROLLERS

Process

(incl. actuator,

sensor and

measurement

filter)

U

t t

u(t) y(t)

Step in

control

signal:

Actual step

response

Pretended time delay

t0
t0

Steepest

tangent;

Slope S

τ

«Integrator with time delay» step response:

Actual

time delay

Figure 14.18: Actual step response of a process and the step response of a pretended “inte-
grator with time delay” process.

where Ki is the integrator gain and U is the amplitude of the step applied to the control
signal. That the slope is KiU , can be seen directly from (14.37) by setting u equal to U and
neglecting the time delay. From (14.52) we can calculate Kias

Ki =
S

U
(14.53)

Hence, Ki can be interpreted as the normalized slope of the step response of the integrator.

Now that have found the values of τ and Ki, we can tune a PI controller for the process
using the golden PI tuning formulas, (14.43) – (14.44).

If uncertain: Overestimate!

If you are uncertain when reading off the values of S and τ from the step response, cf.
Figure 14.18, you should overestimate their values, i.e. give them (slightly) too large values
rather than (slightly) too small because it is safe regarding stability of the control system.
This is because relatively large values of Ki and τ in (14.43) – (14.44) gives smaller values
of Kc and Ti, which imrpoves the stability of the control loop.

You may wonder

The blue curve in Figure 14.18 indicates “time constant with time delay” process dynamics,
or actually some higher order dynamics. Skogestad has actually developed PI tuning
formulas also for such process dynamics. However, it is more challenging, and definitely
more time-consuming, to adapt such models than to adapt the “integrator with time delay”
process model to the step response. As an example, I once did a PI controller tuning of a
biogas flow controller on a real biogas reactor, which are a very slow processes, with a time
constant of days. If I should have waited for the biogas response to have settled to adapt a
model, I would wait for days. Instead, I pretended that the reactor was a “integrator with
time delay” process, and I read off the time delay and the slope after a few some hours
(when I saw that the response in the biogas measurement was about to flatten). So, I saved
a lot of time.

427

CHAPTER 14. TUNING OF PID CONTROLLERS

Relating to PI for “time constant with time delay” processes

In Section 14.8.3 the Skogestad PI tuning formulas for “time constant with time delay”
processes are presented. From those formulas, we can find that the PI settings for “time
constant with time delay” processes are identical with the PI settings for “integrator with
time delay” processes if

τ ≤ T

4
(14.54)

Example 14.7 Skogestad PI tuning of a temperature controller

Let us tune a PI controller for the heated liquid tank shown in Figur 14.4. Figure 14.19
shows the step response in the temperature, T , due to a step change in the control signal, u,
to the heater.

Figure 14.19: Step response in the temperature, T , due to a step change in the control signal,
u, to the heater.

The step amplitude is
U = 50 kW− 45 kW = 5 kW

I have drawn the steepest tangent to the temperature curve. From Figure 14.19 we can read
off the following values (approximately):

t0 = 400.5 min

428

CHAPTER 14. TUNING OF PID CONTROLLERS

t1 = 401.7 min

t2 = 402.6 min

t3 = 405.0 min

T2 = 39.20 ◦C

T3 = 39.85 ◦C

This gives:

S =
T3 − T2

t3 − t2

Ki =
S

U
τ = t1 − t0

The PI settings become:

Kc =
1

2Kiτ
= 7.69 kW/◦C (14.55)

Ti = 4τ = 4.8 min = 288 s (14.56)

Figure 14.20 shows the response in the temperature with these PI settings. The setpoint is
changed as a step from 40 to 41 ◦C at t = 50 min, and the inlet temperature, Tin, which is a
disturbance, is changed from 20 to 17 ◦C at t = 80 min. The stability of the control system
seems to be ok.

Figure 14.20: Skogestad PI settings: Temperature response due to a setpoint step.

[End of Example 14.7]

429

CHAPTER 14. TUNING OF PID CONTROLLERS

14.8.2.4 Tuning for integrator without time delay

What if the process Hp(s) is without time delay? Then you can not specify Tc according to
(14.42) since that would give Tc = 0 (zero response time of the control system). You must
specify Tc to some reasonable value larger than zero. If you do not know what could be a
reasonable value, you can simulate the control system for various values of Tc. If the control
signal (controller output signal) is changing too quickly, or often reaches the maximum and
minimum values for reasonable changes of the setpoint or the disturbance, the controller is
too aggressive, and you can try increasing Tc. If you don’t want to simulate, then just try
setting Tc = T/2 where T is the dominating (largest) time constant of the process
(assuming the process is a time constant system, of course).

For the double integrator (without time delay) I have seen in simulations that the actual
response-time (or 63% rise-time) of the closed-loop system may be about twice the specified
time constant Tc. Consequently, you can set Tc to about half of the response-time you
actually want to obtain.

14.8.3 Controller tuning for “time constant with time delay” processes

14.8.3.1 Mathematical model and dynamics

The process model of a time constant with time delay is

Ty′(t) = Ku(t− τ)− y (14.57)

The corresponding transfer function is

y(s)

u(s)
= Hp(s) =

K

Ts+ 1
e−τs (14.58)

Figure 14.21 illustrates the dynamics of “time constant with time delay” processes with a
step response, which is in the form of a delayed exponential curve.

Prosess with

sensor and

measurement filter

U

0 t0

T
0

KU

u(t) ymf(t)

Step: Step response:

Time-

delay

Time-constant

with time-delay
Time-

constant

63%

100%

0%
t

Figure 14.21: How the transfer function parameters K, T , and τ appear in the step response
of a “time constant with time delay prosess”.

430

CHAPTER 14. TUNING OF PID CONTROLLERS

14.8.3.2 Controller settings

The Skogestad controller settings are

Kc =
T

K (Tc + τ)
(14.59)

Ti = minimum [T , 2 (Tc + τ)] (14.60)

Td = 0 (14.61)

Thus, the controller is a PI controller.

In the original Skogestad formulas, the factor 2 in (14.60) is 4. I suggest using 2 instead of 4
since this gives faster disturbance compensation.

Skogestad’s suggestion for selecting TC

If you do not know how to specify Tc in (14.59) and (14.60), you may use Skogestad’s advice:

Tc = τ (14.62)

With this choice, the PI settings are

Kc =
T

2Kτ
(14.63)

Ti = min (T , 4τ) (14.64)

Note that if τ ≤ T/4, i.e. for a relatively small time delay, the PI settings are identical to
the settings for “integrator with time delay” processes, cf. Section 14.8.2.

Example 14.8 Control of first order system with time delay

Let us try Skogestad method for tuning a PI controller for the (combined) process transfer
function

Hpsf(s) =
K

Ts+ 1
e−τs (14.65)

(time constant with time delay) where

K = 1; T = 1 s; τ = 0.5 s (14.66)

We use (14.42):
Tc = τ = 0.5 s (14.67)

The controller parameters are as follows:

Kc =
T

K (Tc + τ)
=

1

1 · (0.5 + 0.5)
= 1 (14.68)

431

CHAPTER 14. TUNING OF PID CONTROLLERS

Ti = min [T , c (TC + τ)] (14.69)

= min [1, 2 (0.5 + 0.5)] (14.70)

= min [1, 2] (14.71)

= 1 s (14.72)

Td = 0 (14.73)

Figure 14.22 shows control system responses with the above PID settings. At time 5 sec the
setpoint is changed as a step, and at time 15 sec the disturbance is changed as a step. The
responses, and in particular the stability of the control systems, seem ok.

Figure 14.22: Example 14.8: Simulated responses in the control system with Skogestad
controller tuning.

[End of Example 14.8]

14.8.4 Controller tuning for “double integrator” processes

14.8.4.1 Mathematical model

Typically, there is no or just a negligible time delay in processes which have models like
double integrators (motion systems). Although Skogestad has developed PID settings for
double integrators with time delay processes, I here neglect any time delay.

The differential equation model of a double integrator is:

y′′ = Kiiu (14.74)

The corresponding transfer function is

y(s)

u(s)
= Hp(s) =

Kii

s2
(14.75)

432

CHAPTER 14. TUNING OF PID CONTROLLERS

Example 14.9 Model of a double integrator

An example of a double integrator is a body (ship, robot, satellite) actuated by a force, but
not by any speed-dependent damping forces (i.e. no so-called viscous damping). One
example is a ship. Chapter 38.2 presents a model of a ship that also includes hydrodynamic
forces and wind forces. Now, assume that the ship speed is zero relative to water and wind.
(If the water and wind speeds are zero, this means that the ship is at rest.) Then, there are
no damping forces acting on the ship. The model of the ship is given by Newton’s 2nd law:

my′′ = u (14.76)

or:

y′′ =
1

m
u = Kiiu (14.77)

where: m [kg] is ship mass, y [m] is position, u [N] is propeller force.

(14.77) is a double integrator.

The still state will be the most critical operating point in position control because there is
no natural damping on the movement by the environment. If you are going to tune a
position controller for the ship in a dynamic positioning system (DP system), you should
tune the controller in this operating point since the stability will be imporved in any other
operating point (where the ship moves).

[End of Example 14.9]

14.8.4.2 Controller settings

It can be shown using theoretical stability analysis that the controller for a double
integrator must have derivative action, otherwise the control loop is guaranteed to be
unstable. Thus, controller should be selected as a PID controller. The control loop will be
unstable with a PI controller.

Skogestad has specified the following PID settings of a so-called serial PID controller:

Kc,serial =
1

4Kii Tc
2 (14.78)

Ti,serial = 4Tc (14.79)

Td,serial = 4Tc (14.80)

A serial PID controller comprises a PI controller in series with a PD controller, which
means that the transfer function of the PID controller is equal to the product of the
transfer function of the PI term and the transfer function of the PD term:

HPID, serial(s) = HPI(s) ·HPD(s) (14.81)

where

HPI(s) = Kc
Tis+ 1

Tis
(14.82)

433

CHAPTER 14. TUNING OF PID CONTROLLERS

and
HPD(s) = Tds+ 1 (14.83)

Skogestad PID settings for a parallel PID controller

In this book, the parallel PID controller is assumed. In the parallel PID controller, the P, I,
and D terms are added. In terms of transfer functions:

HPID, parallel(s) = HP(s) +HI(s) +HD(s) (14.84)

where:
HP(s) = Kc (14.85)

HI(s) =
Kc

Tis
(14.86)

HD(s) = KcTds (14.87)

From the above two PID transfer function models, we can derive the following
transformation formulas:

Kc,parallel = Kc,serial

(
1 +

Td,serial

Ti,serial

)
(14.88)

Ti,parallel = Ti,serial

(
1 +

Td,serial

Ti,serial

)
(14.89)

Td,parallel = Td,serial
1

1 +
Td,serial

Ti,serial

(14.90)

So, to find the Skogestad settings for a parallel PID controller, we do as follows:

1. Calulate the settings for a serial PID controller, (14.78)-(14.80).

2. Transform those serial settings to settings for a parallel PID controller using the
transformation formulas (14.88)-(14.90).

Following the two-step procedure above, we get the following (improved) PID setting for a
parallel PID controller:

Parallel PID controller settings for a double integrator:

Kc =
1

2Kii Tc
2 (14.91)

Ti = 8Tc (14.92)

Td = 2Tc (14.93)

It turns out that the actual time constant of the control system with the parallel PID
controller becomes about 2 times the specified time constant, Tc. To compensate for this
inaccuracy, I have used Tc/2 instead of Tc in (14.78)-(14.80).

434

CHAPTER 14. TUNING OF PID CONTROLLERS

Example 14.10 PID tuning of a dynamic positioning system

Ch. 38.2 presents a mathematical model of a ship. Assume

m = 71164 tonn (14.94)

Assume the following specification:
Tc = 100 s (14.95)

The PID settings become:
Kc = 3558 N/m (14.96)

Ti = 800 s (14.97)

Td = 200 s (14.98)

A simulator in elementary Python code is available on:

http://techteach.no/control/python/sim pid tuning dynpos.py

In the simulator, a time constant filter with time constant Tf = 0.1Td is included in the
D-term of the controller.

Figure 14.23 shows the simulated step response in position of the control system. The
stability seems ok. The observed time constant (63% rise time) is not approx. 80 s, which is
not very different quite from the specified value of 100 s.

[End of Example 14.10]

14.9 Ziegler-Nichols open loop method

In Ziegler & Nichols (1942), Ziegler and Nichols presented their closed loop method. In that
article, they presented a second PID tuning method which is denoted the Ziegler-Nichols
open loop method, or the Ziegler-Nichols process reaction curve method. In this method,
the PID settings are calculated from the integrator gain, Ki, and the time delay, τ , as in the
Skogestad method assuming “itegrator with time delay” process dynamics, cf. Section
14.8.2.3. The Ziegler og Nichols PI settings for a PI controller is (they derived also P
settings and PID settings) are:

Kc =
0.9

Kiτ
(14.99)

Ti = 3.3τ (14.100)

Comparison with the Skogestad PI formulas, (14.43) – (14.44): In the Ziegler and Nichols
PI settings, the gain is 0.9/0.5 = 1.8 times larger, and Ti is 4/3.3 = 1.2 times smaller than
in the (modified) Skogestad PI settings. In general, both increasing Kc and reducing Ti

435

http://techteach.no/control/python/sim_pid_tuning_dynpos.py

CHAPTER 14. TUNING OF PID CONTROLLERS

0 200 400 600 800 1000 1200
0.0

0.5

1.0

[m
]

r
y

0 200 400 600 800 1000 1200
t [s]

0

20

40

[k
N]

Fp
Fw

Figure 14.23: Step response in the position in a simulated dynamic positioning system.

reduce the stability of a control loop. As a consequence, Ziegler-Nichols tuning certainly
gives reduced stability comparing with Skogestad tuning. Therefore, I recommend using
Skogestad tuning instead of Ziegler-Nichols tuning.

14.10 PID tuning when process dynamics varies

14.10.1 Introduction

A well tuned PID controller has parameters which are adapted to the dynamic properties to
the process, so that the control system becomes fast and stable. If the process dynamic
properties varies without re-tuning the controller, the control system

• gets reduced stability, or

• becomes more sluggish.

Problems with variable process dynamics can be solved in the following alternative ways:

• The controller is tuned in the most critical operation point, so that when the
process operates in a different operation point, the stability of the control system is

436

CHAPTER 14. TUNING OF PID CONTROLLERS

just better — at least the stability is not reduced. However, if the stability is too
good the tracking quickness is reduced, giving more sluggish control.

• The controller parameters are varied in the “opposite” direction of the
variations of the process dynamics, so that the performance of the control system
is maintained, independent of the operation point. Some ways to vary the controller
parameters are:

– Model-based PID parameter adjustment, cf. Section 14.10.2.

– PID controller with gain scheduling, cf. Section 14.10.3.

– Model-based adaptive controller, cf. Section 14.10.4.

Commercial control equipment is available with options for gain scheduling and/or adaptive
control.

14.10.2 PID parameter adjustment based on the Skogestad PID tuning
method

Assume that you have tuned a PID or a PI controller for some process that has a model as
assumed in the Skogestad PI(D) controller tuning method, cf. Section 14.8. Assume that
some of the parameters of the process model changes. How should the controller parameters
be adjusted? The answer is directly given by the Skogestad tuning formulas because those
formulas contains the process parameters!

Example 14.11 Adjustment of PI controller parameters for integrator with time delay
process

Assume that the process transfer function is

Hpsf (s) =
Ki

s
e−τs (14.101)

(integrator with time delay). The Skogestad PI settings for this process are (14.43) –
(14.44), which I repeat here:

Kc =
1

2Kiτ
(14.102)

Ti = 4τ (14.103)

As an example, assume that the process gain Ki is increased to, say, twice its original value.
How should the PI parameters be adjusted to maintain good behaviour of the control
system? From (14.102) we see that Kc should be halved, and from (14.103) we see that Ti

should remain unchanged.

As another example, assume that the process time delay τ is increased to, say, twice its
original value. From (14.102) we see that Kc should be halved, and from (14.103) we see
that Ti should get a doubled value. One concrete example of such a process change is the
wood-chip tank. If the speed of the conveyor belt is halved, the time delay (transport delay)

437

CHAPTER 14. TUNING OF PID CONTROLLERS

is doubled. And now you know how to quickly adjust the PI controller parameters if such a
change of the conveyor belt speed should occur.8

[End of Example 14.11]

You may use the Skogestad tuning formulas as the basis for adjusting the PID parameters
even if you used some other method than Skogestad method for the initial tuning. In Ch.
15.1 the Skogestad tuning formulas are used to retune the PI controller of the level control of
the wood chip tank when parameter changes of the process (tank with conveyor belt) occur.

14.10.3 Gain scheduling of PID parameters

Figure 14.24 shows the structure of a control system for a process which may have varying
dynamic properties, for example a varying gain.

Process with

varying

dynamic

properties

Sensor

and

scaling

Setpoint
Controller

Adjustment of

controller

parameters

GS Gain

scheduling

variable

Figure 14.24: Control system for a process having varying dynamic properties. The GS
variable expresses or represents the dynamic properties of the process.

The Gain scheduling variable GS is some measured process variable which at every instant
of time expresses or represents the dynamic properties of the process. As you will see in
Example 14.12, GS may be the mass flow through a liquid tank.

Assume that proper values of the PID parameters Kc, Ti and Td are found (using e.g. the
Good Gain method) for a set of values of the GS variable. These PID parameter values can
be stored in a parameter table – the gain schedule – as shown in Table 14.3. From this
table proper PID parameters are given as functions of the gain scheduling variable, GS.

There are several ways to express the PID parameters as functions of the GS variable:

• Piecewise constant: An interval is defined around each GS value in the parameter

8What may happen if you do not adjust the controller parameters? The control system may get poor
stability, or it may even become unstable.

438

CHAPTER 14. TUNING OF PID CONTROLLERS

Table 14.3: Gain schedule or parameter table of PID controller parameters

GS Kc Ti Td

GS1 Kc1 Ti1 Td1

GS2 Kc2 Ti2 Td2

GS3 Kc3 Ti3 Td3

table. The controller parameters are kept constant as long as the GS value is within
the interval. This is a simple solution, but is seems nonetheless to be the most
common solution in commercial controllers.

When the GS variable changes from one interval to another, the controller parameters
are changed abruptly, see Figure 14.25 which illustrates this for Kc, but the situation
is the same for Ti and Td. In Figure 14.25 it is assumed that GS values toward the
left are critical with respect to the stability of the control system. In other words: It
is assumed that it is safe to keep Kc constant and equal to the Kc value in the left
part of the interval.

GS1 GS2 GS3 GS

Kp1

Kp2

Kp3

Kp

Assumed range of GS

Table values of Kp

Linear interpolation

Piecewise constant value

(with hysteresis)

Figure 14.25: Two different ways to interpolate in a PID parameter table: Using piecewise
constant values and linear interpolation.

Using this solution there will be a disturbance in the form of a step in the control
variable when the GS variable shifts from one interval to a another, but this
disturbance is probably of negligible practical importance for the process output
variable. Noise in the GS variable may cause frequent changes of the PID parameters.
This can be prevented by using a hysteresis, as shown in Figure 14.25.

• Piecewise linear, which means that a linear function is found relating the controller
parameter (output variable) and the GS variable (input variable) between to adjacent
sets of data in the table. The linear function is on the form

Kc = a ·GS + b (14.104)

439

CHAPTER 14. TUNING OF PID CONTROLLERS

where a and b are found from the two corresponding data sets:

Kc1 = a ·GS1 + b (14.105)

Kc2 = a ·GS2 + b (14.106)

(Similar equations applies to the Ti parameter and the Td parameter.) (14.105) and
(14.106) constitute a set of two equations with two unknown variables, a and b (the
solution is left to you).9

• Other interpolations may be used, too, for example a polynomial function fitted
exactly to the data or fitted using the least squares method.

Example 14.12 PID temperature control with gain scheduling during variable mass flow

Figure 14.27 shows the front panel of a simulator for a temperature control system for a
liquid tank with variable mass flow, w, through the tank. The control variable u controls
the power to heating element. The temperature T is measured by a sensor which is placed
some distance away from the heating element. There is a time delay from the control
variable to measurement due to imperfect blending in the tank.

The simulations in this example are made with the following SimView simulator:

http://techteach.no/simview/gain scheduling

The process dynamics

We will initially, both in simulations and from analytical expressions, that the dynamic
properties of the process varies with the mass flow w. The response in the temperature T
after a step change in the control signal (which is proportional to the supplied power) is
simulated for a large mass flow and a small mass flow. (Feedback temperature control is not
active, thus open loop responses are shown.) The responses are shown in Figure 14.26.

The simulations show that the following happens when the mass flow w is reduced (from 24
to 12 kg/min): The gain process K is larger. It can be shown that in addition, the time
constant Tt is larger, and the time delay τ is larger. (These terms assumes that system is a
first order system with time delay. The simulator is based on such a model. The model is
described below.)

Let us see if the way the process dynamics seems to depend on the mass flow w as seen
from the simulations, can be confirmed from a mathematical process model.10 Assuming

9Note that both MATLAB/SIMULINK and LabVIEW have functions that implement linear interpolation
between tabular data. Therefore gain scheduling can be easily implemented in these environments.

10Well, it would be strange if not. After all, we will be analyzing the same model as used in the simulator.

440

http://techteach.no/simview/gain_scheduling

CHAPTER 14. TUNING OF PID CONTROLLERS

Figure 14.26: Responses in temperature T after a step in u of amplitude 10% at large mass
flow and small mass flow

perfect stirring in the tank to have homogeneous conditions in the tank, we can set up the
following energy balance for the liquid in the tank:

cρV T ′
1(t) = KPu(t) + cw [Tin(t)− Tt(t)] (14.107)

where T1 [K] is the liquid temperature in the tank, Tin [K] is the inlet temperature, c [J/(kg
K)] is the specific heat capacity, V [m3] is the liquid volume, ρ [kg/m3] is the density, w
[kg/s] is the mass flow (same out as in), Kc [W/%] is the gain of the power amplifier, u [%]
is the control variable, cρV T1 is (the temperature dependent) energy in the tank. It is
assumed that the tank is isolated, that is, there is no heat transfer through the walls to the
environment. To make the model a little more realistic, we will include a time delay τ [s] to
represent inhomogeneous conditions in the tank. Let us for simplicity assume that the time
delay is inversely proportional to the mass flow. Thus, the temperature T at the sensor is

T (t) = T1

(
t− Kτ

w

)
= T1 (t− τ) (14.108)

where τ is the time delay and Kτ is a constant. It can be shown that the transfer function
from control signal u to process variable T is

T (s) =
K

Tts+ 1
e−τs︸ ︷︷ ︸

Hu(s)

u(s) (14.109)

where

Gain K =
KP

cw
(14.110)

Time-constant Tt =
ρV

w
(14.111)

Time delay τ =
Kτ

w
(14.112)

This confirms the observations in the simulations shown in Figure 14.26: Reduced mass flow
w implies larger process gain, and larger time constant and larger time delay.

441

CHAPTER 14. TUNING OF PID CONTROLLERS

Heat exchangers and blending tanks in a process line where the production rate or mass
flow varies, have similar dynamic properties as the tank in this example.

Control without gain scheduling (with fixed parameters)

Figure 14.27: Example 14.12: Simulation of temperature control system with PID controller
with fixed parameters tuned at maximum mass flow, which is w = 24kg/min.

Let us look at temperature control of the tank. The mass flow w varies. In which operating
point should the controller be tuned if we want to be sure that the stability of the control
system is not reduced when w varies? In general the stability of a control loop is reduced if
the gain increases and/or if the time delay of the loop increases. (14.110) and (14.112) show
how the gain and time delay depends on the mass flow w. According to (14.110) and
(14.112) the PID controller should be tuned at minimal w. If we do the opposite, that is,
tune the controller at the maximum w, the control system may actually become unstable if
w decreases.

Let us see if a simulation confirms the above analysis. Figure 14.27 shows a temperature
control system. The PID controller is in the example tuned at the maximum w value, which
here is assumed 24 kg/min.11 The PID parameters are

Kc = 7.8; Ti = 3.8 min; Td = 0.9 min (14.113)

11Actually, the controller was tuned with the Ziegler-Nichols Ultimate Gain method. This method is however
not described in this book. The Good Gain method could have been used instead.

442

CHAPTER 14. TUNING OF PID CONTROLLERS

Figure 14.27 shows what happens at a stepwise reduction of w: The stability becomes
worse, and the control system becomes unstable at the minimal w value, which is 12kg/min.

Instead of using the PID parameters tuned at maximum w value, we can tune the PID
controller at minimum w value, which is 12 kg/min. The parameters are then

Kc = 4.1; Ti = 7.0 min; Td = 1.8 min (14.114)

The control system will now be stable for all w values, but the system behaves sluggish at
large w values. (Responses for this case is however not shown here.)

Control with gain scheduling

Let us see if gain scheduling maintains the stability for varying mass flow w. The PID
parameters will be adjusted as a function of a measurement of w since the process dynamics
varies with w. Thus, w is the gain scheduling variable, GS:

GS = w (14.115)

A gain schedule consisting of three PID parameter value sets will be used. The PID
controller are tuned at the following GS or w values: 12, 16 and 20 kg/min. These three
PID parameter sets are shown down to the left in Figure 14.27. The PID parameters are
held piecewise constant in the GS intervals. In each interval, the PID parameters are held
fixed for an increasing GS = w value, cf. Figure 14.25.12 Figure 14.28 shows the response in
the temperature for decreasing values of w.

The simulation shows that the stability of the control system is maintained even if w
decreases.

Finally, assume that you have decided not to use gain scheduling, but instead a PID
controller with fixed parameter settings. What is the most critical operating point, at which
the controller should be tuned? Is it at maximum flow or at minimum flow?13

[End of Example 14.12]

14.10.4 Adaptive controller

In an adaptive control system, see Figure 14.29,

a mathematical model of the process to be controlled is continuously estimated from
samples of the control signal (u) and the process measurement (ym). The model is typically
a transfer function model. Typically, the structure of the model is fixed. The model
parameters are estimated continuously using e.g. the least squares method. From the
estimated process model the parameters of a PID controller (or of some other control
function) are continuously calculated so that the control system achieves specified
performance in form of for example stability margins, poles, bandwidth, or minimum

12The simulator uses the inbuilt gain schedule in LabVIEW’s PID Control Toolkit.
13The answer is minimum flow, because at minimum flow the process gain is at maximum, and also the

time delay (transport delay) is at maximum.

443

CHAPTER 14. TUNING OF PID CONTROLLERS

Figure 14.28: Example 14.12: Simulation of temperature control system with a gain schedule
based PID controller

variance of the process output variable?. Adaptive controllers are commercially available,
for example the ECA60 controller (ABB).

444

CHAPTER 14. TUNING OF PID CONTROLLERS

Process

Sensor
and

scaling

v
yySP ue

Controller

ym

Continuously
process model

estimation

Continuously
calculation of

controller
parameters

Figure 14.29: Adaptive control system

14.11 Problems for Chapter 14

Problem 14.1 Ziegler-Nichols PI tuning

Assume that in a Ziegler-Nichols experiment for tuning a PI controller, the control system
oscillates with sustained oscillations of period 12 seconds when the controller gain is 10.

1. Find the PI controller settings with the original Ziegler-Nichols method.

2. Find the PI controller settings with the Relaxed Ziegler-Nichols settings.

Problem 14.2 Relay tuning method

Tune a PI controller for a process with the Relay tuning method given the following data
from an experiment with On-off control of the process.

• Period of oscillations: Pu = 24 s.

• Amplitude of square wave oscillations of the control signal: Au = 50 %.

• Amplitude of sinusoidal oscillations of the process measurement: Ay = 5 %.

Problem 14.3 Good gain PI tuning

Figure 14.30 shows the response in the temperature of a simulated temperature control
system with P controller with the following “good gain” value:

Kc = 4.0 (14.116)

Tune a PI controller for this process using the Good Gain method.

What can you do with the controller tuning if turns out that the stability of the control
system is too bad with this value of Kc?

445

CHAPTER 14. TUNING OF PID CONTROLLERS

Figure 14.30: Temperature response

Problem 14.4 Tuning of controller for time constant with time delay
process

Given a process where the relation between the control signal and the process measurement
can be well represented as “time constant with time delay” with gain K = 0.5, time
constant T = 5 s, and time delay τ = 1 s.

1. Tune a PI controller for this process using Skogestad method assuming “time constant
with time delay” process dynamics.

2. Tune a PI controller for this process using Skogestad method assuming “integrator
with time delay” process dynamics. Compare with the result of Problem 1.

Problem 14.5 Skogestad PI tuning from process step response

Figure 14.31 shows the response in the process measurement ym due to a step of amplitude
U = 2 in the control signal u at time t = 0 s. Calculate settings for a PI controller for this
process.

Problem 14.6 Controller tuning when process dynamics varies – 1

Assume that the process to be controlled has varying process dynamics, which may cause
stability problems or sluggish control. Both of the solutions A and B below are possible.
Which is the best one with respect to control performance, and which is the simplest one?

A: The controller is tuned at the most critical operating point, and the controller
parameters are then kept constant.

446

CHAPTER 14. TUNING OF PID CONTROLLERS

Figure 14.31: Process measurement step response for Skogestad tuning.

B: The controller parameters are adjusted continually so that they fit to the dynamic
properties of the process at any operating point.

Problem 14.7 Controller tuning when process dynamics varies – 2

Assume that you in a given control system for a “time constant with time delay” process
have found proper PI parameters in one specific operating point. Assume that the process
gain increases.

1. How would this process gain increase influence the stability of the control system?

2. Derive formulas for the new controller parameters. You can indicate the initial values
of the controller parameters and the process parameters (before the change) with
index 0, and new values (after the changes) with index 1.

Problem 14.8 In which operating point to tune the controller?

Figure 14.32 shows a chemical reactor and a PID parameter table which is the basis of a
PID controller with gain scheduling. Assume that gain scheduling is not to be used, but
fixed PID settings instead. Should the controller be tuned at high temperature or at low
temperature, given that it is crucial that the stability of the control system is satisfactory at
any temperature?

Problem 14.9 Interpolation in a gain scheduling table

Table 14.4 shows parts of a gain scheduling based PID controller.

Find Kc as a function of the gain scheduling variable GS between the operating points
shown in the table. The function should be based on linear interpolation.

447

CHAPTER 14. TUNING OF PID CONTROLLERS

Figure 14.32: Chemical reactor and PID parameter table

Table 14.4: PID Gain Schedule

GS Kc Ti Td
...

...
...

...

20 % 0.4 5.2 1.3

30 % 0.5 4.5 1.6
...

...
...

...

Problem 14.10 Compensation for process nonlinearity

Figure 14.33 shows a process with a PID control system where the actuator is represented
with a nonlinear relation between the control signal u and the internal process variable z:

z = f(u) (14.117)

For example, the actuator can be a control valve with some nonlinear relation between the
control signal (u) and the flow (z).

In most cases it is benefical if the PID controller sees a linear process – not a nonlinear
process, because this makes the controller tuning easier, and the dynamic properties of the
control system may be independent of the operating point. This can be achieved by
including the inverse of the nonlinear function in the controller:

u = f−1(z) (14.118)

448

CHAPTER 14. TUNING OF PID CONTROLLERS

Linear

process

part

Sensor

and

scaling

ySP y

ym

ue PID

controller
f()

Nonlinear

process

part

u

Process

z

Figure 14.33: Control valve.

Linear

process

part

Sensor

and

scaling

ySP y

ym

u
PID f()

Nonlinear

prosess

part

u
f-1()

Controller Process

zzPID

Figure 14.34: Nonlinear compensation.

The z-value that the PID controller demands can be denoted zPID. See Figure 14.34.

Assume that the nonlinear function z = f(u) can be represented with n tabular data points
(which can stem from a data sheet or from experiments) as shown in Table 14.5.

Explain how you can implement the inverse function using table-lookup. Table-lookup
functions implements linear interpolation between the data points in the table.14

14Table lookup functions are available in computer tools as MATLAB and LabVIEW.

449

CHAPTER 14. TUNING OF PID CONTROLLERS

Table 14.5: Data points

z u

z1 u1
z2 u2
...

...

zn un

14.12 Solutions to problems for Chapter 14

Solution to Problem 14.1

1. Original Ziegler-Nichols settings:

Kc = 0.45 · 10 = 4.5 (14.119)

Ti = 12/1.2 = 10 s (14.120)

2. Relaxed Ziegler-Nichols settings:

Kc = 0.25 · 10 = 2.5 (14.121)

Ti = 1.25 · 12 = 15 s (14.122)

Solution to Problem 14.2

Calculation of ultimate gain:

Kcu = 1.27 · Au

Ay
= 1.27 · 50

2
= 6.35 (14.123)

Ziegler-Nichols PI tuning:
Kc = 0.45 · 6.35 = 2.86

Ti =
Pu

1.2
=

24

1.2
= 20 s

Solution to Problem 14.3

We set the controller gain to
Kc = 0.8 · 4.0 = 3.2 min (14.124)

In Figure 14.35 we read off
Tou = 8.0 min (14.125)

which gives the integral time
Ti = 1.5Tou = 12.0 min (14.126)

If it turns out that the stability of the control system is too bad with this value of Kc, you
can try reducing the gain and/or increasing the integral time.

450

CHAPTER 14. TUNING OF PID CONTROLLERS

Tou = 8 min

Figure 14.35: Problem 14.3: Good Gain response.

Solution to Problem 14.4

1. With the Skogestad PI tuning formulas for “time constant with time delay”,
(14.63)-(14.64), and using the Skogestad hand-rule

TC = τ = 1 s (14.127)

the PI settings become:

Kc =
T

2Kτ
=

5

2 · 0.5 · 1
= 5 (14.128)

Ti = min [T, 4τ] = min [5, 4 · 1] = min [5, 4] = 4 s (14.129)

Comment: Above, min[x, y] means the minimum of the two numbers x and y.

2. The Skogestad PI tuning formulas for “integrator with time delay”, (14.43)-(14.44),
with the Skogestad hand-rule

TC = τ (14.130)

are:

Kc =
1

2Kiτ
(14.131)

Ti = 4τ (14.132)

Here, Ki is the normalized steepest slope of the process step response. For a “time
constant” system, the steepest slope is equal to the initial slope, which appears just
after the point of time of the input step. The initial slope is given by (9.37), which is
repeated here:

S =
KU

T
(14.133)

451

CHAPTER 14. TUNING OF PID CONTROLLERS

From (14.133) we get

Ki =
S

U
=

KU

T
/U =

K

T
(14.134)

With this Ki, (14.131) and (14.132) become:

Kc =
1

2Kiτ
=

T

2Kτ
=

5

2 · 0.5 · 1
= 5 (14.135)

Ti = 4τ = 4 s (14.136)

which are the same PI settings as in Problem 1 above. This is in accordance with a
fact presented in Ch. 14.8.3.2: If τ > T/4, the PI settings for “time constant with
time delay” processes and for “integrator with time delay” processes are identical.

Solution to Problem 14.5

Figure 14.36 shows the steepest tangent drawn on the process step response. From the two

P2P1

P3

Figure 14.36: Problem 14.5: Steepest tangent drawn on the process step response.

points labelled P2 and P3, the slope of the tangent can be calculated as:

S =
(10.0− 0.0)

(4.0− 1.3)
= 3.7 (14.137)

The normalized slope is:

Ki =
S

U
=

3.7

2
= 1.85 (14.138)

From the two points labelled P1 and P2, the (approximate) time delay is:

τ = 1.3− 0.0 = 1.3 s (14.139)

452

CHAPTER 14. TUNING OF PID CONTROLLERS

The PI settings become:

Kc =
1

2Kiτ
=

1

2 · 1.85 · 1.3
= 0.21 (14.140)

Ti = 4τ = 4 · 1.3 = 5.2 s (14.141)

Solution to Problem 14.6

For best control performance: B. Simplest: A.

Solution to Problem 14.7

1. The stability would be decreased.15

2. Let is indicate initial values (before the change) with index 0, and new values (after
the changes) with index 1. According to Skogestad PID tuning rule for “time
conatant with time delay” processes:

Kc0 =
T0

K0 (TC + τ0)
(14.142)

Ti0 = min[T0, c(TC + τ0)] (14.143)

and, of course,

Kc1 =
T1

K1 (TC + τ1)
(14.144)

Ti1 = min[T1, c(TC + τ1)] (14.145)

If the process gain K is the only parameter that has changed, we get from (14.142)
and (14.144)

Kc0

Kc1

=

T0
K0(TC+τ0)

T1
K1(TC+τ1)

=

T0
K0(TC+τ0)

T0
K1(TC+τ0)

=
K1

K0
(14.146)

from which we get the following formula for the new controller gain:

Kc1 = Kc0

K0

K1
(14.147)

For the integral time there will be no change because the process gain is not in the
formula of Ti:

Ti1 = Ti0 (14.148)

Solution to Problem 14.8

From the table shown in Figure 14.32 we see that Gain = Kc has (should have) less value
and Integral = Ti has (should have) larger value the lower the temperature. This indicates
that minimum temperature is “worst case”. Therefore, a PID controller with fixed settings
should be tuned at miminum temperature.

15For processes that are unstable, the controller gain must actually be “large” for the control system to be
stable, but such processes are relatively rare (one example is exothermal reactors).

453

CHAPTER 14. TUNING OF PID CONTROLLERS

Solution to Problem 14.9

Kc =
0.5− 0.4

30%− 20%
(GS − 20%) + 0.4 = 0.01%−1 ·GS + 0.2 (14.149)

Solution to Problem 14.10

The table-lookup is used straightforward: The input to the table-lookup function is zPID

which is the z-value that the PID controller demands, and the output from the table-lookup
function is u which is used as control signal to the nonlinear process part (e.g. valve).

454

Chapter 15

Control loop stability

15.1 Heuristic stability analysis

It is important to be aware that there may be stability problems in a control loop. It is a
basic requirement to a control loop that it is stable. Simply stated this means that the
response in any signal in control loop converges towards a finite value after a limited change
(with respect to the amplitude) of the setpoint or the disturbance or any other input signal
to the loop.

There is always a possibility that a feedback control system which is originally stable, may
become unstable due to parameter changes in the loop. Instability implies that signals in
the loop starts to increase in amplitude until some saturation limit is reached (for example,
a valve have a limited opening).

As a start of the discussion of how a feedback control system can become unstable, let us
repeat the block diagram of a feedback control system from the beginning of this book, see
Figure 15.1.

Instability in a feedback system can be explained in two ways:

• Too large gain in the loop: The loop gain is the product of the gains in each of the
subsystems (controller, process, sensor) in the loop. If the signal in the loop is
amplified too much through the loop, it “comes back” amplified. Then, this signal is
again amplified through the loop, and eventually the amplitude just increases. In
other words, the control loop is unstable.

• Too large time delay in the loop. The effect or response due to the controller
action is fed back to the controller with too much time delay so that the information
in the response is out-of-date and does not reflect the state of the process good
enough. Based on this poor information, the controller may generate too much or too
little control action. This repeats through the loop, causing larger and larger
deviation from the setpoint. In other words, the control loop is unstable.

• Too large time constant in the loop. Note: The impact of a large time constant

455

CHAPTER 15. CONTROL LOOP STABILITY

Process

Sensor

ySP ue
Controller

y

dControl

error

Process

measure-

ment

ym

n Measurement

noise

Reference

or

Setpoint

Control

variable

Process output

variable

Feedback

Filter
ym,f

Filtered

measure-

ment

Disturbance

(environmental

variable)

Control loop

Figure 15.1: Block diagram of a feedback control system.

on the loop stability presented here assumes that the controller has integral action, as
in a PI or PID controller. The effect of a too large time constant is similar to that of
the a too large time delay: The response due to a change in the controller output
come back to the controller with a large lag, which resembles a time delay.
Furthermore, the signal is smoothed due to the filtering effect of a time constant.
Both these effects cause the controller to get a relatively “false” information about the
process, and it may generate a too large control signal which gives an
over-compensation, eventually causing oscillations to occur.

Example 15.1 Instability in the wood-chip tank level control system

We study here the level control system of the wood chip tank described in Example 1.1.
The controller is a PI controller with Skogestad settings as found in Example 14.6:

Kc = 1.05 %/m (15.1)

Ti = 1000 s (15.2)

The simulations in this example are made with the following SimView simulator:

http://techteach.no/simview/levelcontrol chiptank

Too large gain

Figure 15.2 shows the response in the level when the screw gain of the feed screw, Ks, was
increased by a factor of approximately three, from 33.33 (kg/min)/% to 100 (kg/min)/%, at

456

http://techteach.no/simview/levelcontrol_chiptank

CHAPTER 15. CONTROL LOOP STABILITY

time 40 min. (This parameter change may be cause by the installation of a new large screw
with three times larger capacity.) This process gain increase causes a similar increase in the
control loop gain. The control system becomes unstable. (The amplitude of the oscillations
are limited due to the limits of the control variable. The maximum value is 100%, and the
minimum value is 0% are reached during the simulations.)

Figure 15.2: Large process gain: The response in the level when the screw gain, was increased
by a factor of approximately three, from 33,36 (kg/min)/% to 100 (kg/min)/%, at time 40
min. The control system has become unstable.

Can we get the stability back by retuning the controller? Recall the Skogestad PI settings,
(14.43) – (14.44), which I repeat here:

Kc =
1

2Kiτ
; Ti = 4τ (15.3)

In our case, Ki has been increased by a factor of 3. From the PI tuning formulas above, we
can conclude that Kc should be reduced by a factor of 3, from 1.05 to 0.35, while Ti should
not be changed. Figure 15.3 shows a simulation when these new PI settings were applied at
time approx. 100 min. We see that the control system is again stable.

Too large time delay

Figure 15.4 shows the setpoint step response in the level when the time delay of the
conveyor belt has been increased from the nominal value of 250 s (= 4.17 min) to 500 s (=
8.33 min). (The controller has the original settings of Kc = 1.05 and Ti =1000 s.) This
process time delay increase causes a similar increase in the control loop time delay. The
control system has become close to unstable due to the increase in the time delay.

Can we get the stability back by retuning the controller? The Skogestad PI settings:

Kc =
1

2Kiτ
; Ti = 4τ (15.4)

tell us that if the time delay, τ , is increased by a factor of 2, as in our example, Kc should
be reduced by a factor of 2, from 1.05 to 0.525, and Ti should be increased by a factor of to,

457

CHAPTER 15. CONTROL LOOP STABILITY

Figure 15.3: Large process gain: The level control system is again stable when the controller
was retuned at time approx. 100 min.

from 1000 s to 2000 s. Figure 15.5 shows a simulation when these new PI settings applied
at time approx. 480 min. We see that the control system is again stable.

Too large time constant

In the level control system of the wood chip tank, the only time constant system is the
measurement filter. We will study the effect on control system stability of increasing the
filter time constant, Tf . We increase it from 20 s to 520 s (this particular increase is to make
the calculations somewhat easier; see below). Figure 15.6 shows the setpoint step response
in the level with this increase in time constant. (The controller has the orginal settings of
Kc = 1.05 and Ti =1000 s.) The yellow curve in Figure 15.6 is the level measurement signal
after the filter, i.e. the filtered measurement, while the blue curve in Figure 15.6 is the level
measurement signal before the filter, i.e. the raw measurement. (We see that the filtered
measurement has a big lag compared to the unfiltered measurement. The lag is due to the
sluggish filter.) The increase in time constant has made the control loop unstable.

Can we get the stability back by retuning the controller? The Skogestad PI settings are:

Kc =
1

2Kiτ
; Ti = 4τ (15.5)

Here we have a challenge, since there is no time constant in (15.5). However, we can try
approximating the time constant with a time delay. We have increased the time constant,
Tf , by 500 s. The time delay, τ , is 250 s. Thus, the increase of Tf is regarded as an increase
in τ from 250 by 500 to 750 s which is an increase by factor 3. According to (15.5), a 3
times larger τ implies a reduction of Kc by factor 3 and an increase of Ti by factor 3.
Therefore, the new settings are: Kc = 1.05/3 = 0.35 and Ti = 3 · 1000 = 3000 min. Figure
15.7 shows a simulation when these new PI settings applied at time approx. 130 min. We
see that the control system is again stable.

I emphasize the particular trick used above: Pretending that a time constant is a time
delay. Such an approximation can be useful when retuning controllers after an increase in
the filter time constant in the control loop. This approximation is safe (or robust or

458

CHAPTER 15. CONTROL LOOP STABILITY

Figure 15.4: Large process time delay: The level control system has become close to unstable
when the time delay of the conveyor belt is increased from the nominal value of 250 s to 500
s.

conservative) because an increase in the time delay has a larger (worse) impact on dynamics
and stability of a control loop than an increase in the time constant has.

[End of Example 15.1]

15.2 Experimental gain margin (GM) and phase margin
(PM)

In Section 15.1 we saw that a feedback control system gets worse stability

• if the loop gain in the loop becomes larger, and/or

• if the time delay in the loop becomes larger.

A stability margin indicates how much change in the parameters in a (feedback) control
system that can be tolerated before the control system comes to the stability limit, i.e.
becomes marginally stable. When the control system is marginally stable, the system
variables shows undamped oscillations.

In the feedback control theory, there are two common stability margins:

• Gain margin GM, which expresses how large increase of the loop gain that feedback
loop can tolerate before it becomes marginal stable.

• Phase margin PM, which (indirectly) expresses how large increase of the loop time
delay that the feedback loop can tolerate before it becomes marginally stable.

459

CHAPTER 15. CONTROL LOOP STABILITY

Figure 15.5: Large process time delay: The level control system is again stable when the PI
controller was retuned at time approx. 480 min.

GM and PM can be calculated from a linear mathematical model of the control system, cf.
Ch. 22.3. GM and PM can also be found experimentally on a real or simulated control
system (the simulator model may be nonlinear), as explained in the following.

Figure 15.8 shows a feedback control system where two special blocks for the purpose of
stability analysis have been included:

• One block with a multiplicative gain ∆K

• One block with an additional time delay increase ∆τ .

You can find GM and PM as explained below.

• GM: Let ∆τ be 0, i.e. no time delay increase. Start with ∆K = 1, i.e. no gain
increase to start with. By trial-and-error, find the value of ∆K, here denoted ∆Ku (u
for ultimate), that makes the control system become marginally stable (oscillatory).
This gives

GM = ∆Ku (15.6)

• PM: Let ∆K be 1, i.e. no gain increase. Start with ∆τ = 0, i.e. no time delay
increase to start with. By trial-and-error, find the value of ∆τ , here denoted ∆τu (u
for ultimate), that makes the control system become marginally stable (oscillatory). It
can be shown that

PM =
∆τu
Pu

· 360◦ (15.7)

where Pu [s] is the period of the oscillations. (15.7) is derived at the end of this
section, after Example 15.2. Comment: PM measured in degrees originates from
traditional frequency response theory of feedback systems.

Acceptable intervals for GM and PM are given in Seborg et al. (2004) as

1.7 ⩽ GM ⩽ 4.0 (15.8)

460

CHAPTER 15. CONTROL LOOP STABILITY

Figure 15.6: Large process time constant: The level control system has become close to
unstable when the time constant of the meauserement filter is increased from the nominal
value of 20 s to 520 s.

30◦ ⩽ PM ⩽ 45◦ (15.9)

Since too poor stability must be avoided, while too good stability may be accepted, the
lower limits of GM and PM are critical, while the upper limits for GM and PM are
recommended, but not critical. In other words: GM should not be less than 1.7 and PM not
less than 30◦, while there is no disaster if GM is greater than 4.0 or if PM is greater than
45◦.

Practical problems of including the extra blocks?

Figure 15.8 contains a gain block and a time delay block where we adjust ∆K and ∆τ to
find marginal stability. If, for some reason, it is difficult to include two such blocks, you can
use the following alternative method to find ∆K and ∆τ (that procedure is demonstrated
in Example 15.2):

• Finding ∆Ku: We adjust the controller gain until the feedback loop becomes
marginally stable. Then, ∆Ku is equal to the multiplicative increase of the controller
gain.

• Finding ∆τu : It is here assumed here that there is a time delay somewhere in the
feedback loop, e.g. in the process, that can be adjusted. Then, ∆τu is equal to the
additive increase of the time delay that makes the feedback loop become marginally
stable. Note: If there is no time delay in the loop at all and you can not include a
time delay in the loop, either, there will not be any time delay to adjust. In such a
case you must simply drop finding PM.1

Example 15.2 Stability margins of the level control system of the wood-chip tank

1With a simulator, we should always be able to include a time delay, but it can be difficult to do it in a
real feedback control system.

461

CHAPTER 15. CONTROL LOOP STABILITY

Figure 15.7: Large process time delay: The level control system is again stable when the PI
controller was retuned at time approx. 480 min.

Process

w/actuator

and sensor

r
Controller

d

ymu
DK (t-Dt)

Adjustable

gain

Adjustable

time-delay

Figure 15.8: A feedback control system with blocks of multiplicative gain increase ∆K and
additional time delay increase ∆τ .

Example 1.1 presents a level control system of a wood-chip tank. Assume that the
controller is a PI controller with these settings:

Kc = 1.35 (15.10)

Ti = 900 s (15.11)

Let us find the GM and PM for the control system from a simulation.2 To find GM, we
adjust the regulator gain, Kc, in a simulation. To find PM, we adjust the conveyor time
delay (transport delay), τ , in a simulation. Initially, τ = 250 s = 4.17 min.

• GM: Simulations show that the control system becomes marginally stable with
Kc = 2.63, see Figure 15.9. The gain margin becomes

GM = ∆Ku =
2.63

1.35
= 1.95

which is an acceptable value since it is within the limits in (15.8).

• PM: Before the time delay is adjusted in a simulation, Kc is reset to 1.35. A
simulation show that with τ = 6.73 min, the control system becomes marginally

2A SimView simulator of the system: Level control of wood chip tank, http://techteach.no.

462

http://techteach.no

CHAPTER 15. CONTROL LOOP STABILITY

stable, see Figure 15.10. The period of the oscillations is measured as Pu = 37.5 min.
The phase margin becomes

PM =
∆τu
Pu

· 360◦ (15.12)

=
(6.73 min− 4.17 min)

37.5 min
· 360◦ (15.13)

= 24.6◦ (15.14)

which is an unacceptably low value, cf. (15.9). Actually, the PI controller was tuned
with the Ziegler-Nichols turning method, which is known to give the control system a
relatively poor stability. So, the low phase margin in this example is not surprising.

Figure 15.9: The control system is marginally stable with Kc = 2.63.

[End of Example 15.2]

Derivation of (15.7):

I will now derive (15.7) from the theory of stability analysis of linear feedback systems based
on frequency response (this theory is presented in Ch. 22). See Figure 15.8. Assume that
the feedback system is stable with ∆τ = 0 (and ∆K = 1), and that ∆τ is then increased to
the value ∆τu that makes the system become marginally stable. In general, when the time
delay in the loop is increased, the amplitude gain characteristic is unchanged, and in
particular the gain crossover frequency, ωc [rad/s], is unchanged, while the phase
characteristic is reduced by ω∆τ [rad] where ω [rad/s] is frequency. In frequence response
theory, the phase margin, PM, is defined as the phase reduction (given as a positive value)
which causes the phase of the loop to become −180◦ at the gain crossover frequency, ωc.
Since this phase reduction stems from the time delay increase only, the phase margin is

PM = ωc∆τu [rad] (15.15)

or

PM = ωc∆τu · 180
π

[deg] (15.16)

463

CHAPTER 15. CONTROL LOOP STABILITY

Figure 15.10: The control system is marginally stable with τ = 6.63 min.

When the system is marginally stable, its response in the time domain is oscillatory, and
the frequency of the oscillations is equal to ωc (because the purely imaginary poles, ±jωc,
are among the poles of the system). ωc is related to the period, Pu [s], of the oscillations as
follows:

ωc =
2π

Pu
(15.17)

Finally, combining (15.17) and (15.16) gives (15.7), which is what I wanted to derive.

464

CHAPTER 15. CONTROL LOOP STABILITY

15.3 Problems for Chapter 15

Problem 15.1 PB and stability

How will the stability of the control loop change if the proportional band PB is reduced?

Problem 15.2 Control system stability at process changes

Figure 15.11 shows a temperature control system with two different positions of the
temperature sensor. Assume that the temperature controller is tuned so that the stability
of the control system is satisfactory with the sensor in position 1.

w

w [kg/min]

Tinn [
oC] T [oC]

u

Power amplifier

TT

TC

TT

?

1 2

?

Figure 15.11: Temperature control system

1. What wil happen to the stability if the sensor is moved to position 2?

2. Assume that the sensor is in position 1. How will the stability change if the liquid
flow decreases?

3. How will the stability change if the sensor gain is increased (the gain is the ratio of
the sensitivity of the measurement signal in volts or amperes to the temperature)?

4. How will the stability change if the heater is substituted by a heater delivering more
power per unit of the control signal?

Problem 15.3 Explain the unstable response!

A temperature control system is described in Problem 1.9. Figure 15.12 shows the
temperature response after a relatively large reduction of the fan opening. Explain the
unstable response!

465

CHAPTER 15. CONTROL LOOP STABILITY

Fan opening being reduced

t [s]

Figure 15.12: Unstable temperature control system

Problem 15.4 Stability margins

Given a control system that is initially stable when ∆K = 1 and ∆τ = 0. The controller
gain is then Kc = 5.0. It is stated that the control system has GM = 2.5.

1. Which value of Kc will make the control system become marginally stable?

2. In an experiment on the control system with Kc = 5.0, it has been found that a dead
time increase of ∆τ = 10 s causes the control system to oscillate with a period of 100
s. What is the phase margin PM? Is this an ok value?

466

CHAPTER 15. CONTROL LOOP STABILITY

15.4 Solutions to problems for Chapter 15

Solution to Problem 15.1

Reduced PB value means increased controller gain, and therefore increased loop gain. This
implies that the stability is reduced if the PB value is decreased.

Solution to Problem 15.2

1. The transport time from tank to sensor increases, thus increasing the time delay in
the control loop, causing reduced stability. If the time delay gets too large, the

control system becomes unstable.

2. With reduces flow, the time delay is increased, causing reduced stability.

3. The stability is reduced since the loop gain is increased.

4. The stability is reduced since the loop gain is increased.

Solution to Problem 15.3

The response is oscillatory because the control system is unstable. The instability is due to:
(1) The reduced air flow which causes increased transport delay (time delay) in the process
from heating element to temperature sensor. (2) Increased process gain because the reduced
air flow makes the temperature more sensitive to the supplied heat (adjusted by the control
signal), and increased process gain implies increased control loop gain.

Solution to Problem 15.4

1.
Kc = 5 · 2.5 = 12.5

2.

PM =
△τu
Pu

· 360◦ = 10 s

100 s
· 360◦ = 36◦

which is an ok value, cf. (15.9).

467

Chapter 16

Control structures based on the
PID control loop

This chapter describes a number of control methods and control structures based on the
PID controller that are quite common in industry.

Also, sequential control is described. Sequential control is used to implement batch process
control and automated mechanical operations. In a sequential control system PID control
loops typically play a minor role, because the overall control task is not about continuous
control. For example, PID control may be used to make the temperature of a batch reactor
track a ramped temperature profile during the heating step of the control sequence.

16.1 Cascade control

16.1.1 The principle of cascade control

From earlier chapters we know that a control loop compensates for disturbances. If the
controller has integral action the steady-state control error is zero despite a change in the
disturbance. What more can we wish? We may want the compensation to happen faster, so
that the control error goes to zero faster. This can be achieved by cascade control , see
Figure 16.1.

In a cascade control system there is one or more control loops inside the primary loop, and
the controllers are in cascade.

There is usually one, but there may be two and even three internal loops inside the primary
loop. The (first) loop inside the primary loop is called the secondary loop, and the
controller in this loop is called the secondary controller (or slave controller). The outer loop
is called the primary loop, and the controller in this loop is called the primary controller (or
master-controller). The control signal calculated by the primary controller is used as the
setpoint of the secondary controller.

468

CHAPTER 16. CONTROL STRUCTURES BASED ON THE PID CONTROL LOOP

C2 P2 P1

S1

u y1

v

er1

Setpoint

y1m

y2

Sensors

Disturbance

Primary

(or master)

controller

Secondary

(or slave)

controller

Primary loop

Secondary loop

Secondary

(internal)

process

variable

Primary

process

variable

Process

F2

F1

Filters

u1 = r2

S2

C1

y2m

Figure 16.1: Cascade control system.

16.1.2 Benefits of cascade control

To repeat: One important reason for using cascade control is that it gives faster (better)
disturbance compensation. In most applications the purpose of the secondary loop is to
compensate quickly for the disturbance so that the response of the disturbance in the
primary output variable is small. For this to happen the secondary loop must register the
disturbance. This is done with the sensor S2 in Figure 16.1.

One additional benefit of cascade control is that the internal process variable (y2) becomes
more directly controllable, making it is easier to tune the primary controller to obtain
satisfactorily good overall stability and fastness of the whole control system. In many
applications process part 2 (P2 in Figure 16.1) is the actuator (valve, pump, motor), or is
closely related to the actuator. The secondary control loop can be regarded as a new
actuator which can be more directly controlled or manipulated by the primary controller.
See Figure 16.2. The internal process variable y2 is controlled or manipulated directly by
the primary controller: The output of the primary controller, u1, demands a value of y2
which is then a setpoint r2 of y2, and the secondary control loop makes y2 track r2.

Examples:

• The internal process variable (y2) is valve flow. The secondary loop is then a flow
control loop.

• The internal process variable (y2) is pressure after (downstream) the valve. The
secondary loop is then a pressure control loop.

• The internal process variable (y2) is valve position (valve opening). The secondary
loop is then a position control loop.

The generally improved control with cascade control can be explained by the increased

469

CHAPTER 16. CONTROL STRUCTURES BASED ON THE PID CONTROL LOOP

P1

S1

y1er1

Setpoint

y1m

y2

Sensor

Primary

(or master)

controller

Primary loop

Secondary

(internal)

process

variable

Primary

process

variable
Process

part 1

F1

Filter

u1 = r2
C1 L2

Secondary

control loop

(”new actuator”)

Figure 16.2: The secondary control loop can be regarded as a new actuator.

information about the process – there is at least one more measurement. It is a general
principle that the more information you have about the process to be controlled, the better
it can be controlled. Note however, that there is still only one control variable to the
process, but it is based on two or more measurements.

As explained above cascade control can give substantial disturbance compensation
improvement. Cascade control can also give improved tracking of a varying setpoint, but
only if the secondary loop has faster dynamics than the process part P2 itself, cf. Figure
16.1, so that the primary controller “sees” a faster process. But, if there is a time delay in
P2, the secondary loop will not be faster than P2 (this is demonstrated in Example 16.1),
and then faster setpoint tracking can not be expected.

Are there any drawbacks of cascade control? Since cascade control requires at least two
sensors a cascade control system is somewhat more expensive than a single loop control
system. Industrial automation systems are typically prepared for cascade control, so no
extra control hardware or software is required.

Example 16.1 Temperature control using cascade control

This example is about temperature control system of a liquid tank with continuous product
flow heated with a heating liquid which flows continuously through a jacket around the tank.

The simulations in this example are made with the following SimView simulator:

http://techteach.no/simview/cascade control temperature

470

http://techteach.no/simview/cascade_control_temperature

CHAPTER 16. CONTROL STRUCTURES BASED ON THE PID CONTROL LOOP

Figure 16.3: Example 16.1: Cascade and single-loop control systems of the product temper-
ature of a tank

The tank can represent a reactor. In the simulator that is used in this example both the
product and the heating liquid are water. A cascade control system and single-loop control
system are simulated simultaneously (i.e. in parallel) so that the differences between these
two control structures are easily demonstrated. The two control systems are as follows:

• A cascade control system with temperature control of both the tank and the
jacket.

• A single-loop control system with temperature control of the tank only.

Figure 16.3 shows the P&IDs (Process & Instrumentation Diagrams) of the two control
systems.

Both control systems are excited by the same temperature setpoint and the same
disturbances. The controller parameter settings are shown in Figure 16.3.

Figure 16.4 shows block diagrams of the cascade and single-loop control systems.

The mathematical model used in the simulator is based on energy balances of the water
volumes in the tank and in the jacket, respectively, assuming homogeneous conditions.

Figure 16.5 shows simulated responses due to the following excitations (applied at different
points of time):

• Disturbance change: The inflow temperature Thin
was changed as a step from 60 to

55 ◦C.

471

CHAPTER 16. CONTROL STRUCTURES BASED ON THE PID CONTROL LOOP

Figure 16.4: Example 16.1: Block diagrams of the cascade and single-loop control systems

• Disturbance change: The enviromental (ambient) temperature Te was changed as a
step from 20 to 25 ◦C.

• Disturbance change: The product inlet temperature Tpin was changed as a step
from 20 to 25 ◦C.

• Setpoint change: The setpoint rT of the product temperature was changed as a step
from 40 to 40.5 ◦C.

From the simulations we observe the following:

1. The disturbance compensations regarding changes in the jacket inflow temperature
Thin

and in the environmental (ambient) temperature Te are substantially better with
the cascade control system (see the responses in the upper plot in Figure 16.5). This
is because the secondary process variable Th (the jacket temperature) is directly
influenced by these disturbances, and hence the secondary control loop can
compensate for their changes.

2. The disturbance compensation regarding the change in the product inflow
temperature Tpin is not substantially better with the cascade control system. This is
because the secondary process variable Th (the jacket temperature) is not directly
influenced by this disturbances, and hence the secondary control loop can not
compensate immediately for its change.

3. The setpoint tracking is somewhat better – but not substantially better – with the
cascade control system.

472

CHAPTER 16. CONTROL STRUCTURES BASED ON THE PID CONTROL LOOP

Figure 16.5: Example 16.1: Simulated responses of the cascade and single-loop control sys-
tems. The excitations are described in the text.

4. The control signal in the cascade control system works more aggressively than in the
single-loop control system, which is due to the relatively quick secondary loop.

[End of Example 16.1]

Below is another example of a cascade control system.

Example 16.2 Cascade control of a heat exchanger

Figure 16.6 shows a temperature control system of a simulated heat exchanger. The
simulator is in the SimView library, and is available on

http://techteach.no/simview/cascade control temp heat ex/

473

http://techteach.no/simview/cascade_control_temp_heat_ex/

CHAPTER 16. CONTROL STRUCTURES BASED ON THE PID CONTROL LOOP

The control variable controls the opening of the hot water valve. The primary loop controls
the product temperature. The secondary loop controls the heat flow to compensate for flow
variations (disturbances) which stem from variations in the pressure drop over the valve;
these pressure variations may in turn stem from variations in the pressure supply. The valve
with flow control system can be regarded as a new valve with an approximate proportional
relation between the control variable and the heat flow.

Figure 16.6: Example 16.2: Cascade control of the product temperature of a heat exchanger.

Let’s look at simulated temperature responses with single loop control and with cascade
control. In the simulations, the various controllers are PI controllers tuned for fast and
stable control.

Single loop control

Figure 16.7 shows the temperature in the product temperature (at TT1) when standard
single loop control is used, i.e. the valve is manipulated directly by controller TC1. The
supply pressure (disturbance) Ps is changed manually as 5 → 8 → 3 → 5 barg (approximate
values).

Cascade control

Figure 16.8 shows the temperature (at TT1) when cascade control is used; The valve is
manipulated directly by flow controller FC1. The flow reference (setpoint) to FC1 is the
control signal generated by the temperature controller TC1.

Compare the responses shown in Figure 16.8 with those in Figure 16.7. Which control
structure is the best (in this test)? The answer should be obvious.

474

CHAPTER 16. CONTROL STRUCTURES BASED ON THE PID CONTROL LOOP

Figure 16.7: Temperature response (at TT1) with single loop control. Ps is changed manually
as 5 → 8 → 3 → 5 barg.

[End of Example 16.2]

So far, we have seen examples only of two cascade control loops, but there may be
additional loops. Below is an example of three cascade control loops.

Example 16.3 Level control system with three cascade control loops

Figure 16.9 shows a level control system of a tank using three cascade control loops. The
loops are:

• Primary loop: Level control of the tank.

• Secondary loop: Flow rate control of the pump.

• Tertiary loop: Rotational speed control of the pump motor.

This cascade control system is found at the inlet part of some water resource recovery
facilities. The tank is an inlet buffer magazine of combined water and sewage to be treated
by the facility (plant). The level controller should be tuned for averaging level control, cf.
Section 16.4.

[End of Example 16.3]

16.1.3 Selection of control functions

The primary controller is typically a PID controller or a PI controller. The secondary
controller is typically a P controller or a PI controller. The derivative action is usually not
needed to speed up the secondary loop since process part 2 typically has much faster

475

CHAPTER 16. CONTROL STRUCTURES BASED ON THE PID CONTROL LOOP

Figure 16.8: Temperature response (in TT1) with cascade control. Ps is changed manually
as 5 → 8 → 3 → 5 barg.

dynamics than process part 1, so the secondary loop will probably be fast enough. And in
general the sensitivity of the derivative term to measurement noise is a drawback.

If the secondary controller is a PI controller, the proportional term of the controller should
not have reduced setpoint weight, cf. Section 11.3.2. Why?1

16.1.4 Controller tuning

How do you tune the controllers of a cascade control? You can follow this procedure:

• First the secondary controller is tuned, with the primary controller in manual mode.

• Then the primary controller is tuned, the secondary controller in automatic mode.

So, you start with the inner loop, and then move outwards.

The tuning of the controllers (finding good PID settings) can be made using any of the
tuning methods described in Section 14.

16.1.5 Cascade control and state feedback

Cascade control is quite similar to state feedback control, which is a control principle where
the controller generates the control signal as a function of measurements (or estimates) of
all the state variables of the process to be controlled, see Figure 16.10.

1Because attenuating or removing the time-varying setpoint (which is equal to the control signal produced
by the primary controller) of the secondary loop will reduce the ability of the secondary loop to track these
setpoint changes, causing slower tracking by the total control system.

476

CHAPTER 16. CONTROL STRUCTURES BASED ON THE PID CONTROL LOOP

SC ST

rL

F

FT

FC

LC

LT

rF

rS

u S

L

Figure 16.9: Level control system with three cascade control loops. (S = Speed.)

It can be shown that with state feedback, you can design a control system with specified
performance regarding stability and fastness for virtually any stable or unstable process.
Hence, state feedback is potentially a very powerful control principle. To design a state
feedback controller you need the mathematical model of the process. There are several
control methods – linear and nonlinear – that are based on state feedback control, and a
mathematical process model. The following methods are presented later in this book:

• Linear quadratic control (LQG), Ch. 34.

• Model predictive control (MPC), Ch. 35.

• Inverse dynamic control, Ch. 36.

16.2 Ratio control

The purpose of ratio control is to control a mass flow, say F2, so that the ratio between this
flow and another flow, say F1, is

F2 = KF1 (16.1)

where K is a specified ratio which may have been calculated as an optimal ratio from a
process model. One example is the calculation of the ratio between oil inflow and air inflow
to a burner to obtain optimal operating condition for the burner. Another example is the
nitric acid factory where ammonia and air must be fed to the reactor in a given ratio.

Figure 16.11 shows the most common structure of ratio control. As shown with the left
diagram in the figure, the setpoint of the flow F2 is calculated as K times the measured
value of F1, which is denoted the “wild stream” (this name is used, even if this stream is
controlled, as shown in Figure 16.11). The diagram to the right in the figure shows a

477

CHAPTER 16. CONTROL STRUCTURES BASED ON THE PID CONTROL LOOP

P1

S1+F1

r1

Setpoint

Sensor + Filter

Controller

Primary feedback

Primary

process

variable

Process

u
C

S3+F3

S2+F2

y1=x1

x2

x3

Inner

feedbacks

Control

variable

x1

Figure 16.10: State feedback control.

compact but equivalent representation of ratio control with the symbol FFC (Flow Fraction
Controller).

16.3 Split-range control

In split-range control one controller controls two actuators in different ranges of the control
signal span, which here is assumed to be 0 – 100%. See Figure 16.12.

Figure 16.13 shows an example of split-range temperature control of a thermal process.
Two valves are controlled – one for cooling and one for heating, as in a reactor.

The temperature controller controls the cold water valve for control signals in the range 0 –
50 %, and it controls the hot water valve for control signals in the range 50 – 100 %, cf.
Figure 16.12.

In Figure 16.12 it is indicated that one of the valves are open while the other is active.
However in certain applications one valve can still be open while the other is active, see
Figure 16.14.

One application is pressure control of a process: When the pressure drop compensation is
small (as when the process load is small), valve V1 is active and valve V2 is closed. And
when the pressure drop compensation is large (as when the process load is large), valve V1

is open and valve V2 is still active.

478

CHAPTER 16. CONTROL STRUCTURES BASED ON THE PID CONTROL LOOP

Process

FT1

FC2FT2

MULT

K (specified

ratio)

K F1 = F2SP

F1

Measured

F1

F2

Wild stream

FC1

Process

FT1

FT2

K

F1

F2

Wild stream

FC1

Equivalent:

FFC

(Flow

Fraction

Controller)

FFC

u u

Figure 16.11: Ratio control

50 % 100 %0 %

Open

Control variable, u

Closed

Valve position

Valve Vc Valve Vh

Valve VcValve Vh

Figure 16.12: Split-range control of two valves

16.4 Averaging level control

16.4.1 What is averaging level control?

Averaging level control is an important part of several process systems. Figure 16.15 shows
a general buffer tank with a level control system aiming at averaging (or equalizing, or
attenuating) inflow variations so that the outflow becomes smoother than the inflow. Figure
16.16 shows a block diagram of the level control system.

The tank resembles the inlet magazine to the WWRF presented in the subsequent Example
16.4 and the oil/water separator presented in presented in the subsequent Example 16.5.
Based on the difference between the level setpoint and the level measurement provided by
the sensor LT1, the level controller, LC1, manipulates the outlow through the pump to
compensate for inflow variations.

A SimView simulator of the averaging level control system is available on:

479

CHAPTER 16. CONTROL STRUCTURES BASED ON THE PID CONTROL LOOP

Process

TTTC

Valve
Vc

Vh

Cold water

Hot water

Figure 16.13: Split-range temperature control using two control valves

50 % 100 %0 %

Open

Control signal, u

Closed

Valve position

Valve V1

Valve V2

Figure 16.14: In split-range control one valve can be active while another valve is open
simultaneuously.

http://techteach.no/simview/level control equalization tank

Figure 16.17 shows a simulation with the level controller LC1 in automatic mode. (SimView
simulator: http://techteach.no/simview/level control equalization tank.) The inflow is
sinusoidal, with amplitude of 1 m3/s and period of 1200 s (refering to the WRRF, this
inflow variation may be washwater from the treatment processes subsequent to the inlet
magazine in the WRRF). The bottom plot of Figure 16.17 shows that the level controlled
buffer tank (magazine) attenuates the flow variations. The level is allowed to vary around
the level setpoint. These variations are necessary to obtain the buffering or averaging of the
varying inflow. It is actually a special challenge to tune the level controller in averaging
level control systems, since the level control must be sufficiently compliant, not “stiff” is we
typically want control system to be. Tuning for averaging control is described in Ch. 16.4.2.

Example 16.4 Equalization or buffer magazine at the inlet of a WRRF

480

http://techteach.no/simview/level_control_equalization_tank
http://techteach.no/simview/level_control_equalization_tank

CHAPTER 16. CONTROL STRUCTURES BASED ON THE PID CONTROL LOOP

Figure 16.15: Averaging level control of a buffer tank.

Tank

(Process)

Sensor

LT1

rh

u

Controller

LC1

Pump

(Actuator)

Fin

hm

e h[m] [m]

[m]

[m3/s][m] [m3/s]

[m3/s]

Fout

Figure 16.16: Block diagram of the temperature control system of the liquid tank.

Water resource recovery facilities (WWRF)2 are crucial facilities in modern societies. They
recover resources from what has traditionally been regarded as “waste”, namely sewage and
other forms of organic matter.

Figure 16.18 shows the equalization or buffer magazine at the inlet of a typical WRRF.

In the equalization magazine, the level should be compliant to flow variations so that
variations in the inflow are attenuated through the magazine, making the outflow
considerably smoother than the inflow. Smoother outflow is advantageous for the
subsequent processes, e.g. for the biological treatment processes of the WRRF. The level
controller must tuned for compliant (or soft, or sluggish) level control so that the volume of
the tank can absorb the inlet variations.

[End of Example 16.4]

2The traditional term is watewater treatment plants (WWTPs), but international organizations, like In-
ternational water Association (IWA) encourages a change of terminology.

481

CHAPTER 16. CONTROL STRUCTURES BASED ON THE PID CONTROL LOOP

Figure 16.17: Simulation with the PI level controller in automatic mode. The controller is
tuned with the Skogestad method. Fin has a sinusoidal variation.

Example 16.5 Control of a water and oil separation system

In the oil & gas production where separators are used to separate oil and gas and water
from a three-phase oil/water/gas flow coming from reservoirs.3 Separators are
level-controlled to maintain the mass balance in the separator. It it important that slugs,
which are sudden changes in the inflow to the separators, are attenuated through the
separator, otherwise the slug will propagate through the subsequent production line. This
attenuation will not take place if the level control works too fast, because in a fast level
control system, the outflow is nearly the same as the input! So, slugs requires sluggish
(slow) level control. On the other hand, the slugs must not cause too large level variations
inside the separator, otherwise level alarms will be triggered.

A SimView simulator of level control systems of the separators on the Vigdis oil and gas
plant in Norway is available on:

http://techteach.no/simview/separators

Figure 16.19 shows the front panel of the simulator. The main flow rate is given by the
inflow from the reservoir. So, in this system there is no flow control loop. Instead, the flow
is given by the flow coming from the reservoir. The level controllers must maintain the mass

3The residence in the separator causes the separation to take place due to the different densities of oil,
water and gas.

482

http://techteach.no/simview/separators

CHAPTER 16. CONTROL STRUCTURES BASED ON THE PID CONTROL LOOP

Figure 16.18: Level control of equalization magazine upstreams the VEAS WRRF, Slemmes-
tad, Norway:

balances of the separators. (Mass of gas is maintained using pressure control, but the
pressure control system is not shown in the figure.) In the first stage separator there is a
level control systems for the oil and another level control systems for the water. In the
second stage separator there is a level control system for the oil (it is assumed that all the
water has been removed in the first stage separator).

[End of Example 16.5]

16.4.2 Tuning of the PI controller for averaging level control

Review Figure 16.15. How to tune the level controller (LC1 in the figure)? The
Ziegler-Nichols controller tuning methods – both their ultimate gain method (or closed loop
method), and the process reaction method (or open loop method) – are designed for giving
as fast control as possible. These methods are therefore useless for tuning of the level
controller of a buffer tank since we want sluggish control of such tanks.

However, the Skogestad method is suitable here since the speed of the controller can be
tuned with the closed loop time constant, Tc, as tuning parameter. Skogestad tuning of the
averaging level controller is explained below.

Dynamically, buffer tanks are integrators (or accumulators) since the process output
variable, which is the liquid level, is proportional to the integral of (or accumulation of) the
control signal, which is here assumed to be the inflow pump control signal. Let us recall the
Skogestad formulas for integrating processes with zero time delay (in liquid buffer tanks, we
can assume a negligible or zero time delay between the pump flow control signal and the
level):

Kc =
1

KiTc
(16.2)

Ti = 2Tc (16.3)

Here:

• Ki is the process integrator gain, or the normalized step slope of the process step

483

CHAPTER 16. CONTROL STRUCTURES BASED ON THE PID CONTROL LOOP

Figure 16.19: Control structure for a water, oil and gas separator system

response (step in the control signal). As explained below,

Ki = − 1

A
(16.4)

where A [m2] is the surface area of the liquid in the tank.

• Tc[s] is the time constant of the level control system, i.e. of the closed loop system
from level set point, hsp, to level measurement, h. A way of tuning Tc is suggested
below.

Using (16.4), the PI controller settings of the level controller of a buffer tank is:

Kc =
1

KiTc
= −A

Tc
(16.5)

Ti = 2Tc (16.6)

Note: The negative sign in Kc means that the controller has direct action.

Derivation of (16.4), Ki = −1/A

Let us study an example in the form of a simulator of a level controlled buffer tank. Figure
16.20 shows the front panel of the simulator. The controller is in manual mode. The upper
plot in Figure 16.20 shows the ramp-shaped response in the level, h [m], due to a step in the
pump control signal, u. (The values of the model parameters are representative of
wastewater treatment plants for cities of similar size as Oslo.)

Assume that the pump control signal is changed as a step of amplitude U . Figure 16.20
shows such an experiment (applied there with U = 0.3 m3/s). The ramp-shaped level

484

CHAPTER 16. CONTROL STRUCTURES BASED ON THE PID CONTROL LOOP

Figure 16.20: The upper plot shows the ramp-shaped response in the level due to a step in
the pump control signal shown in the bottom plot. (Controller LC is in manual mode.)

response has slope S [m/s] equal to

S = −U

A
(16.7)

and the normalized slope becomes

Ki =
S

U
=

−U/A

U
= − 1

A
(16.8)

How to specify a reasonable value of Tc?

How to specify a reasonable value of Tc [s] needed in the PI settings of Kc and Ti in (16.5)
and (16.6), respectively? An interpretation of this time constant is how fast, in the form of
63% rise time, the level approaches to the level set point when the set point is changed as a
step. This is illustrated in Figure 16.21 which shows an ideal, principal time constant
response of a control system (numbers will, of course, be unique to each pertinent control
system).

However, in level control systemts of buffer tanks the setpoint is typically constant, so
specifying the 63% rise time of the setpoint step response is not particularly meaningful for
such control systems. Instead, let’s make a more meaningful specification of Tc, related to
the response of an inflow change. We start by assuming that the level controller is a P
(proportional) controller. It can be shown, from a mathematical model of the level control
system, that

∆hmax =
Tc

A
∆Fin (16.9)

485

CHAPTER 16. CONTROL STRUCTURES BASED ON THE PID CONTROL LOOP

y_sp

y

tt

63%

100%

Figure 16.21: Ideal time constant response of a control system

Here, ∆hmax is the maximum steady-state change in level due to an assumed maximum
inflow step change of amplitude ∆Fin [m3/s], see the upper plot of Figure 16.22, which
shows a simulated response with P-controller (yellow curve) due to a inflow step change at t
= 2000 s (shown in the bottom plot of the figure). The response with a PI-controller is also
shown (blue curve).

With a PI controller that has the same Tc as with the P controller, the following applies, as
illustrated in Figure 16.22:

∆hmax ⩽
Tc

A
∆Fin (16.10)

Solving this inequality for Tc gives

Tc ⩾
A∆hmax

∆Fin
(16.11)

We may use this upper limit of Tc in (16.11) to specify Tc:

Tc =
A∆hmax

∆Fin
(16.12)

Summing up the PI tuning formulas

1. From the allowed ∆hmax due to an inflow step change of amplitude ∆Fin, calculate Tc

as

Tc =
A∆hmax

∆Fin
(16.13)

2. Then, Tc is used to tune the PI controller as follows:

Kc = −A

Tc
(16.14)

Ti = 2Tc (16.15)

Note: The negative sign in Kc means that the controller has direct action.

486

CHAPTER 16. CONTROL STRUCTURES BASED ON THE PID CONTROL LOOP

Δhmaks

med
PI-reg.

Δhmaks

med
P-reg.

Figure 16.22: Simulations with P controller and with PI controller due to a step change in
Fin

Example 16.6 Tuning of the PI controller for averaging level control

The simulations in this example are made with the following SimView simulator:

http://techteach.no/simview/level control equalization tank

Assumptions:
A = 2000 m2

∆Fin = 1.0 m3/s

∆hmax = 0.5 m

From (16.13):

Tc =
A∆hmax

∆Fin
=

2000 m2 · 0.5 m
1.0 m3/s

= 1000 s (16.16)

Then, from (16.14) and (16.15):

Kc = −A

Tc
= −2000 m2

1000 s
= −2 m2/s = −2 (m3/s)/s (16.17)

487

http://techteach.no/simview/level_control_equalization_tank

CHAPTER 16. CONTROL STRUCTURES BASED ON THE PID CONTROL LOOP

Ti = 2Tc = 2 · 1000 s = 2000 s (16.18)

Simulation with step change in inflow

Figure 16.22 shows a simulation with step change in the inflow of ∆Fin = 1.0 m3/s. The
blue curves pertains to PI control (the orange is P control). We see that the level, as
expected, is reduced somewhat less 0.5 due to the inflow step change. Thus, the
specification of the control system is satisfied.

Simulation with sinusoidal change in inflow

Figure 16.17 shows another simulation with the controller in automatic mode. The inflow is
now sinusoidal, with amplitude of 1 m3/s and period of 1200 s (this intake variation may be
washwater from the treatment processes subsequent to the inlet magazine in a wasterwater
treatment plant). The bottom plot of Figure 16.17 shows that the level controlled buffer
tank (magazine) attenuates the flow variations. Even greater attenuation can be achieved
by increasing the control system time constant Tc, but then with the disadvantage that the
level may deviate too far from the setpoint in the case of a large inflow change.

[End of Example 16.6]

16.5 Plantwide control

In the process industry products are created after materials being processed in a number of
vessels in series, which are typically unit processes as evaporators, blending or heated tanks,
buffer tanks, reactors, distillation columns, separators, absorbers, etc. Typical basic control
requirements of such a production line are as follows:

• The product flow must be controlled (to follow a setpoint). This is typically
done by implementing flow control of one key component or feed.

• The product quality must be controlled – more or less directly. Ideally, the
product quality is analyzed or measured in real time, and this measurement is used to
adjust feeds, supplied heat etc. so that the product quality is controlled to follow its
setpoint using feedback. In practice, however, such real time or online measurements
are typically not implememented since they rely on time consuming laboratory
analysis. Instead, the product quality is controlled indirectly by controlling the flow of
the feeds needed to produce the final product, typically using ratio control.

• The mass balance of each process vessel (tank, reactor, etc.) must be
maintained – otherwise it may run full or empty. The mass balance is maintained
with level control systems for liquids, and with pressure control systems for gases. In
vessels containing gas there may still not be any pressure control. It depends on the
process if it necessary to control the process.

It is crucial to select the correct reverse or direct action for each of the controllers
(otherwise the control loop becomes unstable), cf. Section 11.3.1. The general rules
are as follows4:

4It is assumed that increased control signal to the actuator increases flow through the actuator.

488

CHAPTER 16. CONTROL STRUCTURES BASED ON THE PID CONTROL LOOP

– Level/gas controllers that are upstream relative to the flow control loop (i.e. are
placed before the loop) implementing product flow control of the plant (see
above) shall be set into reverse action mode.

– Level/gas controllers that are downstream relative to the flow control loop (i.e.
are placed after the loop) implementing product flow control of the plant (see
above) shall be set into direct action mode.

• The temperature in some of the process lines or vessels must be controlled.

Figure 16.23 shows a basic, principal example where the above control requirements are
implemented.

FT

1 Flow(rate) A

setpoint

LT

1

FC

1

LC

3 LC

4

LT

4

Downstream vessels (3 and 4)Upstream vessels (1 and 2)

LC

1

FFC

1

FT

2 Specified ratio

K = FB/FA

Pump 3

LT

3

Vessel 1 Vessel 4

Pump 5 Pump 6

Level

setpoint Level

setpoint Level

setpoint

FFC = Flow Fraction Controller

(Ratio controller)

LT

2

LC

2

Level

setpoint

Pump 4

Vessel 3

Feed A

Feed B

Product
Mixer

TC

1

TT

1 Temperature

setpoint

Heat

ex-

changer

PT

1

PC

1

Pressure

setpoint

Vessel 2

Heating (or

cooling)

medium

Vapour

Liquid

Valve 1

Valve 2

Liquid Liquid

Liquid

Pump 1

Pump 2

QT

1

QC

1

Product quality

setpoint

Product quality

controller

(may be a manual

controller)

Flow FA

Flow FB

Figure 16.23: Process plant with control loops

Comments to the control system shown in Figure 16.23:

• Two flows, FA and FB, are mixed. In general, the mix of two feeds can be fed to a
subsequent reactor. It is assumed that FA contains the key component of the product,
and that FA defines the production rate. Ratio control is used to control FB so that
the ratio between the flows is as specified:

K =
FB

FA
(16.19)

• The mass balance of upstream vessels 1 and 2 (upstream relative to the point of
production flow control in the process line) is controlled by manipulating inflows
while the mass balance of the downstreams vessels 3 and 4 tank are controlled by
manipulating the outflows.

489

CHAPTER 16. CONTROL STRUCTURES BASED ON THE PID CONTROL LOOP

• In vessel 4 both the liquid level and the vapour pressure are controlled.

• The mass balances of liquids are maintained using level control. The mass balance of
vapour is maintained using pressure control.

• The product quality may be controlled by adjusting the ratio K between the flows
into the mixer. Ideally, this quality controller is operating in automatic mode based
on online (continuous) quality measurement of the product. However, in many cases
(as in the nitric acid production plant described in Example 16.7) the product quality
is measured off-line using laboratory analysis which gives quality measures only a few
times per day. In these cases, the quality controller is actually in the form of an
operator adjusting the ratio K.

• The temperature of the inflow to vessel 4 is controlled.

• It is crucial to select correctly between Reverse action mode and Direct action mode
in the controllers, cf. Section 11.3.1). Assume that for each of the pumps and the
valves that increased control signal increase pump speeds and increase valve openings.
Furthermore, assume that heating is needed by the heat exchanger, the control valve
manipulates the amount of heating medium. Then, the controller mode of each of the
controllers are as follows:

– LC1: Reverse

– LC2: Reverse

– LC3: Direct

– LC4: Direct

– PC1: Reverse

– TC1: Reverse

– All flow controllers: Reverse

Is this correct?5

A specific, industrial example is given in the following.

Example 16.7 Control structures of a nitric acid plant

The example is about production of nitric acid, which is used in e.g. the production of
fertilizers.6 The description of the process is based on information given by Yara company
in Porsgrunn, Norway. However, I have simplified the process somewhat because too many
details may obscure the basic principles. (One simplification is that the bleacher, which is
used to clean the raw, brown-coloured nitric acid which is the output from the asbsorber, is
not included. Another simplification is that the condenser between compressor K2 and
absorber A1 is not included.) The control structure is shown in the figure is based on
information given by Yara.

5No! PC1: Direct.
6There are many Nitric Acid production plants around the world. One of them is at the Yara industrial

plant area in Porsgrunn, Norway.

490

CHAPTER 16. CONTROL STRUCTURES BASED ON THE PID CONTROL LOOP

Figure 16.24 shows a Process & Instrumentation Diagram (P & ID) of the (simplified) nitric
acid plant.

Tank T1

Mixer

M1

Process

water

Reactor

R1

Compressor

K1

NH3

FT

2
FFC

1

LC

1

LT

1

PT

1

PC

1

Evaporator

E1

Cold

water

Liquid

Gas

Ammonia

(liquid)

LT

2

LC

2

Condenser C1

LT

3

LC

3

O2

890 oC

NO + H2O

Raw

nitric

acid

HNO3

H2O
Absorber

A1

N2 and NOx

Liquid (acid)

Gas

Shaft 1

Turbine/

generator

TG2

Tail gas

Liquid down

Gas up
Heater H1

Air with NOx

FC

3

FT

3

Feed:

Gas

V4

Valve

V1

V2

V3

V5

P1

Manual

setpoint

adjustment

QT

1

NH3

Ammonia

(gas)

Feed:

ST

1

SC

1
Air

Turbine/

generator

TG1

Steam

Steam

Steam

drum

D1

Water

Gas

Gas

Specified

Amm./Air

ratio

Liq.

Lab

analysis

Production rate

setpoint

Meas.

rot. speedMULT

k
Meas.

air flow

(From bleacher)

NO2

+ H2O

Compressor

K2

Shaft 1

Figure 16.24: Example 16.7: Process and Instrumentation Diagram (P & ID) of simplified
nitric acid plant.

Description of the nitric acid plant

(Control structures are described below.)

The feeds (input flows) to the production are

• Ammonia

• Air

• Process water

The product (output flow) is

• Nitric acid

491

CHAPTER 16. CONTROL STRUCTURES BASED ON THE PID CONTROL LOOP

Below are descriptions of the components and flows related to these components:

• Evaporator E1: Ammonia liquid (NH3) is evaporated using water (cold!) as heat
supply.

• Compressor K1: Primary air is compressed.

• Mixer M1: Ammonia gas and air are mixed.

• Reactor R1 (exothermal): Ammonia and oxygene (in the primary air) reacts with a
platinum-rhodium catalyst to produce nitrogene monixide (NO) and water (H2O)
which are passed to condenser C1.

• Condenser C1: The water and some of the nitrogene dioxide (gases) are condensed
into acid liquid.

• Condenser C1: The gaseous output is mixed with secondary air from the bleacher
(the bleacher is omitted in this simplified plant), causing oxydation. The product of
the oxydation is nitrogene dioxide (NO2) and water (H2O).

• Compressor K2: Nitrogene dioxide (NO2) and water (H2O) is compressed in
compressor K2.

• Condenser C1: The acid liquid outflow is pumped by pump P1 to a proper tray in
the absorber.

• Absorber A1: Process water is added at the top. This water and the acid liquid
(from condenser C1) flow downwards to meet gaseous nitrogene dioxide (from
condenser C2) with a chemical reaction taking place. The product of this reaction is
raw nitric acid (HNO3) liquid collected at the bottom of the absorber, to be passed to
bleacher (the bleacher is omitted here), and nitrous gases exiting at the top.

• Heater H1: The nitrous gases are heated by the hot product out of reactor R1,
before being passed to, and driving, turbine/generator TG2 which produces electric
power that is exported.

• Steam drum D1: The reaction taking place in reactor R1 is exothermal. Some of
the produced heat is used to heat water, and the resulting high-pressure steam drives
turbine/generator TG1 which produces electric power that is exported.

• Shaft 1: The compressors and the turbines/generators have one common shaft. The
turbines transfers chemical energy to motional (kinetic) energy. The generators
produce electric power that is exported. The rotational speed of the common shaft
determines the production rate of the plant.

Description of the control structure of the plant

• Production rate is controlled with rotational speed control of the common
turbine/generator shaft. The mass flow of the air, which is a feed to the process, is
proportional to the speed (indicated with the MULT block with a gain k in the upper
part of the diagram). The stoichiometric balances are maintained with a ratio of 10 %

492

CHAPTER 16. CONTROL STRUCTURES BASED ON THE PID CONTROL LOOP

between the mass flow of ammonia to mass flow of air. Therefore, the ammonia gas
flow (feed) is controlled with ratio control based on the rotational speed.

Also the process water flow into the absorber is a feed to the process. This flow is
controlled with flow control with the flow setpoint adjusted manually according to a
laboratory analysis of the nitric acid outflow (from the absorber) accomplished twice a
day. The QT (Quality Transmitter) represents this analysis.

• Mass balances of the various vessels are maintained as follows:

– Evaporator E1 : Ammonia liquid level is controlled using inlet valve V1 as
actuator. Since this level control loop is upstream relative to the production flow
control loop, the level controller LC1 shall be set in reverse action mode.

– Evaporator E1 : Ammonia gas pressure is controlled using water valve V2 as
actuator.

– Reactor R1: The contents of the reactor is gaseous only. There is however no
control of gas pressure.

– Condenser C1: Acid liquid level is controlled using pump P1 as actuator. Since
this level control loop is downstream relative to the production flow control loop,
the level controller LC2 shall be set into direct action mode.

– Condenser C1: Gas pressure is not controlled.

– Absorber A1: Raw nitric acid liquid level is controlled using valve V4 as
actuator. Since this level control loop is downstream relative to the production
flow control loop, the level controller LC3 shall be set into direct action mode.

– Absorber A1: Nitrous gas pressure at the “top” is not controlled.

• Temperature control: None.

[End of Example 16.7]

493

CHAPTER 16. CONTROL STRUCTURES BASED ON THE PID CONTROL LOOP

16.6 Problems for Chapter 16

Problem 16.1 Cascade control for level control of wood-chip tank

Figure 16.25 shows a level control system of a wood-chip tank. The primary loop

h [m]

Wood-chip

Chip tank

u

wout [kg/min]

??

Control
variable

??

Primary loop

Secondary
loop

Conveyor belt

Screw
d

Inflow disturbance

Figure 16.25: Level control system of a wood-chip tank.

implements level control. The secondary loop implements flow control to compensate
quickly for disturbance flow d which is an outflow of large chips which are removed from the
chip flow with a special mechanical filter. Insert the correct instrumentation letters for the
question marks.

Problem 16.2 Purpose of the ammonia flow control loop

In the neutralization section of a fertilizer production plant, intermediate mother liquor
flows into and out of a tank. In the tank the pH value of the liquid is controlled by
adjusting the inflow of ammonia gas to the tank. The ammonia flow is flow controlled using
a control valve.

Draw an instrumentation diagram of this process section. (You can use Q (for quality) as
symbol for pH.) What can be the purpose of the ammonia flow control loop?

494

CHAPTER 16. CONTROL STRUCTURES BASED ON THE PID CONTROL LOOP

Problem 16.3 Three control loops

Figure 16.26 shows a control valve being used to manipulate the flow of a heating medium
(liquid) into a heat exchanger where the temperature is to be controlled. The output of the

Valve

Product

Heating

liquid
Heat

exchanger

Figure 16.26: Heat exchanger.

temperature controller is flow command signal (flow setpoint) to the valve, and the output
of the flow controller is a valve stem position command (position setpoint) to the stem
moving mechanism. The stem position control system of valves is denoted positioner .

Draw an instrumentation diagram of the total control system. You can use symbol G for
position of the valve stem. (Hint: There are three control loops.)

Problem 16.4 Which controllers?

Figure 16.27 shows a ship. The position of the ship is controlled. Assume that it is benefical

?

? ?

?

Motor

?

Figure 16.27: Ship

for the positional control system that the rotational speed of the propeller is controlled.

Based on the given information, substitute the question marks with proper functions (text).
What are the purposes of the control loops?

495

CHAPTER 16. CONTROL STRUCTURES BASED ON THE PID CONTROL LOOP

Problem 16.5 Control structure for level and flow control

Figure 16.28 shows a tank with two inlet flows. The liquid level of the tank is to be

FB FA

Figure 16.28: Tank

controlled by manipulating (controlling) flow A. It is assumed that flow A is much larger
than flow B. The ratio between flow B and A is specified as

FB

FA
= k (16.20)

where k is a given ratio. Assume that it is necessary to have local flow control loops around
each valve.

Draw a Process & Instrumentation diagram of a control system for this process.

Problem 16.6 pH control

Figure 16.29 shows a liquid tank where the pH value of the liquid is to be controlled with
split-range control where acid flow and base flow are adjusted. Both the acid flow and the

Liquid tank

QT

Acid

Base

pH

Figure 16.29: Liquid tank

base flow are controlled with (local) flow control loops. Draw an instrumentation diagram
of the tank with control system.

496

CHAPTER 16. CONTROL STRUCTURES BASED ON THE PID CONTROL LOOP

Problem 16.7 PI tuning for averaging level control

Given a level control system with PI controller for averaging level control for a water tank
with cross-sectional area A = 50 m2. The largest sudden change that the inflow to the tank
can have is 100 L/s. It is specified that this largest change must give a maximum level
change of 20 cm. Tune the PI controller.

Problem 16.8 Control structure of process line

Figure 16.30 shows an uncontrolled process line consisting of a serial connection of liquid
tanks. Draw a Piping & Instrumentation Diagram of the control structure of the process

T1 T2 T3

F1 F2 F3 F4

T = Tank

F = Flow

LiquidLiquid Liquid

Figure 16.30: Process line.

line based on the following specifications: The production rate (-flow) is controlled by
controlling F3 to its setpoint. The mass balance of the liquid in each tank should be
maintained. Pumps are used as actuators.

Problem 16.9 Control structure of process line

Figure 16.31 shows an uncontrolled process line consisting of a serial connection of liquid
tanks. Draw a Piping & Instrumentation Diagram of the control structure of the process

T1 T2 T3

F1 F2 F3 F4

T = Tank

F = Flow

Gas

LiquidLiquid Liquid

F5

Figure 16.31: Process line.

line based on the following specifications: The production rate (-flow) is controlled by
controlling F1 to its setpoint. The mass balance of the liquid in each tank should be
maintained using pumps as actuators. The gas pressure is controlled to a setpoint using a
control valve as actuator.

497

CHAPTER 16. CONTROL STRUCTURES BASED ON THE PID CONTROL LOOP

Problem 16.10 Control structure of level control system

Figure 16.32 shows a wood-chip tank, which is in the beginning of the pulp & paper
production line. Spruce, pine and eucalyptus are used as feeds into the tank, via a conveyor

Level [m]

Chip

tank

Outflow [kg/min]

Conveyor belt
Inflow

disturbance

[kg/min]

Steam

Spruce

Pine

Eucalytpus

40%

30%

30%

Screw 4

Screw 1

Screw 2

Screw 3

Figure 16.32: Wood-chip tank

belt. The percentages of each of these flows are indicated in Figure 16.32. There is a flow
disturbance before the belt which is due to sieving the chip flow to remove large parts of
chip.

Draw a P&I (Process & Instrumentation) diagram of a control system for this part of the
production line according to the following specifications:

• The production rate is controlled to a setpoint with flow control of Screw 4.

• The level of chip in the tank is controlled to a setpoint by manipulating the total
inflow to the conveyor belt.

• The total chip flow into the belt is splitted into percentage flows shown in Figure
16.32. The splitting can be represented with a block with total control signal (100%)
as input and three flow value outputs (30%, 30% and 40% respectively). The flows
out of the three inflow screws are flow controlled.

• A flow control loop is used to compensate for the flow disturbance due to the sieveing.
This flow loop is based on the measurement of the flow with a flow sensor at the
beginning of the belt.

• The temperature of the chip in the tank is controlled to a setpoint using the steam
valve.

Problem 16.11 Control structure of destillation column

498

CHAPTER 16. CONTROL STRUCTURES BASED ON THE PID CONTROL LOOP

Figure 16.33 shows an incomplete P&I (Process & Instrumentation) diagram of a controlled
distillation column.

If you need it, here is some basic information about distillations columns: A distillation column
contains a number of trays from where liquid can pour downwards (to the next tray) and vapour can
rise upwards (to the next tray). The purpose of the distillation column is to separate the “light”
component and the “heavy” component by exploiting their different boiling points of temperature.
Heat is supplied to the boiler at the bottom of the column. Vapour leaving the column is condensed
in the condenser. The liquid leaving the condenser is accumulated or stored in the accumulator.
Part of the liquid leaving the accumulator is directed back to the column, and the rest – the
distillation product – is directed to e.g. a storage tank. Ideally, the concentration of “heavy”
component in the top product is zero, and the concentration of the “light” component in the
bottoms product is zero. In principle this can be achieved by one quality control loop for the top
product and one quality control loop for the bottoms product, but due to the dynamic properties of
distrillation columns such “two-point” control is difficult to realize. Therefore, there is typically
either quality control of the top product or quality control of the bottoms product.

Make the diagram shown in Figure 16.33 complete by entering letter codes in the
instrumentation symbols according to these specifications: The quality of the distillate
product is controlled, and there is mass balance control of various parts of the column.
(The heating medium supplied to the boiler is manually controlled, so it is not adjusted by
an automatic controller.)

499

CHAPTER 16. CONTROL STRUCTURES BASED ON THE PID CONTROL LOOP

????

Feed

Boiler

Column

Accumulator
Condenser

Distillate

product
Reflux

Bottoms

product

Heating

medium

Cooling

medium

????

??

??

??

??

V1 V2

Figure 16.33: Distillation column

16.7 Solutions to problems for Chapter 16

Solution to Problem 16.1

Figure 16.34 shows the solution. (In the real plant, the mass flow rate is measured with a
flow sensor which is in the form of a level measurement of the vertical position of the belt
between two specific rollers.)

Solution to Problem 16.2

See Figure 16.35.

The purpose of the ammonia flow control loop can be to obtain an ammonia flow that
tracks the flow value (flow setpoint) that the pH controller demands. The flow control will

500

CHAPTER 16. CONTROL STRUCTURES BASED ON THE PID CONTROL LOOP

h [m]

Wood-chip

Chip tank

u

wout [kg/min]

LTLC

Control
variable

FTFC

Primary loop

Secondary
loop

Conveyor belt

Screw
d

Inflow disturbance

Figure 16.34: Cascade control system of wood-chips tank.

compensate for flow variations caused by e.g. pressure variations in the ammonia gas supply.

Solution to Problem 16.3

Figure 16.36 shows the instrumentation diagram.

Solution to Problem 16.4

Figure 16.37 shows the ship with control system.

The purpose of the position control loop is to make the ship track the position reference.

The purpose of the propeller speed control loop is to make the propeller speed track the
speed command or reference generated by the positional controller. The speed control loop
will compensate for disturbances acting on the propeller so that the propeller speed is more
smooth. In addition, this speed control loop may make the tuning of the position controller
easier because the position controller will control the speed more directly.

501

CHAPTER 16. CONTROL STRUCTURES BASED ON THE PID CONTROL LOOP

Outflow

Ammonia

FC

FT

QC

QT

Mother

liquor

Figure 16.35: pH control system

Solution to Problem 16.5

See Figure 16.38.

Solution to Problem 16.6

Figure 16.39 shows the pH control system.

Solution to Problem 16.7

Given:

A = 50 m2 (16.21)

∆Fin = 100 L/s = 0.1 m3/s (16.22)

∆h = 20 cm = 0.2 m (16.23)

This gives:

Tc = A
∆h

∆Fin
= 50 · 0.2

0.1
= 100 s (16.24)

Kc = −A

Tc
= −∆Fin

∆h
= −0.1

0.2
= −0.5 (m3/s)/m (16.25)

502

CHAPTER 16. CONTROL STRUCTURES BASED ON THE PID CONTROL LOOP

GC

Valve

Product

Heating

liquid
Heat

exchanger

GT

FC

TC

TT

FT

Figure 16.36: Cascade control of heat exchanger

Ti = 2Tc = 200 s (16.26)

Solution to Problem 16.8

See Figure 16.40.

Solution to Problem 16.9

See Figure 16.41.

Solution to Problem 16.10

See Figure 16.42.

Solution to Problem 16.11

See Figure 16.43.

503

CHAPTER 16. CONTROL STRUCTURES BASED ON THE PID CONTROL LOOP

Position

controller

Position

sensor

Rotational

speed

sensor

Rotational

speed

controller

Position

reference

Figure 16.37: Cascade control of ship

FC

A

FT

A

LT LC

FC

B

FT

B

MULT
k

FB,SP = kFA

FB

hSP

FA

Figure 16.38: Ratio control and cascade control

504

CHAPTER 16. CONTROL STRUCTURES BASED ON THE PID CONTROL LOOP

Liquid tank

QTQC

Acid

Base

pH

FC

B

FC

A

FT

A

FT

B

Figure 16.39: Split-range control system

T1 T2 T3

F1 F2 F3 F4

LC

1

LT

1

LC

2
FT

1

FC

1
LT

2

LC

3
LT

3

P1 P2 P3 P4

T = Tank

F = Flow

P = Pump

Figure 16.40: Process line with control system.

T1 T2 T3

F1 F2 F3 F4

FC

1

FT

2

LC

2

LC

4
LT

1

LC

6
LT

5

P1 P2 P3 P4

LT

3

Liquid Liquid Liquid

Gas
PT

2

PC

1

Figure 16.41: Process line with control system.

505

CHAPTER 16. CONTROL STRUCTURES BASED ON THE PID CONTROL LOOP

Chip

tank

u [kg/min]

LT

1

LC

1

Control

variable

FT

5

FC

5

Conveyor belt
Inflow

disturbance

[kg/min]

TT

1

TC

1

Steam

FT

1

FC

1

Production

flow setpoint

Spruce

Pine

Eucalyptus

FT

3

FC

3

FT

4

FC

4

FT

2

FC

2

Splitter

40%

30%

30%

Level

setpoint

Screw 2

Screw 3

Screw 4

Screw 1

Outflow [kg/min]

FSP [kg/min]

LSP [m]

Figure 16.42: Level control system of wood-chip tank

506

CHAPTER 16. CONTROL STRUCTURES BASED ON THE PID CONTROL LOOP

LC1LT1

Feed

Boiler

Column

Accumulator

Condenser

Distillate

product
Reflux

Bottoms

product

Heating

medium

Cooling

medium

QTQC

PT

PC

LC2

LT2

V1 V2

Figure 16.43: Control system of distillation column

507

Chapter 17

Feedforward control

17.1 Introduction

We know from Chapters 1.4 and 11 that feedback control – or error-driven control – can
bring the process output variable to or close to the setpoint. Feedback control is in most
cases a sufficiently good control method. But improvements can be made, if required. A
problem with feedback is that there is no adjustment of the control variable before the
control error is different from zero, since the control variable is adjusted as a function of the
control error. This problem does not exist in feedforward control .

Feedforward control generates a contribution to the control signal using knowledge about
the following three components:

• The setpoint, which is always known.

• The process disturbance(s), assumed measured so that its value is known.

• A mathematical process model (linear or non-linear) which conveys process knowledge
in mathematical terms.

Using the above information, the feedforward controller generated (ideally) a perfect control
signal making the process output variable, y, equal to its setpoint, r.

However, a perfect feedforward is not possible to realize since there are always some process
disturbances which are not measured, and because the process model is never perfect. In
other words, perfect feedforward can not be realized fully because of model errors, causing
the control error to becomes different from zero. But by including feedback control, this
error may be reduced. In practice, feedforward control is used together with feedback
control. Figure 17.1 shows the structure of a control system with both feedforward and
feedback control.

In Figure 17.1, the feedforward from disturbance can be interpreted as a technical coupling
from the disturbance to the process output variable which is supposed to counteract, or

508

CHAPTER 17. FEEDFORWARD CONTROL

Process

Feedback

sensor

r Feedback

controller

ym

e yu

d
Feedforward

controller

Disturbance

sensor

ufb +
+

Natural

coupling
Technical

coupling
uff

Figure 17.1: Control system with both feedforward and feedback control

cancel out, the natural coupling so that the net effect that the disturbance has on the
process output y is zero, which is what we want.

The feedforward control signal is added to the feedback control signal to make the total
control signal:

u = ufb + uff (17.1)

The feedforward controller, which generated uff in Figure 17.1, can be developed in several
ways:

• From a differential equations process model, cf. Section 17.2.

• From a transfer functions process model. This is not described in this book, but the
procedure is as for differential equation models, assuming you have found the
differential equation(s) that corresponds to the given transfer functions.

• From experimental data, cf. Section 17.3 This method is model-free, and should be
regarded as an approximative method, which still may give substantial improvement
of control system performance.

Note that using feedforward together with feedback does not influence the stability of the
feedback loop because the feedforward does not introduce new dynamics in the loop.

17.2 Designing feedforward control from differential
equation models

The feedforward controller can be derived with the following two-step procedure:

1. Substitute the process output variable, y, by its desired value, the setpoint
(reference), r.

2. Solve the process model for the control signal, u. Denote this u by uff, the feedforward
control signal.

509

CHAPTER 17. FEEDFORWARD CONTROL

One practicual issue: Typically, the feedforward controller comprise the time-derivative of r.
The time-derivative is very sensitive to abrupt changes of r. Two solutions to this problem
are:

• r is lowpass filtered before the differentiation. If the setpoint appears in the
feedforward controller with its first order time derivative, a time constant filter will
probably be ok, see Figure 17.2 where a time constant filter is assumed. If the
setpoint appears in the feedforward controller with its second order time derivative, a
second order filter should be used. A simple second order filter may be constructed
with two time constant filters in series.

• Only smooth changes of r are allowed, e.g. a sigmoid or sinusoidal change between
setpoint values.

r Feedback

controller

ym

e

Feedforward

controller

ufb +
+

uff

Setpoint

filter

t

rfilt

t

63%

100%

Tfilt,r

Figure 17.2: A setpoint filter generates a smooth setpoint to be used by the feedforward
controller (and the feedback controller).

Example 17.1 Feedforward level control of a liquid tank

Figure 17.3 shows a liquid tank with inflow and outflow. The level h is to be controlled
using feedback with PID controller in combination with feedforward control. (The responses
are explained later in this example.)

From a mass balance of the liquid in the tank we get the following process model:

ρAh′ = Fin − Fout (17.2)

where h [m] is liquid level, Fin [kg/s] is mass inflow, Fout [kg/s] is mass outflow, A [m2] is
cross sectional area of the tank, ρ [kg/m3] is the liquid density. Fin is assumed to be equal
in value to the applied control signal u. By using Fin = u the model becomes:

ρAh′ = u− Fout (17.3)

Now, let us derive the feedforward control function from the process model (17.3), follwing
the two-step procedure presented above:

510

CHAPTER 17. FEEDFORWARD CONTROL

Figure 17.3: Example 17.1: Liquid tank where the level h is controlled with feedback control.
Here, feedforward control is not applied.

Firstly, we substitute the level h by its setpoint rh:

ρAr′h = u− Fout (17.4)

Secondly, we solve (17.4) for the control variable u to get the feedforward control variable
uff:

uff = ρAr′h + Fout (17.5)

which is the ideal feedforward controller. uff,sp = ρAr′h represents feedforward from setpoint,
and uff,d = Fout represents feedforward from disturbance. We see that calculation of
feedforward control signal uff requires measurement or knowledge of the following four
quantities: ρ, A, Fout, and h′sp. (Figure 17.3 indicates that flow Fout is measured.)

Does the feedforward controller (17.5) make sense?

• The term
uf,d = Fout (17.6)

tells that the inflow should be equal to the outflow at any instant of time to cancel the
impact of the outflow in the level. Makes sense?1

• The term
uf,sp = ρAr′h (17.7)

tells that if the setpoint is changing, the inflow should be increased, or decreased –
depending on the sign of r′h, equal to the specified rate of change of the mass in the
tank, which is ρAr′h.

1Yes.

511

CHAPTER 17. FEEDFORWARD CONTROL

In (17.5), r should be lowpass filtered before it is time-differentiated. A first order lowpass
filter in the form of a time constant filter may be used:

rfilt(s) =
1

Tfilt,rs+ 1
r(s) (17.8)

where Tfilt,r is the filter time constant which can be tuned by trial-and-error.

In the following, two cases are simulated: Level control without and with feedforward
control. In both cases there is feedback control with PI controller with parameters Kc = 10
and Ti = 100 s. In the first part of the simulation which is the first 1000 seconds, the level
setpoint r is varied while the outflow (disturbance) is constant, while in the last part of the
simulation which is the last 1000 seconds, the level setpoint is kept constant while the
outflow Fout is varied.

• Without feedforward control (only feedback control): Figure 17.3 shows the
responses in the level h as the setpoint is varied and as the disturbance (outflow) is
varies. The level deviates clearly from the setpoint in both situations.

• With feedforward control (in addition to feedback control): Figure 17.4 shows the
responses in the level with almost the same variations of the setpoint and the
disturbance as when only feedback control is used. We see that the level now deviates
very little from the setpoint. The control performance is substantially improved.

Figure 17.4: Example 17.1: Liquid tank where the level h is controlled with feedback control.
Here, feedforward control is applied.

Note: Without feedforward control the control signal range of the PID controller is [0, 5] (in
unit of m3/s). With feedforward the output signal range of the PID controller was set to
[−5, +5] so that the contribution, uPID, from the PID controller can be negative. If uPID
can not become negative, the total control signal, which is

u = uPID + uff (17.9)

512

CHAPTER 17. FEEDFORWARD CONTROL

may not get small enough value to give proper control when the outflow is small. (This was
confirmed by a simulation, but the responses are not shown here.)

The simulations in this example are made with the following SimView simulator:

http://techteach.no/simview/feedforward control tank temp

[End of Example 17.1]

17.3 Designing feedforward control from experimental data

Feedforward control can be designed from experimental data as follows:

• Decide a proper set of N different values of the disturbance d on which the feedforward
control will be based, for example N = 6 different values of the disturbance.

• For each of these N distinct disturbance values, find (experimentally or by simulation)
the value of the control signal u which corresponds to zero steady state control error.
This can (should) be done with PI or PID feedback control. (Typically feedback
control is used together with feedforward control, so no extra effort is needed to run
the feedback control here.)

• The set of N corresponding values of d and u can be represented by a table, cf. Table
17.1, or in a coordinate system, cf. Figure 17.5.

• For any given (measured) value of the disturbance, the feedforward control signal uf
is calculated using interpolation, for example linear interpolation as shown in Figure
17.5. In practice, this linear interpolation can be implemented using a table lookup
function.2

Table 17.1: N corresponding values of u and u

u d

u1 d1
u2 d2
u3 d3
u4 d4
u5 d5
u6 d6

2Both MATLAB/SIMULINK and LabVIEW have functions that implement linear interpolation between
tabular data.

513

http://techteach.no/simview/feedforward_control_tank_temp

CHAPTER 17. FEEDFORWARD CONTROL

d1 d2 d3

u3

u2

u1

d4 d5

u4

u5

Measured process disturbance

Piecewise linear interpolation

Control signal, u

= Feedforward control signal, uff

Figure 17.5: Calculation of feedforward control signal from known disturbance value

Note: This feedforward design method is based on steady state data. Therefore, the
feedforward control will not be ideal or perfect. However, it is easy to implement, and it
may give substantial better control compared to only feedback control.

Example 17.2 Temperature control with feedforward from flow

Figure 38.10 shows a lab process consisting of a heated air tube where the air temperature
will be controlled. The control signal adjusts the power to the heater. The air temperature
is measured by the primary Pt100 element. The feedback PID control is based on this
temperature measurement. (The control system is implemented with a LabVIEW program
running on a laptop PC.)

Variations of the air flow act as disturbances to the process. The feedback controller tries to
compensate for such variations using the temperature measurement. Can we obtain
improved control by also basing the control signal on measured air flow, which is here
available as the fan speed indication? First, ordinary PID control without feedforward is
tried. The fan speed was changed from minimum to maximum, and then back again. The
temperature setpoint was 40 %. Figure 17.6 shows the fan speed and the response in the
temperature (which is represented in % with the range [0–100%] corresponding to
[20–70oC]).

The maximum control error was 1.0 %.

Will there be any improvement by using feedforward control from the fan speed (air flow)?
A number of corresponding values of fan speed and control signal was found experimentally.
The feedforward control signal, uf , was calculated by linear interpolation with Interpolate
1D Array function in LabVIEW, and was added to the PID control signal to make up the
total control signal: u = uPID + uf . Figure 17.7 shows the fan speed and the response in

514

CHAPTER 17. FEEDFORWARD CONTROL

Figure 17.6: Example 17.2: The response in the temperature after a change in the fan speed.
Only feedback control (no feedforward) control is used.

the temperature. Also, the set of 6 corresponding values of control signal and fan speed, on
which the feeedforward control signal is based, is shown.

In this case the maximum control error was 0.27, which is a large improvement compared to
using no feedforward control!

[End of Example 17.2]

515

CHAPTER 17. FEEDFORWARD CONTROL

Figure 17.7: Example 17.2: The response in the temperature after a change in the fan speed.
Feedforward from fan speed (air flow) is used together with feedback control. u ff is the
feedforward control signal, uf .

17.4 Problems for Chapter 17

Problem 17.1 Deriving a feedforward controller

Given the following model of a process to be controlled:

Ty′ = −y +K1u+K2d

where y is the output variable, u is the control variable, d is the process disturbance
variable, and T , K1 and K2 are parameters. The setpoint of y is r.

1. Derive a feedforward controller for this process.

2. What quantities must be known for the feedforward controller to be realizable?

3. In general, why is it typically necessary in practice to combine feedforward control
with feedback control?

516

CHAPTER 17. FEEDFORWARD CONTROL

Problem 17.2 Feedforward controller for ship

A mathematical model of a ship is presented in Ch. 38.2. The model is shown below, for
convience:

In mathematical terms:

my′′ = Fp +Dh

(
uc − y′

) ∣∣uc − y′
∣∣+Dw

(
Vw − y′

) ∣∣Vw − y′
∣∣ (17.10)

Fp is the control variable. Assume that the positional reference is yr [m].

Design a feedforward controller for the ship. What information is needed to implement the
feedforward controller? Is it realistic to get this information?

Figure 1.23 shows a simulation with the feedforward controller, and feedback control with a
PID controller.

Problem 17.3 Feedforward controller for heated tank

Figure 17.8 shows a heated liquid tank where the temperature T shall be controlled using
feedback with PID controller in combination with feedforward control.

Figure 17.8: Liquid tank with temperature control system

We assume the following process model, which is based on energy balance:

cρV T ′(t) = Khu(t)︸ ︷︷ ︸
P

+ cw [Tin(t)− T (t)] + U [Te(t)− T (t)] (17.11)

517

CHAPTER 17. FEEDFORWARD CONTROL

where T [K] is the temperature of the liquid in the tank, Tin [K] is the inlet temperature, Te

[K] is environmental temperature, c [J/(kg K)] is specific heat capacity, w [kg/s] is mass
flow (same in as out), V [m3] is the liquid volume, ρ [kg/m3] is the liquid density, U
[(J/s)/K] is the total heat transfer coefficient, P = Khu [J/min] is supplied power via
heating element where Kh is a parameter (gain) and u [%] is the control signal applied to
the heating element. cρV T is the (temperature dependent) energy of the liquid in the tank.
We can consider Tin and Te as disturbances, but the derivation of the feedforward function
Ff is not dependent of such a classification.

Derive the feedforward function from the process model (17.11). The temperature setpoint
is rT [K]. Which parameters and variables must have known values to implement the
feedforward control?

Problem 17.4 Interpolation in feedforward controller

Assume that you will implement the feedforward controller as a set of linear functions
(lines) between the data points (fan, uff). The linear functions are on the form

uff = a · fan + b (17.12)

Let us select the points (40,52) and (60,61). Calculate a and b of the line between these two
points.

518

CHAPTER 17. FEEDFORWARD CONTROL

17.5 Solutions to problems for Chapter 17

Solution to Problem 17.1

1. Solving the model for the control signal, u, and substituting y with ysp gives the
feedforward controller:

uff = [Tr′ + r–K2d]/K1 (17.13)

2. All quantities on the right side of (17.13) must be known.

3. The feedforward controller is based on a mathematical model of the process, and on
the measurements (or otherwise known values) of the disturbances which appears in
the model. In practice, there will always be errors in the model (the model is not
perfect) and inaccuracies in the measurements. Therefore, the practical feedforward
controller will not calculate the perfect control signal, causing the control error to
become different from zero. The feedback controller implements error-driven control,
and will therefore reduce this error. In particular, assuming that the feedback
controller has integral action, the feedback controller will ensure that the steady state
control error is zero (despite model and measurement errors).

Solution to Problem 17.2

Firstly, we substitute y by its reference r. Secondly, we solve for the control variable Fp

which we denote the feedforward control variable Fp,ff. The result is:

Fp,ff = mr′′ −Dh

(
uc − r′

) ∣∣uc − r′
∣∣−Dw

(
Vw − r′

) ∣∣Vw − r′
∣∣ (17.14)

Requirements of implementing the feedforward controller: yr must be known – no problem.
Parameters m, Dh and Dw must be known. We can assume they are known approximately
by the ship designer. Water current uc may be measured. However, in real DP applications
(Dynamic Positioning) uc is estimated using a state estimator algorithm named Kalman
Filter. Wind speed Ww must be known. In real DP applications it is measured with wind
sensors. (The sensor for measuring wind direction and speed is placed on the top of the
ship.)

Solution to Problem 17.3

We substitute the temperature T by the temperature setpoint rT (the time argument t is
omitted for simplicity, but it should not be omitted if the model contain time delay terms):

cρV r′T = Khu+ cw (Tin − rT) + U (Te − rT) (17.15)

519

CHAPTER 17. FEEDFORWARD CONTROL

We solve (17.15) for the control variable u to get the feedforward control variable uf:

uf =
1

Kh

[
cρV r′T − cw (Tin − rT)− U (Te − rT)

]
(17.16)

=

1

Kh

[
cρV r′T + cwrT + UrT

]
︸ ︷︷ ︸

ufSP

+
1

Kh
[−cwTin − UTe]︸ ︷︷ ︸

ufd

(17.17)

Implementation of feedforward control signal uf requires measurement or knowledge of the
following five quantities: c, ρ, V , h, w, Kh and Tin, in addition to the setpoint
time-derivative, r′T .

Solution to Problem 17.4

With the two data points given, we have

52 = a · 40 + b (17.18)

and
61 = a · 60 + b (17.19)

From these two equations we get (the mathematics to solve these two equations is not
shown here)

a = 0.45 (17.20)

b = 34 (17.21)

520

Chapter 18

Sequential control

Sequential control is used to implement e.g. chemical batch process control and automated
mechanical operations.

A sequential control procedure can be represented graphically by

• Sequential function chart (SFC), or

• State diagram.

SFCs have the following elements:

• Steps with a number of associated actions to be executed when the step is active. A
step is either active or passive. One particular step is defined as the initial step. It
can be symbolized with e.g. a double-lined box, while ordinary steps are represented
with single-lined boxes.

• Actions are control actions made by the control device (typically a PLC or a PC),
e.g. opening a valve, setting a PID controller into automatic mode, starting a motor,
lighting a lamp on, etc. The action box indicates the changes of control actions from
previous steps (control actions which are not changed, does not have to be listed in
the action box).

• Transitions from one active step to another taking place when the transition
condition is satisfied. Transition conditions are in the form of logical expressions –
simple or complicated – having value either TRUE or FALSE. Here is one example:
T Step1 Step2: Level > 0.9 m.

A transition may take place unconditionally, that is, it takes place automatically after
the actions of the presently active state have been accomplished. The transition
condition of an unconditional transition has permanent value TRUE, and it may be
expressed for example as T Step2 Step3: TRUE.

Figure 18.1 shows how these basic elements (step, action, transition) appear in a Sequential

521

CHAPTER 18. SEQUENTIAL CONTROL

function chart. The := symbol is the assignment operator. The == symbol is the equality
check operator.

S1
A1_1: Valve V1 := On;

A1_2: Motor M1 := On;

Step 1 actions:

Step S1

S2Step S2

Transition T1_2: Button_Start = = TRUE

Figure 18.1: Elements of a Sequential Function Chart (SFC): Step, action, and transition

Sequential function charts may also contain branches defining simultaneous or alternative
parts of the chart to be executed.

State diagrams can be drawn similar to Sequential function charts. In State diagram the
term state is used instead of step. The control system represented with a state diagram is
denoted a state machine.1

SFC is standardized in the IEC 61131-3 standard about PLC programming2, and is
available as a progamming tool in most PLC systems, e.g. Mitsubishi PLCs, Simatic PLCs,
etc. State diagrams are supported in e.g. the Statchart Module of LabVIEW, the Stateflow
Toolbox of Matlab/Simulink, and the Graph7 programming tool of Simatic PLCs.

Example 18.1 Sequential control of a batch process

Figure 18.2 shows a simple batch process which is to be controlled by sequential control.

The simulations in this example are made with the following SimView simulator:

http://techteach.no/simview/sequential control

The tank is filled with water up to a certain level. The water is then heated using
temperature control (with a PID controller) for a specific time defined in timer, and

1The state machine is a very useful concept in programming, independently of the programming tool you
are using. You can structure a programming task that contains several alternative paths dependent on certain
conditions with a state diagram. After the structure has been made, the implementation with programming
code is more or less straightforward.

2PLC = Programmable Logic Controller

522

http://techteach.no/simview/sequential_control

CHAPTER 18. SEQUENTIAL CONTROL

Figure 18.2: A batch process to be controlled by sequential control

stirred3. Finally the heated water is discharged from the tank. Then the batch can be
restarted, or ended.

The control signals are

• u valve in (boolean, i.e. having value TRUE or FALSE, or ON or OFF)

• u valve out (boolean)

• u motor (boolean)

• u heat (continuous having any value between 0% and 100%)

The measurements are

• Temperature T of the water in the tank

3The motor is assumed to ensure homogeneous thermal conditions in the water in the tank.

523

CHAPTER 18. SEQUENTIAL CONTROL

• Level h of the water in the tank

Figure 18.3 shows a Sequential Function Chart defining the control function.

S0
(Init)

Actions:

A0_1: u_valve_in := OFF;

A0_2: u_valve_out := OFF;

A0_3: u_motor := OFF;

A0_4: PID_auto := OFF;

S1
(Filling)

Transition T0_1:

Start_Batch_Button == TRUE;

A1_1: u_valve_in := ON;

T1_2: Level >= Level_High;

A2_1: u_valve_in := OFF;

A2_2: u_motor := ON;

A2_3: PID_auto := ON;

A2_4: Timer_Enable:= ON;

S2
(Heat. Stirr.)

T2_3: Timer_Value >= 10000s;

S3
(Emptying)

A3_1: u_valve_out := ON;

A3_2: u_motor := OFF;

T3_4: Level <= Level_Low;

S4
(Pause)

A4_1: u_valve_out := OFF;

A4_2: PID_auto := OFF;

T4_5: Finish_Button == ON;

S5
(End)

T4_1: Restart_Button == ON;

Figure 18.3: Sequential Function Chart (SFC) defining the control function

[End of Example 18.1]

524

CHAPTER 18. SEQUENTIAL CONTROL

18.1 Problems for Chapter 18

Problem 18.1 Sequential control of drilling machine

Figure 18.4 shows a simple drilling machine.

Control_drill

(On/Off)

Control_clamp

(On/Off)

Control_cart

(Up/Down/Steady)

Position p_high

Position p_low

Measured position

Meas_p

Workpiece

Start

Control_start

(On/Off)

Cart

Zero position

Figure 18.4: Drilling machine.

The machine operates as follows: The drilling operation is started with the Start button
which sets the control signal Control start to value On. Just after the button has been
pressed, it pops up automatically and Control start is automatically set back to Off (this
reset is not a part of the control task in this problem). When the drilling operation has
been started, the clamps are activated by setting the control signal Control clamp to On,
the drill starts rotating with Control drill set to On, and the cart is moved downwards with
Control cart set to Down until the measured drill position Meas p becomes p low. Then,
the cart is automatically moved upwards with Control cart set to Up. When the Meas p
has become p high, the cart is stopped with Control cart set to Steady, the clamp is
released with Control clamp set to Off, and the drill is stopped with Control drill set to Off.
Then the drill is idle, waiting until the Start button is again pressed.

Placing the workpiece in the correct position is not a part of this control task.

Draw a Sequential Function Chart (SFC) with steps, actions and transitions solving the
control task given above.

525

CHAPTER 18. SEQUENTIAL CONTROL

18.2 Solutions to problems for Chapter 18

Solution to Problem 18.1

Figure 18.5 shows the Sequential Function Chart (SFC) solving the given control task.

S0
(Init/Idle)

A0_1: Control_clamp := Off;

A0_2: Control_cart := Steady;

A0_3: Control_drill := Off;

S1
(Down)

Transition T0_1: Control_start == On;

T1_2: Meas_p <= p_low;

S2
(Up)

T2_0: Meas_p >= p_high;

A1_1: Control_clamp := On;

A1_2: Control_cart := Down;

A1_3: Control_drill := On;

A2_1: Control_cart := Up;

Actions:

Figure 18.5: Sequential Function Chart

526

Part V

ANALYSIS OF
CONTINUOUS-TIME
FEEDBACK SYSTEMS

527

Chapter 19

Stability analysis using poles

19.1 Introduction

In some situations we want to determine if a dynamic system is stable or unstable.
Particularly in the control theory, stability analysis is important, since feedback control
systems may become unstable if the controller parameters have been given erroneous values.
In this chapter, stability properties will be defined in terms of the placement of the poles or
eigenvalues of the system in the complex plane. Then, in Chapter 20, we will use this
stability analysis method to analyse the stability of feedback systems.

19.2 Stability properties and impulse response

This section defines the different stability properties that a dynamic system can have in
terms of impulse response of the system. Then, the corresponding transfer function pole
locations in the complex plane are derived. In Section 20, and subsequent sections, these
results are applied to feedback (control) systems, which are a special case of dynamic
systems.The different stability properties can be defined in several ways. I have chosen to
use the impulse response of the system as the basis for definition of the stability properties.
The impulse response is the time-response in output variable of the system due to an
impulse on the input. Using the impulse response makes it relatively simple to relate
stability properties to the poles of the system (this is because the impulse response and the
poles are closely connected), as you will see soon.

Some words about the impulse signal: It is a time-signal which in principle has infinitely
short duration and infinite amplitude, but so that the integral of the signal – the integral is
equal to the area under the time-function of the signal – is finite. This area is also called
the strength of the impulse. An impulse of strength one is called a unit impulse, δ(t). The
square pulse in Figure 19.1 approaches an impulse function as ∆ goes to zero.

Below are the stability definitions based on the impulse response of the system. The

528

CHAPTER 19. STABILITY ANALYSIS USING POLES

t

A

Figure 19.1: The square pulse approaches an impulse function as ∆ goes to zero.

following notation is used:
h(∞) ≜ lim

t→∞
h(t) (19.1)

• Asymptotically stable system: The steady state impulse response is zero:

h(∞) = 0 (19.2)

• Marginally stable system: The steady state impulse response is different from
zero, but limited:

0 < |h(∞)| < ∞ (19.3)

• Unstable system: The steady state impulse response is unlimited:

|h(∞)| = ±∞ (19.4)

A system is stable if it is either asymptotically stable or marginally stable. Figure 19.2
illustrates the different stability properties in terms of the impulse response of the system.

One problem with the ideal impulse function is it can not be generated fully in practice, but
in practice there is hardly ever a need to perform impulse response experiments to
determine stability properties. It is more useful as a conceptual definition of stability, as
explained in the following section.

19.3 Stability properties and poles

In many cases it would be quite impractical if the only way to determine the stability
property of a system was to do experiments or to run simulations to obtain the impulse
response, from which we could conclude about the stability property. Fortunately, we can
find the impulse response, and therefrom conclude about the stability property, by just
analyzing the mathematical model of the system.

Let us assume that the mathematical model of the system is a transfer function, H(s), from
input signal u to output signal y:

y(s) = H(s)u(s) (19.5)

529

CHAPTER 19. STABILITY ANALYSIS USING POLES

System

y(t)=h(t)

Impulse,

t

t

h(t)

Asymtotically stable system

Marginally stable system

Unstable system

0

0

Impulse

response

Figure 19.2: Different stability properties in terms of the impulse response.

The input u will be a unit impulse, that is, u(t) = δ(t). It can be shown that the Laplace
transform of δ(t) is 1, i.e.

L{δ(t)} = 1 (19.6)

Let us denote the impulse response by h(t). The Laplace transform of h(t) is

h(s) = H(s)L{δ(t)} = H(s) · 1 = H(s) (19.7)

Thus, the Laplace transform of the impulse response equals the transfer function of the
system.

To analyze the stability property of the system we need the impulse response time-function
h(t). It can be found with inverse Laplace transform:

h(t) = L−1 {H(s)} (19.8)

Although we can proceed with a rigorous analysis here, I want instead to make a simplified
analysis, and just give comments about how the results that we see, can be generalized.

Let’s assume that the transfer function of the system is

H(s) =
1

s− p
(19.9)

Note that p is the pole of the system.1 Now, what is h(t) when H(s) is (19.9)? From the
Laplace transform pair (39.10) in Appendix 39, we get

h(t) = L−1 {H(s)} = L−1

{
1

s− p

}
= e−pt (19.10)

1Recall, a pole is a value of s which is a root of the characteristic polynomial (i.e. the denominator of the
transfer function).

530

CHAPTER 19. STABILITY ANALYSIS USING POLES

Let’s now assume a number of specific values of p, namely p = −1, 0, and 1. (We could have
chosen other values, but the given values will do.)

Pole p = −1

The transfer function (19.9) is

H(s) =
1

s+ 1
(19.11)

The impulse response (19.10) is
h(t) = e−t (19.12)

Figure 19.3 shows the pole p and the impulse response h(t).

3 2 1 0 1 2 3
Real

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Im
ag

Poles = [-1.]
Poles

0 2 4 6 8 10
t [s]

0.0

0.2

0.4

0.6

0.8

1.0 Impulse response, h

Figure 19.3: Pole p and the impulse response h(t) when p = −1.

The diagrams in Figure 19.3 are generated with the following Python program:

http://techteach.no/control/python/stab analysis impulse response and poles.py

Since h(∞) = 0, the system is asymptotically stable. The system has pole p = −1, which is
in the left half plane (LHP). We can conclude as follows: For systems with one pole, the
system is asymptotically stable if the pole is in LHP.

Above we assumed p = −1. But any value of p in the left half plane, for example p = −1.23,
would have given the same conclusion – an asymptotically stable system.

531

http://techteach.no/control/python/stab_analysis_impulse_response_and_poles.py

CHAPTER 19. STABILITY ANALYSIS USING POLES

Pole p = 0

The transfer function (19.9) is

H(s) =
1

s+ 0
=

1

s
(19.13)

The impulse response (19.10) is
h(t) = e−0·t = 1 (19.14)

Figure 19.4 shows the pole and the impulse response h(t).

3 2 1 0 1 2 3
Real

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Im
ag

Poles = [0.]
Poles

0 2 4 6 8 10
t [s]

0.96

0.98

1.00

1.02

1.04

Impulse response, h

Figure 19.4: Pole p and the impulse response h(t) when p = 0.

Since h(∞) has a limited value (namely 1 in this example), the system is marginally stable.

The system has pole p = 0, which is on the imaginary axis. We can conclude as follows: For
systems with one pole, the system is marginally stable if the pole is on the imaginary axis.

Pole p = 1

The transfer function (19.9) is

H(s) =
1

s− 1
(19.15)

The impulse response (19.10) is
h(t) = et (19.16)

Figure 19.5 shows the pole p and the impulse response h(t) (with a limited time axis, of
course). But actually, h(∞) = ∞.

532

CHAPTER 19. STABILITY ANALYSIS USING POLES

3 2 1 0 1 2 3
Real

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Im
ag

Poles = [1.]
Poles

0 2 4 6 8 10
t [s]

0

5000

10000

15000

20000

Impulse response, h

Figure 19.5: Pole p and the impulse response h(t) when p = 1.

Since h(∞) = 0, the system is unstable. The system has pole p = 1, which is in the right
half plane (RHP). We can conclude as follows: For systems with one pole, the system is
unstable if the pole is in the RHP.

—————

Now, let’s look at some systems having more than only one pole.

Poles p1 = −1 and p2 = −2

Let’s assume that the transfer function (19.9) is

H(s) =
1

(s+ 1) (s+ 2)
(19.17)

which has the poles
p1 = −1 and p2 = −3 (19.18)

which are both in the LHP.

To calculate the impulse response h(t), we can start by writing the partial fraction
decomposition of (19.17):

H(s) =
1

(s+ 1) (s+ 2)
=

1

s+ 1
− 1

s+ 2
(19.19)

Due to the linear property of the Laplace transform, the impulse response becomes

h(t) = e−t − e−2t (19.20)

533

CHAPTER 19. STABILITY ANALYSIS USING POLES

Each of the two exponentials in (19.20) goes towards 0 as t → ∞, and therefore h(∞) = 0,
and the system is asymptotically stable.

The conclusion of this example is: For systems with two poles, the system is asymptotically
if both poles are in the LHP.

Poles p1 = −1 and p2 = 2

Let’s assume that the transfer function (19.9) is

H(s) =
1

(s+ 1) (s− 2)
(19.21)

which has the poles
p1 = −1 andp2 = 2 (19.22)

Pole p1 is in LHP, while pole p2 is in RHP.

To calculate the impulse response h(t), we can start by writing the partial fraction
decomposition of (19.21):

H(s) =
1

(s+ 1) (s− 2)
= − 1/3

s+ 1
+

1/3

s− 2
(19.23)

Due to the linear property of the Laplace transform, the impulse response becomes

h(t) = −1

3
e−t +

1

3
e2t (19.24)

The first exponential in (19.24) goes towards 0 as t → ∞, while the second exponential goes
to ∞. Therefore h(∞) = ∞, and the system is unstable. Of course, the system would have
been unstable also if both poles where in the RHP.

The conclusion of this example is: For systems with two poles, the system is asymptotically
if at least one of the poles is in the RHP.

Complex poles

So far, the poles have been only real, i.e. the imaginary parts are zero. Let’s now assume
that the system has a number of complex poles with non-zero imaginary part. From
mathematics we know that complex roots appear in complex conjugate pairs. Say such a
pole pair is

p = a± jb (19.25)

where a is the real part and ±b is the imaginary part. It can be shown that such a pole pair
will create an additive part of the total impulse response of the following form:

hi(t) = Keat sin(bt+ ϕ) (19.26)

where K and ϕ are some constants. The sine term has value between 1 and −1. Therefore,
it is the exponential term eat that determines the steady state (t → ∞) value of hi(t):

534

CHAPTER 19. STABILITY ANALYSIS USING POLES

• If a < 0, i.e. the poles are in LHP, eat → 0 as t → ∞, and therefore hi(t) → 0 as
t → ∞.

• If a = 0, i.e. the poles are on the imaginary axis, eat = 1, and therefore
0 < hi(∞) < ∞.

• If a > 0, i.e. the poles are in RHP, eat → ∞ as t → ∞, and therefore |hi(∞)| = ∞.

Conclusion about stability analysis based on pole placement

From the results earlier in this section, we can conclude the stability analysis as follows:

Stability analysis based on poles

• Asymptotically stable system: Each of the poles of the transfer function lies in the
LHP.

• Marginally stable system: One or more poles lies on the imaginary axis. These
poles must be distinct; Otherwise the system is unstable, see the item below.

• Unstable system: At least one pole lies in the RHP. Also systems with multiple
poles on the imaginary axis are unstable, e.g. the transfer function H(s) = 1/s2,
which is a double integrator.

Figure 19.6 gives a illustration of the relation between stability property and pole
placement.

Re

Im

U
ns

ta
bl

e
po

le
 a

re
a

Right half planeLeft half plane

A
sy

m
pt

ot
ic

al
ly

 st
ab

le
po

le
 a

re
a

Figure 19.6: The relation between stability property and pole placement.

Example 19.1 Stability property of a mass-spring-damper

535

CHAPTER 19. STABILITY ANALYSIS USING POLES

Figure 19.7 shows a mass-spring-damper system.

m

k [N/m]

d [N/(m/s)]

u [N]

0 y [m]

Figure 19.7: Mass-spring-damper.

y is position. u is applied force. d is damping constant. k is spring constant. Newton’s 2.
Law gives the following mathematical model:

my′′ = u− dy′ − ky (19.27)

The transfer function from the force F to position y is

H(s) =
y(s)

u(s)
=

1

ms2 + ds+ k
(19.28)

Assume that m = 20 kg, d = 4 N/(m/s), and k = 2 N/m. What is the stability property of
the system? The characteristic polynomial becomes

a(s) = ms2 + ds+ k = 20s2 + 4s+ 2 (19.29)

which has roots

p1, p1 =
−4±

√
42 − 4 · 20 · 2
2 · 20

= −0.1± j0.3 (19.30)

which are the poles of H(s). Both these poles have strictly negative real parts (−0.1). The
system is therefore asymptotically stable.

The following Python program calculates and plot the poles and simulates the impulse
response:

http://techteach.no/control/python/impulse resp and poles mfd.py

Figure 19.8 shows the poles and the impulse response.

[End of Example 19.1]

536

http://techteach.no/control/python/impulse_resp_and_poles_mfd.py

CHAPTER 19. STABILITY ANALYSIS USING POLES

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Real

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Im
ag

Poles = [-0.1+0.3j -0.1-0.3j]
Poles

0 10 20 30 40 50 60
t [s]

0.04

0.02

0.00

0.02

0.04

0.06

0.08

0.10
Impulse response, h

Figure 19.8: Example 19.1: The poles and the impulse response of the mass-spring-damper
system.

19.4 Stability analysis of state space models

In Section 19.3, the different stability properties of a transfer function were related to the
poles of the transfer function. If the model originally is given as a state space model,

x′ = Ax+Bu (19.31)

y = Cx+Du (19.32)

we can determine the stability properties of that system by finding the corresponding
transfer function from u to y, and calculating the poles of the transfer function. Then, these
poles determines the stability of the state space system!

What is this transfer function, then? In Section 8.10, we found that it is

H(s) =
y(s)

u(s)
= C(sI −A)−1B +D ≡ C

adj(sI −A)

det(sI −A)
B +D (19.33)

The poles of H(s) are the roots of the denominator:

a(s) = det(sI −A) = 0 (19.34)

Thus, we can conclude about the stability property of the state space model from the roots
of (19.34).

But (19.34) also defines the eigenvalues of the system matrix A of the state space model. 2

Therefore, the poles of the transfer function are the same as the eigenvalues of A.

2In mathematics literature it is more common to use the symbol λ instead of s for eigenvalues.

537

CHAPTER 19. STABILITY ANALYSIS USING POLES

Consequently, we can conclude about the stability of the state space model from the
eigenvalues – you can just substitute “pole” by “eigenvalue” in the criteria for asymptotic
stability, marginal stability and instability in Section 19.3.

Note: In some state space models factors of type (s− pi) in the denominator can be
cancelled against factors (s− zi) in the numerator of the transfer function. Such
pole/zero-cancellations implies that some of the poles (and zeros) “disappears” from the
transfer function. Consequently, the set of poles will then be just a subset of the set of
eigenvalues. Thus, there may exist eigenvalues which are not poles, so that stability analysis
based on eigenvalues placement (in the complex plane) may give a different result than
stability analysis based on pole placement.

Example 19.2 Stability property of a mass-spring-damper

See Example 19.1. A state space model of the system is, cf. Example 5.4,

[
x1

′

x2
′

]
︸ ︷︷ ︸

ẋ

=

 0 1

− k
m − d

m


︸ ︷︷ ︸

A

[
x1
x2

]
︸ ︷︷ ︸

x

+

 0

1
m


︸ ︷︷ ︸

B

u (19.35)

y =
[
1 0

]︸ ︷︷ ︸
C

[
x1
x2

]
︸ ︷︷ ︸

x

+
[
0
]︸ ︷︷ ︸

D

u (19.36)

The Python program below calculates the eigenvalues of the state space model.

http://techteach.no/control/python/eigenvalues ss model.py

The eigenvalues are:
λ1, λ1 = −0.1± 0.3j (19.37)

which are the same as the poles, cf. Example 19.1.

[End of Example 19.2]

538

http://techteach.no/control/python/eigenvalues_ss_model.py

CHAPTER 19. STABILITY ANALYSIS USING POLES

19.5 Problems for Chapter 19

Problem 19.1 Stability property of a transfer function

Determine the stability property of the transfer function (19.38) by calculating its pole and
also by studying its impulse response, h(t) (make a rough sketch of it).

H(s) =
y(s)

u(s)
=

1

s+ 1
(19.38)

To calculate h(t), you can use the following Laplace transform:

k

Ts+ 1
⇐⇒ ke−t/T

T
(19.39)

Problem 19.2 Stability properties of several transfer functions

Determine the stability property of the following transfer functions:

H1(s) =
1

s+ 1
(19.40)

H2(s) =
1− s

1 + s
(19.41)

H3(s) =
1

1− s
(19.42)

H4(s) =
1

(s+ 1)(s− 1)
(19.43)

H5(s) =
1

s
(19.44)

H6(s) =
1

s3
(19.45)

H7(s) =
e−s

s+ 1
(19.46)

H8(s) = − 1

s+ 1
(19.47)

H9(s) =
1

s2 + s+ 1
(19.48)

H10(s) =
1

s2 + 1
(19.49)

H11(s) =
1

(s+ 1)s
(19.50)

Problem 19.3 Stability property of state space model

Determine the stability property of the following state space model:[
x1

′

x2
′

]
=

[
0 1
0 −2

] [
x1
x2

]
+

[
0
1

]
u (19.51)

539

CHAPTER 19. STABILITY ANALYSIS USING POLES

19.6 Solutions to problems for Chapter 19

Solution to Problem 19.1

The pole of H(s) is the root of
(s+ 1) = 0 (19.52)

The pole is
p = −1

which is in the left half plane. Therefore, the system is asymtptotically stable.

The Laplace transform of the impulse response is

h(t) = y(s) = H(s)u(s)︸︷︷︸
=1

= H(s) =
1

s+ 1
(19.53)

Using (39.10) with k = 1 and T = 1 we get

h(t) =
ke−t/T

T
= e−t (19.54)

Figure 19.9 shows h(t).

Figure 19.9: Impulse response.

Since h(t) goes to zero as time goes to infinity, the system is asymtptotically stable.

Solution to Problem 19.2

The transfer function

H1(s) =
1

s+ 1
(19.55)

540

CHAPTER 19. STABILITY ANALYSIS USING POLES

is asymptotically stable since the pole p = −1 is in the left half plane.

The transfer function

H2(s) =
1− s

1 + s
(19.56)

is asymptotically stable since the pole p = −1 is in the left half plane. The value of the
zero, which is 1, does not determine the stability.

The transfer function

H3(s) =
1

1− s
(19.57)

is unstable since the pole p = 1 is in the right half plane.

The transfer function

H4(s) =
1

(s+ 1)(s− 1)
(19.58)

is unstable since one of the poles, p1 = 1, is in the right half plane.

The transfer function

H5(s) =
1

s
(19.59)

is marginally stable since the pole p = 0 is in origin, which is on the imaginary axis, and
this pole is single (there are no multiple poles).

The transfer function

H6(s) =
1

s3
(19.60)

is unstable since there are multiple poles, p1,2,3 = 0, on the imaginary axis.

The transfer function

H7(s) =
e−s

s+ 1
(19.61)

is asymptotically stable since the pole p = −1 is in the left half plane.

The transfer function

H8(s) = − 1

s+ 1
(19.62)

is asymptotically stable since the pole p = −1 is in the left half plane.

The transfer function

H9(s) =
1

s2 + s+ 1
(19.63)

is asymptotically stable since both the poles

p1,2 =
−1±

√
12 − 4 · 1 · 1
4 · 1

=
−1± j

√
3

4
(19.64)

are in the left half plane.

The transfer function

H10(s) =
1

s2 + 1
(19.65)

541

CHAPTER 19. STABILITY ANALYSIS USING POLES

is marginally stable since the poles
p1,2 = ±j (19.66)

are on the imaginary axis and they are single (not multiple).

The transfer function

H11(s) =
1

(s+ 1)s
(19.67)

has poles
p1,2 = 0,−1 (19.68)

One pole is on the imaginary axis, and the other is in the left half plane. The system is
marginally stable.

Solution to Problem 19.3

The stability property is determined by the system eigenvalues, which are the roots of the
characteristic equation:

det(sI −A) = det

(
s

[
1 0
0 1

]
−
[
0 1
0 −2

])
(19.69)

= det

([
s −1
0 s+ 2

])
(19.70)

= s (s+ 2) + 0 (19.71)

The roots are
s1,2 = 0, − 2 (19.72)

One pole is in the origin, and the other pole is in the left half plane. Thererfore, the system
is marginally stable.

542

Chapter 20

Stability analysis of feedback
systems using poles

20.1 Introduction

In Chapter 19 we analysed the stability of a dynamic system using the poles of the transfer
function of the system, or using the eigenvalues of the state space model of the system. In
the present chapter we will use this stability analysis method to analyse the stability of
feedback systems, with particular focus on feedback control systems.

Traditionally, the Routh’s stability criterion has been taught as a tool for stability analysis.
Routh’s criterion is a method for determining the stability properties directly from the
parameters of a transfer function model of the system, without calculating the poles or
eigenvalues of the system. Although this sounds great, I think it is often sufficient to know
how to determine the stability from the calculated poles or eigenvalues. Therefore, I have
decided not to include that method in this book.

There exists a graphical method — the Nyquist’s stability criterion — for stability analysis
of feedback (control) systems based on the frequency response. This method is presented in
Chapter 22.3.

Note: If the feedback system is a continuous-time model containing a time delay, you can
not analyse the stability of the system using poles (or eigenvalues). In such cases, you may
proceed with the analysis in alternative ways:

• Replace the irrational transfer function of the time delay, i.e. e−τs, with some rational
transfer function, typically a Padé approximation, cf. Section 9.5.1.

• Do the analysis using a discrete time model corresponding to the continuous time
model. The time delay can be represented with a z transfer function as explained in
Section 42.5.1.4. The part of the continuous time model not containing the time delay
can be discretized as explained in Section 27.7.

543

CHAPTER 20. STABILITY ANALYSIS OF FEEDBACK SYSTEMS USING POLES

20.2 Stability analysis of feedback systems

Figure 20.1 shows a general transfer function-based block diagram of a feedback control
system. The stability of the feedback system can be determined from the poles of the

C(s) P(s)
u(s) y(s)r(s)

D(s)

d(s)

Process

Controller

Disturbance

transfer function

Process

transfer function

e(s)

Figure 20.1: Transfer function-based block diagram of a feedback control system.

transfer function from setpoint r to process measurement ym. (Actually, we can determine
the stability from any input to the control system to any output of the control system – the
conclusion about stability will be the same.)

It is convenient to make the block diagram in Figure 20.1 more compact, see Figure 20.2
where L(s) is the loop transfer function of the feedback control system. L(s) is the product

r y
L(s)

Figure 20.2: Compact block diagram of a control system with setpoint r as input variable
and (measured) process output y as output variable.

of the series-connnected transfer functions in the loop:

L(s) = C(s)P (s) (20.1)

From the block diagram in Figure 20.2, we have:

y(s) = L(s) [r(s)− y(s)]

which gives:

y(s) =
L(s)

1 + L(s)︸ ︷︷ ︸
T (s)

r(s) = T (s)r(s) (20.2)

544

CHAPTER 20. STABILITY ANALYSIS OF FEEDBACK SYSTEMS USING POLES

where:

T (s) =
L(s)

1 + L(s)
(20.3)

is the tracking transfer function of the control system.

The stability of the feedback control system is determined by the poles of T (s).

These poles are the roots of the characteristic polynomial of T (s). Let us elaborate T (s)
further to get an expression of the characteristic polynomial of T (s): We write L(s) in
terms of its numerator and denominator polynomials:

L(s) =
nL(s)

dL(s)
(20.4)

We can then write T (s) as:

T (s) =
L(s)

1 + L(s)
=

nL(s)
dL(s)

1 + nL(s)
dL(s)

=
nL(s)

dL(s) + nL(s)
(20.5)

So, the characteristic polynomial of the tracking transfer function is:

a(s) = dL(s) + nL(s) (20.6)

Thus, the stability of the feedback control system is determined by the roots of
characteristic polynomial (20.6).

Example 20.1 Stability analysis of a feedback control system

Assume the following specific transfer functions in Figure 20.1:

C(s) = Kc (proportional controller) (20.7)

P (s) =
1

(s+ 1)2 s
(20.8)

D(s) =
−1

(s+ 1)2 s
(but not used in the stability analysis) (20.9)

The loop transfer function is:

L(s) = C(s)P (s)

=
Kc = nL(s)

(s+ 1)2 s = dL(s)

We get:

T (s) =
L(s)

1 + L(s)
=

nL(s)

dL(s) + nL(s)
=

Kc

s3 + 2s2 + s+Kc
(20.10)

Thus, the characteristic polynomial of T (s) is:

a(s) = s3 + 2s2 + s+Kc (20.11)

545

CHAPTER 20. STABILITY ANALYSIS OF FEEDBACK SYSTEMS USING POLES

Kc = 1 (asympt. stable) Kc = 2 (marg. stable) Kc = 4 (unstable)

p1 = −1.75 p1 = −2 p1 = −2.31

p2 = −0.12 + j0.74 p2 = j p2 = 0.16 + j1.31

p3 = −0.12− j0.74 p3 = −j p3 = 0.16− j1.31

Table 20.1: Poles of the tracking transfer function for various values of Kc.

The following Python program calculates the poles and simulates the step response of the
control system.

http://techteach.no/control/python/poles and sim control system.py

I have used three different values of Kc. Table 20.1 shows the poles, and Figures 20.5-20.5
show the pole placements in the complex plane, and the step responses.

3 2 1 0 1 2 3
Real

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Im
ag

Poles = [-1.75+0.j -0.12+0.74j -0.12-0.74j]
Poles

0 5 10 15 20 25 30 35 40
t [s]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
r
y

Figure 20.3: Example 20.1: Poles and step response of the control system with Kc = 1. The
control system is asymptotically stable.

There is also a SimView simulator of this control system:

http://techteach.no/simview/stability poles

[End of Example 20.1]

546

http://techteach.no/control/python/poles_and_sim_control_system.py
http://techteach.no/simview/stability_poles

CHAPTER 20. STABILITY ANALYSIS OF FEEDBACK SYSTEMS USING POLES

3 2 1 0 1 2 3
Real

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Im
ag

Poles = [-2.+0.j -0.+1.j -0.-1.j]
Poles

0 5 10 15 20 25 30 35 40
t [s]

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

r
y

Figure 20.4: Example 20.1: Poles and step response of the control system with Kc = 2. The
control system is marginally stable.

20.3 Problems for Chapter 20

Problem 20.1 Control system stability with P controller

Figure 20.6 shows a feedback control system.

The transfer function of the process and sensor is

Hpm(s) =
1

s
(20.12)

1. What is the stability property of Hpm(s), i.e. of the process itself – also called the
open-loop system?

2. For which values of the controller gain Kc is the control system asymptotically stable?

3. Has this problem demonstrated that it is possible to obtain an asymptotically stable
feedback system even though the process itself is asymptotically stable?

547

CHAPTER 20. STABILITY ANALYSIS OF FEEDBACK SYSTEMS USING POLES

3 2 1 0 1 2 3
Real

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Im
ag

Poles = [-2.31+0.j 0.16+1.31j 0.16-1.31j]
Poles

0 5 10 15 20 25 30 35 40
t [s]

400

300

200

100

0

100

200

r
y

Figure 20.5: Example 20.1: Poles and step response of the control system with Kc = 4. The
control system is unstable.

Kp Hpm(s)

ym(s)r(s)

Process and

sensorController

Figure 20.6: Feedback control system.

Solution to Problem 20.1

1. Hpm(s) has pole equal to 0. Consequently the system is marginally stable.

2. The transfer function of the controller is

Hc(s) = Kc (20.13)

The loop transfer function is

L(s) = Hc(s)Hpm(s) =
Kc

s
=

n0(s)

d0(s)
(20.14)

The characteristic polynomial is

c(s) = d0(s) + n0(s) = s+Kc (20.15)

The pole of the control system is the root of (20.15):

p = −Kc (20.16)

The control system is asymptotically stable with Re(p) < 0, i.e.

Kc > 0 (20.17)

548

CHAPTER 20. STABILITY ANALYSIS OF FEEDBACK SYSTEMS USING POLES

3. Sure!

549

Chapter 21

Frequency response

21.1 Introduction

The frequency response of a system is a frequency dependent function which expresses how
a sinusoidal signal of a given frequency on the system input is transferred through the
system. Time-varying signals – at least periodical signals – which excite systems, as the
reference (setpoint) signal or a disturbance in a control system or measurement signals
which are inputs signals to signal filters, can be regarded as consisting of a sum of frequency
components. Each frequency component is a sinusoidal signal having a certain amplitude
and a certain frequency. (The Fourier series expansion or the Fourier transform can be used
to express these frequency components quantitatively.) The frequency response expresses
how each of these frequency components is transferred through the system. Some
components may be amplified, others may be attenuated, and there will be some phase lag
through the system.

The frequency response is an important tool for analysis and design of signal filters (as
lowpass filters and highpass filters), and for analysis, and to some extent, design, of control
systems. Both signal filtering and control systems applications are described (briefly) later
in this chapter.

The definition of the frequency response – which will be given in the next section – applies
only to linear models, but this linear model may very well be the local linear model about
some operating point of a non-linear model.

The frequency response can found experimentally or from a transfer function model. It can
be presented graphically or as a mathematical function.

550

CHAPTER 21. FREQUENCY RESPONSE

System
u(t) y(t)

Frequency 1

0 t t

Frequency 2

tt

0

00

Excitation Response

Figure 21.1: Sinusoidal signals in the input and the resulting responses on the output for two
different frequencies

21.2 How to calculate frequency response from sinusoidal
input and output

We can find the frequency response of a system by exciting the system with a sinusoidal
signal of amplitude U and frequency ω [rad/s] and observing the response in the output
variable of the system. 1 Mathematically, we set the input signal to

u(t) = U sinωt (21.1)

See Figure 21.1. This input signal will give a transient response (which will die, eventually)
and a steady-state response, ys(t), in the output variable:

ys(t) = Y sin(ωt+ ϕ) (21.2)

= UA︸︷︷︸
Y

sin(ωt+ ϕ) (21.3)

A is the (amplitude)gain, and ϕ (phi) is the phase lag in radians. The frequency of ys(t) will
be the same as in u(t). Figure 21.2 shows in detail u(t) and y(t) for a simulated system.
The system which is simulated is

y(s) =
1

s+ 1
u(s) (21.4)

i.e., a first order system with gain 1 and time constant 1. The input signal u(t) has
frequency ω = 3 rad/s and amplitude U = 1. The simulation is done with the following
Python program:

1The correspondance between a given frequency ω in rad/s and the same same frequency f in Hz is ω = 2πf .

551

CHAPTER 21. FREQUENCY RESPONSE

U

Y

dt

Figure 21.2: The input signal u(t) and the resulting (sinusoidal) response y(t) for a simulated
system. u(t) has frequency ω = 3 rad/s and amplitude U = 1. The system is given by (21.4).

http://techteach.no/control/python/sim freqresp first order sys.py

A is the ratio between the amplitudes of the output signal and the input signal (in
steady-state):

A =
Y

U
(21.5)

For the signals shown in Figure 21.2,

A =
Y

U
=

0.32

1
= 0.32 (21.6)

ϕ can be calculated by first measuring the time-lag dt between u(t) and ys(t), and then
calculating ϕ as follows:

ϕ = −ω · dt [rad] (21.7)

In Figure 21.2 we can read off dt = 0.42 sec, which gives

ϕ = −ω · dt = −3 · 0.42 = −1.26 rad (21.8)

552

http://techteach.no/control/python/sim_freqresp_first_order_sys.py

CHAPTER 21. FREQUENCY RESPONSE

The gain A and the phase-lag ϕ are functions of the frequency. We can use the following
terminology: A(ω) is the gain function, and ϕ(ω) is the phase shift function (or more
simply: phase function). We say that A(ω) and ϕ(ω) expresses the frequency response of
the system.

21.3 Bode diagram

It is common to present A(ω) and ϕ(ω) graphically in a Bode diagram, which consists of
two subdiagrams, one for A(ω) and one for ϕ(ω). It is common, but not mandatory, to set
up the Bode diagrams as follows:

• The frequency is plotted in unit rad/s or Hz along a logarithm axis (abscissa). Note:
In case you need to switch between rad/s and Hz, the following relation applies:

ω = 2πf (21.9)

where ω is in rad/s and f is in Hz.

• The amplitude gain is plotted in unit decibel (dB):

A = 20 log10A dB (21.10)

Some examples:

– 0.1 = 20 log10 0.1 = 20 · (−1) = −20 dB

– 1 = 20 log10 1 = 20 · 0 = 0 dB

– 10 = 20 log10 10 = 20 · 1 = 20 dB

• Phase values are in degrees. An example of conversion from rad to deg:

– 0.5 rad = 0.5·180/π = 28.6 deg

Figure 21.3 shows a Bode diagram of the frequency response of the system (21.4). The
curves may be an (interpolated) plot of a number of A-values and ϕ-values found in
experiments (or simulations) with an sinusoidal input signal of various frequencies. As an
example, In Figure 21.2, the red points are the A-value in dB and ϕ-value in degrees of the
system at the frequency 3 rad/s of the sinusoidal input shown in Figure 21.2. The frequency
is logarithmic. Let’s calculate the values of these points in the pertinent units:

• The 10-logaritm of 3 rad/s is log10 3 = 0.48 rad/s.

• From the simulations with frequency ω = 3 rad/s shown in Figure 21.2 we earlier
found the A-value as 0.32, see (21.6), which in dB is

A(3) = 20 log10A dB = 20 log10 0.32 dB = −10 dB (21.11)

which is the red point in the upper diagram of Figure 21.3.

• From the simulations mentioned above we found ϕ as −1.26 rad, see (21.8), which in
degrees is

ϕ = −1.26 · 180/π = −72.2 deg (21.12)

which is the red point in the lower diagram of Figure 21.3.

553

CHAPTER 21. FREQUENCY RESPONSE

10 1 100 101
20

15

10

5

0

[d
B]

A(w)
A(w_in)

10 1 100 101

w [rad/s]

80

60

40

20

[d
eg

]

phi(w)
phi(w_in)

Figure 21.3: The frequency response of the system given by (21.4) presented in a Bode
diagram.

21.4 How to calculate frequency response from transfer
function

In Section 21.2 we saw how to find the frequency response from experiments on the system,
namely the gain function, A(ω), and the phase function, ϕ(ω). No model was assumed in
Section 21.2. However, if we know a transfer function model of the system, we can actually
calculate the frequency response from the transfer function, as explained below, without a
need of experiments. So, it is an experiment-free method. The method is only presented
here, not derived, but it can derived using Laplace transform theory. As you will see in the
examples of this section, you need knowledge about complex numbers to calculate the
frequency response from a given transfer function.

Assume given a system with transfer function H(s) from input u to output y, that is,

y(s) = H(s)u(s) (21.13)

By setting
s = jω (21.14)

554

CHAPTER 21. FREQUENCY RESPONSE

where j is the imaginary unit, into H(s), we get H(jω), which is a complex function as it
will have complex value. H(jω) is the frequency response (function). The gain function,
which we already know from Section 21.2, is

A(ω) = |H(jω)| (21.15)

and the phase shift function, also known from Section 21.2, is the angle or argument of
H(jω):

ϕ(ω) = argH(jω) (21.16)

Example 21.1 Frequency response calculated from a transfer function

We will find the frequency response for the transfer function

H(s) =
K

Ts+ 1
(21.17)

The frequency response becomes

H(jω) = H(s)|s=jω =
K

Tjω + 1
=

K

1︸︷︷︸
Re

+ j Tω︸︷︷︸
Im

(21.18)

which we write on polar form:

H(jω) =
K√

12 + (Tω)2ej arctan(
Tω
1)

(21.19)

=
1√

1 + (Tω)2
ej[− arctan(Tω)] (21.20)

= |H(jω)| ej argH(jω) (21.21)

Thus, the gain function is

|H(jω)| = A(ω) =
K√

1 + (Tω)2
(21.22)

and the phase function is

argH(jω) = ϕ(ω) = − arctan (Tω) [rad] (21.23)

A Bode diagram of H(jω) with the given parameters, namely K = 1 and T = 1, is identical
to the Bode diagram in Figure 21.3, and is therefore not repeated here. The Bode diagram
is generated with the following program:

http://techteach.no/control/python/bode plot first order sys.py

555

http://techteach.no/control/python/bode_plot_first_order_sys.py

CHAPTER 21. FREQUENCY RESPONSE

Comments to the above program:

• The program uses functions in Python Control Package, cf. Appendix 42.

• The frequency response is obtained with the control.freqresp function.

To illustrate the use of (21.22) and (21.23), let us calculate |H(jω)| and argH(jω) at
frequency ω = 3 rad/s, which are the respective two red points in the Bode diagram in
Figure 21.3. (21.22) gives

|H(j3)| = 1√
1 + 32

=
1√
10

= 0.316 = −20 log10

(
1√
10

)
= −10.0 dB (21.24)

(21.23) gives
argH(j3) = − arctan (3) = −1.25 rad = −71.6 degrees (21.25)

These values are corresponds to the values read off from simulations with ω = 3 rad/s in
Section 21.2. The phase functions differs a little from the value −72.2 read off from
simulations. The accurate value is −71.6 found with (21.25).

[End of Example 21.1]

The frequency response of a compound transfer function

The following example shows how the frequency response can be found of a transfer
function which consists of several factors in the numerator and/or the denominator.

Example 21.2 Frequency response of a (more complicated) transfer function

Given the transfer function

H(s) = K
T1s+ 1

(T2s+ 1) s
e−τs (21.26)

The term e−τs represents actually a time delay of τ sec time units (typically sec.). We set
s = jω in H(s), and then express the relevant factors on polar form. And finally we
combine these factors to end up with a polar form of H(jω):

H(jω) = K
T1jω + 1

(T2jω + 1) jω
e−τjω (21.27)

= K

√
12 + (T1ω)

2e
j arctan

(
T1ω
1

)
[√

12 + (T2ω)
2e

j arctan
(

T2ω
1

)] [√
02 + ω2ej

π
2

]e−τjω (21.28)

=
K
√

1 + (T1ω)
2√

1 + (T2ω)
2ω︸ ︷︷ ︸

|H(jω)|

e

j

[
arctan (T1ω)− arctan (T2ω)−

π

2
− τω

]
︸ ︷︷ ︸

argH(jω) (21.29)

556

CHAPTER 21. FREQUENCY RESPONSE

So, the amplitude gain function is

|H(jω)| =
K
√
1 + (T1ω)

2√
1 + (T2ω)

2ω
(21.30)

and the phase shift function is

argH(jω) = arctan (T1ω)− arctan (T2ω)−
π

2
− τω (21.31)

[End of Example 21.2]

21.5 Filters

21.5.1 Filter types

A signal filter – or just filter – is used to attenuate (ideally: remove) a certain frequency
interval of frequency components from a signal. These frequency components are typically
noise. For example, a lowpass filter is used to attenuate high-frequent components
(low-frequent components will pass).

Knowledge about filtering functions is crucial in signal processing, but it is useful also in
control engineering because control systems can be regarded as filters in the sense that the
controlled process variable can follow only a certain range or interval of frequency
components in the reference (setpoint) signal, and it will be only a certain frequency range
of process disturbances that the control system can compensate for effectively.
Furthermore, knowledge about filters can be useful in the analysis and design of physical
processes. For example, a stirred tank in a process line can act as a lowpass filter since it
attentuates low-frequent components in the inflow to the tank.

In this section we will particularly study lowpass filters, which is the most commonly used
filtering function, but we will also take a look at highpass filters, bandpass filters and
bandstop filters.

Figure 21.4 shows the gain function for ideal filtering functions and for practical filters (the
phase lag functions are not shown).

The passband is the frequency interval where the gain function has value 1, ideally (thus,
frequency components in this frequency interval passes through the filter, unchanged). The
stopband is the frequency interval where the gain function has value 0, ideally (thus,
frequency components in this frequency interval are stopped through the filter).2

It can be shown that transfer functions for ideal filtering functions will have infinitely large
order. Therefore, ideal filters can not be realized, neither with analog electronics nor with a
filtering algorithm in a computer program.

2It is a pity that lowpass filters in the beginning were not called highstop filters instead because the main
purpose of a lowpass filter is to stop high-frequency components, and not to let low-frequency components
pass. Similarly, highpass filters should have been called lowstop filters. It is too late to make a change now.

557

CHAPTER 21. FREQUENCY RESPONSE

Frequency

1

0

Amplitude gain

0

Lowpass:

Highpass:

Bandstop:

Bandpass:

PB = passband

SB

SB = stopband

PB SB

PB

SBPB

SB

1

1

1

0

0

0

0

0

0

PB

PB SB

Ideal

Practical

Figure 21.4: The gain functions for ideal filters and for practical filters of various filter types.

21.5.2 First order lowpass filters

The most commonly used signal filter is the first order lowpass filter. For example, it is
often used as measurement filter in feedback control systems, cf. the time constant filter
presented in Section 3.4.6.

The transfer function of a first order lowpass filter with input variable u and output
variable y is usually written on the form

H(s) =
1

s
ωb

+ 1
=

K

Tfs+ 1
(21.32)

where ωb [rad/s] is the bandwidth of the filter. (21.32) is a first order transfer function with
gain

K = 1 (21.33)

and time constant

T =
1

ωb
(21.34)

558

CHAPTER 21. FREQUENCY RESPONSE

The frequency response of (21.32) is

H(jω) =
1

jω
ωb

+ 1
(21.35)

=
1√(

ω
ωb

)2
+ 1 e

j arctan ω
ωb

=
1√(

ω
ωb

)2
+ 1

e
j
(
− arctan ω

ωb

)
(21.36)

The gain function is

|H(jω)| = 1√(
ω
ωb

)2
+ 1

(21.37)

and the phase function is

argH(jω) = − arctan
ω

ωb
(21.38)

The bandwidth defines the upper limit of the passband. It is common to say that the
bandwidth is the frequency where the filter gain is 1/

√
2 = 0.71 ≈ −3 dB (above the

bandwidth the gain is less than 1/
√
2). This bandwidth is therefore referred to as the “−3

dB-bandwidth”. Now, what is the −3 dB-bandwidth of a first order lowpass filter? It is the
ω-solution of the equation

|H(jω)| = 1√(
ω
ωb

)2
+ 1

=
1√
2

(21.39)

The solution is ω =ωb. Therefore, ωb given in (21.32) is the −3 dB-bandwidth in rad/s.

Figure 21.5 shows the Bode diagram (the upper two plots in the figure) of (21.32) with
bandwidth ωb = 1 rad/s. In the figure, the cyan dashed line represents the bandwidth.

The plots in Figure 21.5 are generated with the following program:

http://techteach.no/control/python/bode plot sim lowpass filter.py

Figure 21.5 also shows the result of an example of a simulation. In the simulation, the filter
input (the red curve) is a sinusoid of amplitude U = 1 and frequency ωin = 5 rad/s. The
response (the blue curve) has amplitude Y ≈ 0.2. Let’s check if this value of Y is in
accordance with what we can find from the gain curve of the Bode diagram. At ω = 5
rad/s, the gain curve has the value −14 dB, which is equal to

10−14/20 = 0.20 (21.40)

So, the simulation is in accordance with the frequency response. In other words, from the
Bode diagram, you can predict the sinusoidal response, eliminating the need for practical
experiments or simulations.

559

http://techteach.no/control/python/bode_plot_sim_lowpass_filter.py

CHAPTER 21. FREQUENCY RESPONSE

10 1 100 101
20

10

0

[d
B] mag

wb
w_in

10 1 100 101

w [rad/s]

75

50

25

0

[d
eg

]

phase
wb
w_in

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
t [s]

1

0

1

Input u
Output y

Figure 21.5: Bode diagram (the upper two plots) and simulated response of a first order
lowpass filter.

Example 21.3 The RC-circuit as a lowpass filter

Figure 21.6 shows an RC-circuit (the circuit contains the resistor R and the capacitor C).
The RC-circuit is frequently used as an analogue lowpass filter: Signals of low frequencies
passes approximately unchanged through the filter, while signals of high frequencies are
approximately filtered out (stopped). v1 is the signal source or input voltage to be filtered,
while v2 is the resulting filtered output voltage.

We will now find a mathematical model relating v2 to v1. First we apply the Kirchhoff’s
voltage law in the circuit which consists the input voltage terminals, the resistor, and the
capacitor (we consider the voltage drops to be positive clockwise direction):

−v1 + vR + v2 = 0 (21.41)

(v2 equals the voltage drop over the capacitor.) In (21.41) vR is given by

vR = Ri (21.42)

560

CHAPTER 21. FREQUENCY RESPONSE

v2 [V]

++

_ _

v1 [V]
C [F]

i [A]

Input

voltage

Output

voltage

iC

i2+
_

vR [V]

Figure 21.6: RC-circuit

We assume that there is no current going through the output terminals. (This is a common
assumption, and not unrealistic, since it it typical that the output terminals are connected
to a subsequent circuit which has approximately infinite input impedance, causing the
current into it to be approximately zero. An operational amplifier is an example of such a
load-circuit.) Therefore,

i = iC = Cv′2 (21.43)

The final model is achieved by using i as given by (21.43) in (21.42) and then using vR as
given by (21.42) for vR in (21.41). The model becomes

RCv′2 = v1 − v2 (21.44)

The transfer function from the input voltage v1 to the output voltage v2 becomes

v2(s)

v1(s)
= H(s) =

1

RCs+ 1
=

1
s
ωb

+ 1
(21.45)

Thus, the RC-circuit is a first order lowpass filter with bandwidth

ωb =
1

RC
rad/s (21.46)

If for example R = 1 kΩ and C = 10 µF, the bandwidth is ωb = 1/RC = 100 rad/s. (21.46)
can be used to design the RC-circuit (calculate the R- and C-values).

[End of Example 21.3]

561

CHAPTER 21. FREQUENCY RESPONSE

21.6 Problems for Chapter 21

Problem 21.1 Frequency response measures from sinusoids

Figure 21.7 shows the input signal and the corresponding output signal of a system.

0 5 10 15 20 25 30 35 40

t [s]

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

u

y

Figure 21.7: Input signal u and output signal y

1. What is the frequency of the signal in Hz and in rad/s?

2. Calculate the amplitude gain and the phase lag at the frequency found in Problem 1
above. What is the amplitude gain in dB?

Problem 21.2 Steady-state sinusoidal response found from Bode diagram

Figure 21.8 shows a Bode diagram of a system.

Assume that the input signal u is a sinusoid of amplitude U = 0.8 and frequency ω = 1.0
rad/s. Write the corresponding steady-state output response ys(t).

Problem 21.3 Frequency response from transfer function

Derive the frequency response functions A(ω) and ϕ(ω) of the transfer function

H(s) =
K

(1 + T1s) (1 + T2s)
e−τs (21.47)

Problem 21.4 Frequency response and simulation with Python

562

CHAPTER 21. FREQUENCY RESPONSE

Figure 21.8: Bode diagram

The following program was used to generate the Bode diagram and to run the simulation
shown in Figure 21.10.

http://techteach.no/control/python/bode plot sim lowpass filter.py

Modify the program as follows:

• The filter bandwidth is set to ωb = 2 rad/s.

• The input signal has frequency ωin = 2 rad/s and amplitude U = 5. So, in this
problem, ωinhappens to be set equal to the bandwidth.

Now, run the program. From the Bode diagram generated by the program, predict the
amplitude, Y , of the response due to the sinusoidal input. Is this value of Y the same as
you can read off from the simulation?

Problem 21.5 Design of RC filter from bandwidth

Assume that it is specified that a given RC filter shall have bandwidth 100 Hz. Find proper
values of the resistance R the capacitance C. (Tip: C can be selected between 10−4 and
10−6 F because this gives a practical size of the capacitor, e.g. 10−5 F.)

563

http://techteach.no/control/python/bode_plot_sim_lowpass_filter.py

CHAPTER 21. FREQUENCY RESPONSE

21.7 Solutions to problems for Chapter 21

Solution to Problem 21.1

1. Figure 21.9 shows the signals with amplitudes and time-lag indicated.

Figure 21.9: Input signal u and output signal y

From the figure we see that the period of the input signal is

Tp = 10 sec (21.48)

which corresponds to the frequency

f1 =
1

Tp
=

1

10
= 0.1 Hz (21.49)

or, alternatively,
ω1 = 2πf1 = 2 · π · 0.1 = 0.63 rad/s (21.50)

2. The amplitude gain (at frequency f1) is

A =
Y

U
=

1.4

2
= 0.7 = 20 · log10(0.7) dB = −3.1 dB (21.51)

The phase lag ϕ can be calculated by firstly measuring the time lag ∆t between input
u(t) and output y(t) and then calculating ϕ with

ϕ = −ω∆t [rad] (21.52)

From Figure 21.9 you can find
∆t = 1.8 s (21.53)

564

CHAPTER 21. FREQUENCY RESPONSE

Hence,

ϕ = −ω∆t = −0.63 · 1.8 = −1.13 rad = −1.13 · 180
π

= −65 deg (21.54)

Alternatively, we can calculate ϕ from the following ratio (360 degrees corresponds to
one period):

ϕ = −∆t

Tp
· 360 deg = −1.8 s

10 s
· 360 deg = −65 deg (21.55)

Solution to Problem 21.2

The steady-state response is
ys(t) = UA sin(ωt+ ϕ) (21.56)

The amplitude of the input signal is U = 0.8. The amplitude gain A is read off from the
upper curve in the Bode diagram at frequency ω = 1.0 rad/s:

A = −3 dB (21.57)

which is
A = 10−3/20 = 0.71 (21.58)

The phase lag ϕ at frequency ω = 1.0 rad/s is read off from the lower curve in the Bode
diagram:

ϕ = −45 deg = −45 · π

180
rad = −0.79 rad (21.59)

Hence,
ys(t) = 0.8 · 0.71 · sin(1.0 · t− 0.79) = 0.57 sin(t− 0.79) (21.60)

Solution to Problem 21.3

We set s = jω in H(s), and then turn the factors into polar forms, which we then combine
to finally get a polar form of H(jω):

H(jω) =
K

(1 + T1jω) (1 + T2jω)
e−jωτ (21.61)

=
K[√

12 + (T1ω)
2e

j arctan
(

T1ω
1

)] [√
12 + (T2ω)

2e
j arctan

(
T2ω
1

)]e−jωτ

(21.62)

=
K√

1 + (T1ω)
2
√
1 + (T2ω)

2︸ ︷︷ ︸
|H(jω)|

e

j[− arctan (T1ω)− arctan (T2ω)− ωτ]︸ ︷︷ ︸
argH(jω)

(21.63)

565

CHAPTER 21. FREQUENCY RESPONSE

So, we have

A(ω) = |H(jω)| = K√
1 + (T1ω)

2
√

1 + (T2ω)
2

(21.64)

and
ϕ(ω) = argH(jω) = − arctan (T1ω)− arctan (T2ω) (21.65)

Solution to Problem 21.4

The following program is a solution:

http://techteach.no/control/python/solution bode plot sim lowpass filter.py

The program generates the Bode diagram and the simulation shown in Figure 21.10.

At ω = 2 rad/s, the gain curve has the value −3 dB, which is equal to

10−3/20 = 0.71 (21.66)

From this, we can predict that the sinusoidal output has amplitude Y = U · 0.71 = 3.55.
From Figure 21.10 we can actually read off Y = 3.55. So, the simulation and the frequency
response are in accordance.

Solution to Problem 21.5

The bandwidth is

fb [Hz] =
ωb [rad/s]

2π
=

1

2π
· 1

RC
(21.67)

With
C = 10−5 F (21.68)

we get

R =
1

2πfbC
=

1

2π · 100 Hz · 10−5 F
= 159 Ω (21.69)

566

http://techteach.no/control/python/solution_bode_plot_sim_lowpass_filter.py

CHAPTER 21. FREQUENCY RESPONSE

10 1 100 101
15

10

5

0

[d
B]

mag
wb
w_in

10 1 100 101

w [rad/s]

75

50

25

0

[d
eg

]

phase
wb
w_in

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
t [s]

5

0

5

Input u
Output y

Figure 21.10: Bode diagram (the upper two plots) and simulated responses of a first order
lowpass filter.

567

Chapter 22

Frequency response analysis of
feedback systems

22.1 Introduction

With frequency response – using Bode diagrams – we can analyse dynamic properties of
feedback. Our focus is feedback control systems. These dynamic properties refer to

• dynamic setpoint tracking, and

• dynamic disturbance compensation.

By definition, in frequency response analysis all signals in the system are assumed to be
sinusoids. This seems to limit the usefulness of such analysis because in real systems signals
are rarely sinusoids. Still, the frequency response analysis provides useful insight about the
dynamic properties of a control system because varying signals can be decomposed into
certain frequency components.

Frequency response analysis assumes a linear model of the control system. However,
practical control systems are nonlinear due to phenomena as saturation, hysteresis, stiction,
nonlinear signal scaling etc. Such nonlinearities can influence largely the dynamic behaviour
of the control system. To perform “linear” analysis of a non-linear model, this model must
be linearized about some operating point. Thus, the results of the analysis will be valid at
or close to the operation point where the linearization was made. This fact limits the
usefulness of a theoretical analysis of a given nonlinear control system using linear systems
methods, but the results may still be useful, particularly if the system most of the time
operates close to the chosen or specified operating point.

Although a “linear” analysis of a given nonlinear control system may have limited practical
value, you may enhance your general understanding about the behaviour of control systems
through analysis of examples of linear control systems.

Note: Once you have a mathematical model of a given control system, I recommend that

568

CHAPTER 22. FREQUENCY RESPONSE ANALYSIS OF FEEDBACK SYSTEMS

you run simulations as a part of the analysis. This applies for both linear and nonlinear
control systems. Simulations will give you information about dynamics responses, whether
the static control error is zero or not, the impact of process disturbances, the effects of
measurement noise, effects of parameter variations, etc.

22.2 Analysis of setpoint tracking and disturbance
compensation

22.2.1 Introduction

Frequency response analysis of control systems expresses the tracking and compensation
properties under the assumption that the setpoint and the disturbance are sinusoidal
signals or frequency components in a compound signal. We assume that the control system
has a transfer function-based block diagram as shown in Figure 22.1.

C(s) P(s)
u(s) y(s)

y(s)

r(s)

D(s)

d(s)

Process

Controller

Disturbance

transfer function

Process

transfer function

e(s)

Figure 22.1: Transfer function-based block diagram of a control system.

The Laplace transformed control error is given by (12.7), which is repeated here:

e(s) = [S(s)r(s)]︸ ︷︷ ︸
er(s)

+ [−S(s)D(s)d(s)]︸ ︷︷ ︸
ed(s)

(22.1)

where S(s) is the sensitivity transfer function:

S(s) =
1

1 + L(s)
(22.2)

where L(s) is the loop transfer function. In the following we will study both S(s) and the
tracking ratio T (s):

T (s) =
L(s)

1 + L(s)
=

y(s)

r(s)
(22.3)

569

CHAPTER 22. FREQUENCY RESPONSE ANALYSIS OF FEEDBACK SYSTEMS

22.2.2 Frequency response analysis of setpoint tracking

From (22.1) we see we that the response in the control error due to the setpoint is

esp(s) = S(s)r(s) (22.4)

By plotting the frequency response S(jω) we can easily calculate how large the error is for a
given frequency component in the setpoint: Assume that the setpoint is a sinusoid of
amplitude R and frequency ω. According to frequency response theory, cf. Section 21.4, the
steady-state response in the control error is

er(t) = R |S(jω)| sin [ωt+ argS(jω)] (22.5)

Thus, the error is small and consequently the tracking property is good if |S(jω)| ≪ 1,
while the error is large and the tracking property poor if |S(jω)| ≈ 1.

The tracking property can be indicated by the tracking transfer function T (s), too. The
response in the process output measurement due to the setpoint is

ym(s) = T (s)r(s) (22.6)

Assume that the setpoint is a sinusoid of amplitude Ysp and frequency ω. According to
frequency response theory, cf. Chapter 21, and in particular, Section 21.4, the steady-state
response in the process output due to the setpoint is:

y(t) = R |T (jω)| sin [ωt+ arg T (jω)] (22.7)

Thus, |T (jω)| ≈ 1 indicates that the control system has good tracking property, while
|T (jω)| ≪ 1 indicates poor tracking property.

Since both S(s) and T (s) are functions of the loop transfer function L(s), cf. (22.2) and
(22.3), there is a relation between L(s) and the tracking property of the control system.
Using (22.2) and (22.2) we can conclude as follows:

Good setpoint tracking: |S(jω)| ≪ 1, |T (jω)| ≈ 1, |L(jω)| ≫ 1 (22.8)

Poor setpoint tracking: |S(jω)| ≈ 1, |T (jω)| ≪ 1, |L(jω)| ≪ 1 (22.9)

Figure 22.2 shows typical Bode plots of |S(jω)|, |T (jω)| and |L(jω)|. Usually we are
interested in the amplitude gains, not the phase lags. Therefore plots of argS(jω),
arg T (jω) and argL(jω) are not shown nor discussed here.

The bandwidth of a control system is the frequency which divides the frequency range of
good tracking and the frequency range of poor tracking. From (22.8) and (22.9) and Figure
22.2 we can list the following three candidates for a definition of the bandwidth:

• ωt, which is the frequency where the amplitude gain of the tracking transfer function
has value 1/

√
2 ≈ 0.71 = −3 dB. This definition is in accordance with the usual

bandwidth definition of lowpass filters. The ωt bandwidth is also called the −3 dB
bandwidth ω−3dB.

570

CHAPTER 22. FREQUENCY RESPONSE ANALYSIS OF FEEDBACK SYSTEMS

Frequency ω [rad/s]
(logarithmic scale)

Logarithmic scale

1 = 0 dB

L

S

T

1/sqrt(2) = 0.71 = -3 dB
(approx)

ωs ωtωc

1-1/sqrt(2) = 0.29 = -11 dB
(approx) Various

bandwidth
definitions

Figure 22.2: Typical Bode plots of |S(jω)|, |T (jω)| and |L(jω)|.

• ωc, which is the frequency where the amplitude gain of the loop transfer function has
value 1 = −0 dB. ωc is called the crossover frequency of L.

• ωs, which is the frequency where the amplitude gain of the sensitivity transfer
function has value 1− 1/

√
2 ≈ 1− 0.71 ≈ 0.29 ≈ −11 dB. This definition is derived

from the −3 dB bandwidth of the tracking transfer function: Good tracking
corresponds to tracking gain between 1/

√
2 and 1. Now recall that the sensitivity

transfer function is the transfer function from setpoint to control error, cf. (22.4).
Expressed in terms of the control error, we can say that good tracking corresponds to
sensitivity gain |S| less than 1− 1/

√
2 ≈ −11 dB ≈ 0, 29. The frequency where |S| is

−11 dB is denoted the sensitivity bandwidth, ωs.

Of the three bandwidth candidates defined above, the sensitivity bandwidth ωs is the one
that is most closely related to the control error. Therefore, we may say that ωs is the most
convenient bandwidth definition as far as the tracking property of a control system is
concerned. In addition, ωs is a convenient bandwidth related to the compensation property
of a control system (we will look into this in more detail below). However, the crossover
frequency ωc and the −3 dB bandwidth are the commonly used bandwidth definitions.

As indicated in Figure 22.2, the numerical values of the various bandwidth definitions will
be different (and this is demonstrated in Example 22.1).

If you need a (possibly rough) estimate of the response time Tr of a control system, which is
time it takes for a step response to reach 63% of its steady-state value, you can use

Tr ≈
k

ωt
[s] (22.10)

571

CHAPTER 22. FREQUENCY RESPONSE ANALYSIS OF FEEDBACK SYSTEMS

where ωt is the −3 dB bandwidth in rad/s.1 k can be set to some value between 1.5 and
2.0, say 2.0 if you want to be conservative.

Example 22.1 Frequency response analysis of setpoint tracking

See the block diagram in Figure 12.2. Assume the following transfer functions:

PID controller:

C(s) = Kc

(
1 +

1

Tis
+

Tds

Tfs+ 1

)
(22.11)

Figure 22.3: Example 22.1: Simulated responses of the control system. The setpoint r is
sinuoid of frequency ω1 = 0.55 rad/s.

Process transfer functions (second order with time delay):

P (s) =
Ku

(T1s+ 1) (T2s+ 1)
e−τs (22.12)

D(s) =
Kv

(T1s+ 1) (T2s+ 1)
e−τs (22.13)

Measurement transfer function:
Hm(s) = Km (22.14)

The parameter values are Kc = 4.3, Ti = 1.40, Td = 0.35, Tf = 0.1Td = 0.035, Ku = 1,
Kd = 1, T1 = 2, T2 = 0.5, τ = 0.4, Km = 1. (The PID parameter values are calculated using
the Ziegler-Nichols closed loop method.) The operation point is at setpoint value 50% and
disturbance d = 10% (constant).

1How can you find the exact value of the response time? Answer: Simulate!

572

CHAPTER 22. FREQUENCY RESPONSE ANALYSIS OF FEEDBACK SYSTEMS

Figure 22.3 shows simulated responses in the process output measurement ym and in the
control error e = r − ym when the setpoint r is a sinusoid of amplitude 10 % (about a bias
of 50 %) and frequency ω1 = 0.55 rad/s. The frequency of the sinusoidal is chosen equal to
the sensitivity bandwidth ωs. The amplitude of the control error should be
0.29·10 % = 2.9 %, and this is actually in accordance with the simulation, see Figure 22.3.

Figure 22.4 shows Bode plots of |S(jω)|, |T (jω)| and |L(jω)|.

Figure 22.4: Example 22.1: Bode plots of |L(jω)|, |T (jω)| and |S(jω)|.

Let us compare the various bandwidth definitions. From Figure 22.4 we find

• −3 dB bandwidth: ωt = 3.8 rad/s

• Crossover frequency: ωc = 1.7 rad/s

• Sensitivity bandwidth: ωs = 0.55 rad/s

These values are actually quite different. (As commented in the text above this example, it
can be argued that the ωs bandwidth gives the most expressive measure of the control
system dynamics.)

Finally, let us read off the response time Tr. Figure 22.5 shows the response in ym due to a
step in ysp. From the simulation we read off Tr ≈ 1.1 s. The estimate (22.10) with k = 2
gives Tr ≈ 2/ωt = 2/3.8 = 0.53 s, which is about half the value of the real (simulated) value.

[End of Example 22.1]

22.2.3 Frequency response analysis of disturbance compensation

(22.1) gives the response in the control error due to the disturbance, d. It is repeated here:

ed(s) = −S(s)D(s)d(s) (22.15)

573

CHAPTER 22. FREQUENCY RESPONSE ANALYSIS OF FEEDBACK SYSTEMS

Figure 22.5: Example 22.1: Step response in process output measurement ym after a step in
setpoint r.

Thus, the sensitivity transfer function S(s) is a factor in the transfer function from d til e
for the control system. However, S(s) has an additional meaning related to the
compensation of a disturbance, namely it expresses the degree of the reduction of the
control error due to using closed loop control, as explained below.

With feedback (i.e. closed loop system) the response in the control error due to the
disturbance is

ed(s) = −S(s)D(s)d(s) (22.16)

Without feedback (open loop) this response is

ed(s) = −D(s)d(s) (22.17)

The ratio between these responses is

ed(s)with feedback

ed(s)without feedback
=

−S(s)D(s)d(s)

−D(s)d(s)
= S(s) (22.18)

Assuming that the disturbance is sinusoidal with frequency ω rad/s, (22.18) with s = jω,
that is S(jω), expresses the ratio between sinusoidal responses.

Again, effective control, which here means effective disturbance compensation, corresponds
to a small value of |S| (value zero or close to zero), while ineffective control corresponds to
|S| close to or greater than 1. We can define the bandwidth of the control system with
respect to its compensation property. Here are two alternate bandwidth definitions:

• The bandwidth ωs – the sensitivity bandwidth – is the upper limit of the frequency
range of effective compensation. One possible definition is

|S(jωs)| ≈ 0.29 ≈ −11 dB (22.19)

which means that the amplitude of the error with feedback control is less than 29% of
amplitude without feedback control. The number 0.29 is chosen to have the same
bandwidth definition regarding disturbance compensation as regarding setpoint
tracking, cf. page 571.

574

CHAPTER 22. FREQUENCY RESPONSE ANALYSIS OF FEEDBACK SYSTEMS

• The bandwidth ωc is the crossover frequency of the loop transfer functions ωc, that is,

|L(jωc)| = 0 dB ≈ 1 (22.20)

Note: The feedback does not reduce the control error due to a sinusoidal disturbance if its
frequency is above the bandwidth. But still the disturbance may be well attenuated
through the (control) system. This attenuation is due to the typical inherent lowpass
filtering characteristic of physical systems (processes). Imagine a liquid tank, which
attenuates high-frequent temperature variations existing in the inflow fluid temperature or
in the environmental temperature. This inherent lowpass filtering is self regulation.

Example 22.2 Frequency response analysis of disturbance compensation

This example is based on the control system described in Example 22.1.

Figure 22.6 shows simulated responses in the process output y due to a sinusoidal
disturbance v of amplitude 10% (with bias 10%) and frequency ω1 = 0.55rad/s.

Figure 22.6: Example 22.2: Simulated responses of the control system. The disturbance v is
sinusoidal with frequency ω1 = 0.55 rad/s. The PID-controller is in manual mode (i.e. open
loop control) the first 40 seconds, and in automatic mode (closed loop control) thereafter.

This frequency is for illustration purpose chosen equal to the sensitivity bandwidth of the
control system, cf. Figure 22.4. The setpoint ysp is 50%. The control error can be read off
as the difference between ysp and ym. In the first 40 seconds of the simulation the PID

575

CHAPTER 22. FREQUENCY RESPONSE ANALYSIS OF FEEDBACK SYSTEMS

controller is in manual mode, so the control loop is open. In the following 40 seconds the
PID controller is in automatic mode, so the control loop is closed. We clearly see that the
feedback control is effective to compensate for the disturbance at this frequency (0.55
rad/s). The amplitude of the control error is 6.6 without feedback and 1.9 with feedback.
Thus, the ratio between the closed loop error and the open loop error is 1.9/6.6 = 0.29,
which is in accordance with the amplitude of the sensitivity transfer function at this
frequency, cf. Figure 22.4.

Figure 22.7 shows the same kind of simulation, but with disturbance frequency ω1 = 1.7
rad/s, which is higher than the sensitivity bandwidth, which is 0.55 rad/s.

Figure 22.7: Example 22.2: Simulated responses of the control system. The disturbance v is
sinusoidal with frequency ω1 = 1.7 rad/s. The PID-controller is in manual mode (i.e. open
loop control) the first 40 seconds, and in automatic mode (closed loop control) thereafter.

From the simulations we see that closed loop control at this relatively high frequency, 1.7
rad/s, does not compensate for the disturbance — actually the open loop works better.
This is in accordance with the fact that |S(jω)| is greater than 1 at ω = 1.7 rad/s, cf. the
Bode plot in Figure 22.4.

Finally, let us compare the simulated responses shown in Figure 22.7 and in Figure 22.3.
The amplitude of the control error is less in Figure 22.7, despite the fact that the closed
loop or feedback control is not efficient (at frequency 1.7 rad/s). The relatively small
amplitude of the control error is due to the self regulation of the process, which means that
the disturbance is attenuated through the process, whether the process is controlled or not.

[End of Example 22.2]

576

CHAPTER 22. FREQUENCY RESPONSE ANALYSIS OF FEEDBACK SYSTEMS

In Example 22.2 I did not choose the disturbance frequency, 1.7 rad/s, by random. 1.7
rad/s is actually the loop transfer function crossover frequency of the control system. Thus,
the example demonstrates that the crossover frequency may give a poor measure of the
performance of the control system. The sensitivity bandwidth is a better measure of the
performance.

22.3 Stability analysis of feedback systems

22.3.1 Introduction

In Chapter 19 we analyzed the stability property of a feedback control systems in terms of
poles of the tracking transfer function. I will now show how to analyse the stability of a
control system from the frequency response of the loop transfer function2, L(jω).

There is an algebraic stability analysis method named Routh’s stability criterion which is
based on the coefficients of the characteristic polynomial of the control system. I have
decided to not present this method since I think it has quite limited practical importance,
and the mathematical operations become quite complicated except for simple models. A
reference to Routh’s stability criterion is e.g. Seborg et al. (2004).

22.3.2 Nyquist’s stability criterion

Let us start with a quick review from Section 20: The stability of a feedback control system
is determined by the placement of the roots of the characteristic polynomial, a(s), in the
complex plane. a(s) is:

a(s) = dL(s) + nL(s) (22.21)

where dL(s) is the denominator polynomial, and nL(s) is the numerator polynomial of the
loop transfer function:

L(s) =
dL(s)

nL(s)
(22.22)

To continue with deriving the Nyquist’s stability criterion, we start with a rewriting. The
roots of (22.21) are the same as the roots of:

dL(s) + nL(s)

dL(s)
= 1 +

nL(s)

dL(s)
= 1 + L(s) = 0 (22.23)

Therefore, we can denote also (22.23) as the characteristic equation of the feedback control
system. (22.23) is the equation from which the Nyquist’s stability criterion will be derived.
In the derivation we will use the so-called Argument variation principle:

Argument variation principle: Given a function f(s) where s is a complex number.
Then f(s) is a complex number, too. As with all complex numbers, f(s) has an angle

2the product of all the transfer functions in the control loop, cf. (12.5)

577

CHAPTER 22. FREQUENCY RESPONSE ANALYSIS OF FEEDBACK SYSTEMS

or argument. If s follows a closed contour Γ (gamma) in the complex s-plane which
encircles a number of poles and a number of zeros of f(s), see Figure 22.8,

Re(s)

Im(s)
PCL poles of
closed loop system in
right half plane

POL poles of
open loop system in
right half plane

Positive
direction of
circulation

Γ contour

R
ig

ht
 h

al
f p

la
ne

Figure 22.8: s shall follow the Γ contour once in positive direction (counter clockwise).

then the following applies:

arg
Γ
f(s) = 360◦ · (number of zeros minus number of poles of f(s) inside Γ) (22.24)

where argΓ f(s) means the change of the angle of f(s) when s has followed Γ once in
positive direction of circulation (i.e. clockwise).

For our purpose, we let the function f(s) in the Argument variation principle be

f(s) = 1 + L(s) (22.25)

The Γ contour must encircle the entire right half s-plane, so that we are certain that all
poles and zeros of 1 + L(s) are encircled. From the Argument Variation Principle we have:

arg
Γ
[1 + L(s)] = arg

Γ

dL(s) + nL(s)

dL(s)
(22.26)

= 360◦ · (number of roots of (dL + nL) in RHP

minus number roots of dL in RHP) (22.27)

= 360◦ · (number poles of closed loop system in RHP

minus number poles of open system in RHP)

= 360◦ · (PCL − POL) (22.28)

where RHP means right half plane. By “open system” we mean the (imaginary) system
having transfer function L(s) = nL(s)/dL(s), i.e., the original feedback system with the
feedback broken. The poles of the open system are the roots of dL(s) = 0.

Finally, we can formulate the Nyquist’s stability criterion. But before we do that, we should
remind ourselves what we are after, namely to be able to determine the number poles PCL

578

CHAPTER 22. FREQUENCY RESPONSE ANALYSIS OF FEEDBACK SYSTEMS

of the closed loop system in RHP. It those poles which determines whether the closed loop
system (the control system) is asymptotically stable or not. If PCL = 0 the closed loop
system is asymptotically stable.

Nyquist’s stability criterion: Let POL be the number of poles of the open system in the
right half plane, and let argΓ L(s) be the angular change of the vector L(s) as s have
followed the Γ contour once in positive direction of circulation. Then, the number
poles PCL of the closed loop system in the right half plane, is

PCL =
argΓ L(s)

360◦
+ POL (22.29)

If PCL = 0, the closed loop system is asymptotically stable.

Let us take a closer look at the terms on the right side of (22.29): POL are the roots of
dL(s), and there should not be any problem calculating these roots. To determine the
angular change of the vector 1 + L(s). Figure 22.9 shows how the vector (or complex
number) 1 + L(s) appears in a Nyquist diagram for a typical plot of L(s). A Nyquist
diagram is simply a Cartesian diagram of the complex plane in which L is plotted. 1 + L(s)
is the vector from the point (−1, 0j), which is denoted the critical point, to the Nyquist
curve of L(s).

Re L(s)

Im L(s)

1

1 + L(s)

The
critical
point

Decreasing ω

Positive ω

Negative ω

Infinite ω

0

Nyquist
curve of
L(s)

Figure 22.9: Typical Nyquist curve of L(s). The vector 1 + L(s) is drawn.

More about the Nyquist curve of L(jω) Let us take a more detailed look at the
Nyquist curve of L as s follows the Γ contour in the s-plane, see Figure 22.8. In practice,
the denominator polynomial of L(s) has higher order than the numerator polynomial. This
implies that L(s) is mapped to the origin of the Nyquist diagram when |s| = ∞. Thus, the
whole semicircular part of the Γ contour is mapped to the origin.

The imaginary axis constitutes the rest of the Γ contour. How is the mapping of L(s) as s
runs along the imaginary axis? On the imaginary axis s = jω, which implies that
L(s) = L(jω), which is the frequency response of L(s). A consequence of this is that we can
in principle determine the stability property of a feedback system by just looking at the
frequency response of the open system, L(jω).

579

CHAPTER 22. FREQUENCY RESPONSE ANALYSIS OF FEEDBACK SYSTEMS

ω has negative values when s = jω is on the negative imaginary axis. For ω < 0 the
frequency response has a mathematical meaning. From general properties of complex
functions,

|L(−jω)| = |L(jω)| (22.30)

and
∠L(−jω) = −∠L(jω) (22.31)

Therefore the Nyquist curve of L(s) for ω < 0 will be identical to the Nyquist curve of
ω > 0, but mirrored about the real axis. Thus, we only need to know how L(jω) is mapped
for ω ≥ 0. The rest of the Nyquist curve then comes by itself! Actually we need not draw
more of the Nyquist curve (for ω > 0) than what is sufficient for determining if the critical
point is encircled or not.

We must do some extra considerations if some of the poles in L(s), which are the poles of
the open loop system, lie in the origin. This corresponds to pure integrators in control loop,
which is a common situation in feedback control systems because the controller usually has
integral action, as in a PI or PID controller. If L(s) contains integrators, the Γ contour
must go outside the origo. But to the left or to the right? We choose to the right, see
Figure 22.10.

Re(s)

Im(s)

Re L(s)

Im L(s)

1

1 + L(s)

0

Infinetely small
radius

Infinitely large
radius from
origin

0

Figure 22.10: Left diagram: If L(s) has a pole in origin, the Γ contour must pass the origin
along an arbitrarily small semicircle to the right. Right diagram: A typical Nyquist curve of
L.

(We have thereby decided that the origin belongs to the left half plane. This implies that
POL does not count these poles.) The radius of the semicircle around origin is arbitrarily
small. The Nyquist curve then becomes as shown in the diagram to the right in the same
figure. The arbitrarily small semicircle in the s-plane is mapped to an infinitely large
semicircle in the L-plane. The is because as s → 0, the loop transfer function is
approximately

L(s) ≈ K

s

(if we assume one pole in the origin). On the small semicircle,

s = rejθ (22.32)

which gives

L(s) ≈ K

r
e−jθ (22.33)

580

CHAPTER 22. FREQUENCY RESPONSE ANALYSIS OF FEEDBACK SYSTEMS

When r → 0 and when simultaneously θ goes from +90◦ via 0◦ to −90◦, the Nyquist curve
becomes an infinitely large semicircle, as shown.

The Nyquist’s stability criterion for non-rational transfer functions The
Nyquist’s stability criterion gives information about the poles of feedback systems. So far it
has been assumed that the loop transfer function L(s) is a rational transfer function. What
if L(s) is irrational? Here is one example:

L(s) =
1

s
e−τs (22.34)

where e−τs represents time delay. In such cases the tracking ratio T (s) will also be
irrational, and the definition of poles does not apply to such irrational transfer functions.
Actually, the Nyquist’s stability criterion can be used as a graphical method for
determining the stability property on basis of the frequency response L(jω).

Nyquist’s special stability criterion In most cases the open system is stable, that is,
POL = 0. (22.29) then becomes

PCL =
argΓ[L(s)]

360◦
(22.35)

This implies that the feedback system is asymptotically stable if the Nyquist curve does not
encircle the critical point. This is the Nyquist’s special stability criterion or the Nyquist’s
stability criterion for open stable systems.

The Nyquist’s special stability criterion can also be formulated as follows: The feedback
system is asymptotically stable if the Nyquist curve of L has the critical point on its left
side for increasing ω.

Another way to formulate Nyquist’s special stability criterion involves the amplitude
crossover frequency ωc and the phase crossover frequency ω180. ωc is the frequency at which
the L(jω) curve crosses the unit circle, while ω180 is the frequency at which the L(jω) curve
crosses the negative real axis. In other words:

|L(jωc)| = 1 (22.36)

and
argL(jω180) = −180◦ (22.37)

See Figure 22.11. Note: The Nyquist diagram contains no explicit frequency axis.

We can now determine the stability properties from the relation between these two
crossover frequencies:

• Asymptotically stable closed loop system: ωc < ω180

• Marginally stable closed loop system: ωc = ω180

• Unstable closed loop system: ωc > ω180

581

CHAPTER 22. FREQUENCY RESPONSE ANALYSIS OF FEEDBACK SYSTEMS

Re L(s)

Im L(s)

1

Decreasing ω
Positive ω

0

Unit circle
j

L(jω180)

L(jωc)

Figure 22.11: Definition of amplitude crossover frequency ωc and phase crossover frequency
ω180.

The frequency of the sustained oscillations There are sustained oscillations in a
marginally stable system. The frequency of these oscillations is ωc = ω180.This can be
explained as follows: In a marginally stable system, L(±jω180) = L(±jωc) = −1. Therefore,
dL(±jω180) + nL(±jω180) = 0, which is the characteristic equation of the closed loop system
with ±jω180 inserted for s. Therefore, the system has ±jω180 among its poles. The system
usually have additional poles, but they lie in the left half plane. The poles ±jω180 leads to
sustained sinusoidal oscillations. Thus, ω180 (or ωc) is the frequency of the sustained
oscillations in a marginally stable system.

22.3.3 Stability margins

22.3.3.1 Stability margins in terms of gain margin and phase margin

An asymptotically stable feedback system may become marginally stable if the loop transfer
function changes. The gain margin GM and the phase margin PM [radians or degrees] are
stability margins which in their own ways expresses how large parameter changes can be
tolerated before an asymptotically stable system becomes marginally stable. Figure 22.12
shows the stability margins defined in the Nyquist diagram.

Re L(s)

Im L(s)

1
0

Unity circle
j

L(jω180)

L(jωc)

1/GM

PM

Figure 22.12: Gain margin GM and phase margin PM defined in the Nyquist diagram.

582

CHAPTER 22. FREQUENCY RESPONSE ANALYSIS OF FEEDBACK SYSTEMS

GM is the (multiplicative, not additive) increase of the gain that L can tolerate at ω180

before the L curve (in the Nyquist diagram) passes through the critical point. Thus,

|L(jω180)| ·GM = 1 (22.38)

which gives

GM =
1

|L(jω180)|
=

1

|ReL(jω180)|
(22.39)

(The latter expression in (22.39) is because at ω180, ImL = 0 so that the amplitude is equal
to the absolute value of the real part.)

If we use decibel as the unit (like in the Bode diagram which we will soon encounter), then

GM [dB] = − |L(jω180)| [dB] (22.40)

The phase margin PM is the phase reduction that the L curve can tolerate at ωc before the
L curve passes through the critical point. Thus,

argL(jωc)− PM = −180◦ (22.41)

which gives
PM = 180◦ + argL(jωc) (22.42)

We can now state as follows: The feedback (closed) system is asymptotically stable if

GM > 0dB = 1 and PM > 0◦ (22.43)

This criterion is often denoted the Bode-Nyquist stability criterion.

Reasonable ranges of the stability margins are

2 ≈ 6dB ≤ GM ≤ 4 ≈ 12dB (22.44)

and
30◦ ≤ PM ≤ 60◦ (22.45)

The larger values, the better stability, but at the same time the system becomes more
sluggish, dynamically. If you are to use the stability margins as design criterias, you can use
the following values (unless you have reasons for specifying other values):

GM ≥ 2.5 ≈ 8dB and PM ≥ 45◦ (22.46)

For example, the controller gain, Kc, can be adjusted until one of the inequalities becomes
an equality.3

It can be shown4 that for PM ≤ 70◦, the damping of the feedback system approximately
corresponds to that of a second order system with relative damping factor

ζ ≈ PM

100◦
(22.47)

For example, PM = 50◦ ∼ ζ = 0.5.

3But you should definitely check the behaviour of the control system by simulation, if possible.
4The result is based on the assumption that the loop transfer function is L(s) = ω2

0/ [(s+ 2ζω0)s] which
gives tracking transfer function T (s) = L(s)/[1 + L(s)] = ω2

0/
[
s2 + 2ζω0s+ ω2

0

]
. The phase margin PM can

be calculated from L(s).

583

CHAPTER 22. FREQUENCY RESPONSE ANALYSIS OF FEEDBACK SYSTEMS

22.3.3.2 Stability margins in terms of maximum sensitivity amplitude

An alternative quantity of a stability margin is the minimum distance from the L(jω) curve
to the critical point. This distance is |1 + L(jω)|, see Figure 22.13.

Re L(s)

Im L(s)

1
0

L(jω)

|1+L(jω)|

|1+L(jω)|min

Figure 22.13: The distance between the L(jω) curve and the critical point is |1 + L|. The
minimum of this distance is related to the stability margin.

We can use the minimal value of |1 + L(jω)| as a stability margin. However, it is more
common to take the inverse of the distance: Thus, a stability margin is the maximum value
of 1/ |1 + L(jω)|. And since 1/[1 + L(s)] is the sensitivity transfer function S(s), then
|S(jω)|max represents a stability margin. Reasonable values are in the range

1.5 ≈ 3.5 dB ≤ |S(jω)|max ≤ 3.0 ≈ 9.5 dB (22.48)

If you use |S(jω)|max as a criterion for adjusting controller parameters, you can use the
following criterion (unless you have reasons for some other specification):

|S(jω)|max = 2.0 ≈ 6 dB (22.49)

22.3.4 Stability analysis in a Bode diagram

It is most common to use a Bode diagram for frequency response based stability analysis of
closed loop systems. The Nyquist’s Stability Criterion says: The closed loop system is
marginally stable if the Nyquist curve (of L) goes through the critical point, which is the
point (−1, 0). But where is the critical point in the Bode diagram? The critical point has
phase (angle) −180◦ and amplitude 1 = 0dB. The critical point therefore constitutes two
lines in a Bode diagram: The 0dB line in the amplitude diagram and the −180◦ line in the
phase diagram. Figure 22.14 shows typical L curves for an asymptotically stable closed loop
system. In the figure, GM, PM, ωc and ω180 are indicated.

Example 22.3 Stability analysis of a feedback control system

Given a feedback control system with structure as shown in Figure 22.15.

584

CHAPTER 22. FREQUENCY RESPONSE ANALYSIS OF FEEDBACK SYSTEMS

ω
(logarithmic)

ω180

ωc

|L(jω)|

arg L(jω)

[dB]

[degrees]

0 dB

-180
PM

GM

Figure 22.14: Typical L curves of an asymptotically stable closed loop system with GM, PM,
ωc and ω180 indicated.

The loop transfer function is

L(s) = C(s)P (s) = Kc︸︷︷︸
C(s)

1

(s+ 1)2 s︸ ︷︷ ︸
P (s)

=
Kc

(s+ 1)2 s
=

nL(s)

dL(s)
(22.50)

We will determine the stability property of the control system for different values of the
controller gain Kc in three ways: Pole placement, Nyquist’s Stability Criterion, and
simulation. The tracking transfer function is

T (s) =
ym(s)

r(s)
=

L(s)

1 + L(s)
=

nL(s)

dL(s) + nL(s)
=

Kc

s3 + 2s2 + s+Kc
(22.51)

The characteristic polynomial is

a(s) = s3 + 2s2 + s+Kc (22.52)

Figures 22.16 – 22.18 show the step response after a step in the setpoint, the poles, the
Bode diagram and Nyquist diagram for three Kc values which result in different stability
properties. The detailed results are shown below.

• Kc = 1: Asymptotically stable system, see Figure 22.16. From the Bode diagram we
read off stability margins GM = 6.0dB = 2.0 and PM = 21◦. we see also that
|S(jω)|max = 11 dB = 3.5 (a large value, but it corresponds with the small the phase
margin of PM = 20◦).

585

CHAPTER 22. FREQUENCY RESPONSE ANALYSIS OF FEEDBACK SYSTEMS

r y
C(s) P(s)

Controller Process

Figure 22.15: Example 22.3: Block diagram of feedback control system.

Figure 22.16: Example 22.3: Step response (step in setpoint), poles, Bode diagram and
Nyquist diagram with Kc = 1. The control system is asymptotically stable.

• Kc = 2: Marginally stable system, see Figure 22.17. From the Bode diagram,
ωc = ω180. The L curve goes through the critical point in the Nyquist diagram. |S|max

has infinitely large value (since the minimum distance, 1/|S|max, between |L| and the
critical point is zero).

Let us calculate the period Tp of the undamped oscillations: Since ω180 = 1.0rad/s,
the period is Tp = 2π/ω180 = 6.28s, which fits well with the simulation shown in
Figure 22.17.

• Kc = 4: Unstable system, see Figure 22.18. From the Bode diagram, ωc > ω180. From
the Nyquist diagram we see that the L curve passes outside the critical point. (The
frequency response curves of T and S have no physical meaning in this the case.)

[End of Example 22.3]

586

CHAPTER 22. FREQUENCY RESPONSE ANALYSIS OF FEEDBACK SYSTEMS

Figure 22.17: Example 22.3: Step response (step in setpoint), poles, Bode diagram and
Nyquist diagram with Kc = 2. The control system is marginally stable.

22.3.5 Robustness in term of stability margins

Per definition the stability margins expresses the robustness of the feedback control system
against certain parameter changes in the loop transfer function:

• The gain margin, GM, is how much the loop gain, K, can increase before the system
becomes unstable. For example, is GM = 2 when K = 1.5, the control system
becomes unstable for K larger than 1.5 · 2 = 3.0.

• The phase margin, PM, is how much the phase lag function of the loop can be
reduced before the loop becomes unstable. One reason of reduced phase is that the
time delay in control loop is increased. A change of the time delay by ∆τ introduces
the factor e−∆τs in L(s) and contributes to argL with −∆τ · ω [rad] or −∆τ · ω 180◦

π
[deg]. |L| is however not influenced because the amplitude function of e−τs is 1,
independent of the value of τ . The system becomes unstable if the time delay have
increased by ∆τmax such that5

PM = ∆τmax · ωc
180◦

π
[deg] (22.53)

which gives the following maximum change of the time delay:

∆τmax =
PM

ωc

π

180◦
(22.54)

If you want to calculate how much the phase margin PM is reduced if the time delay
is increased by ∆τ , you can use the following formula which stems from (22.53):

∆PM = ∆τ · ωc
180◦

π
[deg] (22.55)

5Remember that PM is found at ωc.

587

CHAPTER 22. FREQUENCY RESPONSE ANALYSIS OF FEEDBACK SYSTEMS

Figure 22.18: Example 22.3: Step response (step in setpoint), poles, Bode diagram and
Nyquist diagram with Kc = 4. The control system is unstable.

For example, assume that a given control system has ωc = 0.2rad/min and PM = 50◦.
If the time delay increases by 1min, the phase margin is reduced by
∆PM = 1 · 0.2180◦

π = 11.4◦, i.e. from 50◦ to 38.6◦.

588

CHAPTER 22. FREQUENCY RESPONSE ANALYSIS OF FEEDBACK SYSTEMS

22.4 Problems for Chapter 22

Problem 22.1 Frequence response of control system

Figure 22.19 shows the amplitude gain curves of the loop transfer function L, the tracking
transfer function T and the sensitivity transfer function S of a feedback control system.

Loop transfer function, L
Tracking function, T
Sensitivity function, S

Figure 22.19: Amplitude gain curves of the loop transfer function L, the tracking transfer
function T and the sensitivity transfer function S of a feedback control system.

1. Read off from the frequency response curves the following three alternative
bandwidths:

• The crossover frequency ωc.

• The −3 dB frequency ωt of the tracking transfer function

• The −11dB frequency ωs of the sensitivity transfer function

2. Assume that the setpoint is a sinusoid of amplitude Ar = 4 and frequency 1 rad/s.
What is the amplitude, Ay, of the steady-state sinusoidal process output variable?
What is the amplitude, Ae, of the steady-state sinusoidal control error?

3. Assume that the process disturbance is a sinusoid of frequency 1 rad/s. Assume that
this disturbance creates a steady-state sinusoidal response in the process output
variable of amplitude AyOL0.5 when the process is controlled with a constant control
system, i.e. in open loop control. What is the amplitude, AyCL , of the process output
variable using feedback control, i.e. in closed loop control?

4. Estimate the response time, Tr, of the response on the process output variable due to
a step change of the setpoint.

Problem 22.2 Frequency response of temperature control system

589

CHAPTER 22. FREQUENCY RESPONSE ANALYSIS OF FEEDBACK SYSTEMS

c [J/(kg K)]
Tin [K]

F [kg/s]

V [m3]

T [K]

P [J/s]

F

T

Stirring motorTe [K]U [(J/s)/K]

T [K]

P [J/s]

T

TT

TC

Control
loop

TSP

Non-controlled tank Controlled tank

Figure 22.20: To the left: A non-controlled thermal process which is a liquid tank with
throughput and heating.

1. The diagram to the left of Figure 22.20 shows a non-controlled thermal process which
is a liquid tank with throughput and heating.

Assume that the amplitude gain of the frequency response of the transfer function
from inlet temperature Tin to outlet temperature T is as shown in the Bode diagram
in Figure 22.21.

Figure 22.21: Frequency response of open-loop system from Tin to T .

Assume that Tin contains a frequency component of amplitude ATin of frequency 0.1
rad/s. Calculate the amplitude AT of the corresponding steady-state response in T .

2. The diagram to the right of Figure 22.20 shows a temperature control system of the

590

CHAPTER 22. FREQUENCY RESPONSE ANALYSIS OF FEEDBACK SYSTEMS

process. Assume that the amplitude gain of the frequency response of the transfer
function from inlet temperature Tin to outlet temperature T of the control system is
as shown in the Bode diagram in Figure 22.22.

Figure 22.22: Frequency response of closed loop (feedback control) system from Tin to T .

Assume that that Tin contains a frequency component of amplitude ATin of frequency
0.1 rad/s. What is the amplitude AT of the corresponding steady-state response in T?
Compare the answer with problem 1 above. Is there any improvement by using
control?

Problem 22.3 Stablity analysis for various gains in Nyquist diagram

Given a control system with loop transfer function

L(s) =
Kc

(s+ 1)3s
(22.56)

Figure 22.23 shows the Nyquist curve of L with Kc = 0.4.

(The curve actually encircles the whole right half plane.)

Use Nyquist’s stability criterion to calculate the values of Kc that makes the control system
become

• Asymptotically stable.

• Marginally stable.

• Unstable. In this case, what is the number of poles in the right half plane?

591

CHAPTER 22. FREQUENCY RESPONSE ANALYSIS OF FEEDBACK SYSTEMS

Figure 22.23: Nyquist curve of L with Kc = 0.4

Problem 22.4 Design of stabile control system in Nyquist diagram

Given a closed loop system having the following loop transfer function:

L(s) =
K

s− 1
(22.57)

1. Show that the corresponding open loop system is unstable by calculating the pole of
the system.

2. Figure 22.24 shows the Nyquist curve of L with K = 2. Find using the Nyquist
stability criterion for which values of K the closed loop system is asymptotically
stable. Confirm the answer by calculating the pole of the closed loop system.

Problem 22.5 Nyquist curve for conditionally stable system

Figure 22.25 shows the Nyquist curve of L(jω) of a feedback system which is open stable.

The loop gain is then K = 1. For which values of K is the feedback system asymptotically
stable?

Problem 22.6 Gain margin and sensitivity from Nyquist diagram

Figure 22.26 shows the Nyquist curve of the loop transfer function L of an asymptotically
stable control system.

What is the gain margin GM and the maximum sensitivity gain |S(jω)|max?

592

CHAPTER 22. FREQUENCY RESPONSE ANALYSIS OF FEEDBACK SYSTEMS

Figure 22.24: Nyquist curve of L with K = 2.

Re(L)
-0.2-0.4-0.6-0.8-1.0

Im(L)

Figure 22.25: Nyquist curve

Problem 22.7 Stability margin in terms of sensitivity

Figure 22.27 shows the amplitude gain curves of the loop transfer function L, the tracking
transfer function T and the sensitivity transfer function S of a feedback control system.

Determine the stability margin in terms of |S(jω)|max. Is the value in the range of
reasonable values of this stability margin?

Problem 22.8 Stability margins in Bode diagram

Figure 22.28 shows the Bode diagram of the loop transfer function of a given control
system.

1. Read off the stability margins GM and PM, and the crossover frequencies ωc and ω180

in the Bode diagram.

2. How large increase of the loop gain will bring the system to the stability limit? What
is the period Tp of the steady-state oscillations existing in the system when the system
is at the stability limit.

593

CHAPTER 22. FREQUENCY RESPONSE ANALYSIS OF FEEDBACK SYSTEMS

Figure 22.26: Nyquist curve.

Problem 22.9 Marginal stability at increased time delay

Given a feedback control system with time delay τ = 4.2 min. The control system has phase
margin

PM = 45◦ (22.58)

and crossover frequency
ωc = 0.2 rad/min (22.59)

Assume that the time delay increases, but the controller parameters are not changed. With
which value of the time delay τ is the control system marginally stable?

Problem 22.10 When Ziegler-Nichols PID tuning method can not be used

Ziegler-Nichols closed-loop method is based on bringing the closed loop to marginal
stability with a P controller with a proper controller gain value. Explain in terms of
frequency response why the Ziegler-Nichols closed-loop method can not be used for tuning a
PID controller for the following processes. It is assumed that the parameters of the transfer
functions have positive values.

H1(s) =
K

s
(integrator) (22.60)

H2(s) =
K

Ts+ 1
(1. order system) (22.61)

H3(s) =
Kω0

2

s2 + 2ζω0 + ω0
2
(2. order system) (22.62)

594

CHAPTER 22. FREQUENCY RESPONSE ANALYSIS OF FEEDBACK SYSTEMS

Loop transfer function, L
Tracking function, T
Sensitivity function, S

Figure 22.27: Amplitude gain curves

22.5 Solutions to problems for Chapter 22

Solution to Problem 22.1

1. From Figure 22.19 we read off:
ωc = 2.5 rad/s (22.63)

ωt = 5.5 rad/s (22.64)

ωs = 0.55 rad/s (22.65)

(Hence, there is quite large difference between the different bandwidths in this
example.)

2. The calculation from dB is made with the formula x = 10x[dB]/20.

Aym =

=−0.8dB=0.91︷ ︸︸ ︷
|T (j1rad/s)|Ar = 0.91Ar (22.66)

Ae =

=−8dB=0.40︷ ︸︸ ︷
|S(j1rad/s)|Ar = 0.40Ar (22.67)

3.

AyCL =

=−8dB=0,40︷ ︸︸ ︷
|S(j1rad/s)|AyOL = 0.40 · 0.5 = 0.2 (22.68)

4.

Tr ≈
2

ωt
=

2

5.5
= 0.36 s (22.69)

595

CHAPTER 22. FREQUENCY RESPONSE ANALYSIS OF FEEDBACK SYSTEMS

Figure 22.28: Bode diagram

Solution to Problem 22.2

1. In Figure 22.21, which applies to the non-controlled system, we read off that the
amplitude gain at frequency 0.1 rad/s is

GNC(0.1) ≈ 0 dB = 1 (22.70)

2. In Figure 22.22, which applies to the controlled system, we read off that the
amplitude gain at frequency 0.1 rad/s is

GC(0.1) ≈ −32 dB = 0.025 (22.71)

Hence, with control the response in T due to Tin is about 40 times less than the
response in the non-controlled system.

Solution to Problem 22.3

We start by determining the stability property with Kc = 0.4. The number of right half
plane poles of the control system is

PCL =
arg[1 + L(s)]

360◦
+ POL (22.72)

To determine PCL we need to know argL and POL. We have

L(s) =
Kc

(s+ 1)3s
(22.73)

596

CHAPTER 22. FREQUENCY RESPONSE ANALYSIS OF FEEDBACK SYSTEMS

which does not have any poles in the right half plane (the pole in the origin belongs to the
left half plane in this context). Hence,

POL = 0 (22.74)

argL is found from the Nyquist diagram shown in Figure 22.23. L(jω) does not encircle the
critical point, and therefore the vector L has zero net change of angle, and hence argL = 0.
So, (22.72) becomes

PCL =
0

360◦
+ 0 = 0 (22.75)

Consequently, the control system is asymptotically stable with Kc = 0.4.

From Figure 22.23 we see that the L curve with Kc = 0.4 passes through the negative real
axis at −0.45. This implies that if Kc is increased by a factor of 1/0.45 = 2.22, or in other
words: if Kc is increased from 0.4 to 0.4 · 2.22 = 0.89, the L curve will pass through the
critical point.

Consequently, the control system is marginally stable with Kp = 0.89.

From the results above we can conclude that the control system is
asymptotically stable with (positive) Kp < 0.89.

If Kc > 0.89, the L curve encircles the critical point and argL = 720◦, giving

PCL =
720◦

360◦
+ 0 = 2 (22.76)

Therefore, the control system is unstable with Kp > 0.89, and it has

two poles in the right half plane.

The control system is unstable also with Kp < 0. In this case argL = 360◦, and PCL = 1,

and the control system has one pole in the right half plane.

Solution to Problem 22.4

1. The open loop system is unstable because L(s) has a pole in the right half plane.
(The pole is p = 1.)

2. K must be halved to make the L curve pass through the critical point:

Kcritical =
2

2
= 1 (22.77)

Since the open loop system has one pole in the right half plane, POL = 1 in the
Nyquist criterion. To make PCL = 0 (asymptotically stable closed loop system) argL
must be 360◦, which implies that the critical point must be encircled once. This is
achieved with

K > Kcritical = 1 (22.78)

The pole of the closed loop is
p = 1−K (22.79)

This pole is in the left half plane with K > 1, which confirms the result of the Nyquist
stability criterion above.

597

CHAPTER 22. FREQUENCY RESPONSE ANALYSIS OF FEEDBACK SYSTEMS

Solution to Problem 22.5

The Nyquist curve passes through the critical point with the following values of K:

K = 1/0.8 = 1.25 (22.80)

K = 1/0.4 = 2.5 (22.81)

K = 1/0.2 = 5 (22.82)

The control system is asymptotically stable with

0 < K < 1.25 and 2.5 < K < 5 (22.83)

Solution to Problem 22.6

See Figure 22.29.

0.45 = 1/GM
0.4 = |1+L|min = 1/|S|max

Figure 22.29: Nyquist curve.

As indicated in the figure,

0.4 = |1 + L|min =
1

|S|max

(22.84)

which gives

|S|max =
1

0.4
= 2.5 = 8.0 dB (22.85)

Furthermore,
1

GM
= 0.45 (22.86)

which gives

GM =
1

0.45
= 2.22 = 6.9 dB (22.87)

598

CHAPTER 22. FREQUENCY RESPONSE ANALYSIS OF FEEDBACK SYSTEMS

Solution to Problem 22.7

From Figure 22.27 we read off
|S(jω)|max = 7 dB (22.88)

which is in the “reasonable” range of

3.5 dB ≤ |S(jω)|max ≤ 9.5 dB (22.89)

Solution to Problem 22.8

1. See Figure 22.30.

GM = 7 dB

PM = 35 deg

wc = 0.34 rad/s

w180 = 0.58 rad/s

Figure 22.30: Bode plot

From the Bode diagram:
GM = 7 dB = 2.2 (22.90)

PM = 35◦ (22.91)

ωc = 0.34 rad/s (22.92)

ω180 = 0.58 rad/s (22.93)

2. An increase of the loop gain by a factor of

GM = 2.2 (22.94)

599

CHAPTER 22. FREQUENCY RESPONSE ANALYSIS OF FEEDBACK SYSTEMS

will bring the system to the stability limit.

The period is

Tp =
2π

ω180
=

2π

0.58
= 10.8 s (22.95)

Solution to Problem 22.9

When the control system is marginally stable, the phase margin PM is zero. The maximum
change of the time delay that is allowed before the system is marginally stable is

∆τ =
PM

ωc
· π

180◦
=

45◦

0.2
· π

180◦
= 3.9 min (22.96)

Since the time delay before the change is 4.2 min, the total value of the time delay at
marginally stability is

τ = 4.2 + 3.9 = 8.1 min (22.97)

Solution to Problem 22.10

For H1(s) the loop transfer function with a P controller is

L1(s) = KcH1(s) = Kc
K

s
(22.98)

The phase (angle) of L1(jω) converges to −90◦ as the frequency goes to infinity. Therefore,
the closed loop system will not become marginally stable with any controller gain, and
hence, the Ziegler-Nichols method can not be used.

For H2(s) the loop transfer function with a P controller is

L2(s) = KcH2(s) = Kc
K

Ts+ 1
(22.99)

The phase (angle) of L2(jω) converges to −90◦ as the frequency goes to infinity. Therefore,
the closed loop system will not become marginally stable with any controller gain, and
hence, the Ziegler-Nichols method can not be used.

For H3(s) the loop transfer function with a P controller is

L3(s) = KcH3(s) = Kc
Kω0

2

s2 + 2ζω0 + ω0
2

(22.100)

The phase (angle) of L3(jω) converges to −180◦ as the frequency goes to infinity.
Therefore, the closed loop system will not become marginally stable with any limited
controller gain, and hence, the Ziegler-Nichols method can not be used.

600

Part VI

ANALYSIS OF DISCRETE-TIME
FEEDBACK SYSTEMS

601

Chapter 23

Discrete-time signals

Assume that an AD-converter (analog-digital) at discrete points of time converts an analog
signal ya(t), which can be a voltage signal from a temperature or speed sensor, to an
equivalent digital signal, yd(tk), in the form of a number to be used in operations in the
computer, see Figure 23.1.

ya(t) yd(tk)

fs [Hz] = 1/Ts

AD-converter
with samplingContinuous-time,

analog signal
Discrete-time,
digital signal

tkt

Figure 23.1: Sampling. Ts is the time step between the samplings, or the sampling interval.

(The AD-converter is a part of the interface between the computer and the external
equipment, e.g. sensors.) As indicated in Figure 23.1 the resulting discrete-time signal is a
sequence or a series of signal values defined in discrete points of time. Ts is the time step
between the samplings, or the sampling interval. Figure 23.2 shows this signal in more
detail.

The discrete points of time may be denoted tk where k is an integer time index. The time
series can be written in various ways:

{x(tk)} = {x(kTs)} = {x(k)} = x(0), x(1), x(2), . . . (23.1)

To make the notation simple, we can write the signal in one of the following ways:

x(tk) (23.2)

x(kTs) (23.3)

602

CHAPTER 23. DISCRETE-TIME SIGNALS

0 1 2 3 4 5 6

yk = y(kTs)

0,0

0,5

1,0

1,5

2,0

k

Ts=0.2

0.0 0.2 0.4 0.6 0.8 1.21.0 tk = t [s]

Figure 23.2: Discrete-time signal.

x(k) (23.4)

xk (23.5)

In the example above, the discrete-time signal originated from sampling of a
continuous-time signal. However, discrete-time signals exists in many other circumstances,
for example,

• the output signal from a discrete-time (computer-based) signal filter, for example a
lowpass filter,

• the output from a discrete-time (computer-based) controller which controls a physical
process,

• the response in a dynamic system as calculated by a (computer-based) simulator.

603

CHAPTER 23. DISCRETE-TIME SIGNALS

23.1 Problems for Chapter 23

Problem 23.1 Discrete signal

Given the following continuous-time signal (a ramp):

xc(t) = 2t (23.6)

where t is time in seconds.

1. Assume that the signal is sampled with sampling time (time-step) Ts = 0.5 s. Express
xd as a function of the discrete time tk. Write the discrete signal or sequence (time
series) xd from time 0 to 2. Plot x with both discrete time tk and time index k along
the abscissa.

2. Repeat Problem 1 above, but now with Ts = 0.1 s.

604

CHAPTER 23. DISCRETE-TIME SIGNALS

23.2 Solutions to problems for Chapter 23

Solution to Problem 23.1

1.
xd(tk) = 2tk (23.7)

xd = {0, 0.5, 1.0, 1.5, 2.0} (23.8)

Figure 23.3 shows xd with Ts = 0.5 s.

1 2 3 4

tk

k
0

Figure 23.3: xd with Ts = 0.5 s.

2.
xd(tk) = 2tk (23.9)

xd = {0, 0.1, 0.2, 0.3, . . . , 1.5, 1.6, 1.7, 1.8, 1.9, 2.0} (23.10)

Figure 23.4 shows xd with Ts = 0.1 s.

605

CHAPTER 23. DISCRETE-TIME SIGNALS

0

tk

k1 2 3 4 ... 18 19 20...

Figure 23.4: xd with Ts = 0.1 s

606

Chapter 24

Difference equations

24.1 Difference equation models

The basic model type of continuous-time dynamic systems is the differential equation.
Analogously, the basic model type of discrete-time dynamic systems is the difference
equation. Here is an example of a linear second order difference equation with u as input
variable and y as output variable:

y(tk+2) + a1y(tk+1) + a0y(tk) = b0u(tk) (24.1)

which may be written somewhat simpler as

y(k + 2) + a1y(k + 1) + a0y(k) = b0u(k) (24.2)

where ai and bj are coefficients of the difference equation, or model parameters. Note that
this difference equation has unique coefficients since the coefficient of y(k + 2) is 1.

One equivalent form (24.2) is

y(k) + a1y(k − 1) + a0y(k − 2) = b0u(k − 2) (24.3)

where there are no time delayed terms (no negative time indexes), only time advanced
terms (positive or zero time indexes). This form can be obtained from (24.2) by increasing
each time index in (24.2) by 2.

In most cases we want to write the difference equation as a formula for the output variable.
In our example the formula for the output y(k) can be obtained by solving for y(k) from
(24.3):

y(k) = −a1y(k − 1)− a0y(k − 2) + b0u(k − 2) (24.4)

(24.4) says that the output y(k) is given as a linear combination of the output one time step
back in time, y(k − 1), the output two time steps back in time, y(k − 2), and the input two
time steps back in time, u(k − 2).

607

CHAPTER 24. DIFFERENCE EQUATIONS

24.2 Calculating responses from difference equation models

For example, (24.4) is a formula for calculating dynamic (time-varying) responses in the
output, y(k). The formula must be calculated once per time step, and it can be
implemented in a While loop or a For loop in a computer program. Assume as an example
that y(1), y(0) and u(0) are zero. Then (24.4) gives

y(2) = −a1y(1)− a0y(0) + b0u(0) (24.5)

y(3) = −a1y(2)− a0y(1) + b0u(1) (24.6)

y(4) = −a1y(3)− a0y(2) + b0u(2) (24.7)

and so on.

The static response – which is the (steady-state) response of the system when all variables
are assumed to have constant values – can be calculated from the static version of the
difference equation. The static version is found by neglecting all time-dependencies in the
difference equation, and setting y(k) = ys, y(k − 1) = ys etc. where subindex s is for static.
For example, the static version of (24.4) is

ys = −a1ys − a0ys + b0us (24.8)

The static response is

ys =
b0

1 + a1 + a0
us (24.9)

608

CHAPTER 24. DIFFERENCE EQUATIONS

24.3 Problems for Chapter 24

Problem 24.1 Difference equation form

Given the following difference equation:

y(k + 3) + ay(k + 1) = b1u(k + 2) + b0u(k) (24.10)

Write the corresponding difference equation having only zero or negative time shifts.

Problem 24.2 Block diagram of difference equation

Particularly in the area of discrete-time (digital) signal processing the difference equations
constituting the mathematical model of signal filters are represented with mathematical
block diagrams, in the same way as differential equations of continuous-time systems are
represented with block diagrams.

Figure 24.1 shows the most frequently used blocks – or the elementary blocks – used in
block diagrams of difference equation models.

K
u(k)

Gain:

y(k)=u1(k)+u2(k)-u3(k)Sum
(incl. subtraction):

z-1y(k) y(k-1)=z-1y(k)Time delay
of one time step:

u1(k)

y(k)=Ku(k)

u3(k)

u2(k)

Figure 24.1: Elementary blocks for drawing block diagrams of difference equation models

A comment about the time delay block: The output y(k) is equal to the time delayed input,
y(k − 1):

y(k − 1) = z−1y(k) (24.11)

Or, equivalently:
y(k) = z−1y(k + 1) (24.12)

The operator z−1 is here a time-step delay operator, which is actually the z-transfer function
of the time-step delay. (z-transfer functions are described in Chapter 11 of the text-book.)

609

CHAPTER 24. DIFFERENCE EQUATIONS

Draw a block diagram of the following difference equation:

y(k + 1) = ay(k) + bu(k) (24.13)

where a and b are constant parameters. The block diagram shall have u(k) as input and
y(k) as output.

Problem 24.3 Response from discrete time filter

Given the signal filter

y(k) =
1

3
[u(k) + u(k − 1) + u(k − 2)]

which is a moving average lowpass filter.

1. What is the steady-state response in y when the input u is a constant? Does the filter
let a constant input pass unchanged, in steady-state?

2. Assume that the filter input u is a ramp:

{u(k)} = {u(0), u(1), u(2), u(3), u(4)} (24.14)

= {0, 0.5, 1.0, 1.5, 2.0} (24.15)

= {0.5k} (24.16)

Calculate the response y at k = 0..4. (You can assume that u is zero at negative k.)

Also, calculate the general response y(k). Will there be a constant difference from
zero between the output and the input as time index goes to infinity?

610

CHAPTER 24. DIFFERENCE EQUATIONS

24.4 Solutions to problems for Chapter 24

Solution to Problem 24.1

Each of the time indexes is reduced by 3, giving

y(k) + ay(k − 2) = b1u(k − 1) + b0u(k − 3) (24.17)

Solution to Problem 24.2

See Figure 24.2.

b

Gain

y(k)

a

Sum

Gain

Time delay

z-1u(k) y(k+1)

Figure 24.2: Block diagram

Solution to Problem 24.3

1. Let us assume that
u = U (constant) (24.18)

In steady-state,

ys =
1

3
(U + U + U) = U

Hence, the filter lets a constant input pass unchanged, in steady-state.

2. The ramp response is

y(0) =
1

3
[u(0) + u(−1) + u(−2)] =

1

3
[0 + 0 + 0] = 0

y(1) =
1

3
[u(1) + u(0) + u(−1)] =

1

3
[0.5 + 0 + 0] =

1

6
= 0.17

y(2) =
1

3
[u(2) + u(1) + u(0)] =

1

3
[1.0 + 0.5 + 0] = 0.5

y(3) =
1

3
[u(3) + u(2) + u(1)] =

1

3
[1.5 + 1.0 + 0.5] = 1

y(4) =
1

3
[u(4) + u(3) + u(2)] =

1

3
[2.0 + 1.5 + 1.0] = 1.5

611

CHAPTER 24. DIFFERENCE EQUATIONS

The general response:

y(k) =
1

3
[u(k) + u(k − 1) + u(k − 2)]

=
1

3
[0.5 · k + 0.5 · (k − 1) + 0.5 · (k − 2)]

= 0.5 · k +
1

3
(0− 0.5− 1.0)

= 0.5 · k − 0.5

= u(k)− 0.5

Hence, there is a constant difference equal to −0.5 between the output and the input

in steady-state.

612

Chapter 25

Discrete-time state space models

25.1 General form of discrete-time state space models

The general form of a discrete-time state space model is

x(k + 1) = f [x(k), u(k)] (25.1)

y(k) = g[x(k), u(k)] (25.2)

where x is the state variable, u is the input variable which may consist of control variables
and disturbances (in this model definition there is no difference between these two kinds of
input variables). y is the output variable. f and g are functions – linear or nonlinear.
x(k + 1) in (25.1) means the state one time-step ahead (relative to the present state x(k)).
Thus, the state space model expresses how the systems’ state (variables) and output
variables evolves along the discrete time axis.

The variables in (25.1) – (25.2) may actually be vectors, e.g.

x =


x1
x2
...
xn

 (25.3)

where xi is a (scalar) state variable, and if so, f and/or g are vector evaluated functions.

25.2 Linear discrete-time state space models

A special case of the general state space model presented above is the linear state space
model:

x(k + 1) = Ax(k) +Bu(k)︸ ︷︷ ︸
≡f [x(k),u(k)]

(25.4)

613

CHAPTER 25. DISCRETE-TIME STATE SPACE MODELS

y(k) = Cx(k) +Du(k)︸ ︷︷ ︸
≡g[x(k),u(k)]

(25.5)

where A is the transition matrix, B is the input gain matrix, C is the output gain matrix or
measurement gain matrix and D is the direct output gain matrix (in most cases, D = 0).

25.3 Discretization of continuous-time state space models

Here are some situations where you need to discretize a continuous-time state space model:

• Creating a simulation algorithm from a process model. This was described in Section
6.2.

• Defining the process model to be used as the basis of a state estimator in form of a
Kalman Filter, cf. Chapter 32.

The Forward Discretization method is the simplest, most commonly used, and the most
flexible method. Only this method will be described here.

Given the following continuous-time state space model, which can be linear or non-linear,

x′(t) = fc [x(t), u(t)] (25.6)

y(t) = gc [x(t), u(t)] (25.7)

Approximating the time derivative in (25.6) with Forward differentiation gives

xk+1 − xk
Ts

= fc [xk, uk] (25.8)

Solving for xk+1 gives
xk+1 = xk + Tsfc [xk, uk] (25.9)

The dicrete-time version of (25.7) is

y(tk) = gc [xk, uk] = g [xk, uk] (25.10)

(25.9) and (25.10) constitute a discrete-time version of the original state space model
(25.6)–(25.7).

614

CHAPTER 25. DISCRETE-TIME STATE SPACE MODELS

25.4 Problems for Chapter 25

Problem 25.1 Discrete-time state space model

In Problem 5.1 a mathematical model of two coupled liquid tanks is presented. The model
written as a continuous-time state space model is

h′1 =
1

A1

(
Kpu1 −Kv1

√
ρgh1
G

)
(25.11)

h′2 =
1

A2

(
Kv1

√
ρgh1
G

−Kv2u2

√
ρgh2
G

)
(25.12)

By applying Forward differentiation approximation to the time-derivatives, we get the
following discrete-time model:

h′1,k ≈
h1,k+1 − h1,k

Ts
=

1

A1

(
Kpu1,k −Kv1

√
ρgh1,k
G

)
(25.13)

h′2,k ≈
h2,k+1 − h2,k

Ts
=

1

A2

(
Kv1

√
ρgh1,k
G

−Kv2u2,k

√
ρgh2,k
G

)
(25.14)

Assume that both levels are output variables. Write this model as a discrete-time state
space model on the standard form

h1,k+1 = f1 [h1,k, h2,k, · · ·] (25.15)

h2,k+1 = f2 [h1,k, h2,k, · · ·] (25.16)

(which corresponds to the compact standard form xk+1 = f [xk, · · ·]). Is the state space
model linear or nonlinear?

Problem 25.2 State space model on matrix-vector form

Write the following difference equations model as a state space model on matrix-vector form.

x1,k+1 = −0.5x1,k (25.17)

x2,k+1 = 2uk − x2,k − 3x1,k (25.18)

yk = x2,k + 4uk (25.19)

615

CHAPTER 25. DISCRETE-TIME STATE SPACE MODELS

25.5 Solutions to problems for Chapter 25

Solution to Problem 25.1

Solving (25.13) – (25.14) for h1,k+1 and h2,k+1, respectively, gives the discrete-time state
space model:

h1,k+1 =

f1︷ ︸︸ ︷
h1 (tk) +

Ts

A1

(
Kpu1,k −Kv1

√
ρgh1,k
G

)
(25.20)

h2,k+1 =

f2︷ ︸︸ ︷
h2,k +

Ts

A2

(
Kv1

√
ρgh1,k
G

−Kv2u2,k

√
ρgh2,k
G

)
(25.21)

The outputs variables are
y1,k = h1,k (25.22)

y2,k = h2,k (25.23)

This state space model is nonlinear due to the square root functions in which the state
variables are arguments.

Solution to Problem 25.2[
x1,k+1

x2,k+1

]
=

[
−0.5 0
−3 −1

]
︸ ︷︷ ︸

A

[
x1,k
x2,k

]
+

[
0
2

]
︸ ︷︷ ︸

B

uk (25.24)

yk =
[
0 1

]︸ ︷︷ ︸
C

[
x1,k
x2,k

]
+ [4]︸︷︷︸

D

uk (25.25)

616

Chapter 26

The z-transform

26.1 Definition of the z-transform

The z-transform of discrete-time signals plays much the same role as the Laplace transform
for continuous-time systems.

The z-transform of the discrete-time signal {y(k)}, or just y(k), is defined as follows:

Z {y(k)} =

∞∑
k=0

y(k)z−k (26.1)

For simplicity, I will use the symbol y(z) for Z {y(k)} when it can not be misunderstood.
Strictly, a different variable name should be used, for example Y (z).

Example 26.1 z-transform of a constant

Assume that the signal y(k) has constant value A. This signal can be regarded a step of
amplitude A at time-step 0. z-transforming y(k) gives

y(z) =

∞∑
k=0

y(k)z−k =

∞∑
k=0

Az−k =
A

1− z−1
=

Az

z − 1
(26.2)

[End of example 26.1]

26.2 Properties of the z-transform

Below are the most important properties of the z-transform. These properties can be used
when calculating the z-transform of composite signals.

617

CHAPTER 26. THE z-TRANSFORM

• Linearity:
k1y1(z) + k2y2(z) ⇐⇒ k1y1(k) + k2y2(k) (26.3)

• Time delay: Multiplication by z−n means time delay of n time-steps:

z−ny(z) ⇐⇒ y(k − n) (26.4)

• Time advancing: Multiplication by zn means time advancing by n time-steps:

zny(z) ⇐⇒ y(k + n) (26.5)

26.3 z-transform pairs

Below are several important z-transform pairs showing discrete-time functions and their
corresponding z-transforms. The time functions are defined for k ≥ 0.

Unity impulse at time-step k: δ(k) ⇐⇒ zk (26.6)

Unity impulse at time-step k = 0: δ(0) ⇐⇒ 1 (26.7)

Unity step at time-step k = 0: 1 ⇐⇒ z

z − 1
(26.8)

Time exponential: ak ⇐⇒ z

z − a
(26.9)

Example 26.2 z-transformation of a composite signal

Given the following discrete-time function:

y(k) = Bak−n (26.10)

(which is a time delayed time exponential). The inverse z-transform of y(k) can be
calculated using (26.9) together with (26.3) and (26.4). The result becomes

y(z) = Bz−n z

z − a
= B

z1−n

z − a
(26.11)

[End of example 26.2]

26.4 Inverse z-transform

Inverse z-transformation of a given z evaluated function, say Y (z), is calculating the
corresponding time function, say y(k). The inverse transform may be calculated using a
complex integral1, but this method is not very practical. Another method is to find a

1y(k) = 1
2πj

¸
Y (z)zk dz

z
, where the integration path must be in the area of convergence of Y (z).?

618

CHAPTER 26. THE z-TRANSFORM

proper combination of precalculated z-transformation pairs, possibly in combination with
some of the z-transform properties defined above.

In most cases where you need to calculate a time signal y(k), its z-transform Y (z) stems
from a transfer function excited by some discrete-time input signal. You may then calculate
y(k) by first transfering the transfer function to a corresponding difference equation, and
then calculating y(k) iteratively from this difference equation as explained in Section 24.2.

619

CHAPTER 26. THE z-TRANSFORM

26.5 Problems for Chapter 26

Problem 26.1 z-transform of unit impulse

Calculate the z-transform of δ(k) which a unit impulse. This is a signal having amplitude 1
at discrete time k = 0 and zero at other points of time.

Problem 26.2 Linearity property

The Linearity property of the z-transform can be expressed as

k1y1(z) + k2y2(z) ⇐⇒ k1y1(k) + k2y2(k) (26.12)

Show that the Linearity property holds for this example of a signal:

y(k) = A+B = AS(k) +BS(k) (26.13)

where A and B are constants, and S(k) is the unity step functions, i.e. a step occuring at
time zero. (Hint: Show that the Z-transform of the right side of (26.12) is equal to the left
side of (26.12) for the given signal.)

Problem 26.3 z-transform of a step signal

Calculate the z-transform of a step signal of amplitude 4 which occurs at time-index 2. You
can use S(k) to represent a unit step function, i.e. a step occuring at time zero.

Problem 26.4 Inverse z-transform

Calculate the inverse z-transform of

y(z) =
z

z − 0.5
(26.14)

620

CHAPTER 26. THE z-TRANSFORM

26.6 Solutions to problems for Chapter 26

Solution to Problem 26.1

Z {y(k)} = y(z) =
∞∑
k=0

y(k)z−k =
∞∑
k=0

δ(k)z−k (26.15)

= 1 · z−0 + 0 · z−1 + 0 · z−2 + · · ·+ 0 · z−n + · · ·
(26.16)

= 1 (26.17)

Solution to Problem 26.2

The Z-transform of the right side of (26.12) becomes

Z{AS(k) +BS2(k)} = Z{(A+B)S(k)} = (A+B)
z

z − 1
(26.18)

The left side of (26.12) becomes

A · Z{S(k)}+B · Z{S(k)} = A
z

z − 1
+B

z

z − 1
= (A+B)

z

z − 1
(26.19)

Hence, the Z-transform of the right side of (26.12) is equal to the left side of (26.12), and
consequently the linear property holds.

Solution to Problem 26.3

The signal is
y(k) = 4 · S(k − 2) (26.20)

Using the Linearity property and the Time delay property of the Z-transform, we get

Z{y(k)} = y(z) = 4z−2Z{S(k)} = 4z−2 z

z − 1
=

4

z2 − z
(26.21)

Solution to Problem 26.4

Using the Z-transform pair denoted “Time exponential” we get

y(k) = 0.5k (26.22)

621

Chapter 27

Discrete-time (or z-) transfer
functions

27.1 Introduction

Models in the form of difference equations can be z-transformed to z-transfer functions,
which plays the same role in discrete-time systems theory as s transfer functions do in
continuous-time systems theory. More specific:

• The combined model of systems in a serial connection can be found my simply
multiplying the individual z-transfer functions.

• The frequency response can be calculated from the transfer function.

• The transfer function can be used to represent the system in a simulator or in
computer tools for analysis and design (as SIMULINK, MATLAB or LabVIEW)

27.2 From difference equation to transfer function

As an example we will derive the discrete-time or z-transfer function from input u to output
y from the difference equation (24.4), which is repeated here:

y(k) = −a1y(k − 1)− a0y(k − 2) + b0u(k − 2) (27.1)

First, we take the z-transform of both sides of the difference equation:

Z {y(k)} = Z {−a1y(k − 1)− a0y(k − 2) + b0u(k − 2)} (27.2)

Using the linearity property (26.3) and the time delay property (26.4) (27.2) can be written
as

Z {y(k)} = −Z {a1y(k − 1)} − Z {a0y(k − 2)}+ Z {b0u(k − 2)} (27.3)

622

CHAPTER 27. DISCRETE-TIME (OR z-) TRANSFER FUNCTIONS

and
y(z) = −a1z

−1y(z)− a0z
−2y(z) + b0z

−2u(z) (27.4)

which can be written as

y(z) + a1z
−1y(z) + a0z

−2y(z) = b0z
−2u(z) (27.5)

or [
1 + a1z

−1 + a0z
−2
]
y(z) = b0z

−2u(z) (27.6)

y(z) =
b0z

−2

1 + a1z−1 + a0z−2︸ ︷︷ ︸
H(z)

u(z) (27.7)

=
b0

z2 + a1z1 + a0︸ ︷︷ ︸
H(z)

u(z) (27.8)

where H(z) is the z-transfer function from u to y. Hence, z-transfer functions can be
written both with positive and negative exponents of z.1

27.3 From transfer function to difference equation

In the above Section we derived a z-transfer function from a difference equation. We may
go the opposite way – to derive a difference equation from a given z-transfer function. Some
applications of this are

• Deriving a filtering algorithm from a filtering transfer function

• Deriving a control function from a given controller transfer function

• Deriving a simulation algorithm from the transfer function of the system to be
simulated

The procedure will be illustrated via a concrete example. Assume given the following
transfer function:

H(z) =
b0

z2 + a1z + a0
=

y(z)

u(z)
(27.9)

We start by cross multiplying (27.9):(
z2 + a1z + a0

)
y(z) = b0u(z) (27.10)

which can be written as
z2y(z) + a1zy(z) + a0y(z) = b0u(z) (27.11)

1In signal processing theory transfer functions ares usually written with negative exponents of z, while in
control theory they are usually written with positive exponents.

623

CHAPTER 27. DISCRETE-TIME (OR z-) TRANSFER FUNCTIONS

Taking the inverse transform of the above expression gives

z2y(z)︸ ︷︷ ︸
y(k+2)

+ a1zy(z)︸ ︷︷ ︸
a1y(k+1)

+ a0y(z)︸ ︷︷ ︸
a0y(k)

= b0u(z)︸ ︷︷ ︸
b0u(k)

(27.12)

Reducing each of the time indexes by 2 yields

y(k) + a1y(k − 1) + a0y(k − 2) = b0u(k − 2) (27.13)

Usually it is practical to have the output variable alone on the left side:

y(k) = −a1y(k − 1)− a0y(k − 2) + b0u(k − 2) (27.14)

27.4 Calculating time responses for discrete-time transfer
functions

Assume given a transfer function, say H(z), with input variable u and output variable y.
Then,

y(z) = H(z)u(z) (27.15)

If u(z) is given, the corresponding time response in y can be calculated in several ways:

1. By finding a proper transformation pair in Section 26.3, possibly combined with some
of the z-transform properties in Section 26.2.

2. By deriving a differential equation corresponding to the transfer function and then
calculating y(k) iteratively according to the difference equation. The procedure of
deriving a differential equation corresponding to a given transfer function is explained
in Section 27.3, and the calculation of time responses for a difference equation is
described in Section 24.2.

27.5 Static transfer function and static response

The static version Hs of a given transfer function H(z) will now be derived. Using the
static transfer function the static response can easily be calculated. Assume that the input
variable u is a step of amplitude U . The stationary response can be found using the final
value theorem:

lim
k→∞

y(k) = ys = lim
z→1

(z − 1)y(z) (27.16)

= lim
z→1

(z − 1)H(z)u(z) (27.17)

= lim
z→1

(z − 1)H(z)
zU

z − 1
(27.18)

= H(1)U (27.19)

624

CHAPTER 27. DISCRETE-TIME (OR z-) TRANSFER FUNCTIONS

Thus, we have the following static transfer function:

Hs =
ys
us

= lim
z→1

H(z) = H(1) (27.20)

Using the static transfer function the static response can be calculated by

ys = HsU (27.21)

Example 27.1 Static transfer function

Let us consider the following transfer function:

H(z) =
y(z)

u(z)
=

az

z − (1− a)
(27.22)

which is the transfer function of the lowpass filter presented in Ch. 3.4.6.3, repeated here:

y(k) = (1− a) y(k − 1) + au(k) (27.23)

The corresponding static transfer function is

Hs =
ys
us

= lim
z→1

H(z) = lim
z→1

a

1− (1− a) z−1
=

a

1− (1− a) · 1
= 1 (27.24)

Thus,
ys = Hsus = us (27.25)

Can we find the same correspondence between us and ys from the difference equation
(27.23)? Setting y(k) = y(k − 1) = ys and u(k) = us gives

ys = (1− a) ys + aus (27.26)

giving
ys
us

=
a

1− (1− a)
= 1 (27.27)

which is the same as (27.24).

[End of Example 27.1]

27.6 Poles and zeros

Poles and zeros of z-transfer functions are defined in the same way as for s transfer
functions: The zeros of the transfer function are the z-roots of numerator polynomial, and
the poles are the z-roots of the denominator polynomial.

One important application of poles is stability analysis, cf. Section 29.

625

CHAPTER 27. DISCRETE-TIME (OR z-) TRANSFER FUNCTIONS

Example 27.2 Poles and zeros

Given the following z-transfer function:

H(z) =
(z − b)

(z − a1) (z − a2)
(27.28)

The poles are a1 and a2, and the zero is b.

[End of Example 27.2]

27.7 From s-transfer functions to z-transfer functions

In some cases you need to find a discrete-time z-transfer function from a given
continuous-time s transfer function:

• In accurate model based design of a discrete controller for a process originally in the
form of a continuous-time s transfer function, Hp(s). The latter should be discretized
to get a discrete-time process model before the design is started.

• Implementation of continuous-time control and filtering functions in a computer
program.

There are several methods for discretization of an s transfer function. The methods can be
categorized as follows, and they are described in the following sections:

1. Discretization based on having a zero order hold (ZOH) element on the
input of the system. This method should be used in controller design of a process
which has a sample and hold element on its input, as when a physical process is
controlled by a computer via a DA converter (digital to analog). Zero order hold
means that the input signal is held constant during the time-step or sampling interval.
Figure 27.1 shows a block diagram of a continuous-time process with transfer function
model H(s) having a zero order hold element on its input.

ZOH discretization gives a perfect z-transfer function in the sense that it produces
exactly the same response as produced by the s-transfer function at the discrete points
of time. (If we discretize using e.g. the Forward differentiation the responses will
differ a little.) The ZOH discretization method is actually complicated to implement
manually, but tools as Matlab and LabVIEW have functions that perform the
discretization easily, and in most practical applications, you will be using such tools.

2. Using an apropriate approximation to time-derivatives, as Forward Difference
method, or Backward Difference method, or Tustin’s method. In such cases the input
signal is a discrete-time signal with no holding (no ZOH element is assumed). The
procedure has the following steps:

• From the given the continuous-time s-transfer function Hc(s), derive the
corresponding differential equation.

626

CHAPTER 27. DISCRETE-TIME (OR z-) TRANSFER FUNCTIONS

Cont.-
time

process

y(t)uh(t)DA-converter
with holding

tk

u(tk) uh(t)

t t

y(t)

Sampling

tk

y(tk)=y(k)u(tk)=u(k)

y(tk)

Figure 27.1: Block diagram of a process having a zero order hold element on its input. uh is
the piecewise constant (held) input signal.

• Apply some approximation to the time-derivatives of the differential equation. If
you do not have any other preferences, use the Backward difference method. The
result is a difference equation.

• Calculate the z-transfer function from the difference equation, cf. Section 27.2.

Here is an example of discretization using the c2d function in MATLAB:

Example 27.3 Discretization using the c2d function in MATLAB

The MATLAB code shown below discretizes the s-transfer function

Hcont(s) =
2

3 + 4s
(27.29)

with sampling time Ts = 0.1.

Hcont = tf([2],[3,4]);
Ts=0.1;
Hdisc=c2d(Hcont,Ts,’zoh’)

The result as shown in MATLAB is

Transfer function:

0.06241
———-
z - 0.8752

Sampling time: 0.1

[End of Example 27.3]

Here is an example of discretizing a s-transfer function manually using the Backward
differentiation approximation:

Example 27.4 Discretizing a first order transfer function

627

CHAPTER 27. DISCRETE-TIME (OR z-) TRANSFER FUNCTIONS

We will discretize the following continuous-time transfer function:

Hc(s) =
K

Ts+ 1
=

y(s)

u(s)
(27.30)

1. Deriving the corresponding differential equation: Cross-multiplying gives

(Ts+ 1) y(s) = Ku(s) (27.31)

Resolving the parenthesis gives

Tsy(s) + y(s) = Ku(s) (27.32)

Taking the inverse Laplace transform of both sides of this equation gives the following
differential equation (because multiplying by s means time-differentiation in the
time-domain):

Ty′(t) + y(t) = Ku(t) (27.33)

Let us use tk to represent the present point of time – or discrete time:

Ty′k + yk = Kuk (27.34)

2. Applying the Backward differentiation approximation:

T
yk − yk−1

Ts
+ yk = Kuk (27.35)

Solving for yk gives the following difference equation:

yk =
T

T + Ts
yk−1 +

TsK

T + Ts
uk (27.36)

3. Taking the z-transform of the difference equation:

y(z) =
T

T + Ts
z−1y(z) +

TsK

T + Ts
u(z) (27.37)

from which we obtain the following z-transfer function:

H(z) =
y(z)

u(z)
=

(
z − T

T + Ts

)−1 zTsK

T + Ts
(27.38)

[End of Example 27.4]

628

CHAPTER 27. DISCRETE-TIME (OR z-) TRANSFER FUNCTIONS

27.8 Problems for Chapter 27

Problem 27.1 Find the z-transfer function

Given the signal filter

y(k) =
1

3
[u(k) + u(k − 1) + u(k − 2)]

which is a moving average lowpass filter. Find the z-transfer function from u to y.

Problem 27.2 From z-transfer function to difference equation

Assume that the following transfer function from input signal u to output signal y of a
physical system is found by some system identification method:

H(z) =
y(z)

u(z)
=

a

bz2 + cz + d

What is the corresponding difference equation relating u and y?

Problem 27.3 Output response from a z-transfer function

Assume that the input signal u to the following transfer function is an impulse of amplitude
A.

H(z) =
y(z)

u(z)
=

z

z − 1
(27.39)

Calculate the output response y(k).

Problem 27.4 Static z-transfer function

In Problem 27.1 the following transfer function of a moving avarage lowpass filter was found:

H(z) =
y(z)

u(z)
=

1

3

[
1 + z−1 + z−2

]
(27.40)

1. Calculate the corresponding static transfer function Hs.

2. Assume that the filter input is a constant, u(k) = U . Calculate the corresponding
steady-state filter output ys from Hs.

Problem 27.5 Poles and the zeros of z-transfer function

Given the following transfer function:

H(z) =
bz−2 + z−1

1− az−1
(27.41)

Calculate the poles and the zeros of the transfer function.

629

CHAPTER 27. DISCRETE-TIME (OR z-) TRANSFER FUNCTIONS

Problem 27.6 From s-transfer function to z-transfer function

The s-transfer function of a (continuous-time) integrator is

Hcont(s) =
y(s)

u(s)
=

1

s
(27.42)

Derive a corresponding z-transfer function Hdisc(z) assuming Backward discretization. The
time-step is Ts.

630

CHAPTER 27. DISCRETE-TIME (OR z-) TRANSFER FUNCTIONS

27.9 Solutions to problems for Chapter 27

Solution to Problem 27.1

z transformation gives

y(z) =
1

3

[
u(z) + z−1u(z) + z−2u(z)

]
=

1

3

[
1 + z−1 + z−2

]
u(z) (27.43)

which gives the transfer function

y(z)

u(z)
=

1

3

[
1 + z−1 + z−2

]
(27.44)

Solution to Problem 27.2

Cross-multiplication gives [
bz2 + cz + d

]
y(z) = au(z)

or
bz2y(z) + czy(z) + dy(z) = au(z) (27.45)

which, inverse-transformed, gives this difference equation:

by(k + 2) + cy (k + 1) + dy(k) = au(k)

Solution to Problem 27.3

The Z-transform of y becomes

y(z) = H(z)u(z) =
z

z − 1
·A (27.46)

y(k) is given by the inverse transform of y(z):

y(k) = Z−1{y(z)} = Z−1{A z

z − 1
} = A (27.47)

(which is a step of amplitude A at time zero).

Solution to Problem 27.4

1. The static transfer function is

Hs = H(z = 1) =
1

3

[
1 + 1−1 + 1−2

]
= 1 (27.48)

2. The steady-state filter output is

ys = HsU = 1 · U = U (27.49)

631

CHAPTER 27. DISCRETE-TIME (OR z-) TRANSFER FUNCTIONS

Solution to Problem 27.5

It is convenient to start by rewriting the transfer function as follows:

H(z) =
z−2b+ z−1

1− az−1
· z

2

z2
=

z + b

z2 − az
=

z + b

(z − a) z
(27.50)

Thus, the zero z is
z = −b (27.51)

and the poles pi are
p1 = a; p2 = 0 (27.52)

Solution to Problem 27.6

(27.42) can be written
sy(s) = u(s) (27.53)

Inverse Laplace transform gives
ẏ(t) = u(t) (27.54)

Applying Backward discretization to the time-derivative and introducing discrete time
notation:

ẏ(tk) ≈
y(tk)− y(tk−1)

Ts
= u(tk) (27.55)

Solving for y(tk):
y(tk) = y(tk−1) + Tsu(tk) (27.56)

Taking the Z-transform:
y(z) = z−1y(z) + Tsu(z) (27.57)

The transfer function becomes

Hdisc(z) =
y(z)

u(z)
=

Ts

1− z−1
=

zTs

z − 1
(27.58)

632

Chapter 28

Frequency response of discrete-time
systems

As for continuous-time systems, the frequency response of a discrete-time system can be
calculated from the transfer function: Given a system with z-transfer function H(z).
Assume that input signal exciting the system is the sinusoid

u(tk) = U sin(ωtk) = U sin(ωkTs) (28.1)

where ω is the signal frequency in rad/s. The time-step is Ts.

It can be shown that the stationary response on the output of the system is

y(tk) = Y sin(ωkTs + ϕ) (28.2)

= UA sin(ωkTs + ϕ) (28.3)

= U

A︷ ︸︸ ︷∣∣H(ejωTs)
∣∣︸ ︷︷ ︸

Y

sin

ωtk + argH(ejωTs)︸ ︷︷ ︸
ϕ

 (28.4)

where H(ejωTs) is the frequency response which is calculated with the following substitution:

H(ejωTs) = H(z)|z=ejωTs (28.5)

The amplitude gain function is
A(ω) = |H(ejωTs)| (28.6)

The phase lag function is
ϕ(ω) = argH(ejωTs) (28.7)

A(ω) and ϕ(ω) can be plotted in a Bode diagram.

Figure 28.1 shows as an example the Bode plot of the frequency response of the following
transfer function (time-step is 0.1s):

H(z) =
b

z − a
=

0.0952

z − 0.9048
(28.8)

633

CHAPTER 28. FREQUENCY RESPONSE OF DISCRETE-TIME SYSTEMS

Figure 28.1: Bode plot of the transfer function (28.8). ωN = 31.4 rad/s is the Nyquist
frequency (sampling time h is 0.1s).

Note that the plots in Figure 28.1 are drawn only up to the Nyquist frequency which in this
case is

ωN =
ωs

2
=

2π/Ts

2
=

π

Ts
=

π

0.1
= 10π ≈ 31.4 rad/s (28.9)

The plots are not drawn (but they exist!) above the Nyquist frequency because of
symmetry of the frequency response, as explained in the following section.

Example 28.1 Calculating the frequency response manually from the z-transfer function

Given the z-transfer function

H(z) =
b

z − a
(28.10)

634

CHAPTER 28. FREQUENCY RESPONSE OF DISCRETE-TIME SYSTEMS

The frequency response becomes

H(ejωTs) =
b

ejωTs − a
(28.11)

=
b

cosωTs + j sinωTs − a
(28.12)

=
b

(cosωTs − a)︸ ︷︷ ︸
Re

+ jsinωTs︸ ︷︷ ︸
Im

(28.13)

=
b√

(cosωTs − a)2 + (sinωTs)
2ej arctan[(sinωTs)/(cosωTs−a)]

(28.14)

=
b√

(cosωTs − a)2 + (sinωTs)
2
e
j
[
− arctan

(
sinωTs

cosωTs−a

)]
(28.15)

The amplitude gain function is

A(ω) = |H(ejωTs)| = b√
(cosωTs − a)2 + (sinωTs)

2
(28.16)

and the phase lag function is

ϕ(ω) = argH(ejωTs) = − arctan

(
sinωTs

cosωTs − a

)
[rad] (28.17)

[End of Example 28.1]

Even for the simple example above, the calculations are cumbersome, and prone to errors.
Therefore you should use some computer tool for calculating the frequency response, as
MATLAB’s Control System Toolbox or LabVIEW’s Control Design Toolkit.

Symmetry of frequency response

It can be shown that the frequency response is symmetric as follows: |H(ejωTs)| and
argH(ejωTs) are unique functions in the frequency interval [0, ωN] where ωN is the Nyquist
frequency. In the following intervals [mωs, (m+ 1)ωs] (m is an integer) the functions are
mirrored as indicated in Figure 28.2 which has a logarithmic frequency axis. (The Bode
plots in this section are for the transfer function (28.8).)

The symmetry appears clearer in the Bode plots in Figure 28.3 where the frequency axis is
linear.

Due to the symmetry of the frequency response, it is strictly not necessary to draw more of
frequency response plots than of the frequency interval [0, ωN].

635

CHAPTER 28. FREQUENCY RESPONSE OF DISCRETE-TIME SYSTEMS

Figure 28.2: Bode plots of frequency response of (28.16). The frequency axis is logarithmic.

28.1 Problems for Chapter 28

Problem 28.1 Gain and amplitude functions

Given the following transfer function:

H(z) =
1

z
(28.18)

What is the amplitude gain function and the phase lag function?

Problem 28.2 Frequence response

Given a continuous-time filter with transfer function

Hcont(s) =
1

Tfs+ 1
(28.19)

with
Tf = 1 sec (28.20)

Discretization of Hcont(s) using the Backward method of discretization with time-step Ts

gives the following discrete-time filter:

Hdisc(z) =
az

z − (1− a)
(28.21)

636

CHAPTER 28. FREQUENCY RESPONSE OF DISCRETE-TIME SYSTEMS

Figure 28.3: Bode plots of frequency response of (28.17). The frequency axis is linear to
make the symmetries if the frequency responses clearer.

where

a =
Ts

Tf + Ts
(28.22)

Figure 28.4 shows the frequency responses of Hcont(s) and Hdisc(z) with time-step

Ts = 0.2 sec (28.23)

1. Why is there a difference between the frequence responses of Hcont(s) and Hdisc(z),
and why is the difference more apparent at higher frequencies than at lower
frequencies? (Qualitative answers are ok.)

2. The frequency response curves of Hdisc(z) are unique up to a certain frequency –
which frequency? Express this frequency in Hz and rad/s. Is that frequency indicated
in Figure 28.4?

637

CHAPTER 28. FREQUENCY RESPONSE OF DISCRETE-TIME SYSTEMS

Figure 28.4: Frequency response

28.2 Solutions to problems for Chapter 28

Solution to Problem 28.1

The amplitude gain function is

A(ω) = |H(ejωTs)| =
∣∣∣∣ 1

ejωTs

∣∣∣∣ = 1

|ejωTs |
=

1

1
= 1 (28.24)

The phase lag function is

ϕ(ω) = argH(ejωTs) = arg
1

ejωTs
= arg e−jωTs = −ωTs = −ω · 0.05 [rad] (28.25)

Solution to Problem 28.2

1. There a difference between the frequence responses of Hcont(s) and Hdisc(z) because
the discrete-time filter is derived from the continuous-time filter using an
approximation of the time-derivatives in the filter model when that model is written
as a differential equation.

An explanation of why the difference increases with increasing frequency is that the
approximation of the time-derivative becomes less accurate if signals vary faster (i.e.
have higher frequency).

2. The frequency response curves of Hdisc(z) are unique up to the Nyquist frequency:

fN =
1

Ts
=

1

0.2
= 5 Hz (28.26)

638

CHAPTER 28. FREQUENCY RESPONSE OF DISCRETE-TIME SYSTEMS

ωN =
π

Ts
=

π

0.2
= 5π rad/s = 15.7 rad/s (28.27)

which is the frequency indicated with a vertical line in Figure 28.4.

639

Chapter 29

Stability analysis of discrete-time
dynamic systems

29.1 Definition of stability properties

Assume given a dynamic system with input u and output y. The stability property of a
dynamic system can be defined from the impulse response1 of a system as follows:

• Asymptotic stable system: The steady state impulse response is zero:

lim
k→∞

yδ(k) = 0 (29.1)

• Marginally stable system: The steady state impulse response is different from
zero, but limited:

0 < lim
k→∞

yδ(k) < ∞ (29.2)

• Unstable system: The steady state impulse response is unlimited:

lim
k→∞

yδ(k) = ∞ (29.3)

The impulse response for the different stability properties are illustrated in Figure 29.1.

(The simulated system is defined in Example 29.1.)

29.2 Stability analysis of transfer function models

In the following we will base the analysis on the following fact: The transfer function is the
z-transformed impulse response. Here is the proof of this fact: Given a system with transfer

1An impulse δ(0) is applied at the input.

640

CHAPTER 29. STABILITY ANALYSIS OF DISCRETE-TIME DYNAMIC SYSTEMS

Figure 29.1: Impulse response and stability properties

function H(z). Assume that the input u is an impulse, which is a signal having value 1 at
time index k = 0 and value zero at other points of time. According to (26.7) u(z) = 1.
Then the z-transformed impulse response is

y(z) = H(z)u(z) = H(z) · 1 = H(z) (29.4)

(as stated).

Now, we proceed with the stability analysis of transfer functions. The impulse response
yδ(k), which defines the stability property of the system, is determined by the poles of the
system’s poles and zeros since the impulse responses is the inverse z-transform of the
transfer function:

yδ(k) = Z−1{H(z)} (29.5)

Consequently, the stability property is determined by the poles and zeros of H(z). However,
we will soon see that only the poles determine the stability.

We will now derive the relation between the stability and the poles by studying the impulse
response of the following system:

H(z) =
y(z)

u(z)
=

bz

z − p
(29.6)

The pole is p. Do you think that this system is too simple as a basis for deriving general
conditions for stability analysis? Actually, it is sufficient because we can always think that a

641

CHAPTER 29. STABILITY ANALYSIS OF DISCRETE-TIME DYNAMIC SYSTEMS

given z-transfer function can be partial fractionated in a sum of partial transfer functions or
terms each having one pole. Using the superposition principle we can conclude about the
stability of the original transfer function.

In the following, cases having of multiple (coinciding) poles will be discussed, but the
results regarding stability analysis will be given.

The system given by (29.6) has the following impulse response calculated below. It is
assumed that the pole in general is a complex number which may be written on polar form
as

p = mejθ (29.7)

where m is the magnitude and θ the phase. The impulse response is

yδ(k) = Z−1

{
bz

z − p

}
(29.8)

= Z−1

{
p

1− pz−1

}
(29.9)

= Z−1

{
b

∞∑
k=0

pkz−k

}
(29.10)

= bpk (29.11)

= b|m|kejkθ (29.12)

From (29.12) we see that it is the magnitude m which determines if the steady state
impulse response converges towards zero or not. From (29.12) we can now state the
following relations between stability and pole placement (the statements about multiple
poles have however not been derived here):

• Asymptotic stable system: All poles lie inside (none is on) the unit circle, or what
is the same: all poles have magnitude less than 1.

• Marginally stable system: One or more poles – but no multiple poles – are on the
unit circle.

• Unstable system: At least one pole is outside the unit circle. Or: There are
multiple poles on the unit circle.

The “stability areas” in the complex plane are shown in Figure 29.2.

Let us return to the question about the relation between the zeros and the stability. We
consider the following system:

H1(z) =
y(z)

u(z)
=

b(z − c)

z − p
= (z − c)H(z) (29.13)

where H(z) is it the “original” system (without zero) which were analyzed above. The zero
is c. H1(z) can be written as

H1(z) =
bz

z − p
+

−bc

z − p
(29.14)

= H(z)− cz−1H(z) (29.15)

642

CHAPTER 29. STABILITY ANALYSIS OF DISCRETE-TIME DYNAMIC SYSTEMS

Re

Im
Pole area of

instability
(outside unit circle)Unit circle

Pole area of
asymptotic stability

j

1

Figure 29.2: The different stability property areas of the complex plane

The impulse response of H1(z) becomes

yδ1(k) = yδ(k)− cyδ(k − 1) (29.16)

where yδ(k) is the impulse response of H(z). We see that the zero does not influence wether
the steady state impulse response converges towards to zero or not. We draw the conclusion
that the zeros of the transfer function do not influence the stability of the system.

Example 29.1 Stability analysis of discrete-time system

The three responses shown in Figure 29.1 are actually the impulse responses in three
systems each having a transfer function on the form

y(z)

u(z)
= H(z) =

b1z + b0
z2 + a1z + a0

(29.17)

The parameters of the systems are given below:

1. Asymptotically stable system: b1 = 0.019, b0 = 0.0190, a1 = −1.885 and a0 = 0.923.
The poles are

z1, 2 = 0.94± j0.19 (29.18)

They are shown in Figure 29.3 (the zero is indicated by a circle). The poles are inside
the unity circle.

2. Marginally stable system: b1 = 0.020, b0 = 0.020, a1 = −1.96 and a0 = 1.00. The
poles are

z1, 2 = 0.98± j0.20 (29.19)

They are shown in Figure 29.3. The poles are on the unity circle.

3. Unstable system: b1 = 0.021, b0 = 0.021, a1 = −2.04 and a0 = 1.08. The poles are

z1, 2 = 1.21± j0.20 (29.20)

They are shown in Figure 29.3. The poles are outside the unity circle.

643

CHAPTER 29. STABILITY ANALYSIS OF DISCRETE-TIME DYNAMIC SYSTEMS

Figure 29.3: Example 29.1: Poles (and zeros) for the three systems each having different
stability property

[End of Example 29.1]

29.3 Stability analysis of state space models

Assume that the system has the following state space model:

xk+1 = Axk +Buk (29.21)

yk = Cxk +Duk (29.22)

We can determine the stability by finding the corresponding transfer function from u to y,
and then calculating the poles from the transfer function, as we did in the previous section.
Let us derive the transfer function: Take the Z-transform of eqs. (29.21) – (29.22) to get (I
is the identity matrix of equal dimension as of A)

zIx(z) = Ax(z) +Bu(z) (29.23)

y(z) = Cx(z) +Du(z) (29.24)

644

CHAPTER 29. STABILITY ANALYSIS OF DISCRETE-TIME DYNAMIC SYSTEMS

Solving (29.23) for x(z) gives
x(z) = (zI −A)−1Bu(z) (29.25)

Inserting this x(z) into (29.24) gives

y(z) =
[
C(zI −A)−1B +D

]
u(z) (29.26)

So, the transfer function is

H(z) =
y(z)

u(z)
= C(zI −A)−1B +D ≡ C

adj(zI −A)

det(zI −A)
B +D (29.27)

The stability property can now be determined from the poles of this transfer function. The
poles are the roots of the characteristic equation:

det(zI −A) = 0 (29.28)

But (29.64) actually defines the eigenvalues of A, eig(A)! The eigenvalues are the
z-solutions to eq. (29.28). Therefore, the poles are equal to the eigenvalues, and the relation
between stability properties and eigenvalues are the same relation as between stability
properties and poles, cf. Section 29.2. To make it clear:

• Asymptotic stable system: All eigenvalues (poles) lie inside (none is on) the unit
circle, or what is the same: All eigenvalues have magnitude less than 1.

• Marginally stable system: One or more eigenvalues – but no multiple eigenvalues
– are on the unit circle.

• Unstable system: At least one eigenvalue is outside the unit circle. Or: There are
multiple eigenvalues on the unit circle.

The “stability areas” in the complex plane are as shown in Figure 29.2.

Example 29.2 Stability analysis of a state space model

Given the following state space model:

xk+1 =

[
0.7 0.2
0 0.8

]
︸ ︷︷ ︸

A

xk +

[
1
1

]
uk (29.29)

yk =
[
1 0

]
xk +

[
0
]
uk (29.30)

It can be shown that the eigenvalues of A are 0.7 and 0.8. Both lies inside the unit circle,
and hence the system is asymptotically stable.

[End of Example 29.2]

645

CHAPTER 29. STABILITY ANALYSIS OF DISCRETE-TIME DYNAMIC SYSTEMS

29.4 Problems for Chapter 29

Problem 29.1 Impulse response

Given the following transfer function:

H(z) =
y(z)

u(z)
=

1

z − 0.5
(29.31)

Calculate the first four values of the impulse response. Determine the stability property
from the impulse response.

Problem 29.2 Properties of z-transfer functions

Determine the stability property of the following transfer functions:

H1(s) =
1

z − 0.5
(29.32)

H2(s) =
1

z + 0.5
(29.33)

H3(s) =
z − 2

z − 0.5
(29.34)

H4(s) =
1

z − 1
(29.35)

H5(s) =
1

z − 2
(29.36)

H6(s) =
1

(z − 1)2
(29.37)

H7(s) =
1

z
(29.38)

H8(z) =
1

z2 − 2.5z + 1
(29.39)

Problem 29.3 Stability of z-transfer function

Discretizing the continuous-time transfer function

Hcon(s) =
y(s)

u(s)
=

K

Ts+ 1
(29.40)

using the Forward discretization method with time-step Ts yields the following discrete-time
transfer function:

Hdis(z) =
y(z)

u(z)
=

KTs
T

z −
(
1− Ts

T

) (29.41)

For which (positive) values of Ts is the discrete-time system asymptotically stable? (You
can assume that T is positive.)

646

CHAPTER 29. STABILITY ANALYSIS OF DISCRETE-TIME DYNAMIC SYSTEMS

Problem 29.4 Stability of state space model

Determine the stability property of the following state space model.

xk+1 =

[
1 0.5
0 0.9

]
xk +

[
0
1

]
uk (29.42)

647

CHAPTER 29. STABILITY ANALYSIS OF DISCRETE-TIME DYNAMIC SYSTEMS

29.5 Solutions to problems for Chapter 29

Solution to Problem 29.1

The impulse response is equal to the transfer function:

yδ(z) = H(z) =
1

z − 0.5
(29.43)

yδ(z) = H(z) (29.44)

From the z transform pair (26.9),
yδ(k) = 0.5k (29.45)

The first four values of the impulse response is

{0.50, 0.51, 0.52, 0.53, 0.54} = {1.0, 0.5, 0.25, 0.125, 0.0625} (29.46)

Obviously, the impulse response converges towards zero as time goes to infinity. Hence, the
transfer function is asymptotically

stable.

Solution of Problem 29.2

The transfer function

H1(s) =
1

z − 0.5
(29.47)

is asymptotically stable since the pole p = 0.5 is inside the unit circle.

The transfer function

H2(s) =
1

z + 0.5
(29.48)

is asymptotically stable since the pole p = −0.5 is inside the unit circle.

The transfer function

H3(s) =
z − 2

z − 0.5
(29.49)

is asymptotically stable since the pole p = 0.5 is inside the unit circle. (The zero is 2, but
the stability property is independent of the value of the zero.)

The transfer function

H4(s) =
1

z − 1
(29.50)

is marginally stable since the pole p = 1 is on the unit circle, and that pole is single.

The transfer function

H5(s) =
1

z − 2
(29.51)

648

CHAPTER 29. STABILITY ANALYSIS OF DISCRETE-TIME DYNAMIC SYSTEMS

is unstable since the pole p = 2 is outside the unit circle.

The transfer function

H6(s) =
1

(z − 1)2
(29.52)

is unstable since there are multiple (two) poles, namely p1,2 = 1, on the unit circle.

The transfer function

H7(s) =
1

z
(29.53)

is asymptotically stable since the pole p = 0 is inside the unit circle.

The transfer function

H8(z) =
1

z2 − 2.5z + 1
(29.54)

is unstable since one of the poles is outside the unit circle. The poles are p1,2 = 0.5, 2.0.

Solution to Problem 29.3

The pole of (29.41) is

p = 1− Ts

T
(29.55)

The system is asymptotically stable if∣∣∣∣p = 1− Ts

T

∣∣∣∣ < 1 (29.56)

If

1− Ts

T
> 0 (29.57)

(29.56) becomes

1− Ts

T
< 1 (29.58)

which gives
Ts > 0 (29.59)

which is always satisfied.

If

1− Ts

T
< 0 (29.60)

(29.56) becomes

−
(
1− Ts

T

)
< 1 (29.61)

which gives

Ts <
T

2
(29.62)

649

CHAPTER 29. STABILITY ANALYSIS OF DISCRETE-TIME DYNAMIC SYSTEMS

So, the system is asymptotically stable if

Ts <
T

2
(29.63)

Solution to Problem 29.4

The stability property is determined by the system eigenvalues, which are the roots of the
characteristic equation:

det(zI −A) = det

(
z

[
1 0
0 1

]
−
[
1 0.5
0 0.9

])
(29.64)

= det

([
z − 1 0.5
0 z − 0.9

])
(29.65)

= (z − 1) (z − 0.9)− 0 · 0.5 (29.66)

= (z − 1) (z − 0.9) (29.67)

The roots are
z1,2 = 1, 0.9 (29.68)

One pole is on the unit circle, and the other pole is inside the unit circle. Thererfore, the
system is marginally stable.

650

Chapter 30

Stability analysis of discrete-time
feedback systems

You can analyse the dynamics (frequency response) and the stability of discrete-time
feedback systems in the same way as you can analyse the dynamics and stability of
continuous-time feedback systems, cf. Chapters 22 and 19, respectively. I assume that you
already have knowledge about these topics.

Here is a summary of the relevant differences between analysis of continuous-time and
discrete-time feedback systems:

• In the block diagrams etc. every s-transfer function is replaced by an equivalent
z-transfer function, using a proper discretization method, e,g, the ZOH method.

• The stability property of any discrete-time system is given by the placement of the
z-poles (or eigenvalues) in the complex plane. A discrete-time feedback system is
asymptotically stable if all the poles of the closed-loop system lie inside the unit
circle. These closed-loop poles are the poles of the tracking transfer function, T (z).

• The stability property of a discrete-time feedback system can be analyzed in a
Nyquist diagram or a Bode diagram stability based on the frequency response of the
loop transfer function L(z), which is the product of all the individual transfer
functions of the feedback loop. Definitions of crossover frequencies and stability
margins are as for continuous-time systems.

Here are some examples:

Example 30.1 Pole based stability analysis of feedback system

Assume given a control system where the P controller

Hc(z) = Kc (30.1)

651

CHAPTER 30. STABILITY ANALYSIS OF DISCRETE-TIME FEEDBACK SYSTEMS

controls the process (which is actually an integrating process)

Hp(z) =
KiTs

z − 1
(30.2)

We assume that Ki = 1 and Ts = 1. The loop transfer function becomes

L(z) = Hc(z)Hp(z) =
Kc

z − 1
=

nL(z)

dL(z)
(30.3)

We will calculate the range of values of Kc that ensures asymptotic stability of the control
system.

The characteristic polynomial is, cf. (20.6),

c(z) = dL(z) + nL(z) = z − 1 +Kc (30.4)

The pole is
p = 1−Kc (30.5)

The feedback system is asymptotically stable if p is inside the unity circle or has magnitude
less than one:

|p| = |1−Kc| < 1 (30.6)

which is satisfied with
0 < Kc < 2 (30.7)

Assume as an example that Kc = 1.5. Figure 30.1 shows the step response in ym for this
value of Kc.

[End of Example 30.1]

Example 30.2 Stability analysis in Nyquist diagram

Given the following continuous-time process transfer function:

Hp(s) =
ym(z)

u(z)
=

K(
s
ω0

)2
+ 2ζ s

ω0
+ 1

e−τs (30.8)

with parameter values
K = 1; ζ = 1; ω0 = 0.5 rad/s; τ = 1 s (30.9)

The process is controlled by a discrete-time PI-controller having the following z-transfer
function, which can be derived by taking the z-transform of the PI control function
presented in Ch. 1.4.4.3:

Hc(z) =
Kp

(
1 + Ts

Ti

)
z −Kp

z − 1
(30.10)

where the time-step (or sampling interval) is

Ts = 0.2 s (30.11)

652

CHAPTER 30. STABILITY ANALYSIS OF DISCRETE-TIME FEEDBACK SYSTEMS

Figure 30.1: Example 30.1: Step resonse in ym. There is a step in ymSP .

Tuning the controller with the Ziegler-Nichols closed-loop method in a simulator gave the
following controller parameter settings:

Kp = 2.0; Ti = 5.6 s (30.12)

To perform the stability analysis of the discrete-time control system Hp(s) is discretized
assuming zero order hold (using MATLAB or LabVIEW). The result is

Hpd(z) =
0.001209z + 0.001169

z2 − 1.902z + 0.9048
z−10 (30.13)

The loop transfer function is
L(z) = Hc(z)Hpd(z) (30.14)

Figure 30.2 shows the Nyquist plot of L(z).

From the Nyquist diagram we read off

ω180 = 0.835 rad/s (30.15)

and
ReL(ejω180Ts) = −0.558 (30.16)

which gives the following gain margin, cf. (22.39),

GM =
1

|ReL(ejω180Ts)|
=

1

|−0.558|
= 1.79 = 5.1 dB (30.17)

653

CHAPTER 30. STABILITY ANALYSIS OF DISCRETE-TIME FEEDBACK SYSTEMS

Figure 30.2: Example 30.2: Nyquist diagram of L(z)

The phase margin can be found to be

PM = 35◦ (30.18)

Figure 30.3 shows the step response in ym (unity step in setpoint ymSP).

[End of Example 30.2]

Example 30.3 Stability analysis in Bode diagram

See Example 30.2. Figure 30.4 shows a Bode plot of L(ejωTs).

The stability margins are shown in the figure. They are

GM = 5.12dB = 1.80 (30.19)

PM = 35.3◦ (30.20)

which is in accordance with Example 30.2.

[End of Example 30.3]

654

CHAPTER 30. STABILITY ANALYSIS OF DISCRETE-TIME FEEDBACK SYSTEMS

Figure 30.3: Example 30.2: Step response in ym (unity step in setpoint ymSP)

30.1 Problems for Chapter 30

Problem 30.1

Given a feedback control system where the controller (a P controller)

Hc(z) = Kp (30.21)

controls a process. The transfer function of the combined process and sensor (these systems
are in series) is

Hpm(z) =
z−1

1− z−1

Calculate for which values of the controller gain Kc the control system is asymptotically
stable.

Problem 30.2

Assume that Figure 30.5 shows the Bode diagram of the loop transfer function of some
discrete-time control system.

Read off the stability margins GM and PM , and the crossover frequencies ωc and ω180 in
the Bode diagram.

655

CHAPTER 30. STABILITY ANALYSIS OF DISCRETE-TIME FEEDBACK SYSTEMS

Figure 30.4: Example 30.3: Bode plot of L

30.2 Solutions to problems for Chapter 30

Solution to Problem 30.1

The loop transfer function is

L(z) = Hc(z)Hpm(z) = Kp
z−1

1− z−1
(30.22)

The tracking transfer function is

T (z) =
L(z)

1 + L(z)
=

Kp
z−1

1−z−1

1 +Kp
z−1

1−z−1

=
Kp

z − 1 +Kp
=

Kp

z − (1−Kp)
(30.23)

The pole of T (z) is
p = 1−Kp (30.24)

The control system is asymptotically stable if the absolute value of the pole is less than one:

|p| = |1−Kp| < 1 (30.25)

which is obtained with
0 < Kp < 2 (30.26)

656

CHAPTER 30. STABILITY ANALYSIS OF DISCRETE-TIME FEEDBACK SYSTEMS

Figure 30.5: Bode diagram

Solution to Problem 30.2

From the Bode diagram:
GM = 7 dB = 2.2 (30.27)

PM = 35◦ (30.28)

ωc = 0.34 rad/s (30.29)

ω180 = 0.58 rad/s (30.30)

657

Part VII

STATE ESTIMATION

658

Chapter 31

Stochastic signals

31.1 Introduction

In practical systems there are signals that vary more or less randomly. For example,
measurement signals contain random noise, and process disturbances have some random
component. Consequently, control signals and controlled variables, i.e. process output
variables, have some random behaviour. The future value of a random signal can not be
predicted precisely, i.e. such signals are non-deterministic, while steps, ramps and sinusoids
are deterministic. Instead, random signals can be described with statistical measures,
typically expectation (or mean) value and standard deviation or variance (standard
deviation is square root of variance).

Random signals may be denoted stochastic signals. Characteristics of assumed random
process disturbances and random measurement noise are used in design of state estimators
with Kalman Filters in Chapter 32.

31.2 How to characterize stochastic signals

31.2.1 Realizations of stochastic processes

A stochastic process may be characterized by its mean and standard deviation or variance.
The stochastic process can be observed via one or more realizations of the process in the
form of a sequence or time-series of samples, say {x0, x1, x2 . . .}. Another realization of the
same stochastic process will certainly show different sample values, but the mean value and
the variance will be almost the same (the longer the realization sequence is, the more equal
the mean values and the variances will be). Figure 31.1 shows as an example two different
realizations (sequences) of the same stochastic process, which in this case is Gaussian
(normally) distributed with expectation (mean) value 0 and standard deviation 1. We see
that the sequences are not equal.

659

CHAPTER 31. STOCHASTIC SIGNALS

Figure 31.1: Two different realizations of the same stochastic process, which in this case is
Gaussian (normally) distributed with expectation value 0 and standard deviation 1 . (Created
with the Gaussian White Noise function in LabVIEW.)

31.2.2 Probability distribution of a stochastic variable

As known from statistics a stochastic variable can be described by its probability
distribution function, PDF. Figure 31.2 shows two commonly used PDFs, the Normal
(Gaussian) PDF and the Uniform PDF.

With the Normal PDF the probability that the variable has value in the range {−σ, +σ}
where σ is the standard deviation is approximately 68% (the standard deviation is defined
below). With the Uniform PDF the probability that the variable has a value the {−A, +A}
range is uniform (constant) and the variable can not take any value outside this range.

A stochastic process is stationary if the PDF is time independent (constant), or in other
words, if the statistical properties are time independent.

31.2.3 The expectation value and the mean value

The expectation value , E(x), of the stochastic variable x is the mean (or average) value of
x calculated from an infinite number of samples of x. For a limited number N of samples

660

CHAPTER 31. STOCHASTIC SIGNALS

Normal (Gaussian) probability
distribution function (PDF)

x

A-A

Uniform probability
distribution function (PDF)

x

Figure 31.2: The Normal (Gaussian) PDF and the Uniform PDF

the mean value can be calculated from

Mean value:

mx =
1

N

N−1∑
k=0

xk (31.1)

Often these two terms (expectation value and mean value) are used interchangeably.

If x is a vector, say

xk =

[
x1,k
x2,k

]
(31.2)

then the mean value of x has the form

mx =

[
mx1

mx2

]
=

 1
N

∑N−1
k=0 x1,k

1
N

∑N−1
k=0 x2,k

 (31.3)

31.2.4 Variance. Standard deviation

The variance of a stochastic variable is the mean or expected value of the squared difference
between the value and its mean value:

Var(x) = E
{
[xk −mx]

2
}

(31.4)

661

CHAPTER 31. STOCHASTIC SIGNALS

The variance can be calculated from a sequence of samples as follows:

Var(x) =
1

N − 1

N−1∑
k=0

[xk −mx]
2 (31.5)

(Statistically it is better to divide by N − 1 and not by N since the estimate of the
statistical variance becomes unbiased using N − 1.) The variance is some times denoted the
power of the signal.

The standard deviation may give a more meaningful value of the variation of a signal. The
standard deviation is the square root of the variance:

σ =
√
Var(x) (31.6)

In many situations σ2 is used as a symbol for the variance.

31.2.5 Auto-covariance. Cross-covariance

Sometimes it is useful to express how a stochastic variable, say xk, varies along the
time-index axis (k). This type of variance can be expressed by the auto-covariance :

Auto-covariance:

Rx(L) = E{[xk+L −mx][xk −mx]} (31.7)

where L is the lag. Note that the argument of the auto-covariance function is the lag L.
Figure 31.3 shows Rx(L) for a signal x where the covariance decreased as the lag increases
(this is typical). As indicated in Figure 31.3 the auto-covariance usually has a peak value at
lag L = 0.

Auto-covariance

L0

Rx(L)

1 2 3-2 -1-3

Figure 31.3: The auto-covariance for a signal x where the covariance decreased as the lag
increases (this is typical).

If L = 0 the auto-covariance becomes the variance:

Rx(0) = E{[xk+0 −mx][xk −mx]} (31.8)

= E{[xk −mx]
2} = Var(x) = σ2 (31.9)

662

CHAPTER 31. STOCHASTIC SIGNALS

In some applications x is a vector, say

xk =

[
x1,k
x2,k

]
(31.10)

What does the auto-covariance look like in this case? For simplicity, assume that each of
the four variables above have zero mean. The auto-covariance then becomes

Rx(L) = E{[xk+L][xk]
T } (31.11)

= E

{[
x1,k+L

x2,k+L

] [
x1,k x2,k

]}
(31.12)

=

[
E[x1,k+Lx1,k] E[x1,k+Lx2,k]
E[x2,k+Lx1,k] E[x2,k+Lx2,k]

]
(31.13)

If L = 0, the auto-covariance becomes

Rx(0) =


E
{
[x1,k]

2
}

︸ ︷︷ ︸
=Var(x1)

E[x1,kx2,k]

E[x2,kx1,k] E
{
[x2,k]

2
}

︸ ︷︷ ︸
=Var(x2)

 (31.14)

Hence, the variances are on the diagonal.

The cross-covariance between two different scalar signals, say x and y, is

Cross-covariance:

Rxy(L) = E{[xk+L −mx][yk −my]} (31.15)

The cross-covariance can be estimated from sequences of sample values of x and y of length
N with

Rxy(L)

= S

N−1−|L|∑
k=0

[xk+L −mx][yk −my], L = 0, 1, 2, . . . (31.16)

= S

N−1−|L|∑
k=1

[yk−L −my][xk −mx] = Ryx(−L), L = −1,−2, . . . (31.17)

where S is a scaling factor which is defined below:

• Raw estimate:
S = 1 (31.18)

• Normalized estimate:

S =
1

Rxy(0) in the raw estimate
(31.19)

This gives Rxy(0) = 1.

663

CHAPTER 31. STOCHASTIC SIGNALS

• Unbiased estimate:

S =
1

N − L
(31.20)

This calculates Rxy(L) as an average value of the product [x(k + L)−mx][y(k)−my].
However, Rxy(L) may be very “noisy” if L is large since then the summation is
calculated with only a few additive terms (it is assumed that there are noise or
random components in x and/or y).

• Biased estimate:

S =
1

N
(31.21)

With this option Rxy(L) is not an average value of the product
[x(k + L)−mx][y(k)−my] since the sum of terms is divided by N no matter how
many additive terms there are in the summation. Although this makes Rxy(L)
become “biased” it reduces the “noise” in Rxy(L) because the “noisy” terms are
weighed by 1/N instead of 1/(N − L). Unless you have reasons for some other
selection, you may use biased estimate as the default option.

Correlation (auto/cross) is the same as covariance (auto/cross) except that the mean value,
as mx, is removed from the formulas. Hence, the cross-correlation is, cf. (31.15),

rxy(L) = E{xk+Lyk} (31.22)

31.3 White and coloured noise

31.3.1 White noise

An important type of stochastic signals are the so-called white noise signals (or processes).
“White” is because in some sense white noise contains equally much of all frequency
components, analogously to white light which contains all colours. White noise has zero
mean value:

Mean value of white noise:

mx = 0 (31.23)

There is no co-variance or relation between sample values at different time-indexes, and
hence the auto-covariance is zero for all lags L except for L = 0. Thus, the auto-covariance
is the pulse function shown in Figure 31.4.

Mathematically the auto-covariance function of white noise is

Rx(L) = Var(x)δ(L) = σ2δ(L) = V δ(L) (31.24)

Here, the short-hand symbol V has been introduced for the variance. δ(L) is the unit pulse
defined as follows:

Unit pulse:

δ(L) =

{
1 when L = 0
0 when L ̸= 0

(31.25)

664

CHAPTER 31. STOCHASTIC SIGNALS

Auto-covariance
of white noise

L0

Rx(L)

1 2 3-2 -1-3

Var(x)

= V

0

=

Figure 31.4: White noise has auto-correlation function like a pulse function.

White noise is an important signal in estimation theory because the random noise which is
always present in measurements, can be represented by white noise. For example, the
variance of the assumed white measurement noise is used as an input parameter in the
Kalman Filter design, cf. Chapter 32.

If you calculate the auto-covariance of a white noise sequence of finite length, the
auto-covariance function will not be exactly as the ideal function shown in Figure 31.4, but
the main characteristic showing a relatively large value at lag L = 0 is there.

Example 31.1 White noise

Figure 31.5 shows a simulated white noise signal x and its auto-covariance Rx(L)
(normalized) calculated from the most recent N = 50 samples of x.1

The white noise characteristic of the signal is clearly indicated by Rx(L).

[End of Example 31.1]

31.3.2 Coloured noise

As opposite to white noise, coloured noise does not vary completely randomly. In other
words, there is a co-variance between the sample values at different time-indexes. As a
consequence, the auto-covariance Rx(L) is non-zero for lags L ̸= 0. Rx(L) will have a
maximum value at L = 0, and Rx(L) will descrease for increasing L.

You may generate coloured noise from white noise by sending the white noise through a
dynamic system, typically a lowpass filter. Such a system is denoted shaping filter . The
output signal of the shaping filter will be coloured noise. You can tune the colour of the
coloured noise by adjusting the parameters of the shaping filter.

Example 31.2 Coloured noise

1Implemented in LabVIEW.

665

CHAPTER 31. STOCHASTIC SIGNALS

Figure 31.5: Example 31.1: Simulated white noise signal x and its auto-covariance Rx(L)
(normalized) calculated from the most recent N = 50 samples of x.

Figure 31.6 shows a simulated coloured noise signal x and its auto-covariance Rx(L)
(normalized) calculated from the most recent N = 50 samples of x.2

2Implemented in LabVIEW.

666

CHAPTER 31. STOCHASTIC SIGNALS

Figure 31.6: Example 31.1: Simulated coloured noise signal x and its auto-covariance Rx(L)
(normalized) calculated from the most recent N = 50 samples of x.

The coloured noise is the output of this shaping filter:

xk = axk−1 + (1− a)vk (31.26)

which is a discrete-time first order lowpass filter. The filter input vk is white noise. The
filter parameter is a = 0.98. (If the filter parameter is 0 the filter performs no filtering, and
the output is just white noise.)

The coloured noise characteristic of the signal is shown both in the plot of the signal xk in
the upper diagram of Figure 31.6 and in the auto-covariance Rx(L) shown in the lower
diagram of Figure 31.6.

[End of Example 31.2]

667

CHAPTER 31. STOCHASTIC SIGNALS

31.4 Propagation of mean value and co-variance through
static systems

If a stochastic (“random”) signals excites a static or dynamic system, the mean value and
the co-variance of the output signal is different from those of the input. In this section we
will concentrate on static systems. The results are useful e.g. in calculating the system gain
needed to obtain a random signal of a specified variannce when the source signal is a
random signal of fixed variance.

The theory of the propagation of mean value and co-variance through dynamic systems is
certainly important if you are going to analyse and design signal filters, controllers and
state estimators assuming they are excited by random signals. However, it is my experience
that this theory is not needed to be able to use the tools that exist for such applications
(e.g. the Kalman Filter for state estimation). Therefore, I have omitted the topic of
propagation of mean value and co-variance through dynamic systems in this book.

Assume given the following static linear system:

yk = Gvk + C (31.27)

where v is a stationary stochastic input signal with mean value mv and co-variance Rv(L).
y is the output of the system. G is the gain of the system, and C is a constant. In a
multivariable system G is a matrix and C is a vector, but in the following we will assume
that G and C are scalars, which is the most usual case.

Let us calculate the mean value and the auto-covariance of the output y. The mean value
becomes

my = E[yk] = GE [vk] + C (31.28)

= Gmv + C (31.29)

The auto-covariance of the output becomes

Ry(L) = E{[yk+L −my][yk −my]} (31.30)

= E {([Gvk+L + C]− [Gmv + C]) ([Gvk + C]− [Gmv + C])} (31.31)

= E {(Gvk+L −Gmv) (Gvk −Gmv)} (31.32)

= E {(G [vk+L −mv]) (G [vk −mv])} (31.33)

= G2E {([vk+L −mv]) ([vk −mv])}︸ ︷︷ ︸
=Rv(L)

(31.34)

= G2Rv(L) (31.35)

If the system (31.27) is multivariable, that is, if v and y are vectors, G is a matrix and C is
a vector. In this case we will get

Ry(L) = GRv(L)G
T (31.36)

Let us sum it up: For a scalar system (31.27):

668

CHAPTER 31. STOCHASTIC SIGNALS

• Mean of output of stochastic static system:

my = Gmv + C (31.37)

• Co-variance of output of stochastic static system:

Ry(L) = G2Rv(L) (31.38)

• The variance, which is equal to Ry(0):

σ2
y = G2σ2

v (31.39)

• The standard deviation:

σy = Gσv (31.40)

Example 31.3 Mathematical operations to achieve specified output mean and variance

Assume that you have signal generator available in a computer tool that can generate a
white noise signal v having mean mv = 0 and variance σ2

v = 1, and that you want to
generate a signal y of mean my = M and variance σ2

y = V . Find proper mathematical
operations on v that create this y.

The gain G can be calculated from (31.39):

G =

√
σ2
y

σ2
v

=

√
V

1
=

√
V = σy (31.41)

The constant C can be calculated from (31.37):

C = my −Gmv = M −G · 0 = M (31.42)

So, the mathematical operation is

yk = Gvk + C =
√
V · vk +M = σyvk +M (31.43)

In words: Multiply the input by the specified standard deviation and add the specified
mean value to this result.

[End of Example 31.3]

669

CHAPTER 31. STOCHASTIC SIGNALS

31.5 Problems for Chapter 31

Problem 31.1 Statistical measures of a signal

Given the following sequence of measurement values:

{xk} = {x0, x1, x2} = {0.73, 1.23, 0.89} (31.44)

1. Calculate the mean value, mx.

2. Calculate the variance, σ2
x.

3. Calculate the standard deviation, σx.

4. Calculate the auto-covariance, Rx(L) with L = 0 and L = 1 for the following options:

(a) Raw estimate

(b) Normalized estimate

(c) Unbiased estimate

(d) Biased estimate

Problem 31.2 Characteristics of uniformly distributed noise

Given a random sequence, {xk}, uniformly distributed between −A and +A.

1. Calculate the mean value or expectation value mx using this formula:

mx =

ˆ ∞

−∞
xP (x)dx =

ˆ A

−A
xP (x)dx (31.45)

where P (x) is the probability density. For a uniformly distributed signal,

P (x) =
1

2A
(31.46)

since the area under the P (x)-curve must be 1 (the width of the curve is 2A, so the
height is 1/(2A) for the area to be 1).

2. Show that the standard deviation of the sequence is

σx =
A√
3

(31.47)

Problem 31.3 Auto covariance of white noise

Draw by hand the principal auto covariance of white noise with variance 4. What is the
standard deviation σx of this signal?

670

CHAPTER 31. STOCHASTIC SIGNALS

Problem 31.4 Shaping filter

The following discrete-time first order lowpass filter is one example of a shaping filter:

xk = axk−1 + (1− a)vk (31.48)

which is a discrete-time first order lowpass filter. x is the filter output, and vk is the filter
input, which is assumed to be white noise.

1. Explain (no calculations are needed) why a = 0 makes the output become white, and
hence, there is no “shaping” through the filter.

2. Explain (no calculations are needed) why a between 0 and 1 makes the output become
“coloured”.

Problem 31.5 Generating a random signal

Assume that you in a computer tool are to generate a random signal y having mean value 3
and variance 4, and that the tool has a function that generates a random signal u of mean
value 0 and variance 1. How can you obtain y from u? (Express y as a mathematical
function of u.)

Problem 31.6 Programming a uniformly distributed random signal in
Python

In Python, the random generator numpy.random.uniform() can be used to generate a signal
as a sequence of n uniformly distributed random values between amplitude limits ±A with
zero mean value:

signal = numpy.random.uniform(–A, A, n)

The relation between the standard deviation and the amplitude is given by (31.47).

Make a Python program that generates and plots a uniformly distributed random signal, x,
with the following specifications:

• Sampling time: 0.1 s.

• Start time: 0 s.

• Stop time: 10 s.

• Standard deviation: 0.1.

• Mean value: 1.

In the same diagram, plot the mean(x) and mean(x)±A.

What is the value of A?

671

CHAPTER 31. STOCHASTIC SIGNALS

31.6 Solutions to problems for Chapter 31

Solution to Problem 31.1

{xk} = {x0, x1, x2} = {0.73, 1.23, 0.89} (31.49)

1. Mean value:

mx =
1

N

N−1∑
k=0

xk (31.50)

=
1

3
[x0 + x1 + x2] (31.51)

=
1

3
[0.73 + 1.23 + 0.89] (31.52)

= 0.95 (31.53)

2. Variance:

σ2
x =

1

N − 1

N−1∑
k=0

[xk −mx]
2 (31.54)

1

3− 1

3−1∑
k=0

[xk −mx]
2 (31.55)

=
1

2


[x0 −mx]

2

+ [x1 −mx]
2

+ [x2 −mx]
2

 (31.56)

=
1

2


[0.73− 0.95]2

+ [1.23− 0.95]2

+ [1.13− 0.95]2

 (31.57)

= 0.0652 (31.58)

3. Standard deviation:
σx =

√
σ2
x =

√
0.0652 = 0.255 (31.59)

4. Calculate the auto-covariance, Rx(L) with L = 0 and L = 1 for the following options:

(a) Raw estimate of auto-covariance: General formula:

Rx(L) =

N−1−|L|∑
k=0

[xk+L −mx][xk −mx] = Rx(L)Raw (31.60)

672

CHAPTER 31. STOCHASTIC SIGNALS

L = 0:

Rx(0) =

3−1−|0|=2∑
k=0

[xk+0 −mx][xk −mx] (31.61)

=

2∑
k=0

[xk −mx]
2 (31.62)

= [x0 −mx]
2 (31.63)

+ [x1 −mx]
2 (31.64)

+ [x2 −mx]
2 (31.65)

= [0.73− 0.95]2 (31.66)

+ [1.23− 0.95]2 (31.67)

+ [0.89− 0.95]2 (31.68)

= 0.1304 (31.69)

= Rx(0)Raw (31.70)

L = 1:

Rx(1) =

3−1−|1|=1∑
k=0

[xk+1 −mx][xk −mx] (31.71)

= [x1 −mx][x0 −mx] (31.72)

+ [x2 −mx][x1 −mx] (31.73)

= [1.23− 0.95][0.73− 0.95] (31.74)

+ [0.89− 0.95][1.23− 0.95] (31.75)

= −0.0784 (31.76)

= Rx(1)Raw (31.77)

(b) Normalized estimate: General formula:

Rx(L) =
1

Rx(0)Raw

N−1−|L|∑
k=0

[xk+L −mx][xk −mx]

=
1

Rx(0)Raw

Rx(L)Raw (31.78)

L = 0:

Rx(0) =
1

Rx(0)Raw

Rx(0)Raw = 1 (31.79)

L = 1:

Rx(1) =
1

Rx(0)Raw

Rx(1)Raw =
1

0.1304
(−0.0784) = −0.6012 (31.80)

(c) Unbiased estimate: General formula:

Rx(L) =
1

N − L
Rx(L)Raw (31.81)

673

CHAPTER 31. STOCHASTIC SIGNALS

L = 0:

Rx(0) =
1

3− 0
Rx(0)Raw =

1

3
· 0.1304 = 0.0435 (31.82)

L = 1:

Rx(1) =
1

3− 1
Rx(1)Raw =

1

2
(−0.0784) = −0.0392 (31.83)

(d) Biased estimate: General formula:

Rx(L) =
1

N
Rx(L)Raw (31.84)

L = 0:

Rx(0) =
1

3
Rx(0)Raw =

1

3
· 0.1304 = 0.0435 (31.85)

L = 1:

Rx(1) =
1

3
Rx(1)Raw =

1

3
(−0.0784) = −0.0261 (31.86)

Solution to Problem 31.2

1. Mean value:

mx =

ˆ A

−A
xP (x)dx (31.87)

=

ˆ A

−A
x · 1

2A
· dx (31.88)

=
1

2A

[
x2

2

]A
−A

(31.89)

=
1

2A

[
A2

2
− (−A)2

2

]
(31.90)

= 0 (31.91)

2. Variance:

σ2
x =

ˆ A

−A
(x−mx)

2 P (x)dx (31.92)

=

ˆ A

−A
(x− 0)2

1

2A
dx (31.93)

=
1

2A

ˆ A

−A
x2dx (31.94)

=
1

2A

[
x3

3

]A
−A

(31.95)

=
1

2A

[
A3

3
− (−A)3

3

]
(31.96)

=
A2

3
(31.97)

Standard deviation:

σx =
A√
3

(31.98)

674

CHAPTER 31. STOCHASTIC SIGNALS

Solution to Problem 31.3

See Figure 31.7.
Auto-covariance
of white noise

L0

Rx(L)

1 2 3-2 -1-3

Var(x)

= V

0

=

Figure 31.7: Auto-covariance

The standard deviation is
σx =

√
σ2
x =

√
4 = 2 (31.99)

Solution to Problem 31.4

1. With a = 0 the filter model is
xk = vk (31.100)

So, if the input is white, the output is white.

2. If a is between 0 and 1, the filter output x(k) depends not only on the input v(k) but
also on x(k − 1) which is x at the previous time step. Therefore, x(k) will not vary
purely randomly (it will not become purely white) – it is “coloured”.

Solution to Problem 31.5

y expressed as a function of u:
y = Gu+ C (31.101)

where G and C are calculated from the following formulas:

my = Gmu + C (31.102)

and
σ2
y = G2σ2

u (31.103)

where
mu = 0 (31.104)

my = 3 (31.105)

σ2
u = 1 (31.106)

σ2
y = 4 (31.107)

675

CHAPTER 31. STOCHASTIC SIGNALS

Now, from (31.103) we get

G =

√
σ2
y

σ2
u

=

√
4

1
= 2 (31.108)

and from (31.102) we get
C = my −Gmu = 3− 2 · 0 = 3 (31.109)

Solution to Problem 31.6

From (31.47) we get amplitude:

A =
√
3σx =

√
3 · 0.1 = 0.173 (31.110)

Program 31.1 generates and plots x.

http://techteach.no/control/python/prog plot sim uniform.py

Listing 31.1: prog plot sim uniform.py

import numpy as np

import matplotlib.pyplot as plt

%% Generating time signal:

Ts = 0.1

t_start = 0

t_stop = 10

t_array = np.arange(t_start , t_stop+Ts , Ts)

n = len(t_array)

%% Parameters of uniform ():

mean_x = 1

sigma_x = 0.1

A = np.sqrt (3)* sigma_x

%% Generating array of noise:

x = mean_x + np.random.uniform(-A, A, n)

%% Plotting:

plt.close(’all ’)

fig1 = plt.figure(num=1, figsize =(12, 9))

plt.plot(t_array , x, ’b-o’)

plt.plot(t_array , np.zeros(n) + mean_x , ’r--’)

plt.plot(t_array , np.zeros(n) + mean_x + A, ’g--’)

plt.plot(t_array , np.zeros(n) + mean_x - A, ’g--’)

plt.grid()

plt.xlabel(’t [s]’)

676

http://techteach.no/control/python/prog_plot_sim_uniform.py

CHAPTER 31. STOCHASTIC SIGNALS

plt.legend(labels=(’x’, ’mean_x ’,

’mean_x - A’, ’mean_x + A’))

plt.show()

plt.savefig(’plot_unif_noise.pdf ’)

The signal x is plotted in Figure 31.8

0 2 4 6 8 10
t [s]

0.85

0.90

0.95

1.00

1.05

1.10

1.15

x
mean_x
mean_x - A
mean_x + A

Figure 31.8: Uniformly distributed random signal, x.

677

Chapter 32

State estimation with Kalman
Filter

32.1 Introduction

The Kalman Filter is a commonly used algorithm to estimate the values of unknown state
variables of a dynamic system. Figure 32.1 illustrates the principle of the Kalman Filter.
The Kalman Filter is basically a process simulator and a sensor simulator which uses a
process model and a sensor model to estimate the states and the measurements. The
difference between the real measurement and the simulated (estimated) measurement is
used to correct the present estimate. That difference is called the innovation variable, or the
innovation “process”. The correction is proportional to the innovation variable. The
proportional gain, which is actually a matrix of time-varying elements, is called the Kalman
Filter gain, K. Overall, the Kalman Filter uses process knowledge in terms of model and
measurements (“m & m”) to calculate the state estimate.

Although the Kalman Filter is a state estimator, also process disturbances and process
parameters can be estimated. The clue is to model the disturbances or parameters as state
variables, and then the Kalman Filter algorithm can be used to estimate them.

Since a Kalman Filter is a software algorithm that produces a “soft measurement”, the
Kalman Filter is (an example) of a soft sensor.

Why can state estimates be useful?

• Monitoring : State estimates can provide valuable information about important
variables in a physical process, for example feed composition to a reactor,
environmental forces acting on a ship, load torques acting on a motor, etc.

• Control : The estimated states can be used, as if they were real measurements, by a
controller, see Figure . The controller can be e.g. a feedforward controller
implementing feedforward from estimated disturbances, or a model predictive
controller (MPC) using estimated states and estimated disturbances. Actually, it is

678

CHAPTER 32. STATE ESTIMATION WITH KALMAN FILTER

Real

process

K

u

xest

e = y - yest

yest

vw

Known inputs

(control variables

and disturbances)
Real

sensorx

State variable

(unknown value)

Measurement

(known value)

y

Innovation

variable

Kalman gain

Real system

Kalman Filter

Feedback

correction

of estimate

Process

simulator

Sensor

simulator

+

_

K·e

Estimated

state

xest

Estimated

meas.

Measurement noise

(random)

Process disturbances

(random)

Figure 32.1: The principle of the Kalman Filter.

common that MPCs have an “integrated” Kalman Filter.

The Kalman Filter algorithm was developed by Rudolf E. Kalman around 1960 ?. There is
a continuous-time version of the Kalman Filter and several discrete-time versions. Here the
predictor-corrector version of the discrete-time Kalman Filter will be described. This
version seems to be the most commonly used version.

The Kalman Filter algorithm was originally developed for systems assumed to be
represented with a linear state space model. However, in many applications the system
model is nonlinear. Furthermore the linear model is just a special case of a nonlinear model.
Therefore, I have decided to present the Kalman Filter for nonlinear models, but comments
are given about the linear case. The Kalman Filter for nonlinear models is denoted the
Extended Kalman Filter because it is an extended use of the original Kalman Filter.
However, for simplicity we can just denote it the Kalman Filter, dropping “extended” in the
name. I will present the Kalman Filter without detailed derivation.

As with every model-based algorithm you should test your Kalman Filter with a simulated
process before applying it to the real system. In the testing, you should start with testing
the Kalman Filter with the nominal model, i.e. assumed correct model, in the simulator,
including process and measurement noise. This is the model on which you are basing the
Kalman Filter. If you have designed and implemented your Kalman Filter correctly, the
estimated states should reproduce the simulated states (but with less noise in the

679

CHAPTER 32. STATE ESTIMATION WITH KALMAN FILTER

Real

process

u

xest

y

Kalman

Filter

Controller

d

ysp

Estimated state,

including estimated disturbance

Disturbance
Control

variable
Process

measurementSetpoint

Figure 32.2: Control system where the controller uses estimated state variables, xest, for
control.

estimates).

This chapter is meant to provide sufficient information about how to design and implement
a standard Kalman Filter. More theory about state estimation and about various Kalman
Filter forms can be found in e.g. (Simon 2006).

32.2 Observability of discrete-time systems

A necessary condition for the Kalman Filter to work correctly is that the system for which
the states are to be estimated, is observable, which can be checked numerically. You should
check for observability before applying the Kalman Filter. (There may still be other
problems that prevent the Kalman Filter from producing accurate state estimates, as a
faulty or inaccurate mathematical model.)

The observability check presented here applies only to linear state space models, which may
stem from a linearized nonlinear model.

Observability of discrete-time systems can be defined as follows: The discrete-time system

xk+1 = Axk +Buk (32.1)

yk = Cxk +Duk (32.2)

is observable if there is a finite number of time steps k so that knowledge about the input
sequence u0, . . . , uk−1 and the output sequence y0, . . . , yk−1 is sufficient to determine the
initial state state of the system, x0.

Let us derive a criterion for the system to be observable. Since the influence of input u on
state x is known from the model, let us for simplicity assume that uk = 0. From the model

680

CHAPTER 32. STATE ESTIMATION WITH KALMAN FILTER

(32.1) – (32.2) we get

y0 = Cx0 (32.3)

y1 = Cx1 = CAx0 (32.4)

...

yn−1 = CAn−1x0 (32.5)

which can be expressed compactly as
C
CA
...

CAn−1


︸ ︷︷ ︸

Mobs

x0 =


y0
y1
...

yn−1


︸ ︷︷ ︸

Y

(32.6)

Let us make a definition:

Observability matrix:

Mobs =


C
CA
...

CAn−1

 (32.7)

(32.6) has a unique solution only if the rank of Mobs is n. Therefore:

Observability Criterion:

The system (32.1) – (32.2) is observable if and only if the observability matrix has rank
equal to n where n is the order of the system model (the number state variables).

The rank can be checked by calculating the determinant of Mobs. If the determinant is
non-zero, the rank is full, and hence, the system is observable. If the determinant is zero,
the system is non-observable.

Non-observability has several concequences:

• There are state variables or linear combinations of state variables which do not make
any response in the estimated measurement, and therefore, their estimates can not be
corrected by the innovation process.

• The value of the Kalman Filter gain may diverge.

• The transfer function from the input variable u to the output variable y has an order
that is less than the number of state variables (n).

681

CHAPTER 32. STATE ESTIMATION WITH KALMAN FILTER

Observability may be checked manually or with a pertinent function in e.g. Python
(Control Package), Matlab, and LabVIEW. In Example 32.1, observability is checked
manually and with Python.

Example 32.1 Observability

Given the following state space model:[
x1,k+1

x2,k+1

]
=

[
1 a
0 1

]
︸ ︷︷ ︸

A

[
x1,k
x2,k

]
+

[
0
1

]
︸ ︷︷ ︸

B

uk (32.8)

yk =
[
1 0

]︸ ︷︷ ︸
C

[
x1,k
x2,k

]
+ [0]︸︷︷︸

D

uk (32.9)

The observability matrix is (n = 2)

Mobs =

[
C

CA2−1 = CA

]
=


[
1 0

]
−−−−−−−−−−−[

1 0
] [1 a

0 1

]
 =

[
1 0
1 a

]
(32.10)

The determinant of Mobs is

det (Mobs) = 1 · a− 1 · 0 = a (32.11)

From (32.11) we can conclude that the system is observable only if a ̸= 0.

Does this result make sense?

• Assume that a ̸= 0 which means that the first state variable, x1, contains some
non-zero information about the second state variable, x2. Hence, x2 can be
“observed” from the observed (measured) x1, and the system is observable.

• Assume that a = 0 which means that x1 contains no information about x2. In this
case the system (or specifically x2) is non-observable despite x1 being observed
(measured), and we say that the system is non-observable.

The Python program 32.1 implements an observability check both with the rank and with
the determinant of the observability matrix.

http://techteach.no/control/python/observability check.py

Listing 32.1: observability check.py

import numpy as np

import control

%% Model matrices as 2D arrays:

682

http://techteach.no/control/python/observability_check.py

CHAPTER 32. STATE ESTIMATION WITH KALMAN FILTER

a = 0 # Model param

A = np.array ([[1, a],

[0, 1]])

B = np.array ([[0] ,

[1]])

C = np.array ([[1, 0]])

D = np.array ([[0]])

%% Creating and checking the observability matrix:

M_obs = control.obsv(A, C)

#Rank check:

rank_M_obs = np.linalg.matrix_rank(M_obs)

print(’rank_M_obs =’, rank_M_obs)

Determinant check:

det_M_obs = np.linalg.det(M_obs)

print(’det_M_obs =’, det_M_obs)

With a = 0 (non-observability) the results are:

rank M obs = 1
det M obs = 0.0

[End of Example 32.1]

32.3 The Kalman Filter algorithm

32.3.1 The assumed process model

The Kalman Filter presented below assumes that the system model consists of the following
discrete-time state space model:

xk+1 = f (xk, uk) +Gwk (32.12)

and this measurement model:
yk = g (xk, uk) + vk (32.13)

Some times, but rarely, the additive term Hwk is included in (32.13), but I skip this term
here, which is equivalent to setting H = [0], a matrix of zeros.

Typically, the discrete-time model (32.12) – (32.13) is the discretized version of the following
continuous-time model, where we for simplicity have disregarded random disturbance and
random measurement noise (but such terms are included in the discrete-time model:

x′ = fcont(x, u) (32.14)

683

CHAPTER 32. STATE ESTIMATION WITH KALMAN FILTER

y = g(x, u) (32.15)

Often, Euler Forward discretization is used to discretize (32.14). In that case:

xk+1 = xk + Tsfcont (xk, uk)︸ ︷︷ ︸
f(xk, uk)

(32.16)

(32.13) is just the discrete-time version of (32.15).

A linear model is just a special case:

xk+1 = Axk +Buk︸ ︷︷ ︸
=f

+Gwk (32.17)

and
yk = Cxk +Duk︸ ︷︷ ︸

=g

+ vk (32.18)

The models above contains the following variables and functions:

• x is the state vector of n state variables:

x =

 x1
...
xn

 (32.19)

• u is the input vector of m input variables:

u =

 u1
...

um

 (32.20)

It is assumed that the value of u is known. u includes control variables and known
disturbances.

• f is the system vector function:

f =

 f1
...
fn

 (32.21)

where f is any nonlinear or linear function.

• w is random (white) disturbance (or process noise) vector:

w =

 w1
...
wq

 (32.22)

684

CHAPTER 32. STATE ESTIMATION WITH KALMAN FILTER

with auto-covariance matrix Q which is typically assumed diagonal:

Q =

 Q11 0 0

0
. . . 0

0 0 Qnn

 (32.23)

Hence, the number q of process disturbances is assumed to be equal to the number n
of state variables.

• G is the process noise gain matrix relating the process noise to the state variables. It
is common to assume that q = n, making G square:

G =

 G11 0 0

0
. . . 0

0 0 Gnn

 (32.24)

It is actually common to set the elements of G equal to one:

Gii = 1 (32.25)

making G an identity matrix:

G =

 1 0 0

0
. . . 0

0 0 1

 = In (32.26)

• y is the measurement vector of r measurement variables:

y =

 y1
...
yr

 (32.27)

• g(·) is the measurement vector function:

g =

 g1
...
gr

 (32.28)

where gi is any nonlinear or linear function. Typically, g is a linear function on the
form

g = Cx (32.29)

where C is the measurement gain matrix. (32.29) implies that the D matrix in (32.18)
is a matrix of zeros.

• v is a random (white) measurement noise vector:

v =

 v1
...
vr

 (32.30)

with auto-covariance R which is typically assumed diagonal:

R =

 R11 0 0

0
. . . 0

0 0 Rrr

 (32.31)

685

CHAPTER 32. STATE ESTIMATION WITH KALMAN FILTER

32.3.2 The result of Kalman Filtering: an optimal state estimate

We define the state estimation error vector:

ex,k = xest,k − xk (32.32)

where: xk is the assumed true state vector, and xest,k is the state estimate. The Kalman
Filter produces an optimal estimate in the sense that the expectation value of the sum
(actually of any linear combination) of the estimation errors gets a minimal value. In other
words, The Kalman Filter minimizes the following sum of squared errors:

E[ex,k
T ek] = E

[
ex1,k

2 + · · ·+ exn,k

2
]

(32.33)

The Kalman Filter estimate is therefore sometimes denoted the “least mean-square
estimate”. This result actually assumes that the model is linear, so for nonlinear models,
this result is approximate.

32.3.3 The Kalman Filter algorithm – step by step

I present here the Kalman Filter algorithm, in the same order as it may be implemented in
a program. The mathematical block diagram shown in Figure 32.3 gives a graphical
representation of the Kalman Filter, except that the formulas for the Kalman Filter Gain,
Kk, are not shown in the block diagram.

Initialization

This step is the initial step, and the operations here are executed only once, before the
estimation loop starts.

The initial value xp,0 of the predicted state estimate xp is set equal to this initial (guessed)
value of the state estimate:

xp,0 = xinit (32.34)

Also the auto-covariance matrix of predicted state estimate error must be given an initial (a
guessed) value. This auto-covariance is defined as:

Pp,k = E
[(
xk −mxp,k

) (
x−mxp,k

)T]
(32.35)

Its initial value is set to:
Pp,k = Pp,init (32.36)

A typical initial value is a matrix of ones (the identity matrix):

Pp,init = diag(1, · · · , 1) = In (32.37)

———–

The subsequent actions are implemented in the estimation loop in the given order.

686

CHAPTER 32. STATE ESTIMATION WITH KALMAN FILTER

Process

z

Kk

g()f()

uk

xp,k

xc,k

ek = yk - yp,k

yk

yp,k

Kk · ek

Applied

state estimate

vkwk

Known inputs

(control variables

and disturbances)
Sensor

xk

State variable

(unknown value)

xp,k+1 = f(xc,k, uk)

Predicted

estimate

Corrected estimate

Innovation

variable

or ”process”

Kalman gain

Real system

Kalman Filter

Unit delaySystem

function

Meas. function

Feedback

correction

of estimate

xk+1 = f(xk, uk) + Gwk

Measurement

(known value)

Measurement noise

(random)

Process disturbances

(random)

yk = g(xk) + vk

Algorithm for

predicted

estimate -1

Correction term

+

 xest = xc,k

Figure 32.3: The Kalman Filter algorithm (32.43) – (32.44) represented by a block diagram.

Real measurement

The real measurement, ym,k, is read from the sensor.

Predicted measurement

The predicted measurement is calculated from the predicted state according to the sensor
model:

yp,k = g (xp,k) (32.38)

In most cases, yp is just one of the (predicted) state variables. If it is, say equal to xi, we
have: yp,k = xi,p,k.

Note: In the sensor model (32.18), the measurement noise wk is an additive term. However,
we can not include wk in (32.38) since wk is not known or not predictable (since it is
assumed being white noise).

687

CHAPTER 32. STATE ESTIMATION WITH KALMAN FILTER

Innovation variable

The innovation variable is the difference between the real measurement and the predicted
measurement:

ek = ym,k − yp,k (32.39)

Kalman Filter gain

The Kalman Filter gain is calculated as:

Kk = Pp,kC
T [CPp,kC

T +R]−1 (32.40)

Here, C is the measurement gain matrix of a linearized model of the original nonlinear
model (32.13) calculated at the most recent operating point, which is (xp,k, uk):

C =
∂g

∂x

∣∣∣∣
op = (xp,k, uk)

(32.41)

It is common that g() = C, and if so, no linearization is actually needed.

Steady-state Kalman Filter gain: If the model is linear and time invariant (i.e. system
matrices are not varying with time), the Kalman Filter gain will converge towards a
steady-state value value, Ks, if the number of iterations goes to infinity:

Kk → K∞ = Ks (32.42)

You can pre-calculate Ks by running the algorithm for Kk for a sufficiently large number of
iterations. In this book, I stick to the time-varying Kalman Filter gain since it is relatively
easy to calculate with matrix-vector operations.

Corrected state estimate

Calculate the corrected state estimate xc,k by adding the corrective term Kkek to the
predicted state estimate xp,k:

xc,k = xp,k +Kkek (32.43)

Note 1: xc,k, and not xp,k, is used as the state estimate in applications.

Note 2: Formula (32.43) is an error-driven correction term of the state estimates. You can
expect the errors of the state estimates to be smaller than if there were no such correction
term. This correction can also be regarded as a feedback correction of the estimates – the
feedback is from the predicted measurement back to the rate of changes of the state
estimates. This feedback is indicated in Figure 32.3. It is well known from control systems
theory that error-driven or feedback correction (or control) generally reduces errors.

688

CHAPTER 32. STATE ESTIMATION WITH KALMAN FILTER

Note 3: The corrected estimate xc,k is also denoted the a posteriori estimate because it is
calculated after the present measurement is taken. It is also denoted the
measurement-updated estimate.

Note 4: The state estimates should be prevented from getting unrealistic values. For
example, the estimate of a liquid level should not be negative. The following Python code
implements such limitation:

...
x c k = · · ·
if (x c k > x max):
x c k = x max
elif (x c k < x min):
x c k = x min
...

Such a limitation may also be implemented with some built-in limitation functions, e.g.
with numpy.clip() in Python:

...
x c k = · · ·
x c k = np.clip(x c k, x min, x max)
...

Predicted state estimate for the next time step

The prediction, xp,k+1, is calculated using the present state estimate xc,k and the known
input uk in process model:

xp,k+1 = f (xc,k, uk) (32.44)

Note 1 : In the process model (32.12), the process disturbance vk is an additive term.
However, we can not include vk in (32.44) since vk is not known or not predictable (since we
have assumed it is “white noise”).

Note 2 : The predicted estimate is also denoted the a priori estimate because it is calculated
before the present measurement is taken. It is also denoted the time-updated estimate.

Note 3: The state estimates should be prevented from getting unrealistic values. For
example, the estimate of a liquid level should not be negative. The following Python code
implements such limitation:

689

CHAPTER 32. STATE ESTIMATION WITH KALMAN FILTER

...
x p kp1 = · · ·
if (x p kp1 > x max):
x p kp1 = x max
elif (x p kp1 < x min):
x p kp1 = x min
...

Such a limitation may also be implemented with some built-in limitation functions, e.g.
with numpy.clip() in Python:

...
x p kp1 = · · ·
x p kp1 = np.clip(x p kp1, x min, x max)
...

Auto-covariance of corrected state estimate error

The auto-covariance matrix of the estimation error of the corrected estimate is:

Pc,k = E
[(
xk −mxc,k

) (
xk −mxc,k

)T]
(32.45)

where mxc,k
is mean value.

A formula for Pc,k is:

Pc,k = [I −KkC]Pp,k (32.46)

where: Kk is the Kalman Gain given by (32.40). C is given by (32.41). In the first iteration
of the estimation loop, Pp,k is known from the initialization, (32.36). In subsequent
iterations, Pp,k, is known from its predicted value, see below.

Auto-covariance of predicted state estimate error in the next iteration

The auto-covariance of the state estimate error is defined by (32.35). Its value in the next
iteraton is:

Pp,k+1 = APc,kA
T +GQGT (32.47)

Here, A is the transition matrix of a linearized model of the original discrete-time nonlinear
model (32.12) calculated at the most recent operating point, which is (xc,k, uk). Although

690

CHAPTER 32. STATE ESTIMATION WITH KALMAN FILTER

we can obtain A by linearizing f(·) in that model, I suggest that A is obtained by first
linearizing the continuous-time model (32.14) and then discretizing that model1:

A = I + TsAcont = I + Ts ·
∂fcont(·)

∂x

∣∣∣∣
op = (xc,k, uk)

(32.48)

Index-shift (or time-shift) to prepare for the next iteration

xp,k = xp,k+1

Pp,k = Pp,k+1

Example 32.2 shows the design and implementation of a Kalman Filter for estimation of the
inflow (and the level) of a liquid tank using the level measurement.

32.3.4 Features of the Kalman Filter

32.3.4.1 The error-model

Assuming that the system model is linear and that the model is correct (giving a correct
representation of the real system), it can be shown that the behaviour of the error of the
corrected state estimation, exc,k

, cf. (32.32), is given by the following error-model :2

exc,k+1
= (I −KkC)Aexc,k

+ (I −KkC)Gvk −Kkwk+1 (32.49)

This model can be used to analyse the Kalman Filter in terms of dynamics, stability and
steady state behaviour.

Note: (32.32) is not identical to the auto-covariance of the estimation error which is

Pc,k = E
{[

exc,k
−mxc,k

] [
exc,k

−mxc,k

]T}
(32.50)

But (32.32) is the trace of Pc (the trace is the sum of the diagonal elements):

exc = trace [Pc,k] (32.51)

32.3.4.2 The dynamics of the Kalman Filter

The error-model (32.49) of the Kalman Filter represents a dynamic system. The dynamics
of the Kalman Filter can be analyzed by calculating the eigenvalues of the system matrix of
(32.49). These eigenvalues are:

{λ1, λ2, . . . , λn} = eig [(I −KkC)A] (32.52)
1because then you can exploit a pertient function in e.g. Python or Matlab for discretization
2You can derive this model by subtracting the model describing the corrected state estimate from the model

that describes the real state (the latter is simply the process model).

691

CHAPTER 32. STATE ESTIMATION WITH KALMAN FILTER

32.3.4.3 The stability of the Kalman Filter

It can be shown that the Kalman Filter always is an asymptotically stable dynamic system
(otherwise it could not give an optimal estimate). In other words, the eigenvalues defined
by (32.52) are always inside the unity circle.

32.4 Tuning the Kalman Filter

The main tuning factor of the Kalman Filter is the matrix Q – the process disturbance
auto-covariance. Remember that the process disturbance influences the state variables, cf.
(32.13). Therefore, a large Q tells the Kalman Filter that the variations in the real state
variables are relatively large. Hence, the larger Q, the larger the Kalman Gain Kk will be,
to provide a stronger updating of the estimates. However, this strong estimate update
causes more measurement noise to be added to the estimates because the measurement
noise is a term in the innovation process e which is multiplied by Kk:

xc,k = xp,k +Kkek (32.53)

= xp,k +Kk [g (xk) + vk − g (xp,k)] (32.54)

where v is real measurement noise.

Consequently, we can state the main rule for tuning the Kalman Filter as follows:

Select elements of Q as large as possible without the state estimates becoming too noisy.

But Q is a matrix! How to select it “large” or “small”? Since each of the process
disturbances typically are assumed to act on their respective state independently, Q can be
set as a diagonal matrix:

Q =

 Q11 0 0

0
. . . 0

0 0 Qnn

 = diag(Q11, · · · , Qnn) (32.55)

where each of the diagonal elements can be adjusted independently. If you do not have any
idea about numerical values, you can start by setting all the diagonal elements to one, and
hence Q is

Q = Q0

 1 0 0

0
. . . 0

0 0 1

 (32.56)

where Q0 is the only tuning parameter. If you do not have any idea about a proper value of
Q0 you may initially try

Q0 = 0.01 (32.57)

Then you may adjust Q0 or try to fine tune each of the diagonal elements individually.

Example 32.2 demonstrates the effect of tuning the Kalman Filter with the Q matrix.

692

CHAPTER 32. STATE ESTIMATION WITH KALMAN FILTER

32.5 Estimating parameters and disturbances with Kalman
Filter

32.5.1 Introduction

Note that you can try to estimate model errors with a Kalman Filter by defining such
errors as augmentation state variables and estimating them as ordinary states, in the same
way as you can estimate disturbances by defining them as augmentation state variables, cf.
Section 32.5.

In many applications the Kalman Filter is used to estimate parameters and/or disturbances
in addition to the “ordinary” state variables. Examples:

• Parameter: The fraction of biodegradable organic material in organic feed to a biogas
reactor.

• Disturbance: Environmental forces acting on a ship. (The estimate can then be used
for feedforward control in the position controller of the ship.

These parameters and/or disturbances must be represented as state variables to be
estimated with a Kalman Filter. They represent additional state variables. The original
state vector is augmented with these new state variables which we may denote the
augmentative states. The Kalman Filter is used to estimate the augmented state vector
which consists of both the original state variables and the augmentative state variables.

How can you model these augmentative state variables? The augmentative model must be
in the form of a difference equation which in the form of a state space model so that it can
be augmented to the original state space model. To set up such an augmentative model you
must make an assumption about the behaviour of the augmentative state. Let us look at
some augmentative models.

32.5.2 The augmentative state (xa) is constant

The most common augmentative model is based on the assumption that the augmentative
state variable xa is constant. The corresponding differential equation is:

(xa)
′
= 0 (32.58)

Discretizing this differential equation with the Euler Forward method gives:

xa,k+1 = xa,k (32.59)

It is common to assume that the state is driven by some random disturbance, hence the
augmentative model becomes:

xa,k+1 = xa,k + wa,k (32.60)

where wa is random process disturbance with assumed auto-covariance matrix Qa. As
pointed out in Section 32.3, the variance Qa can be used as a tuning parameter of the
estimate of xa.

693

CHAPTER 32. STATE ESTIMATION WITH KALMAN FILTER

32.5.3 The augmentative state (xa) has constant rate

The corresponding differential equation is:

(xa)
′′
= 0 (32.61)

or, in state space form, with xa1 ≡ xa:

(xa1)
′
= xa2 (32.62)

(xa2)
′
= 0 (32.63)

where xa2 is another augmentative state variable. Applying Euler Forward discretization
with sampling interval h [sec] to (32.62) – (32.63) and including white process noise to the
resulting difference equations gives

xa1,k+1 = xa1,k + Tsxa2,k + wa1,k (32.64)

xa2,k = xa2,k + wa2,k (32.65)

Now follows a comprehensive example which covers:

• Kalman Filter algorithm development

• Kalman Filter tuning

• Kalman Filter implementation in a Python program

Example 32.2 Kalman Filter for estimation of inflow of a simulated buffer tank

The system

A buffer tank is presented in Ch. 38.3. In this example, we will design and implement (in
Python) a Kalman Filter for a simulated tank which has a level control system. The
Kalman Filter will estimate Fin and h, hence, it will be a soft sensor for Fin and h. We may
here regard Finas a disturbance that we want to estimate.

The Kalman Filter needs at least one measurement. In this example, the measurement is
the simulated level, h.

The time-step of the simulator and of the Kalman Filter is:

Ts = 10 s (32.66)

Figure 32.4 shows the tank with a level control system.

694

CHAPTER 32. STATE ESTIMATION WITH KALMAN FILTER

Figure 32.4: Buffer tank with level control system.

The level is controlled with a PI controller tuned with the Skogestad method, cf. Ch. 16.4.
The level PI controller is tuned with the Skogestad method with Tc = 1000 s, as in Example
16.6, giving:

Kc = −2 (32.67)

Ti = 2000 s (32.68)

The process model

Process model parameters:
Aarea = 2000 m2 (32.69)

The mathematical model of the process is based on mass balance of the liquid in the tank.
The model is:

(Ah)′ = Fin − Fout (32.70)

Mass balance of the liquid in the tank is (mass is ρAh):

(ρAareah)
′ = ρFin − ρFout (32.71)

Fout is the outflow demanded by the level controller. Therefore,

Fout = u (32.72)

where u is the control signal. By inserting u for Fout and cancelling out density ρ, (32.71)
becomes:

h′ =
1

Aarea
(Fin − u) ≡ f1(·) (32.73)

695

CHAPTER 32. STATE ESTIMATION WITH KALMAN FILTER

We assume that Fin is unknown, but slowly changing – almost constant. Therefore, we
define the following augmentative model for Fin:

(Fin)
′
= 0 ≡ f2(·) (32.74)

h is measured. Hence,
hm = h ≡ g(·) (32.75)

To summarize: The continuous-time model of the system is given by the differential
equations (32.73) – (32.74) with (32.75) as the output or measurement equation.

In the context of linearization, it can be convenient to collect f1 and f2 in one vector
function:

f =

[
f1
f2

]
(32.76)

In some contexts, it is convenient to introduce standard names of the state variables:

x1 = h (32.77)

x2 = Fin (32.78)

However, we will in this example continue using the original symbols h and Fin.

For the Kalman Filter we need a discrete-time state space model. Applying Euler Forward
discretization with time step Ts and including white disturbance noises w1 and w2 in the
resulting difference equations, give:

hk+1 = hk +
Ts

Aarea
(Fin,k − uk) + w1,k (32.79)

Fin,k + 1 = Fin,k + w2,k (32.80)

w1 and w2 are independent (uncorrelated) white process disturbances with assumed
variances Q11 and Q22, respectively. The process disturbance covariance matrix is then:

Q =

[
Q11 0
0 Q22

]
(32.81)

As mentioned above, h is measured. The measurement is here denoted hmeas. Assuming
white measurement noise vk with variance R11 (a scalar), the measurement equation is:

hm,k = hk + vk (32.82)

The measurement noise covariance matrix is:

R = [R11] (32.83)

where:
R11 = (σmeas,noise)

2

696

CHAPTER 32. STATE ESTIMATION WITH KALMAN FILTER

where:
σmeas,noise =

ameas,noise√
3

(32.84)

where:
ameas,noise = 0.01 m (32.85)

ameas,noise is the amplitude of an assumed uniformly distributed random noise signal of
amplitide 0.01 m (i.e. the noise is between ±0.01 m. The relation between the standard
deviation σmeas,noise and the amplitude ameas,noise is dervied in Solution 31.6.

The PI level controller

The tank level, h, is controlled with a PI controller which is tuned with the Skogestad
method. The PI controller is in the Python program presented below in this example, but I
do not show details about the controller here.

The Kalman Filter algorithm

The Kalman Filter algorithm is as follows (numerical values are given later in this example).

Initialization:
hp,init = hm,init = 2.0 m

Fin,p,k = Fin,p,init = 3.0 m3/s

Pp,k = Pp,init =

[
1 0
0 1

]

In the simulation/estimation loop:

• The innovation variable:
ek = hm,k − hp,k (32.86)

where: hm,k is the simulated measurement. hp,k is the predicted measurement.

• The Kalman Gain:

Kk = Pp,kC[CPp,kC
T +R]−1 (32.87)

where:

C = Ccont =
∂g

∂x

∣∣∣∣
op

=
[
1, 0

]
(32.88)

• Measurement-corrected estimates, which are used as the applied estimates:

hc,k = hp,k +K0,0,k · ek (32.89)

Fin,c,k = Fin,p,k +K1,0,k · ek (32.90)

697

CHAPTER 32. STATE ESTIMATION WITH KALMAN FILTER

• Model-predicted estimates as one Euler Forward step:

hp,k+1 = hc,k +
Ts

Aarea
(Fin,c,k − uk) (32.91)

Fin,p,k+1 = Fin,c,k (32.92)

• Auto-covariance of meas-corrected state estimate error, (32.47):

Pc,k = [I −KkC]Pp,k (32.93)

• Auto-covariance of predicted state estimate error in the next iteration:

Pp,k+1 = APc,kA
T +GQGT (32.94)

where:

– Disturbance gain:

G = I2 =

[
1 0
0 1

]
– Discrete-time system transition matrix:

A =I + TsAcont (32.95)

=I + Ts
∂f

∂x

∣∣∣∣
xp,k, uk

(32.96)

=I + Ts

 ∂f1
∂x1

= 0 ∂f1
∂x2

= 1
Aarea

∂f2
∂x1

= 0 ∂f2
∂x2

= 0


∣∣∣∣∣∣∣
xp,k, uk

(32.97)

=

 1 Ts
Aarea

0 1

 (32.98)

– Disturbance co-variance:

Q =

[
1 0
0 Q22

]
(32.99)

where:
Q22 = 10

which is set by “trial-and-error” to give reasonably fast and smooth estimate of
Fin. Q22 is used as the main tuning factor of the Kalman Filter.

• Index-shift (or time-shift):
hp,k = hp,k+1 (32.100)

Fin,p,k = Fin,p,k+1 (32.101)

Pp,k = Pp,k+1 (32.102)

698

CHAPTER 32. STATE ESTIMATION WITH KALMAN FILTER

Python program

The Python program ’kalman pi buffertank sim.py’ available via the link below implements
the tank simulator with the Kalman Filter and the level PI controller.

http://techteach.no/control/python/kalman pi buffertank sim.py

Results

Figure 32.5 shows the responses from the following simulation scenario:

• hsp = 2.0 m (constant).

• Fin is changed from 3.0 to 4.0 m3/s at t = 1000 s.

• The level measurement noise is uniformly distributed random noise, cf. (32.85), is
included in the level measurement.

Figure 32.5 shows simulated responses. The Kalman Filter estimates Fin with zero error in
steady state, but there is a transient estimation error.

0 2000 4000 6000 8000 10000
t [s]

1.0

1.5

2.0

2.5

3.0

[m
]

h_sp
h_meas
h_est

0 2000 4000 6000 8000 10000
t [s]

2.5

3.0

3.5

4.0

4.5

[c
m

3/
s]

u = F_out

0 2000 4000 6000 8000 10000
t [s]

2.5

3.0

3.5

4.0

4.5

[c
m

3/
s]

F_in
F_in_est

Figure 32.5: Simulated tank with PI level control and Kalman Filter with Q22 = 10.

699

http://techteach.no/control/python/kalman_pi_buffertank_sim.py

CHAPTER 32. STATE ESTIMATION WITH KALMAN FILTER

It is interesting to see how the estimate of Fin is influenced by the tuning factor Q22, while
keeping the disturbance variance unchanged (namely keeping it zero) in the simulations:

• Figure 32.6 shows the estimates with Q22 = 1, which is set with the code Q 22 = 1 in
the Python program. As expected, the estimation of Fin is less noisy and slower.

• Figure 32.7 shows the estimates with Q22 = 100. As expected, the estimation of Fin is
more noisy and faster.

0 2000 4000 6000 8000 10000
t [s]

1.0

1.5

2.0

2.5

3.0

[m
]

h_sp
h_meas
h_est

0 2000 4000 6000 8000 10000
t [s]

2.5

3.0

3.5

4.0

4.5

[c
m

3/
s]

u = F_out

0 2000 4000 6000 8000 10000
t [s]

2.5

3.0

3.5

4.0

4.5

[c
m

3/
s]

F_in
F_in_est

Figure 32.6: Kalman Filter estimates with Q22 = 1.

[End of Example 32.2]

32.6 Kalman Filtering when process measurement is absent

It may happen that the process measurement, ym, is absent for some time while the
Kalman Filter runs. The reason for the absence may be:

• Sensor failure

• Communication failure between the sensor and the Kalman Filter algorithm

• Low-rate sampling (large time step) of the measurement comparing with a high-rate
(small time step) Kalman Filter algorithm

700

CHAPTER 32. STATE ESTIMATION WITH KALMAN FILTER

0 2000 4000 6000 8000 10000
t [s]

1.0

1.5

2.0

2.5

3.0

[m
]

h_sp
h_meas
h_est

0 2000 4000 6000 8000 10000
t [s]

2.5

3.0

3.5

4.0

4.5

[c
m

3/
s]

u = F_out

0 2000 4000 6000 8000 10000
t [s]

2.5

3.0

3.5

4.0

4.5

[c
m

3/
s]

F_in
F_in_est

Figure 32.7: Kalman Filter estimates with Q22 = 100.

We assume that the occurance of the absence is known. How can the Kalman Filter cope
with an absent measurement? An absent measurement corresponds to the measurement
being irrelevant. An irrelevant measurement can be modelled as a measurement with an
infinitely large measurement noise, i.e.:

R = [∞] (32.103)

Let us use (32.103) in the formula for the Kalman Gain, (32.40):

Kk = Pp,kC
T [CPp,kC

T +R]−1 = [0] (32.104)

So, the Kalman Filter gain becomes a matrix of zeros. This implies that the corrected
estimate, (32.43), becomes:

xc,k = xp,k +Kkek︸ ︷︷ ︸
0

= xp,k (32.105)

In other words: The corrected estimate is equal to the predicted estimate (which was
calculated in the previous iteration of the Kalman Filter algorithm). Or: There is no
measurement-based update of the state estimate, which makes sense: The measurement
should be disregarded.

Another consequence of (32.104) is that the auto-covariance of corrected state estimate
error, (32.46), becomes equal to the auto-covariance of predicted state estimate error:

Pc,k = [I −KkC]Pp,k = Pp,k (32.106)

Such a Kalman Filter, i.e. a Kalman Filter which runs without the measurement-based,
corrected update of the state estimate, only with the model-based, predicted estimated, is

701

CHAPTER 32. STATE ESTIMATION WITH KALMAN FILTER

sometimes denoted a ballistic Kalman Filter3, or an open loop-Kalman Filter. In other
words: The Kalman Filter is just a process simulator.

In a Kalman Filter running in open loop, as described above, the estimated states will
certainly eventually drift from the real states since there is no correction of the estimates.
Still, the estimates, and in particular the estimate of the process measurement, may be
useful, for example for control purposes where the controller can continue operating despite
the absent real measurement. The alternative is turning the controller off since there is no
real measurement. In other words: A Kalman Filter (when running in absence of real
measurements) can increase the robustness of a control system.

3“Ballistic” because the estimated state develops uncorrected or unmanipulated, like a ball thrown into
space.

702

CHAPTER 32. STATE ESTIMATION WITH KALMAN FILTER

32.7 Problems for Chapter 32

Problem 32.1 Kalman Filter for a DC motor

Ch. 38.7 describes a DC motor. A mathematical model is given by (38.18).

1. The load torque L is to be estimated with a Kalman Filter. The speed S is measured. L
is assumed constant. Write a mathematical model for the Kalman Filter.

2. In the Kalman Filter algorithm, the measurement covariance R is needed. How can you
in practice obtain an estimate of R

3. Here is a Python program implementing a Kalman Filter for the DC motor:

http://techteach.no/control/python/kalman filter sim dc motor.py

L is changed from 0 to −1 at t = 5 s. Run the simulator. Do you think that the Kalman
Filter is working well?

4. With the Python program available above: Play with the parameter std w L (increase,
decrease) in the program. What is the impact of this parameter?

703

http://techteach.no/control/python/kalman_filter_sim_dc_motor.py

CHAPTER 32. STATE ESTIMATION WITH KALMAN FILTER

32.8 Solutions to problems for Chapter 32

Solution to Problem 32.1

1. Model for Kalman Filter:

S′ = [K(u+ L)− S] /T + w1 (32.107)

L′ = 0 + w2 (32.108)

Sm = S + v1 (32.109)

w1 and w2 are random process disturbances. v1 is random measurement noise.

Alternatively, using standard symbols:

x1
′ = [K(u+ x2)− x1] /T + w1 (32.110)

x2
′ = 0 + w2 (32.111)

y = x1 + v1 (32.112)

where:
x1 = S (32.113)

x2 = L (32.114)

y = Sm (32.115)

2. R can be calculated (estimated) as the variance of a data series of real speed
measurements.

3. Figure 32.8 shows the simulated responses. It seems that the Kalman Filter is working
well. The load torque L is estimated well in the sense that the constant L is estimated
correctly.

4. The parameter std w L is the standard deviation of the assumed process random
disturbance acting on L. The variance Q22 used in the Q matrix of the Kalman Filter is
therefore (std w L)ˆ2.

If you increase std w L (i.e., Q22 is increased), you tell the Kalman Filter that L is varying
much, and the Kalman Filter will increase the speed of the estimate (good), while the
estimate is more noisy (bad). This is confirmed in Figure 32.9 where std w L has been
increased from 0.05 to 0.5.

If you decrease std w L (i.e., Q22 is decreased), you tell the Kalman Filter that L is varying
little, and the Kalman Filter will decrease the speed of the estimate (bad), while the
estimate is less noisy (good). This is confirmed in Figure 32.10 where std w L has been
decreased from 0.05 to 0.005.

So, you should tune std w L (or Q22) as a compromise between fast & noisy estimation
(std w L large) and slow & smooth estimation (std w L small).

704

CHAPTER 32. STATE ESTIMATION WITH KALMAN FILTER

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
t [s]

0.05

0.00

0.05

[V
]

u

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
t [s]

0.2

0.1

0.0

[k
rp

m
] S

S_est

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
t [s]

1.0

0.5

0.0

[V
]

L
L_est

Figure 32.8: Problem 32.1: Kalman Filter with Q22 = 0.05.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
t [s]

0.05

0.00

0.05

[V
]

u

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
t [s]

0.2

0.1

0.0

[k
rp

m
] S

S_est

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
t [s]

1

0

[V
]

L
L_est

Figure 32.9: Problem 32.1: Kalman Filter with Q22 = 0.5.

705

CHAPTER 32. STATE ESTIMATION WITH KALMAN FILTER

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
t [s]

0.05

0.00

0.05

[V
]

u

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
t [s]

0.2

0.1

0.0

[k
rp

m
] S

S_est

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
t [s]

1

0

[V
]

L
L_est

Figure 32.10: Problem 32.1: Kalman Filter with Q22 = 0.005.

706

Part VIII

MODEL-BASED CONTROL

707

Chapter 33

How to test robustness with
simulations

This part of the book describes several model-based controllers. A model-based controller
contains the mathematical model of the process to be controlled. Of course, a process
model can never give a perfect description of a physical process. Hence, there are model
errors. The model errors are in the form of

• erroneous model structure, and/or

• erroneous parameter values.

So, the controller is based on more or less erroneous information about the process. If the
model errors are large, the real control system may behave quite different from what is
specified during the design. The control system may even become unstable.

A control system that is supposed to work in real life must be sufficiently robust. How can
you check if the system is robust (before implementation)? You can simulate the control
system. In the simulation you include reasonable model errors. How do you include model
errors in a simulator? By using different models in the control function and in the process
in the simulator. This is illustrated in Figure 33.1.

You may use the intial model, M0, in the control function, while you use a changed model,
M1, for the process. You must thoroughly plan which model errors (changes) that you will
make, and whether the changes are additive or multiplicative. A parameter, say K, is
changed additively if it is changed as

K1 = K0 +∆K (33.1)

A multiplicative change is implemented with

K1 = FK0 (33.2)

where the factor F may be set to e.g. 1.2 (a 20% increase) or 0.8 (a 20% decrease).

708

CHAPTER 33. HOW TO TEST ROBUSTNESS WITH SIMULATIONS

Control

function
Process

Model M0 Model M1

Process

measurement
Setpoint

Control

signal

Figure 33.1: Testing the control system with model errors. Models M0 and M1 are made
different by purpose.

Even if the process model is accurate, the behaviour of the controller can be largely
infuenced by measurement noise. Therefore, you get a more real picture if you also include
measurement noise in the simulator. Typically the measurement noise is a random signal1.

Finally, I will mention that there are control system design methods which ensures
roubustness of the control system. In the design phase you specify assumed maximum
model errors, together with performance specifications. The control function is typically a
non-standard controller, which have to be simplified before implementation. It is however
beyond the scope of this compendium to describe these design methods. More information
can be found in e.g. ?.

1Simulation tools as LabVIEW and Simulink contains signal generators for random signals.

709

CHAPTER 33. HOW TO TEST ROBUSTNESS WITH SIMULATIONS

33.1 Problems for Chapter 33

Problem 33.1 Model-based control of DC motor

Figure 33.2 shows a model-based speed control system of an electric motor.

PI controller

Speed
reference

Estimator of
load torque

PI controller
tuning with
Skogestad’s

method

Control
signal

Measured
speed

(contains
random

measurement
noise)

uSr S

Lest

Feedforward
controller

uf

Motor with speed
sensor (tachometer)

Measurement
lowpass filter

Figure 33.2: A model-based speed control system of an electric motor

The motor is controlled with an input voltage signal, u, and the rotational speed, S, is
measured with a tachogenerator which produces a voltage being proportional to the speed.

A proper mathematical model of the motor is the following differential equation:

S′ =
1

Tm
{−S +Km[u+ L]} (33.3)

L is equivalent load torque (represented in the same unit as the control variable, namely
voltage). L can be regarded as a process disturbance. Km is gain. Tm is time constant.
(Parameter values are given in Appendix 38.7, but these values are not needed in the
present problem.)

The control system is based on feedback control and feedforward control. The feedback
controller is a PI controller which is tuned using the Skogestad model-based tuning
formulas for a “time constant process”:

Kp =
Tm

KmTC
(33.4)

710

CHAPTER 33. HOW TO TEST ROBUSTNESS WITH SIMULATIONS

Ti = min [Tm, cTC] (33.5)

where TC is the specified closed-loop time constant. We set c = 2. Assume (for simplicity)
that it decided to use

Ti = Tm (33.6)

The feedforward controller is based on the motor model (33.3) from estimated load torque
Lest and speed reference Sr:

uf =
1

Km
TmS′

r + Sr − Lest (33.7)

Lest is estimated with an estimator (an observer or a Kalman Filter – which one of these
does not matter here), which uses the mathematical model of the motor to calculate the
estimate.

The feedback controller, the feedforward controller, and the estimator are model-based.
Hence, the whole control system is model-based.

Assume that you intend to test the robustness of the model-based control system against
model errors, and also that you want to see how the measurement noise is influencing the
behaviour of the control system. Unfortunately, you can not perform experiments on the
real motor. Instead you must use a simulated motor. Explain how you can do this
simulated experiments. Draw a block diagram similar to the one shown in Figure 33.2,
where you indicate which model parameters to use in the individual blocks. You can
assume that it is interesting to see if the control system is robust against model parameter
variations of ±20 %.

711

CHAPTER 33. HOW TO TEST ROBUSTNESS WITH SIMULATIONS

33.2 Solutions to problems for Chapter 33

Solution to Problem 33.1

Figure 33.3 shows the control system that can be used in a simulator (in e.g. Simulink or
LabVIEW).

PI controller

Speed
reference

Estimator of
load torque

PI controller
tuning with
Skogestad’s

method

Control
signal

Measured
speed

(contains
random

measurement
noise)

uSr S

Lest

Feedforward
controller

uf

Motor
model

Random
measurement

noise
(simulated)

n
Model

parameters:
Km1, Tm1

Model
parameters:

Km0, Tm0

Model
parameters:

Km0, Tm0

Model
parameters:

Km0, Tm0

Measurement
lowpass filter

Load
L

Figure 33.3: Control system

You can run the simulations with model parameters (indexed with 0 in the figure) in the
simulated motor that are different from the model parameters (indexed with 1 in the figure)
used in the feedback controller, the feedback controller and the estimator. Measurement
noise is included in the simulator using a proper random signal generator (such signal
generators exist in Simulink and LabVIEW).

Parameters Km0 and Tm0 are the parameters you assume are accurately known and
therefore use in the feedback controller, the feedback controller and the estimator.
Parameters Km1 and Tm1 are parameters you can use in the simulated motor when you
want to introduce model errors. You can for example systematically vary Km1 between

0.8Km0 ≤ Km1 ≤ 1.2Km0 (33.8)

and vary Tm1 between
0.8Tm0 ≤ Tm1 ≤ 1.2Tm0 (33.9)

and run simulations with each of the different parameter sets.

712

Chapter 34

Linear Quadratic (LQ) optimal
control

34.1 Introduction

Optimal control of a process means that the control function is designed so that a given
optimization criterion or performance index gets a minimal value. It is assumed that the
process can be described by a linear model, and that the criterion contains a quadratic
function of the state variables and the control variables.1 This type of optimal control is
therefore denoted Linear Quadratic control – or LQ control. The reference (setpoint) is
assumed to be zero in the basic LQ control problem, and hence the term LQ regulation or
LQR is also used. We will however consider a non-zero reference in this chapter, cf. Section
34.3.

A particular feature of the LQ controller is that it will stabilize any linear process!
However, you do not have a guarantee that is will stabilize any nonlinear process, even if
this process is linearizable. A simulation study should be made to check if the control
system works well under varying conditions, including model errors.

LQ control can be applied to both monovariable and multivariable processes. It turns out
that the control function is based on feedback from all the states of the process. If not all
the states can be measured, an observer or a Kalman Filter can be used to estimate the
states, and the controller then uses the estimated states as if they were measured. This
principle is denoted the certainty equivalence principle. It turns out that the control
function and the state estimator can be designed independently as long as the process is
linear. The principle of separate design of the controller and the estimator is denoted the
separation principle.

LQ controllers can be designed for continuous-time and for discrete-time systems, and for
stochastic systems (systems excited by random disturbances) and determinstic systems
(random noise is not taken into account in the controller design). I have chosen to describe

1The main reason why a quadratic criterion is used is that the control function is relatively easy to derive
and easy to implement :-)

713

CHAPTER 34. LINEAR QUADRATIC (LQ) OPTIMAL CONTROL

LQ control for deterministic continuous-time systems. Of course, in a practical
implementation you will (probably) need a discrete-time implementation of the controller,
and this will be described in this chapter.

LQ control is quite similar to Model-based Predictive Control (MPC), which has become an
important control function the last decades. Also MPC is based on a quadratic criterion.
However, MPC takes into account limitations in the control variables and the state
variables, hence making it somewhat more useful than LQ controller, but also much more
computational demanding to implement. MPC is described in Chapter 35.

34.2 The basic LQ controller

In basic LQ control it is assumed that the process to be controlled is given by the following
linear state space model

x′(t) = Ax(t) +Bu(t) (34.1)

The LQ controller brings the state x from any initial state x(0) to zero in an optimal way.
What is “optimal”? It is defined by the optimization criterion:

J =

ˆ t=∞

t=0

[
xT (t)Qx(t) + uT (t)Ru(t) + 2xT (t)Nu(t)

]
dt (34.2)

It is very common that the weight matrix N is a zero matrix (of proper dimension), and in
these cases the criterion is

J =

ˆ t=∞

t=0

[
xT (t)Qx(t) + uT (t)Ru(t)

]
dt (34.3)

N is assumed to be zero in the following.

Q and R are weight or cost matrices of the states and the control signal, respectively. Q
and R are selected by the user, and they are the tuning parameters of the LQ controller. Q
is a symmetric positive semidefinite matrix, and R is a symmetric positive definite matrix.

The criterion (34.2) gives you (the user) the possibility to punish large variations in the
states (by selecting a large Q) or to punish large variations in the control variable u (by
selecting a large R). It is fair to say that the LQ controller is a user-friendly controller
because the tuning parameters (Q and R) are meaningful, at least in the qualitative sense.

As an example, assume that the system has two state variables, x1 and x2, hence

x =

[
x1
x2

]
(34.4)

and one (scalar) control variable, u, and that the weight matrices are:

Q =

[
Q11 0
0 Q22

]
(34.5)

R = [R11] (34.6)

714

CHAPTER 34. LINEAR QUADRATIC (LQ) OPTIMAL CONTROL

The criterion J becomes

J =

ˆ t=∞

t=0

[
xTQx+ uTRu

]
dt (34.7)

=

ˆ t=∞

t=0

{[
x1
x2

]T [
Q11 0
0 Q22

] [
x1
x2

]
+ uRu

}
dt (34.8)

=

ˆ t=∞

t=0

{
Q11x

2
1 +Q22x

2
2 +R11u

2
}
dt (34.9)

Thus, J is a sum of quadratic terms of the state variables and the control variable.

It can be shown that the control function that gives J a minimum value is as follows

LQ controller:

u(t) = −G(t)x(t) (34.10)

In other words, the control signal is based on feedback from a linear combination of the state
variables. The controller gain G(t) (a matrix) is given by the Riccati equation which will
not be shown here. Figure 34.1 shows a block diagram of the control system.

-G Process

x0

xu

LQ-
controller

Figure 34.1: Control system with optimal LQ controller

In the above example the controller becomes

u(t) = −G(t)x(t) = −
[
G11(t) G12(t)

] [x1(t)
x2(t)

]
(34.11)

= − [G11(t)x1(t) +G12(t)x2(t)] (34.12)

It is common to implement the steady-state value G = G(t = ∞) of the controller gain:

Steady-state LQ controller:

u(t) = −Gx(t) (34.13)

G can be calculated offline, and in advance (before the control system is started).

G can be calculated from the following formulas:

G = R−1
(
BTP +NT

)
(34.14)

where P is the solution of the steady-state Riccati equation:

ATP + PA− (PB +N)R−1
(
BTP +NT

)
+Q = 0 (34.15)

715

CHAPTER 34. LINEAR QUADRATIC (LQ) OPTIMAL CONTROL

The Python Control Package (a guide to the package is in Appendix 42) has the function
lqr to calculate G:

(G, S, E) = control.lqr(A, B, Q, R, [N])

where:

• A and B are the model matrices in (34.1) in the form of 2D-arrays.

• Q, R, and N are the weight matrices in (34.2) in the form of 2D-arrays. It is common
that N is zero, and in that case, N can be omitted from the input argument list of the
lqr() function.

• G is the array of steady state LQ controller gain.

• S is the array of steady-state solution of the Riccati equation.

• E is the array of eigenvalues of the closed loop (feedback) control system.

Figure 34.2 illustrates the information what information is needed to compute the
steady-state LQ controller gain G.

Steady state
LQ

controller
gain
Gs

A

Q
R

B Gs

Transition matrix
Input gain matrix

State weight matrix
Control signal weight matrix

Figure 34.2: Information needed to compute the steady-state LQ controller gain, G.

Here are comments about the LQ controller:

• The reference is zero, and there are no process disturbances: These
assumptions seem somewhat unrealistic, because in real control systems the reference
is typically non-zero, and the disturbances are non-zero. Therefore, for the controller
to represent realistic control problems, the variables in (34.1) should actually be
regarded as deviation variables about some operating point. Then, how do you bring
the states to the operating point, so that the mean value control error is zero? By
enforcing integrators into the controller. This is described in detail in Section 34.3.

• Controllability: The process to be controlled has to be controllable. If it is not
controllable, there exists no finite steady-state value of the gain G. Controllability
means that there exists a control signal u(t) so that any state can be reached from
any initial state in finite time. It can be shown that a system is controllable if the
rank of the controllability matrix

Mcontrol =

[
B
...AB

...A2B
... · · ·

...An−1B

]
(34.16)

716

CHAPTER 34. LINEAR QUADRATIC (LQ) OPTIMAL CONTROL

is n (the order of A, which is the number of state variables).

• Non-measured states: If not all the states are measured, you can use estimated
states instead of measured states in the controller:

u(t) = −Gxest(t) (34.17)

where xest is the estimated state vector from a state estimator (observer or Kalman
Filter). Figure 34.3 shows a block diagram of the control system with state estimator.

State
estimator

w

yu

LQ-
controller

Process
with sensor

v
Disturbance

Measurement
noise

-G

xest

Measurement

Estimated
state variable

Figure 34.3: Control system with state estimator

• The eigenvalues of the control system: Assume that the controller is (34.17). By
combining this controller with the process model (34.1) we get the following model of
the control system (the closed-loop system):

ẋ = Ax+B (−Gx) (34.18)

= (A−BG)x (34.19)

The eigenvalues {s1, s2,...sn} of the control system are the eigenvalues of the
transition matrix (A−BG) in (34.19):

0 = det [sI − (A−BG)] (34.20)

= (s− s1)(s− s2) · · · (s− sn) (34.21)

= sn + an−1s
n−1 + · · ·+ a1s+ a0 (34.22)

• Stability of the control system: It can be shown that a LQ control system is
asymptotically stable.2 In other words, the eigenvalues of the control system are in
the left half of the complex plane.

• Tuning of the LQ controller: From the criterion (34.2) we can conclude that a
larger value of the weigth of one particular state variable causes the time response of
that state variable to become smaller, and hence the control error (deviation from

2Not a big surprise, since the controller minimizes the criterion J .

717

CHAPTER 34. LINEAR QUADRATIC (LQ) OPTIMAL CONTROL

zero) is smaller. But what should be the initial values of the weight matrices, before
they are tuned? One possibility is

Q = diag

{
1

|ximax |
2

}
(34.23)

where ximax is the assumed maximum value of state variable xi, and

R = diag

{
1

|ujmax |
2

}
(34.24)

where ujmax is the assumed maximum value of control variable uj .

• Pole placement design of the control system: Above it was stated that the
eigenvalues of the control system are the roots of the characteristic equation

0 = det [sI − (A−BG)] (34.25)

For most systems, the poles, {si}, of the system are the same as the eigenvalues. In
the following the term poles are used instead of eigenvalues. In pole placement design
of control systems the poles are specified by the user, and, assuming the controller has
the linear feedback structure as given by (34.13), it is usually possible to solve (34.25)
for the controller gain matrix G.

Example 34.1 LQ control of pendulum on cart

This example is about stabilization of a pendulum on a cart using LQ optimal control. A
mathematical model of the pendulum, and linearized models for the standing position and
for the hanging position, are given in Ch. 38.9.

Controller

Assume that the setpoint or reference of the cart is position 0 m, and the reference of the
pendulum is vertically up, i.e. at angle 0. A steady-state LQ controller designed at this
operating point is:

u = −Gx = − [G11x1 +G12x2 +G13x3 +G14x4] (34.26)

The controller output, u, is applied as the force F acting on the cart. Hence, the force is
calculated as a linear combination of the states of the system. The states are assumed to be
available via measurements. (Thus, there is a feedback from the measured states to the
process via the controller.)

If the reference of the cart is non-zero, rx1 , and the reference of the pendulum angle is
non-zero, rx3(=180o if vertically down), we can modify the controller (34.26) to become:

u = −Gx− [G11 (x1 − rx1) +G12x2 +G13 (x3 − rx3) +G14x4] (34.27)

The controller gain,
G = [G11, G12, G13, G14]

will be calculated using the lqr() function of the Python Control Package described earlier:

718

CHAPTER 34. LINEAR QUADRATIC (LQ) OPTIMAL CONTROL

(G, S, E) = control.lqr(A, B, Q, R, [N])

where A and B are the matrices in (38.50) corresponding to the pertinent operating point
(pendulum up; pendulum down), and Q is the state weight matrix and R is the control
weight matrix of the LQ(R) optimization criterion (34.3).

Q has the following form:

Q =


Q11 0 0 0
0 Q22 0 0
0 0 Q33 0
0 0 0 Q44

 = diag(Q11, Q12, Q13, Q14) (34.28)

Qii can be used as controller tuning parameters. R is

R = [R11] (34.29)

and is also used as tuning parameter. However, in this example, the scalar R11 can be set to
1 (because (34.3) can be scaled by dividing it by R11), leaving Qii as the only tuning
parameters.

Simulations

The following Python program implements the controller tuning, i.e. calculating the G
matrix in (34.27), and simulates the cart with pendulum including the controller.

http://techteach.no/control/python/sim pendulum on cart lqr.py

Note: In the simulations, the non-linear model (38.35)-(38.38) is used to represent the real
cart with pendulum. The linear model (38.50) is used only for controller tuning.

In the program, the code cell entitled Selection of mode contains the variable op mode
which can be set to select between standing up and hanging down position of the pendulum.

Pendulum up:

Figure 34.4 shows simulated responses where the pendulum angle reference is rx3 = 0 deg =
0 rad, and the cart position reference rx1 is varying. The initial pendulum angle is 10 deg.
The weight matrix Q is set to Q = diag(100, 0, 100, 0), and R11 = 1. The control system
works well: The cart follows well the varying position reference, and the pendulum is
stabilized upwards.

Pendulum down:

Figure 34.5 shows simulated responses where the pendulum angle reference is rx3 = 180 deg
= π rad, and the cart position reference rx1 is varying.

719

http://techteach.no/control/python/sim_pendulum_on_cart_lqr.py

CHAPTER 34. LINEAR QUADRATIC (LQ) OPTIMAL CONTROL

0 5 10 15 20 25 30 35 40
t [s]

0.00

0.25

0.50

[m
]

r_x1
x1

0 5 10 15 20 25 30 35 40
t [s]

0

10

[d
eg

] r_x3
x3

0 5 10 15 20 25 30 35 40
t [s]

0

5

10

[N
]

u

Figure 34.4: Simulated responses for the cart with pendulum with LQ control. The pendulum
is controlled to a standing position, while the cart position is varied.

0 5 10 15 20 25 30 35 40
t [s]

0.00

0.25

0.50

[m
]

r_x1
x1

0 5 10 15 20 25 30 35 40
t [s]

170

180

[d
eg

]

r_x3
x3

0 5 10 15 20 25 30 35 40
t [s]

0

1

[N
]

u

Figure 34.5: Simulated responses for the cart with pendulum with LQ control. The pendulum
is controlled to a hanging position, while the cart position is varied.

The initial pendulum angle is 170 deg. The weight matrix Q is set to

720

CHAPTER 34. LINEAR QUADRATIC (LQ) OPTIMAL CONTROL

Q = diag(100, 0, 100, 0), and R11 = 1. The control system works well: The cart follows well
the varying position reference, and the pendulum is stabilized upwards.

[End of Example 34.1]

34.3 LQ controller with integral action

34.3.1 Introduction

The basic LQ controller described in Section 34.2 does not have integral action. If process
disturbances are prevalent, the process variables may not reach their setpoints, due to the
lacking integral action of the controller. Let us include integral action in the controller!

34.3.2 Including integrators in the controller

Figure 34.6 shows a block diagram of the control system with integrators included in the
controller.

w

yu

Optimal controller
with integral action

Process
with sensor

v

Process
disturbance

Measurement
noise

-G

x

rx

xr

xint
Con-

catenate

Split

xtot

Integrator Gain

e =

x

xint
•

Figure 34.6: Optimal control system with integrators in the controller. e is the contol error.

The integrator block actually represents a number of single integrators, as many as there
are reference variables.

Example 34.2 LQ controller with integrator

Figure 34.7 shows the detailed structure of a process with two state variables being
controlled by a LQ controller with integrator.

721

CHAPTER 34. LINEAR QUADRATIC (LQ) OPTIMAL CONTROL

y = x1
u

Optimal controller
with integral action

Process

-G11

r

Integrator

e x2

-G21

-G31

x2x1

u = -Gx
x3

Figure 34.7: Example 34.2: A process with two state variables being controlled by a LQ
controller with integrator

[End of Example 34.2]

The output of the integrators are regarded as augmentative state variables, xint. These
state variables are given by the following differential equation(s):

x′int = rx − xr (34.30)

which corresponds to this integral equation:

xint(t) =

ˆ t

0
(rx − xr) dτ (34.31)

Here, rx is the reference vector for the state vector xr which consists of those state variables
among the process state vector x that are to track a reference. (In the above equations it is
assumed that xr is directly available from measurements. If xr is taken from a state
estimator, xr,est is used instead of xr, of course.)

The total state vector that is used to design the LQ controller is the state vector consisting
of the original process state vector augmented with the integrator state vector:

xtot =

 x
· · ·
xint

 (34.32)

The control variable u is given by the control function

u = −Gxtot = −G

 x
· · ·
xint

 (34.33)

Note: When writing up the state space model that is used for designing the LQ controller,
you can disregard the reference rx, i.e. you set it to zero because it is not taken into
account when calculating the controller gain G. But of course it must be included in the
implemented controller which is given by (34.33), with xint given by (34.35).

722

CHAPTER 34. LINEAR QUADRATIC (LQ) OPTIMAL CONTROL

34.3.3 Discrete-time implementation of the LQ controller

In a computer-based implementation of a LQ controller you will probably need to discretize
the continuous-time integrator (34.30). This can be done using Backward or Forward
discretization. The Backward method is the best with respect to numerical accuracy, and it
can be applied to (34.30) without any problems because it is a linear differential equation.
Applying Backward discretization on (34.30) gives

x′int,k ≈
xint,k − xint,k−1

Ts
= rx,k − xr,k (34.34)

Solving for xint,k gives the final integrator algorithm ready for being programmed:

xint,k = xint,k−1 + Ts [rx,k − xr,k] (34.35)

A practical issue of any controller having integral action is anti windup, which is a feature
to prevent the integrator to “wind up” – or increasing its output continually – while the
total control signal is at its saturation limit, either the maximum or the minimum limit. If
anti windup is not implemented, the control error may become unnecessarily large for an
unnecessarily long time.

723

CHAPTER 34. LINEAR QUADRATIC (LQ) OPTIMAL CONTROL

34.4 Problems for Chapter 34

Problem 34.1 LQ control of ship

See Figure 4.20 which shows a ship. In this problem we concentrate on the so-called surge
(forward-backward) direction, i.e., the movements in the other directions are disregarded.
The wind acts on the ship with the force Fw which is a function of the wind attack angle ϕ
and the wind speed Vw. This function is assumed to be known for a given ship. The
hydrodynamic damping force Fh (damping from the water) is proportional to the square of
the difference between the ship speed, ẏ, and the water current speed uc. The
proportionality constant is D.

Applying Newtons’s Law of Motion we obtain the following mathematical model of the
surge motion:

my′′ = −D|y′ − uc|
(
y′ − uc

)︸ ︷︷ ︸
Fh

+ Fw(ϕ, Vw) + Ft (34.36)

(Model parameter values are given in Appendix 38.2, but these values are not needed in the
present problem.)

This problem is about ship position control using LQ optimal control. Assume that the
water current uc has a known value at any instant of time (in a practical application it may
have been estimated with a state estimator, e.g. a Kalman Filter). Also, assume that the
wind force Fw has a known value at any instant of time (with a mathematical wind model
the wind force can be calculate from information about the wind attack angle ϕ and the
wind speed Vw provided by the sensor). We also assume that the ship position y and speed
ẏ are known at any instant of time.

1. Write the ship model as a (nonlinear) state space model using x1 = y and x2 = y′ as
state variables. Ft is control variable.

2. The ship position will be controlled with LQ control with integral action. Figure 34.8
shows a block diagram of the ship.

y = x1u
Ship

y = x2

Fwuc

Figure 34.8: Block diagram of ship

Enhance this block diagram so that it shows the control system in detail, including
the feedbacks and the integrator of the controller.3 You can assume that the controller
gains have known values (calculation of these gains is the focus of a following task).

3Feedforward from wind force Fw and water current uc is an enhancement of the control system, but we
will not include feedforward in this problem.

724

CHAPTER 34. LINEAR QUADRATIC (LQ) OPTIMAL CONTROL

3. Augment the state space model found in Problem 1 above with the state variable of
the integral part of the controller. (This augmented state space model is needed in the
following problem.)

4. Figure 34.2 shows the matrices needed to compute the steady-state LQ controller gain
Gs (using a proper function in e.g. Matlab or LabVIEW). Find the matrices A and B
(by linearizing the augmented state space model found in the problem above). Also,
write in detail the weight matrices Q and R (the matrix elements) as functions of the
allowable maximum values of the proper variable in the model (you do not have to
specify these maximum values).

5. Suppose you want to reduce the fuel consumption (less aggressive control). How can
you adjust some of the weights of the LQ criterion to obtain this?

6. Suppose you want to increase the damping in the control system. In other words: You
want to limit (reduce) the speed of the ship. How can you adjust some of the weights
of the LQ criterion to obtain this?

725

CHAPTER 34. LINEAR QUADRATIC (LQ) OPTIMAL CONTROL

34.5 Solutions to problems for Chapter 34

Solution to Problem 34.1

1.

x′1 =

f1︷︸︸︷
x2 (34.37)

x′2 =

f2︷ ︸︸ ︷
1

m
[−D|x2 − uc| (x2 − uc) + Fw(ϕ, Vw) + Ft] (34.38)

2. See Figure 34.9.

Optimal controller
with integral action

-G11

r

Integrator

e

-G21

-G31

x2x1

u = -Gx
x3 y = x1u

Ship

y = x2

Fwuc

Figure 34.9: State feedback control system

3. See Figure 34.9. The state-variable of the integator is defined by

x′3 = r − x1 (34.39)

The augmentet (total) state space model becomes

x′1 =

f1︷︸︸︷
x2 (34.40)

x′2 =

f2︷ ︸︸ ︷
1

m
[−D|x2 − uc| (x2 − uc) + Fw(ϕ, Vw) + Ft] (34.41)

x′3 =

f3︷ ︸︸ ︷
r − x1 (34.42)

4. Matrices A and B are found by linearization:

A =


∂f1
∂x1

∂f1
∂x2

∂f1
∂x3

∂f2
∂x1

∂f2
∂x2

∂f2
∂x3

∂f3
∂x1

∂f3
∂x2

∂f3
∂x3

 =

 0 1 0

0 −2D
m |x2 − uc| 0

0 0 −1

 (34.43)

726

CHAPTER 34. LINEAR QUADRATIC (LQ) OPTIMAL CONTROL

B =

 ∂f1
∂u
∂f2
∂u
∂f3
∂u

 =

 0
1
m
0

 (34.44)

(Element A(2, 2) can be found by resolving the absolute value by first assuming
(x2 − uc) is positive and then assuming (x2 − uc) is negative, then taking the partial
derivative, and finally expressing the results of the partial differentiations compactly.)

State weight matrix:

Q =

 Q11 0 0
0 Q22 0
0 0 Q33

 =


1

|x1max |
2 0 0

0 1
|x2max |

2 0

0 0 1
|x3max |

2

 (34.45)

State weight matrix:

R =
[
R11

]
=
[

1
|umax |

2

]
(34.46)

5. To reduce the fuel consumption (less aggressive control) you can increase the cost
(weight) of the control signal, i.e. increase R11.

6. To reduce the speed of the ship you can increase the cost (weight) of the speed, i.e.
increase Q22.

727

Chapter 35

Model Predictive Control (MPC)

35.1 Introduction

Model predictive control (MPC) is the dominant model-based control method. In year
2002, Maciejowski stated that “MPC is the only advanced control technique that is more
advanced than standard PID to have a significant and widespread impact on industrial
process control” Maciejowski (2002). It is fair to say that this statement still holds.
However, it will be exciting to see what will be the role of artifical intelligence (AI) in
control of technical and industrial systems. Will it replace MPC and PID control?

The history of MPC may be traced back to Dynamic Matrix Control (DMC) method
implemented by Cutler and Ramaker at Shell Oil in 1973 Cutler & Ramaker (1980). A
standard overview over MPC technology is given in Qin & Badgwell (2003). A more recent
overview is given in Lee (2011).

MPC is available in various professional and industrial software tools, e.g. DeltaV Predict
(Emerson Process), 800xA APC (ABB), PCS7 (Siemens), MPC Toolbox of Matlab and
Simulink (Mathworks), and Control Design Toolkit of LabVIEW (National Instruments).

As a mathematical problem, MPC and MHE are almost identical: Both exploit a
mathematical model which is run (basically simulated) over a time horizon. However, they
can also be regarded as opposites of each other: MPC looks into the future, while MHE
looks into the past. And, in MPC, the process measurement is an input (to the MPC), and
the control signal is an output, while in MHE, the situation is opposite – the process
measurement is an output (from the MHE), and the control signal is an input.

MPC exists in different versions. Here, nonlinear MPC is presented. The term “nonlinear”
is used because the underlying mathematical model of the process to be controlled, is a
nonlinear state space model. The model may be multivariable and may contain time delays.
Nonlinear MPC can of course be applied to linear models, too, since linear state space
models are just a special case of nonlinear state space models.

728

CHAPTER 35. MODEL PREDICTIVE CONTROL (MPC)

35.2 The MPC method

35.2.1 The principle of MPC

The principle of MPC is continuously calculation of the optimal (“best”) control signal
sequence over a future or prediction time horizon using the following information:

• A process model. The model is used by the optimizer to simulate the process over the
prediction horizon.

• The current process state as obtained from measurements and/or state estimates from
a state estimator which typically is in the form of a Kalman Filter.

• Setpoint values and process disturbance values known over the prediction horizon.

• Constraints (maximum and minimum values) on the control signal, the process
variable, and state variables.

It can be claimed that MPC resembles closely how a human controls a process, like driving
a car: The driver looks ahead to take into account future disturbances like other cars,
pedestrians and other obstacles, and future speed setpoints as shown on the signs ahead,
while manipulating the various actuators (throttle, break, steering wheel, gear).

The predictions/simulations in the MPC can be based on any model that is representative
of the process to be controlled. In the MPC presented in this chapter, the following discrete
time nonlinear state space model is used.

xk+1 = f(xk, uk,, dk, ·) (35.1)

yk = g(xk, ·) (35.2)

x is the state vector, y is the process output variable vector, u is the control signal vector,
and d is the process disturbance vector. f and g are nonlinear (or linear) vectorial functions.

In the MPC presented here, no linearization of the model is needed. So, it is a “nonlinear
MPC”. There are MPC algorithms assuming a linear model – “linear MPC”, for example
the MPC available in LabVIEW, which requires linearization of the process model used by
the MPC. The linear model assumed is on the the following form:

xk+1 = Axk +B1uk +B2dk (35.3)

yk = Cxk +Duk (35.4)

Nonlinear MPC can be used with linear models too, since a linear model (35.3)-(35.4) is
just a special case of a nonlinear model (35.1)-(35.2).

Figure 35.1 illustrates the principle of MPC. The predicted values are found by successive
simulations over the prediction horizon performed by the optimizer until the optimal
solution (optimal control signal sequence) has been found. The optimal control sequence or
array (or matrix in the multivariable case), uopt is calculated as the solution of an

729

CHAPTER 35. MODEL PREDICTIVE CONTROL (MPC)

Timetk tk+1 tk+Ntk+(N-1)

y (predicted by model)

uopt (predicted)

d (assumed)

 x(tk) (known from

meas or estimator)

Prediction horizon (N+1 points of time)

Main aim is to calculate

uopt(tk) = uopt(1)
= ?

Present

point of

time Future

ysp (known)

Ts

 y(tk) (known from

meas or estimator)

 d(tk) (known from meas

or estimator or assumed)

x (predicted by model)

Figure 35.1: The principle of MPC.

optimization problem where typically the future (predicted) control errors and control
signal changes are minimized in a least squares sense. And from this optimal future control
sequence, the first element is picked out and applied as control signal to the process, i.e.

uk = uopt(1) (35.5)

35.2.2 The optimization objective function of MPC

The objective function, or optimization criterion, to be minimized in MPC may be stated as
follows:

min
U

J (35.6)

J is the objective function. It is defined below. U is a matrix containing the r control
signals at each point of time of the prediction horizon:

U =
[
uk, uk+1, · · · , uk+(N−1), uN

]

=


u(1)k u(1)k+1 · · · u(1)k+(N−1) u(1)k+N

u(2)k u(2)k+1 · · · u(2)k+(N−1) u(2)k+N
...

... · · ·
...

...
u(r)k u(r)k+1 · · · u(r)k+(N−1) u(r)k+N


(35.7)

The number of optimization variables is the number of elements of U . The number is
r(N + 1).

U can be denoted the total control signal matrix. U will be the solution of the MPC

730

CHAPTER 35. MODEL PREDICTIVE CONTROL (MPC)

optimization problem. From this U ,

uk =


u(1)k
u(2)k

...
u(r)k


is used as the control signal applied to the process actuator.1

The objective function to be minimized, cf. Eq. (35.6), is

J =

k+N∑
i=k

(
∥e∥ 2

Ce
+ ∥du∥ 2

Cdu

)
(35.8)

where expressions like ∥·∥M means M -quadratic norm. In more detail, Eq. (35.8) is

J =

k+N∑
i=k

[
ei

T Ceei + (du)i
T Cdu(du)i

]
(35.9)

The symbols in Eq. (35.9) are described below.

The control error vector:

ei =

 e(1)i
...

e(m)i

 (35.10)

where e(j)i is the control error related to process output no. j at time-index i:

e(j)i = y(j)spi − y(j)i (35.11)

The control signal change vector:

dui =

 du(1)i
...

du(r)i

 (35.12)

where du(j)i is the control signal change relative to the control signal at the previous point
of time:

du(j)i = u(j)i − u(j)i−1 (35.13)

The matrixes Ce and Cdu in Eq. (35.8) are cost (or weight) matrixes which typically are set
as constant matrixes:

Ce =

 Ce(1, 1) 0
. . .

0 Ce(m,m)

 (35.14)

Cdu =

 Cdu(1, 1) 0
. . .

0 Cdu(r, r)

 (35.15)

1You can represent U with a Matlab matrix in fmincon. So it is not necessary to transform this matrix to
an array for fmincon.

731

CHAPTER 35. MODEL PREDICTIVE CONTROL (MPC)

Ce and Cdu are tuning factors in MPC.

Now, Eq. (35.9) can be written in detail as

J =

k+N∑
i=k

{[
Ce(1, 1) e(1)i

2 + · · ·+ Ce(m,m) e(m)i
2
]

(35.16)

+

[
Cdu(1, 1)

(
du(1)

dt

)
i

2

+ · · ·+ Cdu(r, r)

(
du(r)

dt

)
i

2
]}

(35.17)

Roughly said, MPC produces the control signal that gives the optimal comprimise between
control errors and control signal changes. It is not possible to obtain both very small
control errors and very small control signal changes. Hence, a comprimise will always exist.

Constraints

You may include constraints in the MPC optimization problem: Typically, upper and lower
bounds are set for the control signal. Furthermore, you can set limits on the process output
variable and on certain state variables. For example, if the liquid level in a tank is one state
variable, it is natural to define a maximum level limit and a minimum level limit.

Guessed value of U

When solving the optimization problem, it is necessary that the optimizer is supplied with a
good guess of the optimization variable, U . As a good value of Uguess at time index k, here
denoted Uguessk , we can use the optimal solution found at time index k − 1 (the previous
point of time):

Uguessk = Uoptk−1
(35.18)

35.2.3 Control signal blocking

Control blocking, or control grouping, can be used to reduce the number of optimization
variables. Control blocking is to fix the control signal in time-blocks in the predition
horizon, see Figure 35.2. My experience from is that using as small number as 3 intervals
may not detoriate the performance of the MPC. I have even tried using only one interval
(i.e. constant u throughout the horizon), with acceptable performance. Control blocking, as
other settings, should be tested in simulations before being applied to a real process.

35.2.4 Tuning factors of MPC

The main tuning factors of MPC are:

732

CHAPTER 35. MODEL PREDICTIVE CONTROL (MPC)

Timetk tk+1 tk+Ntk+(N-1)

Prediction horizon (N+1 points of time)

= ?

Future

Ts

tk tk+1 tk+Ntk+(N-1)

Control blocking: 3 intervals of fixed u.

Ts

u

u

No blocking: 9 intervals of u.

= ?

Figure 35.2: Control blocking

• The prediction horizon length, N . The larger N , the better ability to take into
account future setpoints and disturbances. A drawback of selecting a large N, is the
increase of the computational demand which is due to the more challenging
optimization problem (more optimization variables to be optimized) and longer
simulations. A typical value of N for simple applications seems to be between 5 and
50, assuming an appropriate time step length (which may be e.g. 1/5 of smallest time
constant-like dynamics represented by the model). To reduce the computional burden,
control signal blocking can be considered, as explained earlier in this section.

• The control error cost matrix, Ce. Increasing the value of Ce(j, j), forces the pertinent
control error, e(j), to become smaller2, but at the expense of larger variation in the
control signal. Initially, you may try setting Ce(j, j) equal to the square of inverse of
the maximum expected absolute value of the control error:

Ce(j, j) =
1

[|e(j)|max]
2 (35.19)

This implies a normalization of the error terms in the objective function. For
example, the first error term in Eq. (35.16) becomes

Ce(1, 1)e(1)
2
i =

e(1)2i
[|e(1)|max]

2

Then, you may try using only Cdu as a tuning parameter (cf. next item). In the scalar
case, i.e. m = 1 and r = 1, you may simply set Ce = 1 since it is only the ratio
between Ce and Cdu that counts for the tuning.

2The higher cost of something, the less of it is bought/used.

733

CHAPTER 35. MODEL PREDICTIVE CONTROL (MPC)

• The control signal rate of change cost matrix, Cdu,. Also the terms in Cdu may be
normalized before the tuning. Initially, you may try setting Cdu(j, j) equal to the
square of inverse of the maximum rate of change of the control signal:

Cdu(j, j) =
1[∣∣∣du(j)dt

∣∣∣
max

]2 (35.20)

Increasing the cost gives smoother control signal (less change). Decreasing gives more
abrupt changes in the control signal.

35.2.5 The need for a state estimator

The optimizer in MPC uses successive simulations for the prediction. For the simulations to
become accurate, it is necessary that the initial state of the simulations are close to the
present state, xk, of the process to be controlled. Typically, not all the states are measured,
and if so, a state estimator – most often a Kalman Filter – is used to provide an estimate of
xk. Even if all the states are estimated, state estimator can be useful for several reasons:

• The estimates are typically less noisy than the (raw) measurements.

• If a process sensor fails, and this failure is detected, the state estimator may be
configures to continue providing a representative state estimate despite the lack of
measurement-based update or correction of the estimate. This enhances the
robustness of the MPC.

• A state estimator may be used to estimate disturbances and/or model parameters.
This may increases the robustness of the MPC as the process model underlying the
MPC becomes more accurate. Disturbances and model parameters can be estimated
as augmented state variables modelled as constants, i.e. as state variables having
time-derivatives equal to zero but with an additive random disturbance/noise. This
augmentation is explained in detail on Page 732.

Example 35.1 Model-predictive control with the slsqp optimizer of Python/Scipy

This example is about MPC of a simulated air heater lab station. The air heater and a
mathematical model is presented in Appendix 38.5. The dynamics of the air heater is “time
constant with time delay”.

The MPC is implemented in a Python program with the slsqp optimizer of the Scipy
package of Python. The MPC has the following features:

• Time step 0.5 s.

• Prediction horizon: 8.0 s.

• Number of blocks (groups) of the control signal (u): 3.

734

CHAPTER 35. MODEL PREDICTIVE CONTROL (MPC)

• Constraint on the temperature (state): 27 ≤ T ≤ 31 ◦C, implemented in the
constraints function which is an argument of slsqp().

• Constraints on the control signal u: 0 ≤ u ≤ 5 V, defined as bounds on the
optimization variable (u). These bounds are arguments of slsqp().

• Constraint on the rate of change of the control signal: −0.25 ≤ du/dt ≤ 0.25 V/s,
implemented in the constraints function which is an argument of slsqp().

• Cost: Ce = 1, and Cdu = 20.

• An Extended Kalman Filter which estimates an input disturbance d, which is used by
the MPC.

• Simulation start time = 0 s. Stop time = 300 s.

The simulation scenario is:

• Tsp is initially constant, then a step, then a ramp, then a sinusoid, and finally
constant. During a simulation time interval, the setpoint is given a value above the
constraint of T , to demonstrate the ability of the MPC to take the constraints of T
into account.

• d is changed as a step during the simulation, to demonstrate the ability of the Kalman
Filter to estimate a changing disturbance. The estimate, dest, is used as a “soft
measurement” of d by the MPC.

The Python program below implements the MPC.

http://techteach.no/control/python/mpc airheater.py

In the program, the user can set the value of the variable cont plot to select between
continuous (online) plot (cont plot = 1) and batch (offline) plot (cont plot = 0).

Figure 35.3 shows the results with the MPC applied to the simulated air heater.

Comments to the results shown in Figure 35.3:

• Diagram upper left : The tracking of Tsp is excellent where there are no change in d
and no active constraints on T . The constraint on T is respected by the MPC, except
a small disrespect after the step change of d, which is due to the fact that the MPC
uses dest and not the true value d when calculating the optimal u.

• Diagram upper right : The upper bound on u is respected by the MPC, see around
t = 60 s. Note that the MPC starts increasing the control signal before the point of
time of the setpoint change, see around t = 100 s. This demonstrates the predictive
nature of the MPC.

735

http://techteach.no/control/python/mpc_airheater.py

CHAPTER 35. MODEL PREDICTIVE CONTROL (MPC)

0 50 100 150 200 250 300
t [s]

26

27

28

29

30

31

32

33

34

[d
eg

 C
]

T_sp = red
T = blue
T_env = cyan
T bounds

0 50 100 150 200 250 300
t [s]

1

0

1

2

3

4

5

6

[V
]

Control signal u
u bounds

0 50 100 150 200 250 300
t [s]

4

3

2

1

0

1

[V
]

d_est
d

0 50 100 150 200 250 300
t [s]

0.4

0.2

0.0

0.2

0.4
[V

/s
]

du_dt
du_dt bounds

Figure 35.3: Example 35.1: Control of the simulated air heater temperature with MPC.

• Diagram lower left : The Kalman Filter estimates d correctly in steady state, but
there is (of course) an estimation error in the transient phase.

• Diagram lower right : The constraints on du/dt are respected by the MPC, except a
disrespect around t = 60 s, which is which is due to the fact that the MPC uses dest
and not the true value d when calculating the optimal u.

[End of Example 35.1]

736

CHAPTER 35. MODEL PREDICTIVE CONTROL (MPC)

35.3 Problems for Chapter 35

Problem 35.1 MPC for ship position control

See Problem 34.1 which is about positional control of a ship. In that problem the position
is controlled with LQ control. Now, assume MPC instead of LQ control. The state variables
are x1 = y and x2 = ẏ. The control variable is Ft.

1. Assume that you want to make the control system more sluggish so that the positional
control error is allowed to become larger. (One possible motivation may be that tight
position control is not required for a period, for example if the ship is parked, waiting
for a certain operation to be initiated.) Which parameter of the criterion is proper for
adjustment, and should you increase of decrease that parameter?

2. The thruster force Ft has of course a positive limit and a negative limit (assuming that
the thruster can rotate both directions). Can the MPC algorithm take these limits
into account when it calculates the optimal thruster force to be applied to the ship?

Problem 35.2 Hierarchical control with MPC and PID

MPC may be used for direct manipulation of the control variables. MPC can also be used
in a hierarchic control system. Figure 35.4 shows using MPC in outer control loop while
PID controllers are used in inner control loops. This control structure is similar to a
conventional control structure frequently used in industry – which?

MPC

PID
1

Process
(plant)PID

2

r1MPC

rPID1

y1

y2r2MPC rPID2

u1

u2

Figure 35.4: MPC in outer control loop while PID controllers are used in inner control loops

Suggest concrete examples of r1MPC , rPID1 , and u1 (select any application you want).

737

CHAPTER 35. MODEL PREDICTIVE CONTROL (MPC)

35.4 Solutions to problems for Chapter 35

Solution to Problem 35.1

1. The optimization criterion is

J =

Np∑
k=0

{
Q1 [e1,k]

2 +Q2 [e2,k]
2 + ...+Qn [en,k]

2
}

+

Nc∑
k=1

R1

{
[∆u1,k]

2 +R2 [∆u2,k]
2 + ...+Rr [∆ur,k]

2
}

(35.21)

The state variables are x1 = y and x2 = y′. Thererfore, the error e1 is the position
control error. To allow for a larger e1 the cost or weight of e1 – which is Q1 – should
be decreased.

2. Yes, MPC takes into account specific limits of control variable(s) when calculating the
optimal control signal.

Solution to Problem 35.2

Cascade control.

r1MPC may be level of a tank. rPID1 may be flow reference (setpoint) to a flow PI(D)
controller. u1 may be control signal to a control valve.

738

Chapter 36

Inverse dynamics control

36.1 Introduction

Inverse dynamics control is a model-based control method which can be applied to
nonlinear multivariable prosesses. 1 It is assumed that the model is a (nonlinear) state
space model. The value of each of the state variables and process disturbances must be
available at any instance of time – either from measurements or from an estimator (as a
Kalman Filter).

Inverse dynamics control has some alternative names, namely feedback linearization,
nonlinear decoupling, and computed torque control . The latter is used when the control
method is used for position control of robotic systems, cf. Section 36.3.

Note: The version of the inverse dynamics control presented in this chapter assumes that
the process has no time delay.

The control function consists of three main parts, cf. Figure 36.1.

• A decoupler and linearizer which is based on the process model and the instantaneous
values of the states and the disturbances.

• A multiloop PID controller which is designed for the decoupled linear process.

• A feedforward controller which is designed for the decoupled linear process.

The following sections present inverse dynamics control for two different kinds of prosesses:

• First order processes, Section 36.2.

• Second order processes, Section 36.3.

1The method can, of course, be applied also to linear processes and monovariable processes.

739

CHAPTER 36. INVERSE DYNAMICS CONTROL

y

y(0)

f

B

Multi-loop

PI(D)-

contr.

ry uzpi

zff

e z

Feedback

Inverse dynamics controller Process

Decoupler

and

linearizer

Feed-

forward

contr.

Figure 36.1: An overall block diagram of the inverse dynamics controller.

36.2 Inverse dynamics control of first order processes

36.2.1 The process model

It is assumed that the process model is a state space model on the following form:

y′ = f(y, d) +B(y, d) · u (36.1)

or, simpler:
y′ = f +Bu (36.2)

x is the state vector, d is the disturbance vector, and u is the control vector. f is a vector of
scalar functions, and B is a matrix of scalar functions. Note that the control vector u is
assumed to appear linearly in the model.

Figure 36.2 shows a block diagram representation of the process model (36.2).

y

y(0)

f

B
u

1/s

Figure 36.2: A block diagram representation of the process model (36.2).

The reference (or setpoint) of y is denoted ry.

740

CHAPTER 36. INVERSE DYNAMICS CONTROL

We can derive the control function “graphically” as shown in Figure 36.3. The decoupler

y

y(0)

f

BB-1

f

Multi-

loop

PI-contr.

ry

d/dt

uzpi

zff

e z

Feedforward controller

designed for y’ = z

Feedback

Controller Process

Decoupler and

linearizer

(ry)’

1/s

Decoupled and linearized process with

transfer function y(s)/z(s) = 1/s (integrator), or: y’ = z

Tuned for integrator

y’ = z

Figure 36.3: Block diagram of the control system based on feedback linearization.

and linearizer creates the following model relating the transformed control signal z and the
process output y:

y′ = z (36.3)

which are actually n decoupled or independent integrators (n is the number of state
variables), because y(t) =

´ t
0 z dτ . The transfer function from z to y is

y(s)

z(s)
=

1

s
(36.4)

We can denote the integrator (36.3) as the transformed process.

We will now derive the control function for this transformed process, and thereafter derive
the final control function. How can you control an integrator? With PI feedback and
feedforward!

36.2.2 PI tuning

The (multiloop) feedback PI controller is

zfb = Kce+
Kc

Ti

ˆ t

0
edτ (36.5)

where e is the control error:
e

def
= ry − y (36.6)

741

CHAPTER 36. INVERSE DYNAMICS CONTROL

In (36.5), the coefficients are are actually matrices:

Kc =


Kc1 0 · · · 0
0 Kc2 · · · 0
...

...
. . .

...
0 0 · · · Kcn

 (36.7)

Kc

Ti
=


Kc1
Ti1

0 · · · 0

0
Kc2
Ti2

· · · 0

...
...

. . .
...

0 0 · · · Kcn
Tin

 (36.8)

We can use the Skogestad method to tune Kcj and Tij . The process to tune for is an
integrator process with integrator gain Ki = 1 and zero time delay, cf. Ch. 14.8.2.2, giving
the following PI settings:

Kcj =
1

TCj

(36.9)

Tij = 2TCj (36.10)

where TCj is the specified time constant of feedback loop no. j.

36.2.3 Feedforward controller

In addition to the PI feedback action the controller should contain feedforward from the
reference ry to get fast reference tracking when needed (assuming the reference is varying).
The feedforward control function can be derived by substituting the process output y in the
process model (36.3) by ry and then solving for y, giving:

zff = ry
′ (36.11)

If the setpoint is varied abruptly (but you may vary it smoothly), a lowpass filtered can be
used before the time derivative is calculated.

36.2.4 The resulting control signal

From Figure 36.3 we see that the controller function for the transformed process (36.3) is
the sum of the feedback control function and the feedforward control function derived above:

z = zpi + zff (36.12)

= Kce+Ki

ˆ t

0
edτ︸ ︷︷ ︸

zpi

+ ry
′︸︷︷︸

zff

(36.13)

742

CHAPTER 36. INVERSE DYNAMICS CONTROL

Also from Figure 36.3, we see that the resulting controller function, that is, the formula for
the control vector u, is:

u = B−1 (z − f) = B−1 (zpi + zff − f) (36.14)

zpi and zff are shown in (36.13).

36.2.5 About the resulting control system

Here are some characteristics of the control system:

• The controller is model based since it contains f and B from the process model.

• Since the process disturbance is an argument of f and/or B the controller implements
feedforward from the disturbance. (It also implements feedforward from the reference,
due to the term (ry)

′ in the controller.)

• The control system consists of n decoupled single-loop control systems. This is
illustrated in Figure 36.4.

Example 36.1 Inverse dynamics control applied to level control

In this example, inverse dynamics control will be applied to a level control system. Figure
36.5 shows the control system.

It assumed that the outflow is proportional to the control signal u and to the square root of
the pressure drop along the control valve. The process model based on mass balance is (ρ is
density)

ρAh′ = ρqin − ρKvu
√
dP (36.15)

or

h′ =
qin
A︸︷︷︸
f

+

(
−Kv

√
dP

A

)
︸ ︷︷ ︸

B

u (36.16)

The control function becomes, cf. (36.14),

u = B−1

[
Kce+Ki

ˆ t

0
edτ + ry

′ − f

]
(36.17)

=

(
−Kv

√
dP

A

)−1 [
Kce+Ki

ˆ t

0
edτ + ry

′ − qin
A

]
(36.18)

= − A

Kv

√
dP

[
Kce+Ki

ˆ t

0
edτ + ry

′ − qin
A

]
(36.19)

This control function requires that the differential pressure dP the inflow qin are measured.

[End of Example 36.1]

743

CHAPTER 36. INVERSE DYNAMICS CONTROL

y1

y1(0)

PI-

controller

ry1 e1 z1

d/dt

Controller Process

1/s

y2

y2(0)

PI-

controller

ry2 e2 z2

d/dt

Controller Process

(ry2)’

1/s

•

•

•

(ry1)’

Figure 36.4: The inverse dynamics control system consists of n decoupled single-loop control
systems.

36.3 Inverse dynamics control of second order prosesses

36.3.1 The process model

Mechanical processes with position as the process output variable (to be controlled)
typically have a model on the form of a set of second order differential equations (due to
Newton’s Second Law):

y′′ = f(y, y′, d) +B(y, y′, d) · u (36.20)

or simply:
y′′ = f +Bu (36.21)

where y is the position, y′ is the speed, d is a disturbance (e.g. a load force or torque), and
u is the control variable.

744

CHAPTER 36. INVERSE DYNAMICS CONTROL

LT LC

u

h [m]

qin [m
3/s]

Process

A [m2]

qout [m
3/s]

dP [N/m2]

Figure 36.5: Level control system.

We assume that ry is the reference of y (position).

We can derive the control function “graphically” as shown in Figure 36.6. The decoupler

y

y’(0)

f

BB-1

f

Multi-loop

PID-contr.

ry uzpid

zff

e z

d2/dt2

Feedback

Controller Process

Decoupler and

linearizer

(ry)’’

y(0)

y’y’’

Feedforward

controller

Decoupled and linearized process with

transfer function y(s)/z(s) = 1/s^2 (double integrator), or: y’’ = z

Tuned for double integrator

y’’ = z

Figure 36.6: Block diagram of the control system based on feedback linearization.

and linearizer creates the following model relating the transformed control signal z and the
process output y:

y′′ = z (36.22)

which are n decoupled (independent) double integrators. The transfer function from z to y is

y(s)

z(s)
=

1

s2
(36.23)

These double integrators can be controlled with feedback with PID controllers plus
feedforward, as described in the following.

745

CHAPTER 36. INVERSE DYNAMICS CONTROL

36.3.2 PID tuning

The PID double integrators (36.23) can be controlled with feedback with PID controller:

zpid = Kce+
Kc

Ti

ˆ t

0
edτ +KcTde

′ (36.24)

where e is the control error:
e

def
= ry − y (36.25)

In (36.24), Kc, Kc/Ti and KcTd are actually diagonal matrices:

Kc =


Kc1 0 · · · 0
0 Kc2 · · · 0
...

...
. . .

...
0 0 · · · Kcn

 (36.26)

Kc

Ti
=


Kc1
Ti1

0 · · · 0

0
Kc2
Ti2

· · · 0

...
...

. . .
...

0 0 · · · Kcn
Tin

 (36.27)

KcTd =


Kc1Td1 0 · · · 0

0 Kc2Td2 · · · 0
...

...
. . .

...
0 0 · · · KcnTdn

 (36.28)

Kcj , Tij and Tdj can be calculated with the Skogestad method for a double integrator
process having double integrator gain Kii = 1, cf. Ch. 14.8.4. Assuming that the PID
controller has the parallel form, the PID settings are (14.91)-(14.93), which are repeated
here:

Kcj =
2(

TCj

)2 (36.29)

Tij = 4TCj (36.30)

Tdj = TCj (36.31)

where TCj is the specified time constant of feedback loop no. j.

36.3.3 Feedforward controller

In addition to the PID feedback control, the controller should contain feedforward from the
reference yr to get fast reference tracking (assuming the reference is varying). The
feedforward controller can be derived by substituting the process output y in the process
model (36.3) by yr and then solving for y, giving:

zff = ry
′′ (36.32)

746

CHAPTER 36. INVERSE DYNAMICS CONTROL

36.3.4 The resulting control signal

Now, we have the following control function for the process (36.22) consisting of the sum of
the feedback control function and the feedforward control function:

z = zpid + zff (36.33)

= Kce+
Kc

Ti

ˆ t

0
edτ +KcTd

def
dt︸ ︷︷ ︸

zpid

+ ry
′′︸︷︷︸

zff

(36.34)

Also from Figure 36.6, we see that the resulting controller function, that is, the formula for
the control vector u, is:

u = B−1 (z − f) = B−1 (zpid + zff − f) (36.35)

zpid and zff are as in (36.34).

36.3.5 About the resulting control system

The control system consists of n decoupled single-loop control systems. This is illustrated in
Figure 36.7.

Example 36.2 Inverse dynamics control applied to motion control

Given the following mathematical model of a body:

my′′ = Fc + Fd (36.36)

where y [m] is position, m = 10 kg is mass, Fc [F] is the force demanded by the controller,
and Fd [N] is net disturbance force (sum of damping, friction, gravitation, etc).

Assume that the position reference of y is ry, and that the specified time constant of the
control system is 1 s. Also, assume that the PID controller is a parallel PID controller.

To derive the control function we first write the process model on the standard form (36.21):

y′′ =
1

m
Fd︸ ︷︷ ︸
f

+
1

m︸︷︷︸
B

Fc︸︷︷︸
u

(36.37)

The control function becomes

u = B−1 [zpid + zff − f] (36.38)

=

(
1

m

)−1 [
zpid + zff −

(
1

m
Fd

)]
(36.39)

where zpid is given by (36.24), and zff is given by (36.32).

747

CHAPTER 36. INVERSE DYNAMICS CONTROL

y1

y1‘(0)

PID-

controller

ry1 e1 z1

d2/dt2

Controller Process

ry1

1/s

•

•

•

y1(0)

1/s

y2

y2‘(0)

PID-

controller

ry2

d
2
/dt

2

e2 z2

Controller Process

ry2

1/s

y2(0)

1/s

Feedforward

controller

Feedforward

controller

Figure 36.7: The control system consists of n decoupled single-loop control systems.

Let us, as an example, specify the closed-loop time constant TC as:

TC = 1 s (36.40)

The PID settings become:

Kc =
2

(TC)
2 = 2 (36.41)

Ti = 4TC = 4 s (36.42)

Td = TC = 1 s (36.43)

[End of Example 36.2]

36.3.6 Computed torque control

In robotics, the so-called computed torque controller is well-known. This controller is
actually the same as the inverse dynamics controller derived in the present section. I will

748

CHAPTER 36. INVERSE DYNAMICS CONTROL

now derive the computed torque controller from the inverse dynamics controller (36.35).

The computed torque controller assumes a process model of the mechanical system (robot)
on the following form:

M(q)q′′ + C(q, q′) + F (q′) +G(q) + L = Q (36.44)

or simply:
Mq′′ + C + F +G+ L = Q

where q is generalized position, i.e. a set of translational position and/or rotational
positions of the robot arms, q′ is generalized speed, M is the inertia matrix, C is the coriolis
and centripetal force matrix, F is the friction force matrix, G is the gravity loading matrix,
and L is the generalized load (force and/or torque) matrix, and Q is the generalized applied
force (“translation“ force and/or “rotational” force (torque)), assumed being the control
(manipulating) variable. Often, C(q, q′) is written as C1(q, q

′) · q′ where C1 is a matrix, but
here I use the simpler form C(q, q′).

(36.44) written on the form (36.21) is:

q′′ = M−1 (−C − F −G− L) +M−1Q (36.45)

which is on the form
y′′ = f +Bu (36.46)

with
y = q (36.47)

u = Q (36.48)

f = M−1 (−C − F −G− L) (36.49)

B = M−1

The inverse dynamics controller given by (36.35) becomes

u = B−1 (zpid + zff − f) (36.50)

= M
[
zpid + rq

′′ −M−1 (−C − F −G− L)
]

(36.51)

= M
(
zpid + rq

′′)+ (C + F +G+ L) (36.52)

where zpid is the PID controller (36.34). rq is the reference or setpoint of q. (36.52) is the
computed torque controller, derived as an inverse dynamics controller.

In some literature, a PD controller is used instead of a PID controller in (36.52). With a
PD controller (i.e. lacking integral action), non-modelled forces may give non-zero
steady-state control errors.

749

CHAPTER 36. INVERSE DYNAMICS CONTROL

36.4 Problems for Chapter 36

Problem 36.1 Temperature and level control of a tank

Figure 36.8 shows a tank where continuous flows of cold liquid and hot liquid are mixed in a
tank.2 The liquid in the tank is assumed being homogeneous.

FC

LT

Feed:

Cold

liquid

F [kg/s]

TT

FT

Multivariable

controller

(feedback

linearization)
Fc [kg/s] Fh [kg/s]

Fc

Fh

Tr

Lr

L [m]

T [K]

Tc [K] Th [K]

Feed:

Hot

liquid

Product

Pump

Fsp [kg/s]

References

(setpoints)

A [m2]

Production

rate control

Level and

temperature

control

Figure 36.8: A tank.

The product flow rate out of the tank is controlled with a ordinary flow control loop.

The level and the temperature of the tank shall be controlled to follow (track) their
reference values. The cold liquid and the hot liquid flows can be manipulated, so they are
control variables. (To make the actual flows become equal to the demanded flow as
calculated by the multivariable controller, local flow control loops around the pumps may
be needed, but these control loops are not shown in the figure.)

It is not obvious how to control the cold flow and the hot flow to obtain the reference level

2This example is not very realistic, but it is assumed to be relatively simple and easy to understand.

750

CHAPTER 36. INVERSE DYNAMICS CONTROL

and temperature because both flows affect both the level and the temperature. The control
problem may be solved with a “traditional” control structure where e.g. the level controller
adjusts the cold flow, and the temperature controller adjusts the ratio between hot and cold
flow. But, instead of such a traditional control structure, you will design a model-based
multivariable controller based on inverse dynamics control.

The mathematical model of the process is as follows. The model is based on the following
assumptions:

• The density ρ and the specific heat capacity c are the same in all flows and in the tank.

• The temperature is homogeneuous in the liquid in the tank.

• There is no heat transfer through the walls of the tank.

• Energy dependent on pressure and kinetics is disregarded.

Mass balance of the mixed liquid of the tank is

ρAh′ = Fc + Fh − F (36.53)

An energy balance of the liquid in the tank is (it is assumed that both the level and the
temperature can vary):

cρA (LT)′ = cFcTc + cFhTh − cFT (36.54)

In (36.54),
cρA (LT)′ = cρA

(
L′)T + cρAL

(
T ′) (36.55)

With (36.55) inserted into (36.54) and then cancelling c, (36.54) becomes

ρALT ′ = Fc (Tc − T) + Fh (Th − T) (36.56)

The process model is now (36.53) and (36.56).

1. Write the process model (36.53) and (36.56) on the standard form to be used in an
inverse dynamics controller where Fc and Fh are control variables, and L and T are
state variables to be controlled (to track their respective references).

2. Design the inverse dynamics controller, but you do not have to give the formulas for
tuning the gains and the integral times of the internal PI controllers, as this is the
topic of the following task. The references are Lr and Tr.

3. Calculate the gains, KcL and KL, and the integral times, TiL and TiT , of the internal
PI controllers. It is specified that the control loops of the decoupled processes (which
are just integrators) shall have response times (time constants) TCL

and TCT
,

respectively.

4. Which parameters and variables must be known at any instant of time to make the
control function implementable?

751

CHAPTER 36. INVERSE DYNAMICS CONTROL

5. Assume that there is a change in the level reference. Will this change cause any
change in the temperature?

Will a change in the temperature reference cause any change in the level?

6. Assume for example that any change in the temperature of the cold inflow, Tc, is
regarded as a disturbance to the control system. Does the control function implement
feedforward from this disturbance?

Problem 36.2 Position control of a ship

Figure 36.9 shows a ship.

Wind force

Fw [N]

Hydrodynamic

force Fh [N]

Propeller force

Fp [N]

Ship speed (relative to earth) u [m/s]

Mass m [kg]

Position y [m]

Water current speed (rel. to earth) uc [m/s]

Figure 36.9: Ship.

In this problem we concentrate on the so-called surge (forward-backward) direction, i.e., the
motions in the other directions are disregarded. The wind acts on the ship with the force
Fw which is a function of the wind attack angle ϕ and the wind speed Vw. This function is
assumed to be known for a given ship. The hydrodynamic damping force Fh (damping from
the water) is proportional to the square of the difference between the ship speed, y′, and the
water current speed uc. The proportionality constant is D.

Applying Newtons’s Law of Motion we obtain the following mathematical model of the
surge motion:

my′′ = −D
∣∣y′ − uc

∣∣ (y′ − uc
)︸ ︷︷ ︸

Fh

+ Fw(ϕ, Vw) + Ft (36.57)

752

CHAPTER 36. INVERSE DYNAMICS CONTROL

(Model parameter values are given in Appendix 38.2, but these values are not needed in the
present exercise.)

1. Design the position control function as an inverse dynamics controller. The position
reference is r [m]. The closed loop time constant is specified as TC . Express the PID
parameters as a function of TC .

2. Which variables and parameters must have known values (from measurements or
estimators) to make the controller function implementable.

3. Let’s define the wind force Fw as a disturbance. Explain how the inverse dynamics
controller implements feedforward from this disturbance. Assuming that the ship
model is correct and that Fw is perfectly known, what is then the impact that Fw will
have on the ship position y?

753

CHAPTER 36. INVERSE DYNAMICS CONTROL

36.5 Solutions to problems for Chapter 36

Solution to Problem 36.1

1. The standard process model form is

x′ = f +Bu (36.58)

We have

x =

[
L
T

]
(36.59)

and

u =

[
Fc

Fh

]
(36.60)

We get

B =

[
B11 B12

B21 B22

]
=


1
ρA

1
ρA

Tc−T
ρAL

Th−T
ρAL

 (36.61)

and

f =

[
f1
f2

]
=

[
− F

ρA

0

]
(36.62)

2. The control function is generally

u = B−1

[
Kpe+Ki

ˆ t

0
edτ + r′ − f

]
(36.63)

where (I use indices L and T instead of 1 and 2 as in the standard form)

u =

[
Fc

Fh

]
(36.64)

B =

[
1
ρA

1
ρA

Tc−T
ρAL

Th−T
ρAL

]
(36.65)

e =

[
Lr − L
Tr − T

]
(36.66)

Kp =

[
KpL 0
0 KpT

]
(36.67)

Ki =

[
KiL 0
0 KiT

]
=

 KpL
TiL

0

0
KpT
TiT

 (36.68)

r′ =

[
Lr

′

Tr
′

]
(36.69)

f =

[
− F

ρA

0

]
(36.70)

754

CHAPTER 36. INVERSE DYNAMICS CONTROL

3.

KpL =
1

TCL

(36.71)

TiL = 2TCL
(36.72)

KpT =
1

TCT

(36.73)

TiT = 2TCT
(36.74)

4. The following parameters and variables must be known:

• ρ

• A

• L (using a level sensor)

• T (temperature sensor)

• Tc (temperature sensor)

• Th (temperature sensor)

• F (flow sensor)

5. No

No

6. Yes

Solution to Problem 36.2

1. To derive the control function we first write the process model on the standard form:

y′′ =
1

m

[
−D

∣∣y′ − uc
∣∣ (y′ − uc

)
+ Fw(ϕ, Vw)

]
︸ ︷︷ ︸

f

+
1

m︸︷︷︸
B

Ft︸︷︷︸
u

(36.75)

The control function becomes

Ft = B−1

[
Kpe+

Kp

Ti

ˆ t

0
edτ +KpTd

def
dt

+ r′′ − f

]
(36.76)

=

(
1

m

)−1
 Kpe+

Kp

Ti

´ t
0 edτ +KpTd

def
dt + r′′

+ 1
m [−D |y′ − uc| (y′ − uc) + Fw(ϕ, Vw)]


(36.77)

where e is the control error:
e = r − y (36.78)

The Skogestad PID settings become:

Kp =
2

TC
2

(36.79)

755

CHAPTER 36. INVERSE DYNAMICS CONTROL

Ti = 4TC (36.80)

Td = TC (36.81)

2. Of course, all variables and parameters of the control function (36.77) must be known
to make the controller implementable. In more details:

• The parameters m and D must be known.

• The ship position y must be measured usinig e.g. GPS measurement.

• The ship speed y′ can be calculated as the time-derivative of y, or it can be
estimated with a Kalman Filter or an observer.

• The water speed uc must either be measured or estimated with a Kalman Filter
or an observer.3

• The wind angle ϕ and the wind speed Vw must be measured with a wind sensor
(mounted on the ship). The wind force function Fw is assumed to be known for a
given ship.4

3. In (36.77) the control variable Ft is a function of the disturbance Fw(ϕ, Vw). This
dependency implements feedforward. The controller will compensate for the
disturbance, so that the ship position y will not be influenced by Fw, whatever value
of Fw.

3Kongsberg Maritime (Norway) use a Kalman Filter in their ship positioning systems – or DP (Dynamic
Positioning) systems.

4Fw is calculated from the geometry of the ship.

756

Part IX

APPENDICES

757

Chapter 37

Some good control questions

Below are some good questions you should pose to yourself if you get involved in control
system design. Many terms in the answers below are explained during this book, so don’t
expect to understand all of it at this moment. You may read this section again after you
have completed the book!

• Is there really a need for control? There is a need for control if there is a chance
that the process output variable can drift too far away from its desired value with just
constant control. Such a drift can be caused by severe variations of environmental
variables (process disturbances). For unstable processes, like water tanks and
exothermal reactors and motion systems like robots and ships which must be
positioned, there will always be a need for control to keep the process output variable
(level; temperature; position, respectively) at a setpoint or reference value.

• Which process variable(s) needs to be controlled (to make it become equal
to a setpoint or reference value)? Liquid level in a given tank? Pressure of
vapour in the tank? Temperature? Flow? Composition?

• How to measure that process variable? Select an appropriate sensor, and make
sure it detects the value of the process variable with as little time delay and
sluggishness as possible! In other words, measure as directly as you can.

• Is the measurement signal noisy? It probably is. Use a lowpass filter to filter or
smooth out the noise, but don’t make the filtering too strong – or you will also filter
out significant contents of the measurement signal, causing the controller to react on
erroneous information.

• How to manipulate the process variable? Select an actuator that gives a strong
impact on the process variable (to be controlled)! Avoid time delays if possible,
because time delays in a control loop will limit the speed of the control, and you may
get a sluggish control loop, causing the control error to become large after disturbance
variations.

• Which controller function (in the feedback controller)? Try the PI controller.
Most PID controllers actually operate as PI controllers since the derivative (D) term

758

CHAPTER 37. SOME GOOD CONTROL QUESTIONS

is deactivated because it amplifies measurement noise through the controller, causing
noisy control signal which may cause excessive wear of a mechanical actuator.
However, there are certain processes which requires an active D term, e.g. the double
integrator which is an approximate model of a kinetic system (a “body”) to be
position controlled with force or torques as control variable.

• How to tune the controller?

If you don’t have mathematical model of the process to be controlled, try the Good
Gain method, which is a simple, experimental tuning method which does not require
the control loop to become marginally stable, and therefore oscillate, during the
tuning. (The Ziegler-Nichols closed loop tuning method, on the other hand, requires
marginal stability.)

If you do have a mathematical process model, try the Skogestad model-based tuning
method to get the controller parameters directly from the process model parameters.
Alternatively, with a model, you can create a simulator of your control system in e.g.
LabVIEW or Simulink or Scicos, and then apply the Good Gain method on the
simulator.

If your controller has an Auto-tune button, try it!

• Is the stability of the control system good? The most important requirement to
a control system is that it has acceptable stability: The responses due to absupt
excitations may oscillate somewhat, but they should be well damped.

If you don’t have a mathematical model of the system, apply a (small) step change of
the setpoint and observe whether the stability of the control system is ok. If you think
that the stability is not good enough (too little damping of oscillations), try reducing
the controller gain and increasing the integral time somewhat, say by a factor of two.
Also, derivative control action can improve stability of the control loop, but remember
the drawback of the D-term related to amplification of random measurement noise.

If you do have a mathematical model of the control system, create a simulator, and
simulate responses in the process variable and the control variable due to step changes
in the setpoint and the disturbances (load variables), e.g. environmental temperature,
feed composition, external forces, etc. With a simulator, you may also want to make
realistic changes of certain parameters of the process model, for example time delays
or some other physical parameters, to see if the control system behaves well despite
these parameter changes (assuming the controller is not tuned again). In this way you
can test the robustness of the control system against process variations. If the control
system does not behave well, for example having too poor stability, after the
parameter changes, consider Gain scheduling which is based on changing the PID
parameters automatically as functions of certain process parameters.

• Is the control error small enough after disturbance changes, and after
setpoint changes?

If you do not have a simulator of the control system, it may be difficult to generate
disturbance changes yourself, but setpoint changes can of course be applied easily.

If you have a simulator, you can apply both setpoint changes and disturbance changes.

759

CHAPTER 37. SOME GOOD CONTROL QUESTIONS

If – using either experiments or simulator – the control error is too large after the
changes of the setpoint and the disturbance, try to tune the controller again to obtain
faster control.

• Still not happy with control system performance after retuning the
controller? Then, look for other control structures or methods based on exploiting
more process information:

– Feedforward control : This requires that you measure one or more of the
disturbances (load variables) acting on the process, and using these
measurements to directly adjust the control signal to compensate for the
disturbance(s).

– Cascade control : This requires that you measure some internal process variable
which is influenced by the disturbance, and construct an inner control loop
(inside the main control loop) based on this internal measurement to quickly
compensate for the disturbance.

– Model-based control : Consider for example optimal control with state-variable
feedback (LQ (Linear Quadratic) optimal control), or model-based predicitive
control (MPC).

760

Chapter 38

Selected process models

In the following sections, mathematical models of various physical processes are presented.
Some of these models are used in examples and in problems in the book. They may be used
in additional problems, and as a basis of dynamic simulators.

38.1 Wood chips tank

38.1.1 System description

Figure 38.1 shows a wood chips tank with a feed screw with continuous feed of wood chips,
conveyor belt, which runs with a fixed speed. There is a continuous outflow of wood chips.1

To the

cookery

0 m

Chips

Screw control

signal

u [%] Chips tank

Fout [kg/s]

Level

h [m]

Chips mass flow

Fs [kg/s]

Fin [kg/s]

Feed screw

Screw constant

Ks [(kg/s)/%]

Time delay

 [min]

Chips

Chips density

 [kg/m3]

A [m2]

Figure 38.1: Wood chips tank.

1Typically, there is such a wood chips tank in the beginning of the production line of a paper and pulp
factory.

761

CHAPTER 38. SELECTED PROCESS MODELS

The conveyor belt makes up a time delay or transport delay from the screw to the tank.

38.1.2 Variables and parameters

Variables and parameters of the wood chip tank are defined in Table 38.1.2 We assume that
there is an overflow if the level exceeds the maximum level.

Table 38.1: Wood chips tank: Variables and parameters.

Symbol Value (default) Unit Description

h 10 m Wood chips level

- [0, 15] m Range of level

u 50 % Control signal to feed screw

Fs 25 kg/s Feed screw flow (flow into
conveyor belt)

Fin 25 kg/s Wood chips flow into tank
(from belt)

Fout 25 kg/s Wood chips outflow from
tank

ρ 145 kg/m3 Wood chips density

A 13.4 m2 Tank cross sectional area

Ks 0.5 (kg/s)/% Feed screw gain (capacity)

τ 250 s s Transport time (time delay)
on conveyor belt

38.1.3 Overall block diagram

Figure 38.2 shows a block diagram of the wood chips tank.

Wood chip tank
with conveyor belt

u h

Fout

ρ A Ks τ

Figure 38.2: Block diagram of the wood chips tank.

2Courtesy of earlier Sødra Cell, and even earlier Norske Skog, Tofte, Norway.

762

CHAPTER 38. SELECTED PROCESS MODELS

38.1.4 Mathematical model

The chips flow through the feed screw, Fs, is the inflow to the conveyor belt. Fs is assumed
being proportional to the control signal, u:

Fs = Ksu (38.1)

The outflow from the belt, which is also the inflow to the tank, is the same as the inflow to
the belt and the screw flow, but time delayed:

Fin(t) = Fs(t− τ) = Ksu(t− τ)

The outflow from the tank is Fout.

A mathematical model of the tank based on material balance of the wood chips in the tank
is:

ρAh′(t) = Fin(t)− Fout(t) = Ksu(t− τ)− Fout(t) (38.2)

38.2 Ship

38.2.1 System description

Figure 38.3 shows a ship. In this example we will only take the longitudinal motion relative
to the ship, also denoted the surge motion, into account. 3

Figure 38.3: Ship.

38.2.2 Variables and parameters

Variables and parameters are defined in Table 38.2. The parameter values are realistic.4

Figure 38.4 shows the wind scale which characterizes various ranges of wind speed Vw.

3Courtesy of Kongsberg Maritime AS, Norway for providing realistic parameter values.
4Courtesy of Kongsberg Maritime AS, Norway.

763

CHAPTER 38. SELECTED PROCESS MODELS

Table 38.2: Ship: Variables and parameters

Symbol Value (default) Unit Description

y = x1 - m Longitudinal or surge
position of the ship

ẏ = x2 - m/s Ship speed

Fp [−467 · 103, +552 · 103] N Propeller force applied to
move the ship

Fh - N Hydrodynamic force on the
ship

Fw - N Wind force on the ship

uc [–3 , +3] m/s Water current speed

Vw Cf. windscale in Fig. 38.4 m/s Wind speed

m 71164 · 103 kg Mass of ship

Dh 8.4 · 103 N/(m/s)2 Hydrodynamic force constant

Dw 0.177 · 103 N/(m/s)2 Wind force constant

38.2.3 Overall block diagram

Figure 38.5 shows a block diagram of the ship.

38.2.4 Mathematical model

We use the Newton’s Second Law to model the motion of the ship:

mass times accelaration = sum of forces

In mathematical terms:
my′′ = Fp + Fh + Fw (38.3)

where:

• Fh is proportional to the difference between the water speed and the ship speed:

Fh = Dh

(
uc − y′

) ∣∣uc − y′
∣∣ (38.4)

The absolute value in the last term ensures that the sign of Fh correct.

• Fw is proportional to the square of the difference between the wind speed and the ship
speed:

Fw = Dw

(
Vw − y′

) ∣∣Vw − y′
∣∣ (38.5)

The absolute value in the last term ensures that the sign of Fw correct.

When the ship moves, there is also a motion of an amount of water. The mass of the water
is denoted the added mass. However, we disregard the added mass here.

764

CHAPTER 38. SELECTED PROCESS MODELS

Figure 38.4: Wind scale

Figure 38.5: Block diagram of the ship

38.3 Buffer tank

38.3.1 System description

Figure 38.6 shows a water tank. The tank may represent a buffer tank, or an equalization
magazine, at the inlet of a plant, e.g. a water resource recovery facility (WWRF). The
geometrical design of such a magazine may not have straight walls as in Figure 38.6, see
Figure 16.18. However, if relatively small variations in the level are assumed, a tank with
straight walls approximates the magazine with non-straight walls.

38.3.2 Variables and parameters

Variables and parameters of the water tank are defined in Table 38.3. The numerical values
resembles a typical operating point of the VEAS WWRF, Slemmestad, Norway.

765

CHAPTER 38. SELECTED PROCESS MODELS

Fin [m
3/s]

A [m2]
Fout = u [m3/s]

h [m]

0

V [m3]

u [m3/s]

Figure 38.6: Water tank with pump outlet

Table 38.3: Water ank: Variables and parameters

Symbol Value (default) Unit Description

h 2.0 m Water level

Fin 3.0 m3/s Inflow

Fout 3.0 m3/s Outflow through pump

u 3.0 m3/s Control signal to pump

A 2000 m2 Inner cross sectional area of
tank

V 4000 m3 Volume of water in tank

38.3.3 Overall block diagram

Figure 38.7 shows an overall block diagram of the water tank.

Figure 38.7: Block diagram of the water tank

38.3.4 Mathematical model

A mathematical model expressing the level variations can be derived from material balance
of the water in the tank. The model is:

Ah′ = Fin − Fout (38.6)

766

CHAPTER 38. SELECTED PROCESS MODELS

where
Fout = u (38.7)

38.4 Heated liquid tank

38.4.1 System description

Figure 38.8 shows a heated tank. Liquid (assumed water) flows into and out of the tank.
The volume of liquid is constant (this can be realized with overflow or level of regulation).

c [J/(kg K)]

Tin [C]

F [m /s]

m [kg]

T [C]

F

T

Mixer

Tenv [C]U [W/K]

P [W]

V [m3]

3

ρ [kg/m]3

Figure 38.8: Heated tank.

The inflow and outflow are thus equal. There is a heat transfer between the liquid and the
air outside the tank. In the tank there are homogeneous conditions thanks to a mixer (there
is thus no spatial variations in temperature). It is assumed that the mixer does not add
power to the liquid. It is assumed that there is a time delay in the response in the
temperature if there is a change in the supplied power.

38.4.2 Variables and parameters

Variables and parameters of the heated tank are defined in Table 38.4.

38.4.3 Overall block diagram

Figure 38.9 shows an overall block diagram of the heated tank.

767

CHAPTER 38. SELECTED PROCESS MODELS

Table 38.4: Heated tank: Variables and parameters

Symbol Value (default) Unit Description

P 0 W Supplied power

T - ◦C Temperature of liquid

Tinit 20 ◦C Initial temperature

Tenv 20 ◦C Environmental temperature

Tin 20 ◦C Temperature of liquid inflow

Q 0.25·10−3 m3/s Liquid volumetric flow

F = ρQ 0.25 kg/s Liquid mass flow

c 4200 J/(kg·K) Specific heat capacity of
liquid

ρ 1000 kg/m3 Density of liquid

V 0.2 m3 Liquid volume in tank

m = ρV 200 kg Liquid mass in tank

G 100 W/K Heat transfer coefficient of
tank

τ 60 s s Time delay in the
temperature response

Figure 38.9: Block diagram of the heated tank

38.4.4 Mathematical model

A mathematical model of the temperature variation, based on energy balance of the liquid
in the tank, is

cmT ′(t) = P (t− τ) + cF [Tin(t)− T (t)] +G [Tenv(t)− T (t)] (38.8)

The term P (t− τ) expresses that the supplied power has time delay τ . This time delay
represents the time delay in the temperature that will be detected by a temperature sensor
some place in any practical tank due to the unavoidable imperfect mixing.

The model (38.8) is “mass-based” as mass m and mass flow F are in the model.

768

CHAPTER 38. SELECTED PROCESS MODELS

Alternatively, the model can be made “volume-based” using m = ρV and F = ρQ:

cρV T ′(t) = P (t− τ) + cρF [Tin(t)− T (t)] +G [Tenv(t)− T (t)] (38.9)

38.5 Air heater

38.5.1 System description

A laboratory air heater is described on http://techteach.no/air heater. Figure 38.10 shows
the air heater.5

Temperature

sensor 1

Temperature

sensor 2

NI USB-6008

for analog I/O

Manual fan

speed

adjustment

On/Off

switch

PC with

LabVIEW

USB cable

Electrical heater

Fan

Mains cable

(220/110 V)

3 x Voltage AI (Temp 1, Temp 2, Fan indication)

1 x Voltage AO (Heating)

Air

Pulse Width

Modulator

(PWM)

PWM

indicator

AC/DC

converter

Pt100/

milliampere

transducer

Air tube

T_out [C]

T_env [C]

Figure 38.10: Laboratory air heater.

38.5.2 Variables and parameters

Variables and parameters and assumed parameter values are defined in Table 38.5.

38.5.3 Overall block diagram

Figure 38.11 shows an overall block diagram of the air heater.

5University South-Eastern Norway, campus Porsgrunn, has 26 of identical units of this lab station, being
used in several control courses in both bachelor and master programmes in technology.

769

http://techteach.no/air_heater

CHAPTER 38. SELECTED PROCESS MODELS

Table 38.5: Air heater: Variables and parameters

Symbol Value (default) Unit Description

T - ◦C Temperature of the air
flowing out of tube.
Measured by a sensor.

Tinit 25 ◦C Initial temperature

Tenv 25 ◦C The environmental, or
ambient, temperature. It is
the temperature in the outlet
air of the air tube when the
control signal to the heater
has been set to zero for
relatively long time (some
minutes).

u - V Control signal to heater

Kh 3.5 ◦C/V Heater gain

θ 23.0 s Time constant representing
sluggishness of heater

τ 3.0 s Time delay representing air
transportation and
sluggishness of heater

38.5.4 Mathematical model

A mathematical model that has proven to describe quite well the dynamic behaviour of the
outlet air temperature is given by the following differential equation representing “time
constant with time delay” dynamics from control signal u to outlet temperature T :

θT ′(t) = Kh [u(t− τ)] + [Tenv(t)− T (t)] (38.10)

This model may be derived from mechanistic (first-principles) modeling principles, i.e. a
simple energy balance of the air, if we make the idealized assumption that the tube is a
so-called CSTR (continuous stirred tank reactor) with air inflow and outflow and heat
transfer with the environment through the “reactor” (tube) walls, and – in addition – we
include the time delay as described above. In reality, the idealized CSTR conditions are not
satisfied, but they lead to a useful model structure with parameter values that may be
estimated from experimental data.

Many other stable physical processes show “time constant with time delay” dynamics, and
such processes may be reasonably well represented with models similar to (38.10).

38.5.5 Data file

A datafile from an experiment with the air heater is available on:

770

CHAPTER 38. SELECTED PROCESS MODELS

Figure 38.11: Block diagram of the air heater

http://techteach.no/control/python/airheater logfile.txt

The time step (sampling time) is 0.1 s.

The datafile containt the following columns (from left in the file):

• Time t [s]

• Control signal u [V]

• Temperature measurement signal T [◦C]

38.6 Kettle

38.6.1 System description

Figure 38.12 shows a kettle.

Figure 38.12: Kettle.

771

http://techteach.no/control/python/airheater_logfile.txt

CHAPTER 38. SELECTED PROCESS MODELS

Figure 38.13 shows a sketch of the kettle.

Figure 38.13: Sketch of a kettle.

38.6.2 Parameters and variables

Parameters and variables of the mathematical model presented below are defined in Table
38.6.

Table 38.6: Parametre og variabler of the kettle.

Symbol
Value

(default)
Unit Description

T [0, 100] ◦C Temperature of water in kettle

Tinit 20 ◦C Initial value (state) of T

Troom 20 ◦C Room temperature

c 4180 J/(kg·K) Specific heat capacity of water

ρ 1000 kg/m3 Density of water

V 0.0005 m3 Volume of water

C 2101 J/K Heat capacity of water in kettle

D 0.09 m Inner diameter of kettle

H 0.079 m Level of water

L 0.003 m Thickness of plastic jacket

A 0.0351 m2 Surface area of plastic jacket

between water and air

ktc 0.2 (Wm)/(m2K) Specific thermal conductivity of

plastic

G 2.34 W/K Thermal conductivity of plastic

jacket

P 700 W Max. power delivered by heater

772

CHAPTER 38. SELECTED PROCESS MODELS

38.6.3 Overall block diagram

Figure 38.14 shows an overall block diagram with main variables and parameters of the
kettle.

P [W] Kettle T [deg C]

Parameters

Input Output

C G

Troom

Environmental variable

Figure 38.14: Overall block diagram of the kettle.

38.6.4 Mathematical model

A mathematical model for the water temperature in the kettle is based on the thermal
energy balance of the water. We assume homogeneous temperature conditions in the water
(the “continuously stirred tank” principle). The energy balance reads:

Change in thermal energy per time unit = net added power

which can be expressed mathematically with the following differential equation of T :

(CT)′ = P +G (Troom − T) (38.11)

Written as a state space model:

T ′ = [P +G (Troom − T)] /C (38.12)

In the model:

• CT [J] is thermal energy in the water. CT ′ [J/s = W] is then the change in thermal
energy per unit of time, or in other words: CT ′ is the time derivative of energy CT .

• P [W] is power added from the heating element. We shall assume that P is adjustable
between 0 and 700 W, although for the real kettle depicted in Figure 38.12 P can only
be 0 W (“off”) or 700 W (“on”).

773

CHAPTER 38. SELECTED PROCESS MODELS

• G (Troom − T) [W] is the power transfer between the air in the room and the water.
The thermal conductivity G is positive. If Troom is greater than T , which may be the
situation before the kettle is switched on, the term G (Troom − T) is positive, i.e. that
it is power supply from the air to the water. If Troom is smaller than T , which
eventually becomes the situation after the kettle has been switched on, the term
G (Troom − T) is negative, i.e. there is a power loss from the water to the air.

Here is more information about the parameters C, A and G:

• C is
C = cρV (38.13)

where

V = H · π ·
(
D

2

)2

(38.14)

• A is the area (of plastic) assumed to enclose all the water, both the cylindrical side
wall and the circular top and bottom surfaces:

A = πDH + 2π

(
D

2

)2

(38.15)

• G is

G =
ktc
L

A (38.16)

So far, the model contains no limitation of T , and a simulation based on (38.11) could
result in T far higher than 100 degrees C. which may mean that the kettle melts and the
kitchen is set on fire, which we don’t want. Also, we shall assume that the kettle can not
produce ice. So, we assume that the temperature (the state) is limited to

T ∈ [0, 100]oC (38.17)

38.7 DC-motor

38.7.1 System description

Figure 38.15 shows a DC-motor. The motor can be manipulated with an input voltage
signal, u.

The rotational speed is measured with both a tachogenerator which produces a output
voltage signal which is proportional to the speed, and an encoder with resolution 360 pulses
per revolution.

38.7.2 Overall block diagram

Figure 38.16 shows an overall block diagram of the motor with tachogenerator.

774

CHAPTER 38. SELECTED PROCESS MODELS

DC-motor

Encoder

Tachometer

Load
(break)
handle

Break
rod

Potensiometer
(break meas.)

Potensiometer
(break meas.)

Figure 38.15: DC motor.

Figure 38.16: Block diagram of DC-motor with tachogenerator

38.7.3 Variables and parameters

Variables and parameters with assumed values are defined in Table 38.7.

38.7.4 Mathematical model

A mathematical model of the motor is (omitting the time argument for simplicity):

TmS′ = Kuu+KLL− S (38.18)

When the speed is measured with the tachogenerator, the speed cam be calculated from the
tachogenerator voltage with

S = KtachoSm (38.19)

38.7.5 Datafile

A datafile from an experiment is available on:

http://techteach.no/control/python/data dc motor.txt

775

http://techteach.no/control/python/data_dc_motor.txt

CHAPTER 38. SELECTED PROCESS MODELS

Table 38.7: DC motor with tachogenerator: Variables and parameters

Symbol Value (default) Unit Description

S - krpm Rotational speed of the
motor

Sinit 0 krpm Initial speed

Sm V Speed measurement signal
generated by the
tachogenerator

u [−10 V, +10 V] V Control signal to the motor

L 0 V Equivalent load torque,
represented in the same unit
as the control variable. L can
be regarded as environmental
variable or process
disturbance.

Ku 0.20 krpm/V Control signal gain

KL –0.20 krpm/V Load gain

Tm 0.30 s Time constant of motor

Ktacho 0.17 krpm/V Tachogenerator gain

The time step (sampling time) is 0.02 s.

The datafile containt the following columns (from left in the file):

• Time t [s]

• Control signal u [V]

• Tachogenerator measurement signal Sm [V]

38.8 Biogas reactor

38.8.1 System description

A biogas reactor is a vessel or tank in which organic matter, like food waste, slaughter
waste, livestock manure, sewage sediments, etc., is converted by various cultures of
microorganisms into energy-rich, combustable methane (CH4) gas, which is the most
important product, and carbondioxide (CO2) gas. The two cultures assumed in the model
presented here, are acidogens, which generate volatile fatty acids (VFAs), and methanogens
which generate methane. The biological conversion process takes place without oxygen, and
is often called an anaerobic digestion (AD) process. The AD process is assumed continuous,
not “plug-flow”.

Biogas contains roughly 65% CH4 and 35% CO2. Combustion of the CH4 gas results in
CO2 and H2O. Biogas, raw or upgraded into approx. 98% CH4, can be used in combustion

776

CHAPTER 38. SELECTED PROCESS MODELS

motors to produce mechanical power to vehichles, or electric power through a generator
connected to the motor, or just heat in gas burners. The liquid phase can be used as
fertilizer. The AD process is a part of a closed carbon cycle, opposite to processing and
utilizing fossil fuel. The climate footprint is favourable as the combustion converts CH4,
which has (gives) a relatively high climate footprint, into CO2 which has a considerably
lower footprint, and H2O, which has no footprint.

One of the results of my own research in model-based monitoring and control of biogas
reactors Haugen et al. (2013), is a mathematical model adapted to a pilot reactor6 at Foss
Biolab at Foss farm in Skien, Norway, using online measurements and laboratory analyses.
The model may be referred to as the (modified) Hill model Hill (1983). Figure 38.17 shows
the principal construction of the reactor.

Influent
(feed)

Effluent
(liquid)

Sludge bed
(with microorganisms)

Liquid
(with suspended sludge)

Biogas

Figure 38.17: Principal construction of the biogas reactor.

38.8.2 Variables and parameters

Nomenclature of variables are shown in Table 38.8.

Abbreviations are defined in Table 38.10.

38.8.3 Overall block diagram

Figure 38.18 shows an overall block diagram of the mathetmatical model of the biogas
reactor.

6Reactor feed is filtered cow manure.

777

CHAPTER 38. SELECTED PROCESS MODELS

Table 38.8: Biogas reactor: Variables.

Symbol Unit Description

Ffeed
L
d Flow, or load rate

D = Ffeed
V d−1 Dilution rate (normalized

flow)

Fmeth
L CH4

d Methane gas flow

qmeth = Fmeth
V

(
L CH4

d

)
/d Volume-specific (normalized)

methane gas flow

µ d−1 Reaction (growth) rate of
acidogens

µc d−1 Reaction (growth) rate of
methanogens

µm d−1 Maximum reaction rate for
acidogens

µmc d−1 Maximum reaction rate for
methanogens

Svs,in
g VS
L Concentration of VS in

influent

Sbvs,in
g BVS

L Concentration of BVS in
influent

Sbvs
g BVS

L Concentration of BVS in
reactor

Svfa,in
g VFA

L Concentration of VFA in
biodegradable part of influent

Svfa
g VFA

L Concentration of VFA acids
in reactor

Xacid
g acidogens

L Concentration of acidogens

Xmeth
g methanogens

L Concentration of
methanogens

Treac
◦C Reactor temperature

38.8.4 Mathematical model

The mathematical model is as presented below. Figure 38.18 shows an overall block diagram
of the mathetmatical model. Nomenclature of variables is given in Table 38.8. Parameters
with assumed values are defined in Table 38.9. Abbreviations are defined in Table 38.10.

• Definition of the portion of the raw waste which can serve as substrate for the
conversion done by microorganisms:

Sbvs,in = B0Svs,in (38.20)

• Definition of the portion of the biodegradable material which is initially in acid form:

Svfa,in = AfSbvs,in (38.21)

778

CHAPTER 38. SELECTED PROCESS MODELS

Table 38.9: Biogas reactor: Parameters.

Symbol Value (default) Unit Description

B0 0.25 g BVS/L
g VS/L Biodegradability constant

Af 0.69 g VFA/L
g BVS/L Acidity constant

b 2.90 d/d Retention time ratio

k1 3.89 g BVS
g acidogens Yield constant

k2 1.76 g VFA
g acidogens Yield constant

k3 31.7 g VFA
g methanogens Yield constant

k5 26.3 L meth/L reac
g methanogens/L reac Yield constant

Kd 0.02 d−1 Specific death rate of
acidogens

Kdc 0.02 d−1 Specific death rate of
methanogens

Ks 15.5 g BVS
L Monod half-velocity constant

for acidogens

Ksc 3 g VFA
L Monod half-velocity constant

for methanogens

V 250 L Reactor volume of Foss pilot
reactor

Table 38.10: Abbreviations.

VS Volatile solids (“organic matter”)

BVS Biodegradable volatile solids

VFA Volatile fatty acid

• Material balance of biodegradable volatile solids:

Sbvs
′ = (Sbvs,in − Sbvs)D − µk1Xacid (38.22)

• Material balance of total VFA:

Svfa
′ = (Svfa,in − Svfa)D + µk2Xacid − µck3Xmeth (38.23)

• Material balance of acidogens:

Xacid
′ =

(
µ−Kd −

D

b

)
Xacid (38.24)

• Material balance of methanogens:

Xmeth
′ =

(
µc −Kdc −

D

b

)
Xmeth (38.25)

• Volume-specific (normalized) methane gas flow (production):

qmeth = µck5Xmeth (38.26)

779

CHAPTER 38. SELECTED PROCESS MODELS

Xacid

[g/L]

Sbvs

[g/L]

Svfa

[g/L]

Xmeth

[g/L]

D

[1/d]

qmeth

[(L meth/d)/Lreac]

Modified Hill’s AD process

model

State variables

Input

variable

Output

variable

V
[L]

Parameters

Svs,in

[g/L]

k1, k2, k3, k5, Ks,

Ksc, Kd, Kdc

Treac

[
o
C]

b
[d/d]

Figure 38.18: Overall block diagram of the mathematical model of the biogas reactor.

Reaction rates, assuming Monod kinetics, are:

µ = µm
Sbvs

Ks + Sbvs
(38.27)

µc = µmc
Svfa

Ksc + Svfa
(38.28)

where the maximum reaction rates are linear functions of the reactor temperature (the
Hashimoto function):

µm (Treac) = µmc (Treac) = 0.013Treac − 0.129 (38.29)

(20 ◦C < Treac < 60 ◦C)

The reactor temperature may be kept at a specified temperature setpoint, e.g. 35 ◦C (as for
mesophilic conditions), with an automatic temperature control system.

Model of temperature

In the above model, the temperature, Treac, is regarded as a model parameter with a set
value. However, Treac is actually a dynamic variable, and it can be modeled with an energy
balance, cf. Sec. 38.4. The dynamic behaviour of Treac can be simulated using that model.

780

CHAPTER 38. SELECTED PROCESS MODELS

38.8.5 Operating point

In analysis of reactor dynamics and stability and in design of some types of state estimators
and controllers it may be necessary to define a proper steady-state operating point. A
steady-state operating point can be found from e.g. a simulation by reading off the value of
the state variables at steady-state. One example of a steady-state operating point is given
in Table 38.11. (On the Foss pilot reactor, D = 0.18 d−1corresponds to Ffeed = V D = 250 L
· 0.18 d−1 = 45 L/d.)

Table 38.11: Values of inputs and states in one example of a steady-state operation point.

D = 0.18 d−1

Treac = 35 oC

Svs,in = 30.2 g/L

Sbvs = 5.2149 g/L

Svfa = 1.0093 g/L

Xacid = 1.3166 g/L

Xmeth = 0.3637 g/L

38.9 Pendulum on cart

38.9.1 System description

Figure 38.19 shows the cart with the pendulum.

a [rad]

mg [N]

2L [m]

m [kg]

M [kg]

V [N]

H [N]

L

F [N]

y [m]0 m

-dy [N]

Figure 38.19: Cart with pendulum.

A motor attached to the cart acts on the cart with a force F . The mass of the motor is
assumed included in the mass of the cart. This force is manipulated by the controller to
stabilize the pendulum in an standing position (similar to a rocket) or in a hanging position
(similar to a crane) at a specified position of the cart.

781

CHAPTER 38. SELECTED PROCESS MODELS

38.9.2 Variables and parameters

Variables and parameters and assumed parameter values are defined in Table 38.12.

Table 38.12: Pendulum on cart: Variables and parameters.

Symbol Value (default) Unit Description

y 0 m Cart position.

a 0 (standing) or π (hanging) rad Pendulum angle

L 0.5 m Half length of pendulum
(from fixed point on cart to
center of gravity)

M 1 kg Mass of cart

m 0.1 kg Mass of pendulum

d 0 N/(m/s) Damping coefficient

g 9.81 m/s2 Gravity

F 0 N Force applied to cart

38.9.3 Overall block diagram

Figure 38.20 shows an overall block diagram of the pendulum.

Pendulum
on cart

F [N]
y [m]

y’ [m/s]

a’ [rad/s]

a [rad]

Figure 38.20: Block diagram of the pendulum.

38.9.4 Mathematical model

The mathematical model is based on the following principles:

1. Force balance applied to the cart:

My′′ = F −H − dy′ (38.30)

2. Force balance (Newton’s Second Law) applied to the horizontal movement of the
center of gravity of the pendulum:

m (y + L sin a)′′ = H (38.31)

The second order differentiation must be carried out, but the result of it is not shown
here.

782

CHAPTER 38. SELECTED PROCESS MODELS

3. Force balance applied to the vertical movement of the center of gravity of the
pendulum:

m (L cos a)′′ = V −mg (38.32)

The second order differentiation must be carried out, but the result of the
differentiation is not shown here.

4. Torque balance (the rotational version of Newton’s Second Law) applied to the center
of gravity of the pendulum:

Ia′′ = V L sin a−HL cos a (38.33)

In the above equations,

• I is the moment of inertia of the pendulum about it’s center of gravity. For the
pendulum shown in Figure 1,

I =
mL2

3
(38.34)

• V and H are vertical and horizontal forces, respectively, in the pivot.

• d is a damping coefficient.

From Eq. (38.31)-(38.30), the internal forces V and H can be eliminated, resulting in two
second order differential equations containing y′′ and a′′. These differential equations are,
however, not shown here.

Let us define the following state variables:

• x1 = y (cart horizontal position)

• x2 = y′ (cart horizontal speed)

• x3 = a (pendulum angular position)

• x4 = a′ (pendulum angular speed)

The two differential equations mentioned above can then be written as the following
non-linear state space model:

x1
′ = f1 (38.35)

x2
′ = f2 (38.36)

x3
′ = f3 (38.37)

x4
′ = f4 (38.38)

where:

f1 = x2 (38.39)

f2 =
−m2L2g cosx3 sinx3 +

(
I +mL2

) [
mL (x4)

2 sinx3 − dx2

]
D1

+

(
I +mL2

)
D1

u (38.40)

f3 = x4 (38.41)

f4 =
(m+M) (mgL sinx3)−mL cosx3

[
mL (x4)

2 sinx3 − dx2

]
D1

+
−mL cosx3

D1
u (38.42)

783

CHAPTER 38. SELECTED PROCESS MODELS

where:
D1 =

(
I +mL2) (m+M)−m2L2 cos2 x3 (38.43)

Linearized model

A control system can be used to stabilize the pendulum at two alternative operating points,
namely vertically up or vertically down. The matrices A and B of a linear model are
derived for each of these operating points. Instead of linearizing using the general
linearization formulas presented in Ch. 5.4.2, we will use a simpler approach where we
assume small variations around the pertinent operating point.

Pendulum up:

Linearization of (38.35)-(38.38) about x3 = a = 0 is based on the following assumptions:

cosx3 ≈ 1 (38.44)

sinx3 ≈ x3 [rad] (38.45)

(x4)
2 = (ȧ)2 ≈ 0 (38.46)

Pendulum down:

Linearization of (38.35)-(38.38) about x3 = a = π is based on the following assumptions:

cosx3 ≈ −1 (38.47)

sinx3 ≈ π − x3 [rad] (38.48)

(x4)
2 = (ȧ)2 ≈ 0 (38.49)

Using these assumptions, the linearized model becomes:
∆x1

′

∆x2
′

∆x3
′

∆x4
′

 =


0 1 0 0

0 −(I+mL2)d
D2

−m2L2g
D2

0

0 0 0 1

0 KcosmLd
D2

Ksin(m+M)mgL
D2

0


︸ ︷︷ ︸

A


∆x1
∆x2
∆x3
∆x4

+


0
I+mL2

D2

0

−KcosmL
D2


︸ ︷︷ ︸

B

[∆u] (38.50)

where:
D2 =

(
I +mL2

)
(m+M)−m2L2 (38.51)

The values of Kcos and Ksin in (38.50) are:

• Pendulum up:
Kcos = 1 (38.52)

Ksin = 1 (38.53)

• Pendulum down:
Kcos = −1 (38.54)

Ksin = −1 (38.55)

784

Chapter 39

The Laplace transform

39.1 Introduction

The Laplace transform is a mathematical tool which is useful in systems theory. It is the
foundation of transfer functions which is a standard model form of dynamic systems.
Transfer functions are described in Chapter 8. Furthermore, with the Laplace transform
you relatively easily calculate responses in dynamic systems by hand.1

In this chapter, I present the Laplace transform at a minimum level. You can find much
more information in a mathematics text-book.

39.2 Definition of the Laplace transform

Given a time-evaluated function f(t) – that is, f(t) is a function of time t. It can be a
sinusoid, a ramp, an impulse, a step, a sum of such functions, or any other function of time.
The Laplace transform of f(t) can be denoted F (s), and is given by the following integral:

F (s) = L{f(t)} =

ˆ ∞

0
e−stf(t) dt (39.1)

Expressed with words, f(t) is multiplied by the weight function e−st, and the resulting
product e−stf(t) is integrated from start time t = 0 to end time t = ∞. The Laplace
transform does not care about any value that f(t) might have at negative values of time t.
In other words, you can think of f(t) as being “switched on” at t = 0. (The so-called
two-sided Laplace transform is defined also for negative time, but it is not relevant for our
applications.)

1However, we rarely need to perform manual calculations of the responses. When we need to know the
responses, it is in most situations more conventient to obtain them by simulating the system. With the Laplace
transform you can calculate responses only for linear systems, that is, systems having a model which can be
expressed as a linear differential equation.

785

CHAPTER 39. THE LAPLACE TRANSFORM

s is the Laplace variable.2 F (s) is a function of s. The time t is not a variable in F (s) – it
disappeared through the time integration. F (s) will look completely different from f(t), cf.
the following example.

Example 39.1 Laplace transform of a step

Given the function
f(t) = 1 (for t ≥ 0) (39.2)

which is a step of amplitude 1 at time t = 0. Using (39.1), its Laplace transform becomes

F (s) =

ˆ ∞

0
e−st · 1 · dt =

[
−1

s
e−st

]t=∞

t=0

=
1

s
(39.3)

[End of Example 39.1]

Calculating the time function f(t) from its Laplace transform F (s), or in other words:
going from the Laplace doman to the time domain, is denoted inverse Laplace transform.
This can be expressed as

f(t) = L−1 {F (s)} (39.4)

Figure 39.1 illustrates the time domain and the Laplace domain, and the Laplace
transformation and the inverse Laplace transformation.

Figure 39.1: The time domain and the Laplace domain

The inverse Laplace transform is actually defined by a complicated complex integral.3 If
you really want to calculate this integral, you should use the Residue Theorem in
mathematics. However, I suggest you instead try the simplest method, namely to find f(t)
from the precalculated Laplace transform pairs, cf. Section 39.3, possibly combined with
one or more of the Laplace transform properties, cf. Section 39.4.

2You may wonder what is the physical meaning of s. It can be interpreted as a complex frequency, but I
think the best answer is that there is no meaningful physical meaning.

3f(t) = 1
2πj

´ σ+j∞
σ−j∞ F (s)estds

786

CHAPTER 39. THE LAPLACE TRANSFORM

39.3 Laplace transform pairs

Laplace transform pairs:

f(t) (time function) ⇐⇒ F (s) (Laplace transform) (39.5)

kδ(t) (impulse of strength or area k) ⇐⇒ k (39.6)

k (step of amplitude k) ⇐⇒ k

s
(39.7)

kt (ramp of slope k) ⇐⇒ k

s2
(39.8)

ktn (nth order exponential of t) ⇐⇒ k
n!

sn+1
(39.9)

ke−t/T

T
(decaying 1. order exponential of t) ⇐⇒ k

Ts+ 1
(39.10)

k
(
1− e−t/T

)
(raising 1. order exponential of t) ⇐⇒ k

(Ts+ 1)s
(39.11)

k

[
1 +

1

T2 − T1

(
T1e

−t/T1 − T2e
−t/T2

)]
⇐⇒ k

(T1s+ 1)(T2s+ 1)s
(39.12)

Example 39.2 Calculation of Laplace transform

We will calculate the Laplace transform, F (s), of the following time function:

f(t) = e−t (39.13)

using the definition of the Laplace transform.

We start by setting f(t) = e−t in the integral that defines the Laplace transform (39.1):

L{e−t} =

ˆ ∞

0
e−ste−tdt

=

ˆ ∞

0
e−(s+1)tdt

=
1

−(s+ 1)

[
e−(s+1)t

]t=∞

t=0

=
1

−(s+ 1)
[0− 1]

=
1

s+ 1
(39.14)

Is this result in accordance with one of the Laplace transform pairs in Section 39.3? The
pertinent Laplace transform pair is

k

Ts+ 1
⇐⇒ ke−t/T

T
= e−t (39.15)

787

CHAPTER 39. THE LAPLACE TRANSFORM

Here, T = 1 and k = 1, F (s) becomes

F (s) =
1

s+ 1
= L{e−t} (39.16)

which (fortunately) is the same as (39.14) found using the definition of the Laplace
transform.

[End of Example 39.2]

39.4 Laplace transform properties

In calculations with the Laplace transform you will probably need one or more of the
Laplace transform properties presented below.4 We will definitely use some of them for
deriving transfer functions, cf. Chapter 8.

Linear combination:

k1f1(t) + k2f2(t) ⇐⇒ k1F1(s) + k2F2(s) (39.17)

Special case: Multiplication by a constant:

kf(t) ⇐⇒ kF (s) (39.18)

Time delay:

f(t− τ) ⇐⇒ F (s)e−τs (39.19)

Time derivative:

(n)

f(t) ⇐⇒ snF (s)− sn−1f(0)− sn−2f ′(0)− . . .−
(n−1)

f (0) (39.20)

Special case: Time derivative with zero initial conditions:

snF (s) ⇐⇒
(n)

f (t) (39.21)

Special case: Time derivative with non-zero initial condition:

f ′(t) ⇐⇒ sF (s)− f0 (39.22)
4Additional properties could have been given here, too, but the ones presented are the most useful.

788

CHAPTER 39. THE LAPLACE TRANSFORM

Special case: First order time derivative with zero initial condition:

f ′(t) ⇐⇒ sF (s) (39.23)

(So, differentiation corresponds to multiplication by s.)

Integration:

ˆ t

0
f(τ)dτ ⇐⇒ 1

s
F (s) (39.24)

(So, integration corresponds to division by s.)

Final Value Theorem:

lim
t→∞

f(t) ⇐⇒ lim
s→0

sF (s) (39.25)

Example 39.3 Calculation of time response (inverse Laplace transform)

Given the following differential equation:

y′(t) = −2y(t) + u(t) (39.26)

with initial value y(0) = 4. Assume that the input variable u(t) is a step of amplitude 1 at
time t = 0.

Problem formulation:

Calculate the time response in the output variable, y(t), using the Laplace transform.

Solution:

To calculate y(t) we start by taking the Laplace transform of both sides of the given
differential equation:

L
{
y′(t)

}
= L{−2y(t) + u(t)} (39.27)

Here, we apply the time derivative property, cf. (39.22), at the left side, and the linear
combination property, cf. (39.18), to the right side, to get

sY (s)− 4 = −2Y (s) + U(s) (39.28)

Here,

U(s) =
1

s
(39.29)

since the Laplace transform of a step of amplitude 1 is 1
s , cf. the transform pair (39.7).

789

CHAPTER 39. THE LAPLACE TRANSFORM

By now we have

sY (s)− 4 = −2Y (s) +
1

s
(39.30)

Solving for Y (s) gives

Y (s) =
4

s+ 2︸ ︷︷ ︸
Y1(s)

+
1

(s+ 2) s︸ ︷︷ ︸
Y2(s)

(39.31)

To get the corresponding y(t) from this Y (s) we take the inverse Laplace transform of Y1(s)
and Y2(s) to get y1(t) and y2(t) respectively, and then we calculate y(t) as

y(t) = y1(t) + y2(t) (39.32)

according to the linearity property of the Laplace transform. y1(t) and y2(t) are calculated
below.

Calculation of y1(t):

We can use the transform pair (39.10), which is repeated here:

k

Ts+ 1
⇐⇒ ke−t/T

T
(39.33)

We have

Y1(s) =
4

s+ 2
=

2

0.5s+ 1
(39.34)

Hence, k = 2, and T = 0.5. Therefore,

y1(t) =
ke−t/T

T
=

2e−t/0.5

0.5
= 4e−2t (39.35)

Calculation of y2(t):

We can use the transform pair (39.11), which is repeated here:

k

(Ts+ 1)s
⇐⇒ k

(
1− e−t/T

)
(39.36)

We have

Y2(s) =
1

(s+ 2) s
=

0.5

(0.5s+ 1) s
(39.37)

Hence, k = 0.5, and T = 0.5. Therefore,

y2(t) = k
(
1− e−t/T

)
= 0.5

(
1− e−t/0.5

)
= 0.5

(
1− e−2t

)
(39.38)

The final result becomes

y(t) = y1(t) + y2(t) (39.39)

= 4e−2t + 0.5
(
1− e−2t

)
(39.40)

= 0.5 + 3.5e−2t (39.41)

[End of Example 39.3]

790

CHAPTER 39. THE LAPLACE TRANSFORM

Example 39.4 Final Value Theorem

Problem formulation:

Calculate the steady-state value of y(t) using the Final Value Theorem. Also calculate the
steady-state value, ys, from y(t), and from (39.26) directly. Are all these (three) values of ys
the same?

Solution:

Using the Final Value Theorem on (39.31):

ys = lim
s→0

sY (s) = lim
s→0

s

[
4

s+ 2
+

1

(s+ 2) s

]
(39.42)

= lim
s→0

s
4

s+ 2
+ lim

s→0
s

1

(s+ 2) s
= 0 +

1

2
= 0.5 (39.43)

From (39.41) we get
ys = lim

t→∞
y(t) = 0.5 (39.44)

And from the differential equation we get (because the time-derivative is zero in
steady-state)

0 = −2ys(t) + us(t) (39.45)

which gives

ys =
us
2

=
1

2
= 0.5 (39.46)

So, the three results are the same.

[End of Example 39.4]

791

Chapter 40

Introduction to optimization

40.1 The optimization problem

40.1.1 Introduction

Optimization is about to find the best solution, for example:

• Which model parameter values makes a mathematical model represent a given real
system most accurately?

• Which PI controller settings gives the best performance of a given control system?

• Which are the best future control signals – or control moves – by a model-predictive
controller?

• Which are the best estimates calculated by a state estimator?

• What is the feed flow rate of a biogas reactor that maximizes the biogas production?

Typically, optimization problems are stated as minimization problems:

Find the value of the optimization variable x that
minimizes the objective function f(x),

taking into account any constraints on x or on some functions of x.
The solution is denoted the optimal solution, xopt.

Figure 40.1 illustrates a minimization problem. Here, the optimization variable, x, is a
vector of two elements. The problem is to calculate the combined values of x(1) and x(2) so
that f is minimized.

Some well-known references for optimization theory are Edgar et al. (2001) and Nocedal &
Wright (2006).

792

CHAPTER 40. INTRODUCTION TO OPTIMIZATION

x(1)

f[x(1), x(2)]

Optimization

variables

Objective function

(optimization criterion)

f

Optimization problem:

To calculate x(1) and x(2)

that minimize f.

Mathematical model

x(2)opt

x(1)opt

f

fminx(2)

Figure 40.1: The optimization problem

40.1.2 Mathematical formulation of the optimization problem

There are many different ways of formulating mathematically optimization (minimization)
problems. The following formulation is quite general. (It complies with the formulation
required by the optimization function fmincon in Matlab.)

For a given mathematical model M , find the value of x that minimizes some objective
function f(x), that is,

min
x

f(x) (40.1)

subject to (often denoted “s.t.”) constraints, which may be in the form of:

• Inequality constraints:
g(x) ⩾ 0 (40.2)

where g is a linear or nonlinear function.

• Equality constraints:
h(x) = 0 (40.3)

where h is a linear or nonlinear function of x.

• Lower bounds and upper bounds:

xlb ≤ x ≤ xub (40.4)

(40.2) and (40.3) define constraints on the relation between the optimization variables,
while (40.4) define constraints or bounds on the values of the optimization variables.
Equality contraints, (40.3), are not so common in optimization problems.

793

CHAPTER 40. INTRODUCTION TO OPTIMIZATION

What if the inequality constraint is not a “larger than or equal” constraint, but a “smaller
than or equal” contraint? No problem, since we can just multiply both sides of (40.2) by −1
to get the following “larger than or equal”constraint:

−g(x)︸ ︷︷ ︸
g1(x)

⩾ 0 (40.5)

which has the same form as (40.2).

40.1.3 Feasibility region

The constraints define the feasible region of the optimization problem. The optimal solution
can only be found within the feasible region. In many cases it the optimal solution is at the
border of the feasibily region.

As an example, Figure 40.2 shows the feasible region based on the following constraints:

1 ≤ x1 ≤ 3 (40.6)

0.5 ≤ x2 ≤ 1.5 (40.7)

x2 ⩽
x1
2

(40.8)

which is equivalent to
x1
2

− x2 ⩾ 0 (40.9)

which is on the standard form of (40.2).

Figure 40.2: Illustration of feasible region.

40.1.4 Some characteristics of the optimal solution

In this section we assume that the objective function is some nonlinear – e.g. a square –
function of the optimization variables. If the objective function is linear, the results
described here do not apply.

794

CHAPTER 40. INTRODUCTION TO OPTIMIZATION

Some typical characteristics of the objective function are:

• Whether we have found a local or global minimum.

• Whether the function is convex or concave.

Figure 40.3 illustrates these characteristics. It is assumed there that the objective function
has one optimization variable, x.

Figure 40.3: Some characteristics of the objective function.

Comments to Figure 40.3:

• The objective function f has a global minimum, a local minimum, and a local
maximum. Usually, it is the global minimum we are looking for.

• At minimum and maximum, the derivative is off is zero:

f ′(x) = 0

• In the region of x where f is convex, i.e. where f curves upward, the
second-derivative of f is positive:

f ′′(x) > 0

• At the minimum, f is convex.

• In the region of x where f is concave, i.e. where f curves downward, the
second-derivative of f is negative:

f ′′(x) < 0

• At the maximum, f er f concave.

795

CHAPTER 40. INTRODUCTION TO OPTIMIZATION

In Section 40.2.2 we will use the derivatives to solve an optimization problem analytically
(“with hand calculation”).

40.1.5 What about maximization problems?

Suppose the optimization problem is to maximize a function, h:

max
x

h(x) (40.10)

You can turn that maximization problem into a minimization problem as follows: Define a
function f as −h:

f = −h (40.11)

Figure 40.4 shows a plot of both h and f . Obviously, max h and min f occurs at the same

Figure 40.4: The same xopt maximizes f1 and minimizes −f1.

x. Now, you can calculate xopt,min as the solution to following minimization problem:

min
x

[f(x) = −h(x)] (40.12)

xopt,min also maximizes (40.10). Thus,

xopt,min = xopt,max (40.13)

So, if you can solve minimization problems, you can also solve maximization problems.

40.2 How to solve optimization problems

40.2.1 Introduction

There are several ways to solve optimization problems (minimization problems). Below are
brief descriptions of their principles.

796

CHAPTER 40. INTRODUCTION TO OPTIMIZATION

Analytical method

Here we use the properties of the optimal solution as described in Section 40.1.4. We
compute xopt from f ′(xopt) = 0. And then we check that f ′′(xopt) > 0 to be sure that xopt
really gives the minimum of f , and not the maximum. The analytical method is applicable
only for fairly simple and “well-formed” optimization problems. We will study an example
of the use of the analytical method in Chapter 40.2.2.

The brute force method

The brute force method is also denoted the grid method. The principle is to calculate the
objective function, f , for all possible combinations of the optimization variables,
x1, x2, ..., xn – within their value ranges, of course. The optimal solution is simply the
combination of the optimization variables that gives the least value of f . Figure 40.5
illustrates the principle of the brute force method, where it is assumed that f has only one
optimization variable, x. As indicated in the figure, the brute force method may provide an
optimal solution that deviates somewhat from the true optimal solution, but with good
resolution of x (i.e. many x values as candidates for xopt), the deviation can be
insignificant. In the figure, there are 8 candidates for xopt, but usually we choose a larger
number, e.g. 100 for better resolution and thus a more accurate fmin. We take a closer look
at the brute force method in Chapter 40.2.1

Figure 40.5: The principle of the brute force method for optimization.

The brute force method has several good qualities:

1Python has a built-in optimization function based on the brute force method: scipy.optimize.brute(). You
may be able to save some programming time using this feature compared to programming the brute force
method from scratch, but hardly much. I have experienced that the execution time is almost the same. A
good feature of scipy.optimize.brute() is that it can be configured so that an accurate iterative optimization
is started automatically based on the optimal solution found with the brute force method.

797

CHAPTER 40. INTRODUCTION TO OPTIMIZATION

• It is easy to implement in a program.

• It finds the global minimum, or rather: approximately the global minimum, without
being fooled to stop at the local minimum.

• It can be applied to all kinds of optimization problems.

• It requires no advanced knowledge of optimization theory.

And some less good ones:

• Limited accuracy of the optimal solution.

• A large computational burden if the number of optimization variables are large
and/or the objective function is computationally demanding. Imagine 5 optimization
variables with 100 grid points each. The total number of grid points (combinations of
the optimization variables) with each function call will then be 1005 = 1010, which is a
large number. The program may then run for a long time.

Iterative methods

In such methods we start with a guess of the optimal solution, xguess, and then we use an
iterative method iterative method or algorithm to keep getting closer to the optimal
solution, xopt. The most well-known iterative methods are the gradient method (where in
each iteration we go down “the steepest path” and finally we are in the “bottom of the
valley”) and Newton-Raphson’s method (which assumes that the objective function
resembles a parabola, which has a minimum point which can be found with relatively few
iterations). Figure 40.6 illustrates the principle of iterative methods, where it is assumed
that f has only one optimization variable, x. At unfortunate choices of xguess, such iterative
methods may be deceived to end up at a local minimum (a local valley) or even a maximum
(a mountain peak), cf. Figure 40.3. We will look into two iterative methods later in this
chapter, namely the steepest descent method in Section 40.2.4.1, and the Newton-Raphson
method in Section 40.2.4.2. However, in relatively simple optimization problems2 we will do
well with the brute force method.

40.2.2 Analytical solution

If the optimization problem is simple enough, we can calculate the optimal solution xopt
analytically, i.e. with “hand calculation”, based on the properties associated with the
derivatives of the objective function f , cf. Section 40.1.4. The procedure below can be
extended to optimization problems with more than one optimization variable, but I am
content here to assume only one optimization variable, x.

2We can say that we have a relatively simple optimization problem if the number of optimization variables
is 5 or less.

798

CHAPTER 40. INTRODUCTION TO OPTIMIZATION

Figure 40.6: Principle of iterative methods of optimization.

1. Calculate a candidate for xopt by solving the equation for x:

f ′(x) = 0 (40.14)

Let us call the candidate xopt,cand.

2. Check that
f ′′(xopt,cand) > 0 (40.15)

to be sure that xopt,cand really gives the minimum, and not the maximum, of f . If
f ′′(xopt,cand) < 0, you have found the maximum! (If it turns out that
f ′′(xopt,kand) = 0, you have actually found a so-called saddle point, which is neither a
maximum nor a minimum.)

Let us look at a simple example, which demonstrates the analytical method.

Example 40.1 Analytical solution of optimization problem

Given the optimization problem
min
x

f(x)

where
f(x) = (x− 2)2 + 10 (40.16)

Figure 40.7 shows a plot of f(x).

I am sure you can see, both from (40.2) and from Figure 40.2, that the solution is

799

CHAPTER 40. INTRODUCTION TO OPTIMIZATION

6 4 2 0 2 4 6 8 10
x

0

10

20

30

40

50

f

Figure 40.7: Plot of the objective function f(x) = (x− 2)2 + 10

xopt = 2 (40.17)

fmin = f(xopt) = f(0) = 10 (40.18)

But we have to calculate the solution too, so that we can try the method explained above:

1. We set f ′(x) equal to zero:

f ′(x) = 2 (x− 2)
!
= 0

where the exclamation mark means "set equal". We get

x = 2 = xopt,cand

2. We check the sign of f ′′(xopt,kand): We have

f ′′(x) = 2

which gives
f ′′(xopt,cand) = f ′′(2) = 2

which is positive. Therefore, xopt,cand = 2 is a minimum of f .

So, also the analytical result is xopt = 2 and fmin = 10.

[End of Example 40.1]

In Chapter 40.2 we need to solve the optimization problem in Example 40.2 with the brute
force method.

800

CHAPTER 40. INTRODUCTION TO OPTIMIZATION

40.2.3 The brute force method of optimization

Many optimization problems have relatively few optimization variables, e.g. 5 or less. In
such cases, I will recommend that you consider using the brute force method, which is a
simple, straight-forward method that can be implemented from scratch in any programming
language.

The principle of the brute force method is to calculate the objective function, f, for all
possible combinations of the optimization variables, x1, x2, ..., xn – within their value
ranges, of course. Each of these value ranges must be divided into a number of values of the
relevant optimization variable, for example 100 values for each variable. The optimal
solution is the combination of the optimization variables that gives the least value of f .

We shall now assume two optimization variables, x1 and x2. I think you can see how the
methodology can be simplified into cases with one optimization variable, and also how to
extended to cases with more than two optimization variables. With two optimization
variables, the value ranges can be presented as a grid, see Figure 40.2, where for simplicity I
have assumed 10 values for both x1 and x2. The grid has Nx1 ×Nx2 = 10× 10 = 100 grid
points.

Figure 40.8: Grid with two optimization variables, x1 and x2, with 10×10 = 100 grid points.
x1,lb and x1,ub are lower bound and upper bound, respectively, of x1. The same applies for
x2.

How do we implement the brute force method in a program? With nested for-loops! The
outer loop goes through all the x1 values, and for each of the x1 values, the inner loop goes
through all the x2 values. In the inner loop, the objective function f is calculated, which is

801

CHAPTER 40. INTRODUCTION TO OPTIMIZATION

thus calculated for all possible combinations of x1 and x2. With e.g. 10 values for x1 and 10
values for x2, f is calculated for all the 100 possible combinations. In Figure 40.2 this is
illustrated with the climber starting at the bottom left and then working upwards in the
first column (i.e. all x2 values for the current x1 value). Then she/he comes down in some
way, and then work the way up the next column, etc., etc. – until all the columns are
climbed through.

Figure 40.9 illustrates the nested loops. The optimal solution is the combination of x1 and
x2 that gives the least value of f .

Figure 40.9: Implementation of the brute force method with nested front loops. The outer
loop goes through all x1 values, and for each x1 value, the inner loop goes through all the x2
values and calculates the objective function f .

So we compute the objective function f for all combinations of x1 and x2. But how do we
find the combination of x1 and x2 that gives the least value of f? We start by giving f ,
which is to be minimized, value infinity (∞), which is the worst possible value f can have
since f should be minimized. For each new combination of x1 and x2, f is checked against
the value of f we have so far. If the new value of f is less than the previous value of f , we
replace the previous value with the new one, and at the same time we store x1 and x2,
which are thus associated with the new value of f . When all the combinations are tried, we
are left with fmin and x1,opt and x2,opt.

How to handle inequality constraints in the brute force method

In Section 40.1.2we saw that optimization problems may have inequality constraints.
Inequality constraints are easy to take into account in the brute force method: We punish
violations of inequality by giving f value infinity, ∞.

802

CHAPTER 40. INTRODUCTION TO OPTIMIZATION

We will now look at some examples of the brute force method.

Example 40.2 Brute force optimization method

In Example 40.2, we solved the following optimization problem analytically:

min
x

f(x)

where
f(x) = (x− 2)2 + 10 (40.19)

We will now solve this optimization problem with the brute force method implemented in
Python.

Let us assume the following value constraint of x:

xlb = −4 ≤ x ≤ xub = 8 (40.20)

We can start with Nx = 100 values of x.

Python program 40.1 implements the brute force method.

http://techteach.no/control/python/brute force optim one optimvar.py

Listing 40.1: brute force optim one optimvar.py

"""

Brute force optimization with one optim variable

Finn Aakre Haugen (finn@techteach.no)

2023 08 19

"""

#%% Import of packages

import numpy as np

import matplotlib.pyplot as plt

#%% Definition of objective function

def fun_f(x):

f = (x - 2)**2 + 10

return f

#%% Initialization

803

http://techteach.no/control/python/brute_force_optim_one_optimvar.py

CHAPTER 40. INTRODUCTION TO OPTIMIZATION

x_lb = -4

x_ub = 8

N_x = 100

x_array = np.linspace(x_lb , x_ub , N_x)

f_min = np.inf

x_opt = 0

#%% Brute force method

for x in x_array:

f = fun_f(x)

if (f < f_min): # Improvement of solution

f_min = f

x_opt = x

#%% Presentation of results

print(’-------------------’)

print(’Optimal solution:’)

print(f’x_opt = {x_opt :.8f}’)

print(f’f_min = {f_min :.8f}’)

print(’-------------------’)

#%% Plotting

f_array = fun_f(x_array)

plt.figure (1)

plt.plot(x_array , f_array , ’.’)

plt.xlim(-6, 10)

plt.ylim(0, 50)

plt.xlabel(’x’)

plt.ylabel(’f(x)’)

plt.grid()

plt.show()

#plt.savefig(’prog_plot_one_optimvar.pdf ’)

Comments to program 40.1:

• The code import numpy as np imports the package numpy. We need some of the
features of numpy in the program.

• The code def fun f (x): is the beginning of the definition of the function that
calculates the objective function.

• In the code cell Initialization, the array x array is defined with all the 100 x values for
which the objective function is to be calculated.

• The code f min = np.inf defines the variable f min, which must have the least value of
the objective function f at any time, and give it the initial value infinite, ∞. When
the program is running, hopefully f min will get a smaller value.

804

CHAPTER 40. INTRODUCTION TO OPTIMIZATION

• The code x opt = 0 gives the variable that should have finally obtained the optimal x
value, starting value 0, but strictly speaking we could have dropped this code line.

• The code for x in x array: is the start of the loop that goes through all the 100 x
values in x array. For each x value, the objective function is calculated.

• The code if (f <f min), which is inside the for loop and is therefore run for each of the
100 x values, checks if f has a smaller value than the present smallest f value, which is
f min. If so, the code line f min = f ensures that f min is updated with the new,
smaller f value. In addition, the x opt value is given to the corresponding x value
(thus giving the new, smaller f value).

• When the pre-loop has been run the 100 times, f min has the smallest value of f , and
x opt has the corresponding optimal value of x.

• Then follow some call of the print () function to get the value of the optimal solution,
i.e. x opt and f min, written to the console.

• The code print (f’f (x opt) = {fun f (x opt):. 8f} ’) is for control purposes only. I call
the objective function, fun f, with x opt as the input argument, i.e. compute f(xopt),
which should get a value equal to f min as calculated by the brute force method. If
these two values are different, the program is not working properly, and we need to
start troubleshooting. The formatting code {fun f (x opt): 8f} is f-string formatting in
Python.

The result of the program run is shown in the box below.

Optimal solution:
x opt = 1.93939394
f min = 10.00367309

We know from the analytical calculation of the solution that the exact answer is xopt = 2
and fmin = 10. The relative error in fmin is

10.00367309− 10

10
· 100 = 0.0367309%

The brute force method solution is somewhat inaccurate, as we generally have to expect it
to be. Only when we have such luck with our definition of x array that one of the x values
is identical to the true xopt, the grid solution is identical to the true optimal solution. In
this example, none of the x values have a value of exactly 2. But what if we had chosen eg.
Nx = 101?3

Actually, there are two x values that give f = 10.003673, namely x = 1.93939394 and
x = 2.06060606. The if expression in our program will give us the first of these x values.

Figure 40.10 shows a plot of f as a function of the 100 grid values for x (but I do not show
the program code for the plot here).

Above we used Nx = 100. The result with Nx = 1000 is:

3Then one of the x values would have a value of exactly 2.

805

CHAPTER 40. INTRODUCTION TO OPTIMIZATION

6 4 2 0 2 4 6 8 10
x

0

10

20

30

40

50

f(x
)

Figure 40.10: Plot of f as a function of the 100 grid values for x

Optimal solution:
x opt = 1.99399399
f min = 10.00003607

What is now the relative error in f min? It is 0.003607% which is approx. 1/10 of the error
with Nx = 100, which is a pretty big improvement, but there are also many more
calculations, of course.

[End of Example 40.2]

In the next examaple, the brute force method is used to solve the optimization problem
having two optimization variables. (Then, I am sure you can imagine how to solve
optimization problems having more than two optimization variables.)

Example 40.3 Brute force optimization with two optimization variables

The optimization problem is:

min
x

f(x) (40.21)

where
f(x) = (x1 − 1)2 + (x2 − 2)2 + 0.5 (40.22)

From (40.21) we see immediately that the optimal solution is:

fmin = 0.5 (40.23)

806

CHAPTER 40. INTRODUCTION TO OPTIMIZATION

x1,opt = 1 (40.24)

x2,opt = 2 (40.25)

Figure 40.2 shows a plot of f , where the optimal solution is plotted.4

Program calculates the optimal solution with the brute force method. The program is in
principle as in Example 40.3, but it now contains two nested for-loops since we now have
two optimization variables, x1 and x2. The nested loops make sure that the objective
function is calculated for all combinations of current values of x1 and x2.

Python program 40.2 implements the brute force method.

http://techteach.no/control/python/brute force optim two optim var.py

Listing 40.2: brute force optim two optim var.py

"""

Brute force optimization with two optim variables

Finn Aakre Haugen (finn@techteach.no)

2023 08 19

"""

#%% Import of packages

import numpy as np

#%% Def of objective function

def fun_f(x1 , x2):

f = (x1 - 1)**2 + (x2 - 2)**2 + 0.5

return f

#%% Initialization

x1_lb = 0

x1_ub = 2

N_x1 = 100

x1_array = np.linspace(x1_lb , x1_ub , N_x1)

x2_lb = 1

x2_ub = 3

N_x2 = 100

x2_array = np.linspace(x2_lb , x2_ub , N_x2)

f_min = np.inf

x1_opt = 0

x2_opt = 0

4This plot is generated in MATLAB, but a similar plot can be generated in Python with the plot surface()
function in the Matplotlib package, cf. https: // matplotlib.org/mpl toolkits/mplot3d/tutorial.html.

807

http://techteach.no/control/python/brute_force_optim_two_optim_var.py

CHAPTER 40. INTRODUCTION TO OPTIMIZATION

#%% Brute force method with nested for loops:

for x1 in x1_array:

for x2 in x2_array:

Calc of objective function

f = fun_f(x1, x2)

Possible improvement of solution

if (f < f_min):

f_min = f

x1_opt = x1

x2_opt = x2

#%% Presenting of optim result

print(f’f_min = {f_min :.8f}’)

print(f’x1_opt = {x1_opt :.8f}’)

print(f’x2_opt = {x2_opt :.8f}’)

x(2)opt

x(1)opt

Figure 40.11: Plot the object function f with the optimal solution plotted.

The result as shown in the console:

f min = 0.50020406
x1 opt = 0.98989899
x2 opt = 1.98989899

which is quite similar to the exact solution given above. By choosing larger Nx1 and Nx2 ,

808

CHAPTER 40. INTRODUCTION TO OPTIMIZATION

we will get even closer to the exact solution, but with more calculations (more iterations of
the loops).

[End of Example 40.3]

40.2.4 Iterative methods of optimization

I will here present briefly the principles of two interative methods of optimization, namely

• Steepest descent method, Section 40.2.4.1.

• Newton method – also denoted Newton-Raphson method, Section 40.2.4.2.

In practice you should consider using pertinent optimization functions in e.g. Python or
Matlab. Both the scipy.minimize function in the Scipy package for Python and the fmincon
function in the Optimization toolbox for Matlab implement alternative iterative
optimization methods.

40.2.4.1 Steepest decent optimization method

The steepest descent method is for solving unconstrained optimization problems. In the
steepest descend method, the optimization variable, x, is moved so that the value of the
objective function is the largest reduction possible. It is like trying to get to the bottom of
a valley by always walking down the hillside as steeply as possible. The steepest descent
method is often used for model adaptation in the field of machine learning.

Scalar case

In the scalar case (x is scalar), the steepest descend iteration is:

xk+1 = xk +∆xk (40.26)

where the step is
∆xk = −Kf ′(xk) (40.27)

where K is a factor which can be used to determine the size or length of the step, and
f ′(xk) is the derivative, or the gradient, of the objective function. In the standard steepest
descend search, the numerical value of K is 1.

∆xk is proportional to f ′(xk). This is illustrated in Figure 40.12 where two different values
of x are considered. This proportionality implies that the closer to the optimum (minimum
of f), the smaller the step. This sounds like the minimum will be found. However, it may
happen that ∆xk becomes too large, so that xk+1 will pass xopt, causing the search to
“jump” to other side of the “valley”. Consequently, there may be oscillations in the search.
There are several methods to improve (optimize) the step size, e.g. conjugate gradient

809

CHAPTER 40. INTRODUCTION TO OPTIMIZATION

f(x)

x

fmin

xopt

Δxb=-Kf’(xb)

Slope = f’(xa)

Δxa=-Kf’(xa)

xb xa

Slope = f’(xb)

Point ‘a’

Point ‘b’

Figure 40.12: In the steepest descent method the search step size, ∆xk is proportional to the
derivative of the objective function, f ′(xk).

methods Edgar et al. (2001), and variants of Newton’s method. It is also possible to just
manually set K to a value less than the default of 1. These are methods that apply also for
the vectorial case (x a vector).

Vectorial case

In the vectorial case, the steepest descend iteration is:

xk+1 = xk +∆xk (40.28)

where the search step is
∆xk = −K∇f(xk) (40.29)

where ∇f(xk) is the gradient of f , calculated at xk. So, the step, ∆xk, is taken in the
negative direction of the gradient, or – in other words – along the steepest descent. In the
standard steepest descend search, the numerical value of K is 1, or, which gives the
equivalent result, K = I, the identity matrix. There are several methods to improve
(optimize) the step size and the direction, but we will not discuss these improvements here.

40.2.4.2 The Newton optimization method

The Newton optimization method – also denoted the Newton-Raphson method – is an
iterative method for solving unconstrained optimization problems. The method does not
take into account any constraints on the form of (40.3) and (40.2). Optimization methods

810

CHAPTER 40. INTRODUCTION TO OPTIMIZATION

that do take constraints into account are often denoted Nonlinear Programming (NLP)
methods. Concepts that are central in this method are central also in solvers for
constrained problems (NLP solvers).

Scalar case

See Figure 40.3. At the minimum of the objective function f , f is flat, that is,

f ′(xopt) = 0 (40.30)

Generally, Newton’s method is an iterative method for solving equations on the form
F (x) = 0. In the context of optimization, Newton’s method is used to solve (40.30) for x.
But since minimization points as well as maximizing points are characterized by f ′ = 0, as
illustrated in Figure 40.3, we can not just take the solution of (40.30) as the minimizing
solution. By solving f ′(x) = 0 for x, we only have a candidate of the optimal x, say xcand.
To ensure that xcand is actually the optimal (minimizing) solution, we must check that f is
convex where f ′(xcand) = 0. f is convex at xcand if the second order derivative of f is
strictly positive at xcand, that is, if

f ′′(xcand) > 0 (40.31)

xcand is the results of a number of Newton iterations. Figure 40.13 illustrates one iteration
(assuming scalar case).

We assume that an estimate, or a candidate, of the optimal x exists at iteration number k,
namely xk, and that both f ′(xk) and f ′′(xk) are known (at xk). An improved estimate can
be obtained graphically as shown in Figure 40.13. We will now find the formula of xk+1.
From Figure 40.13 we find that the slope at xk is

f ′′(xk) =
f ′(xk)− 0

xk − xk+1
(40.32)

Solving for xk+1 gives the Newton iteration expressed as a formula:

xk+1 = xk −
[
f ′′(xk)

]−1
f ′(xk) (40.33)

How many Newton iterations should be calculated? In a computer program, the Newton
iteration can be implemented in a While Loop with the stop condition of the loop being, for
example,

|f(xk+1)− f(xk)| ⩽ df (40.34)

where df is a constant of an appropriate value. Alternatively, a For Loop can be used with
a fixed, maximum number of iterations (Newton iterations) and with the possibility to
break the loop if (40.34) is satisfied before the maximum number of iterations is reached.

Once we have found a candidate, xcand = xk+1, of the optimal solution, we must check that
f ′′(xcand) > 0. If this test is passed,

xopt = xcand (40.35)

811

CHAPTER 40. INTRODUCTION TO OPTIMIZATION

f(x)

x

fmin

xopt

f’(x)

x
0

xk+1 xk

f’(xopt) = 0

f’(xk)

f’’(xk)Slope =

(known)

(known)(=approx-

imation to

xopt; to be

calculated)

(known)

f’’(x)

0
x

f’’(xopt) > 0

xopt

f convex

Figure 40.13: One iteration in Newton’s method for searching for xopt. (Scalar case.)

Note that the Newton’s search method is a local optimizer (minimizer). It is only if xguess is
sufficiently close to the global optimum, that the Newton search will arrive at the global
optimum. As an example, see 40.3. If xguess = 4, a Newton search will arrive at a local
optimum. If xguess = 16, the Newton search will arrive at the global optimum.

In the Newton’s method, x will be moved towards a point where

f ′(xmax) = 0

However, this point may be a (local) maximum if the initial value of x in the search is
where f is concave. Figure 40.14 illustrates this situation. The Newton iteration, (40.33),
will move x towards xmax. So, it is crucial that the guessed value of x is where f is not
concave, i.e., is convex. This situation can be avoided by using the steepest descent method
instead of Newton’s method where f is not concave.

812

CHAPTER 40. INTRODUCTION TO OPTIMIZATION

f(x)

x

fmax

xmax

f’(x)

x
0

xk+1 xk

f’(xk)
f’’(xk)Slope =

f concave

Figure 40.14: One iteration in Newton’s method when f is concave.

An explanation of why the Newton search is so fast

Let us consider the steepest descent algorithm for the scalar case, (40.26) – (40.27), which is
repeated here for convenience:

xk+1 = xk −Kf ′(xk) (40.36)

where the factor K is included. K can be regarded as the step size. In the standard
steepest descent method, K = 1 (fixed). Now, let’s open for other values of K. (40.36) can
be regarded as a nonlinear discrete-time difference equation or model with x as the
state-variable. It is nonlinear because it can be assumed that the derivative, or gradient,
f ′(x), is a nonlinear function of x. To analyse the dynamic properties of this model, we can
consider the linearized model. Let us define dx as the deviation variable corresponding to x.
Linearization of (40.36), which is based on a first order Taylor series of the nonlinear term,
gives the following linear model:

dxk+1 = dxk −Kf ′′(xk)dx =
[
1−Kf ′′(xk)

]
dxk (40.37)

According to systems theory of discrete-time systems, the fastest dynamic response in dx is
obtained with the next state, dxk+1, is assumed zero, independent of the present state, dxk.

5

This dynamics is denoted dead-beat response. So, dead-beat dynamics is obtained with

1−Kf ′′(xk) = 0

5An alternative design based on z-plane theory is as follows: The fastest dynamics of a discrete-time system
is when the z-eigenvalue(s) of the system being zero, i.e. in the origin of the complex z-plane. The z-eigenvalue
is z = 1−Kf ′′(xk), which is set to 0.

813

CHAPTER 40. INTRODUCTION TO OPTIMIZATION

which gives
K =

[
f ′′(xk)

]−1

Inserting this K into (40.37), gives the “dead-beat steepest descent” algorithm:

xk+1 = xk −
[
f ′′(xk)

]−1
f ′(xk)

which is the Newton search algorithm, (40.33)!

For a quadratic f , the optimum is found in one search iteration!

Assume that f(x) is quadratic, say

f(x) = a1 + a2x
2

This implies:
f ′(x) = 2a2x

and
f ′′(x) = 2a2

Inserting these functions in the Newton algorithm, gives:

xk+1 = xk −
[
f ′′(xk)

]−1
f ′(xk) = xk − [2a2]

−1 2a2xk = 0xk

Thus, the Newton algorithm exhibits dead-beat dynamics, and this result is obtained
directly, without any approximate analysis involving linearization. This implies that for
quadratic functions, the search will arrive at the minimum in just one iteration, whatever is
selected as the starting or guessed value of x of the search. This holds also for optimization
problems where x is vectorial.

Vectorial case

Assume x a vector:

x =


x(1)
x(2)
...

x(n)


It can be shown Edgar et al. (2001) that the Newton iteration, (40.33), now takes the form

xk+1 = xk −
[
∇2f(xk)

]−1∇f(xk) (40.38)

In (40.38),

∇f(xk) =


∂f(xk)
∂x(1)
∂f(xk)
∂x(2)
...

∂f(xk)
∂x(n)

 (40.39)

814

CHAPTER 40. INTRODUCTION TO OPTIMIZATION

which is the gradient of f with respect to x. In words, the gradient of f is a vector of first
order partial derivatives of f . In (40.39), ∂f(xk)/∂x(1) means the partial derivative of f
with respect to x(1), calculated at x = xk.

Furthermore in (40.38),

∇2f(xk) ≡ H(xk) =


∂2f

∂x(1)2
∂2f

∂x(1)∂x(2) . . . ∂2f
∂x(1)∂x(n)

∂2f
∂x(2)∂x(1)

∂2f
∂x(2)2

. . . ∂2f
∂x(2)∂x(n)

...
...

. . .
...

∂2f
∂x(n)∂x(1)

∂2f
∂x(n)∂x(2) . . . ∂2f

∂x(n)2

 (40.40)

which is the Hessian (matrix) of f with respect to x. In words, the Hessian of f is a matrix
of second order partial derivatives of f . The Hessian may be calculated analytically, or
numerically.

As for the scalar case discussed above, the Newton iteration can be implemented in a While
Loop or For Loop (the latter with a preset maximum number of iterations) with the stop or
break condition of the loop being

|f(xk+1)− f(xk)| ⩽ df (40.41)

where df is a constant of an appropriate value.

To verify that xopt minimizes and not maximizes f , we must check that f is convex at xopt.
f is convex if the Hessian is positive definite, which is ensured if all the eigenvalues of the
Hessian are strictly positive Edgar et al. (2001). Hence, xopt minimizes f if

∀ eig∇2f(xcand) > 0 (40.42)

(The symbol ∀ means “for all”.)

40.2.5 Global optimization

The brute force method with a sufficiently small resolution (search step) is a global
optimizer, but the method may arrive at an inaccurate value of the global optimum. The
Newton search method will arrive at an accurate value of the local optimum. These two
methods can be combined into an accurate global optimizer as follows:

1. Apply brute force optimization. The optimal solution from this search is here denoted
xbf .

2. Use the optimal result from the grid search as the optimal guess in the Newton
search, i.e.

xguess = xbf

As an alternative to step 2 above, we may simply apply a second brute force optimization,
this time around xbf from step 1.

815

CHAPTER 40. INTRODUCTION TO OPTIMIZATION

More dedicated global optimization methods exist, for example the so-called genetic
algorithms Edgar et al. (2001).

40.2.6 Testing: Have you actually found the minimum?

How can you be sure that your program has really found the optimal solution? A simple
test method test is to perturbate (disrupt) the optimal solution with small changes – both
increase and decrease. The changes should be small, say 1 % of your optimal solution.
Figure 40.15 illustrates this for the case of one optimization variable. If the object function
f gets a greater value for each of the perturbations in the optimization variables, you may
conclude that you have found the minimum.

Figure 40.15: Perturbation around the optimal solution

Example 40.4 shows how a test program can be created.

Example 40.4 Testing the optimal solution

Below is a program for testing the optimal solution found in Example 40.3.

Python program 40.3 implements the brute force method.

http://techteach.no/control/python/prog optim test.py

Listing 40.3: prog optim test.py

-*- coding: utf -8 -*-

Import av pakker:

816

http://techteach.no/control/python/prog_optim_test.py

CHAPTER 40. INTRODUCTION TO OPTIMIZATION

import numpy as np

Definisjon av objektfunksjon:

def fun_f(x1 , x2):

f = (x1 - 1)**2 + (x2 - 2)**2 + 0.5

Ulikhetsbegrensning:

if not(x2 - x1 - 1.5 >= 0):

f = np.inf

return f

Optimal l~Ažsning:

x1_opt = 0.74747475

x2_opt = 2.25252525

f_min = fun_f(x1_opt , x2_opt)

print(’-----------------’)

print(f’x1_opt = {x1_opt :.8f}’)

print(f’x2_opt = {x2_opt :.8f}’)

print(f’f_min = {f_min :.8f}’)

Perturbering av optimeringsvariablene:

kx1 = 0.99

kx2 = 1.00

x1_pert = x1_opt * kx1

x2_pert = x2_opt * kx2

f_pert = fun_f(x1_pert , x2_pert)

df = f_pert - f_min

print(’-----------------’)

print(f’x1_pert = x1_opt *{kx1:.2f}’)

print(f’x2_pert = x2_opt *{kx2:.2f}’)

print(f’f_pert - f_min = {df:.8f}’)

print(’-----------------’)

print(’Test ok?’, (df > 0))

"""

%--

%Testing the result by applying positive and negative

%perturbations to the optimal solution (not caring about

%the constraints here):

disp(’-------------------’)

disp(’Perturbation test for optimality :’)

disp(’(The test may fail if optim solution is on a constraint .)’)

pert_x1 =0

pert_x2 =0

x1=x1_optim+pert_x1;

817

CHAPTER 40. INTRODUCTION TO OPTIMIZATION

x2=x2_optim+pert_x2;

x1_pert=x1

x2_pert=x2

f_pert =(x1 -p1)^2+(x2 -p2)^2+p3

f_min

is_constraint_satisfied =(x2 > x1+1)

"""

In the program, kx1 and kx2 are used as perturbation factors for x1 and x2, respectively.
For example, kx1 = 1.01 means that x1 opt is increased by 1%, while kx1 = 0.99 means
that x1 opt is reduced by 1%. The same applies to x2.

Below are the results for both positive and negative perturbation of x1 opt. I’m not
showing the test result for and x2 opt here.

kx1 = 1.01 (positive perturbation of x1 opt):

x1 opt = 0.74747475
x2 opt = 2.25252525
f min = 0.62753800

x1 pert = x1 opt*1.01
x2 pert = x2 opt*1.00
f pert - f min = inf

Test ok? True

kx1 = 0.99 (negative perturbation of x1 opt):

x1 opt = 0.74747475
x2 opt = 2.25252525
f min = 0.62753800

x1 pert = x1 opt*0.99
x2 pert = x2 opt*1.00
f pert - f min = 0.00383100

Test ok? True

Thus, the tests for x1 opt are successful.

[End of Example 40.4]

818

Chapter 41

Python

41.1 About Python

Python was developed by Guido van Rossum and lauched in its first version in 1991. It is a
free, open source programming tool which has become one of the most popular
programming tools in the world. A large number of packages for special applications have
been developed, e.g. Numpy for numerical calculations, Matplotlib for plotting, Scipy for
scientific computing, etc.

The official “home” of Python is maintained by the Python Software Foundation:

https://www.python.org/

41.2 Installing Python

A popular way of getting Python with the most commonly used packages installed on your
computer is to simply install the Anaconda distribution of Python tools from

https://www.anaconda.com/

In this book, the Python Control package is used. This package is not included in the
Anaconda distribution, so it must be installed separately. The Python Control package is
presented in Appendix 42.

819

https://www.python.org/
https://www.anaconda.com/

CHAPTER 41. PYTHON

41.3 Learning Python

There are lots of online resources and books for learning Python. Below are some resources
which I have developed:

A presentation file (pdf) which gives a flash course in Python programming:

http://techteach.no/control/python course/python flash course 2021 08 30.pdf

A sequence of three video lectures which covers most of the topics of the above
presentation:

https://www.dropbox.com/s/r6o5swordk90qxb/python flash course part 1 2021 08 30.mp4?dl=0

https://www.dropbox.com/s/d2u45acf5qnjzog/python flash course part 2 2021 08 30.mp4?dl=0

https://www.dropbox.com/s/91egnyu6zc0m4au/python flash course part 3 2021 08 30.mp4?dl=0

This Python book in Norwegian may be of interest (but it is not free):

http://techteach.no/python/

820

http://techteach.no/control/python_course/python_flash_course_2021_08_30.pdf
https://www.dropbox.com/s/r6o5swordk90qxb/python_flash_course_part_1_2021_08_30.mp4?dl=0
https://www.dropbox.com/s/d2u45acf5qnjzog/python_flash_course_part_2_2021_08_30.mp4?dl=0
https://www.dropbox.com/s/91egnyu6zc0m4au/python_flash_course_part_3_2021_08_30.mp4?dl=0
http://techteach.no/python/

Chapter 42

Python Control package

42.1 Introduction

42.1.1 What is the Python Control package?

The Python Control Package is for analysis and design of dynamic systems in general and
feedback control systems in particular. The package resembles the Control System Toolbox
in MATLAB.

The package is developed at California Institute of Technology (Caltech), USA, by prof.
Richard M. Murray and coworkers.

The package requires Numpy, Scipy, and Matplotlib (these packages are installed with the
Anaconda distribution of Python tools).

The home page of the Python Control package is

https://pypi.org/project/control/

A complete list of the functions in the package is available via the link named Homepage on
the above home page.

42.1.2 About this guide

The guide covers only some of the functions in the Python Control Package. However, these
function are basic, and if you master these functions, you should be well prepared for using
other functions in the package.

Most of the tutorial is about continuous-time models, i.e. transfer functions based on the

821

https://pypi.org/project/control/

CHAPTER 42. PYTHON CONTROL PACKAGE

Laplace transform and state space models based on differential equations. Discrete-time
models are briefly covered in one chapter at the end of the tutorial. That coverage is brief
because the basic functions for continuous-time models can be used also for discrete-time
models, i.e. with the same syntax, however with the sampling time (period) as an extra
input argument in the functions.

42.1.3 Installing the Python Control package

You can install the package with the command

pip install control

executed e.g. at the Anaconda prompt (in the Anaconda command window)1.

Some functions in the Python Control package, for example the lqr function for calculating
the stationary controller gain G in LQ control, requires that the package slycot is installed.
You can install it with the following command at the Anaconda prompt:

conda install -c conda-forge slycot

(The straightforward “pip install slycot” may not work.)

42.1.4 Importing the Python Control package into Python

The following command (in Python) imports the Python Control package into Python:

import control

42.1.5 Using arrays for numerical data

In Python, tuples, lists, dictionaries, and arrays can be used to store numerical data.
However, only arrays are practical for mathematical operations on the data, like addition
and multiplication. Therefore, I use arrays as the numerical data type consistently in this
book.

To use arrays, you must import the numpy package. It has become a tradition to rename
the numpy package as np. Thus, to import numpy, include the following command in the
beginning of your program:

import numpy as np

1In Windows: Start menu / Anaconda / Anaconda prompt.

822

CHAPTER 42. PYTHON CONTROL PACKAGE

42.2 Transfer functions

This section is about Laplace transform based transfer functions, which may be referred to
as s-transfer functions (s is the “Laplace variable”). Discrete time transfer functions, or
z-transfer functions, are covered by Section 42.5.1.2.

42.2.1 How to create transfer functions

There are two ways to create transfer functions in the Python Control Package:

• By defining a variable named ’s’ representing the Laplace variable, and creating
transfer functions in terms of s, see Section 42.2.1.1.

• By creating arrays (or lists) to represent the numerator and denominator of the
transfer function, see Section 42.2.1.2.

Usually, I prefer the first of these ways since it is closer to how I define transfer functions
with hand-writing.

42.2.1.1 Creating transfer functions using the Laplace variable

For illustration, assume that the transfer function is

H(s) =
b1s+ b0
a1s+ a0

(42.1)

In this case, we can create H(s) in Python Control Package simply with the following two
lines of Python code:

s = control.tf(’s’)

which defines s as the Laplace variable, and

H = (b1*s + b0)/(a1*s + a0)

where H is the resulting transfer function (an object). Above it is assumed that b1, b0, a1
and a0 have already been defined as Python variables with some values.

Example 42.1 Creating a transfer function using the Laplace variable

Let us create the following transfer function:

H(s) =
2

5s+ 1
(42.2)

The Python program 42.1 creates this transfer function. The code print(’H(s) = ’, H) is
used to present the transfer function in the console (of Spyder).

823

CHAPTER 42. PYTHON CONTROL PACKAGE

http://techteach.no/control/python/create tf using s.py

Listing 42.1: create tf using s.py

import control

%% Creating the transfer function:

s = control.tf(’s’)

H = 2/(5*s + 1)

%% Displaying the transfer function:

print(’H(s) =’, H)

The result as shown in the console is:

H(s) =
2

5 s + 1

If you execute “H” (+ enter) in the Spyder console, the transfer function is more nicely
displayed, see Figure 42.1.

Figure 42.1: The transfer function nicely displayed with H (+ enter) executed in the console.

[End of Example 42.1]

42.2.1.2 Creating transfer functions using coefficient arrays of numerator and
denominator

As an alternative to defining transfer functions with the Laplace variable, they can be
defined using coefficient arrays of numerator and denominator. The syntax is as follows:

H = control.tf(num, den)

where H is the resulting transfer function. num (representing the numerator) and den
(representing the denominator) are arrays where the elements are the coefficients of the
s-polynomials in descending order from left to right. Of course, you can use any other
names than H, num, and den in your own programs.

824

http://techteach.no/control/python/create_tf_using_s.py

CHAPTER 42. PYTHON CONTROL PACKAGE

To illustrate the syntax, assume that the transfer function is

H(s) =
b1s+ b0
a1s+ a0

(42.3)

The Python code:

num = np.array([b1, b0])

den = np.array([a1, a0])

where, of course, the values of b1, b0, a1 and a0 have already been defined and assigned
values.

Example 42.2 Creating a transfer function using coefficient arrays

We will create the following transfer function:

H(s) =
2

5s+ 1
(42.4)

The Python program 42.2 creates this transfer function. The code print(’H(s) = ’, H) is
used to present the transfer function in the console (of Spyder).

http://techteach.no/control/python/create tf.py

Listing 42.2: create tf.py

import numpy as np

import control

%% Creating the transfer function:

num = np.array ([2])

den = np.array([5, 1])

H = control.tf(num , den)

%% Displaying the transfer function:

print(’H(s) =’, H)

The result of the code above is shown as follows in the console:

H(s) =
2

5 s + 1

[End of Example 42.2]

825

http://techteach.no/control/python/create_tf.py

CHAPTER 42. PYTHON CONTROL PACKAGE

42.2.2 Combinations of transfer functions

The following sections shows how we can combine transfer functions in

• series combination

• parallel combination

• feedback combination

42.2.2.1 Series combination

Figure 42.2 illustrates a series combination of two transfer functions.

u y
H2H1

Figure 42.2: A series combination of two transfer functions, H1(s) and H2(s).

The resulting transfer function is

y(s)

u(s)
= H(s) = H2(s)H1(s) (42.5)

If you are to calculate the combined transfer function manually using (42.5), the order of
the factors in (42.5) is of no importance for SISO2 transfer functions. But for MIMO3

transfer functions, the order in (42.5) is crucial.

Whether SISO or MIMO, you can create a series combination with the multiplication
operator, *, in Python:

H = H1*H2

Example 42.3 Series combination of transfer functions

Assume a series combination,
H(s) = H1(s)H2(s)

of the following two transfer functions:

H1(s) =
K1

s
(42.6)

2SISO = Single Input Single Output
3MIMO = Multiple Input Multiple Output

826

CHAPTER 42. PYTHON CONTROL PACKAGE

H2(s) =
K2

T1s+ 1
(42.7)

where K1 = 2, K2 = 3, and T = 4.

Manual calculation gives:

H(s) =
K1

s
· K2

Ts+ 1
=

K1K2

Ts2 + s
=

6

4s2 + s

Program 42.3 shows how the calculations can be done with the * operator.

http://techteach.no/control/python/series tf.py

Listing 42.3: series tf.py

import control

s = control.tf(’s’)

K1 = 2

K2 = 3

T = 4

H1 = K1/s

H2 = K2/(T*s + 1)

H = H1*H2

print(’H =’, H)

The result of the code above as shown in the console is:

H =
6

4 sˆ2 + s

[End of Example 42.3]

Alternative: control.series()

As an alternative to using the * operator, you can use the series() function of the Python
Control package:

H = control.series(H1, H2)

42.2.2.2 Parallel combination

Figure 42.3 illustrates a parallel combination of two transfer functions.

827

http://techteach.no/control/python/series_tf.py

CHAPTER 42. PYTHON CONTROL PACKAGE

u y

H2

H1
+

+

Figure 42.3: A parallel combination of two transfer functions, H1(s) and H2(s).

The resulting transfer function is

y(s)

u(s)
= H(s) = H2(s) +H1(s) (42.8)

You can create a parallel combination with the sum operator, +, in Python:

H = H1 + H2

Example 42.4 Parallel combination of transfer functions

Given the transfer functions, H1(s) and H2(s), as in Example 42.3.

Manual calculation of their parallel combination gives4:

H(s) =
2

s
+

3

4s+ 1
=

2(4s+ 1) + 3s

s(4s+ 1)
=

11s+ 2

4s2 + s

Program 42.4 shows how the calculations can be done with the control.parallel() function.

http://techteach.no/control/python/parallel tf.py

Listing 42.4: parallel tf.py

import control

s = control.tf(’s’)

K1 = 2

K2 = 3

T = 4

H1 = K1/s

H2 = K2/(T*s + 1)

4For simplicity, I insert here the numbers directly instead of the symbolic parameters, but in general I
recommend using symbolic parameters.

828

http://techteach.no/control/python/parallel_tf.py

CHAPTER 42. PYTHON CONTROL PACKAGE

H = H1 + H2

print(’H =’, H)

The result of the code above as shown in the console is:

H =
11 s + 2

4 sˆ2 + s

[End of Example 42.4]

Alternative: control.parallell()

As an alternative to using the + operator, you can use the control.parallell() function:

H = control.parallel(H1, H2)

42.2.2.3 Feedback combination

Figure 42.4 illustrates a feedback combination of two transfer functions.

r y

H2

H1
_

Figure 42.4: A feedback combination of two transfer functions, H1(s) and H2(s).

The resulting transfer function, from r (reference) to y, which can be denoted the closed
loop transfer function, can be calculated from the following expression defining y (for
simplicity, I drop the argument s here):

y = H1 · (r −H2y) = H1r −H1H2y

which gives

y =
H1

1 +H1H2
r

Thus, the resulting transfer function is

y(s)

r(s)
= T (s) =

H1(s)

1 +H1(s)H2(s)
(42.9)

829

CHAPTER 42. PYTHON CONTROL PACKAGE

The transfer function (42.9) can be derived with following Python code with ordinary
arithmetic operators:

T = H1/(1 + H1*H2)

where it is assumed that the transfer functions H1 and H2 has already been defined.

A note about (non)minimal transfer functions

Creating transfer functions using arithmetic operators in Python may produce a
non-minimal transfer function, which means that there are one or more common factors in
the numerator and denominator. To obtain a minimal transfer function, i.e. to remove
common factors, you can use the control.minreal() function:

T min = control.minreal(T nonmin)

Example 42.5 Transfer function of negative feedback combination

Given a negative feedback loop with the following open loop transfer function:

L(s) =
2

s
(42.10)

Manual calculation of the closed loop transfer function T (s) based on (42.12) gives

T (s) =
L(s)

1 + L(s)
=

2
s

1 + 2
s

=
2

s+ 2
(42.11)

Program 42.5 shows how the calculations can be implemented with Python code with
arithmetic operators. The program include code for obtaining a minimal transfer function.
Both the minimal transfer function (T min) and the non-minimal transfer function
(T nonmin) are presented.

http://techteach.no/control/python/feedback tf.py

Listing 42.5: feedback tf.py

import control

s = control.tf(’s’)

L = 2/s

T_nonmin = L/(1 + L)

T_min = control.minreal(T_nonmin)

print(’T_min =’, T_min)

print(’T_nonmin =’, T_nonmin)

830

http://techteach.no/control/python/feedback_tf.py

CHAPTER 42. PYTHON CONTROL PACKAGE

The result:

T min =
2

s + 2
T nonmin =

2 s

sˆ2 + 2 s

[End of Example 42.5]

Alternative: control.feedback()

As an alternative to using the ordinary arithmetic operators to derive the transfer function
of a feedback combination, you can use the control.feedback() function:

H = control.feedback(H1, H2, sign=−1)

where negative feedback is assumed. You may drop the argument sign = −1 if there is
negative feedback since negative feedback is the default setting.

You must use sign = 1 if there is a positive feedback instead of a negative feedback in
Figure 42.4.

In most cases – at least in feedback control systems – a negative feedback with H2(s) = 1 in
the feedback path is assumed. Then, H1() is the open loop transfer function, L(s), and
(42.9) becomes

y(s)

r(s)
= H(s) =

L(s)

1 + L(s)
(42.12)

In such cases, you can use this code:

H = control.feedback(L, 1)

L(s) may be the series combination (i.e. the product) of the controller, the process, the
sensor, and the measurement filter:

L(s) = C(s) · P (s) · S(s) · F (s) (42.13)

Series combination of transfer functions is described in Section 42.2.2.1.

42.2.3 How to get the numerator and denominator of a transfer function

You can get (read) the numerator coefficients and denominator coefficients of a transfer
function, say H, with the control.tfdata() function:

831

CHAPTER 42. PYTHON CONTROL PACKAGE

(num list, den list) = control.tfdata(H)

where num list and den list are lists (not arrays) containing the coefficients.

To convert the lists to arrays, you can use the np.array() function:

num array = np.array(num list)

and

den array = np.array(den list)

Example 42.6 Getting the numerator and denominator of a transfer function

See Program 42.6.

http://techteach.no/control/python/get tf num den.py

Listing 42.6: get tf num den.py

import numpy as np

import control

%% Creating a transfer function:

num = np.array ([2])

den = np.array([5, 1])

H = control.tf(num , den)

Alternatively , using the Laplace variable , s:

s = control.tf(’s’)

H = 2/(5*s + 1)

%% Getting the num and den coeffs as lists and then as arrays:

(num_list , den_list) = control.tfdata(H)

num_array = np.array(num_list)

den_array = np.array(den_list)

%% Displaying the num and den arrays:

print(’num_array =’, num_array)

print(’den_array =’, den_array)

The result:

num array = [[[2]]]
den array = [[[5 1]]]

832

http://techteach.no/control/python/get_tf_num_den.py

CHAPTER 42. PYTHON CONTROL PACKAGE

To “get rid of” the two inner pairs of square brackets, i.e. to reduce the dimensions of the
arrays:

num array = num array[0,0,:]
den array = den array[0,0,:]

producing:

[2]
[5 1]

[End of Example 42.6]

42.2.4 Simulation with transfer functions

The function control.forced response() is a function for simulation with transfer function
and state space models. Here, we focus on simulation with transfer functions.

control.forced response() can simulated with any user-defined input signal. Some
alternative simulation functions assuming special input signals are:

• control.step response()

• control.impulse response()

• control.initial response()

control.forced response() may be used in any of these cases. Therefore, I limit the
presentation in this document to the control.forced response() function.

The syntax of control.forced response() is:

(t, y) = control.forced response(sys, t, u)

where:

• Input arguments:

– sys is the transfer function to be used in the simulation.

– t is the user-defined array of points of simulation time.

– u is the user-defined array of values of the input signal of same length at the
simulation time array.

• Output (return) arguments:

– t is the returned array of time – the same as the input argument.

– y is the returned array of output values.

833

CHAPTER 42. PYTHON CONTROL PACKAGE

To plot the simulated output (y above), and maybe the input (u above), you can use the
plotting function in the matplotlib.pyplot module which requires import of this module.
The common way to import the module is:

import matplotlib.pyplot as plt

Example 42.7 Simulation with a transfer function

We will simulate the response of the transfer function

y(s)

u(s)
=

2

5s+ 1

with the following conditions:

• Input u is a step of amplitude 4, with step time t = 0.

• Simulation start time is t0 = 0 sec.

• Simulation stop time is t1 = 20 sec.

• Simulation time step, or sampling time, is dt = 0.01 s.

• Initial state is 0.

Program 42.7 implements this simulation.

http://techteach.no/control/python/sim tf.py

Listing 42.7: sim tf.py

"""

Sim of time constant system with forced_response () of Python Control package

Finn Aakre Haugen , TechTeach. finn@techteach.no

2022 12 22

"""

%% Import:

import numpy as np

import control

import matplotlib.pyplot as plt

%% Creating model:

s = control.tf(’s’)

H = 2/(5*s + 1)

%% Defining signals:

t0 = 0

t1 = 20

834

http://techteach.no/control/python/sim_tf.py

CHAPTER 42. PYTHON CONTROL PACKAGE

dt = 0.01

nt = int(t1/dt) + 1 # Number of points of sim time

t = np.linspace(t0, t1, nt)

u = 2*np.ones(nt)

%% Simulation:

(t, y) = control.forced_response(H, t, u)

%% Plotting:

plt.close(’all ’)

plt.figure (1)

plt.subplot(2, 1, 1)

plt.plot(t, y, ’blue ’, label=’y’)

#plt.xlabel(’t [s]’)

plt.grid()

plt.legend ()

plt.subplot(2, 1, 2)

plt.plot(t, u, ’green ’, label=’u’)

plt.xlabel(’t [s]’)

plt.grid()

plt.legend ()

plt.savefig(’sim_tf.pdf ’)

plt.show()

Figure 42.5 shows plots of the output y and the input u.

0 1 2 3 4 5 6
0

1

2
y

0 1 2 3 4 5 6
t [s]

0

2

4 u

Figure 42.5: Plots of the output y and the input u.

[End of Example 42.7]

835

CHAPTER 42. PYTHON CONTROL PACKAGE

42.2.5 Poles and zeros of transfer functions

Poles and zeros of a transfer function, H, can be calculated and plotted in a cartesian
diagram with

(p, z) = control.pzmap(H)

Example 42.8 Poles and zeros of a transfer function

Given the following transfer function:

H(s) =
s+ 2

s2 + 4

Manual calculations gives:

• Poles:
p1,2 = ±2j

• Zero:
z = −2

Program 42.8 calculates the poles and the zero and plots them with the control.pzmap()
function. The plt.savefig() function is used to generate a pdf file of the diagram.

http://techteach.no/control/python/poles tf.py

Listing 42.8: poles tf.py

import control

import matplotlib.pyplot as plt

s = control.tf(’s’)

H = (s + 2)/(s**2 + 4)

(p, z) = control.pzmap(H)

plt.grid()

print(’poles =’, p)

print(’zeros =’, z)

plt.savefig(’poles_zeros.pdf ’)

The result:

poles = [-0.+2.j 0.-2.j]
zeros = [-2.]

Figure 42.6 shows the pole-zero plot.

[End of Example 42.8]

836

http://techteach.no/control/python/poles_tf.py

CHAPTER 42. PYTHON CONTROL PACKAGE

4 3 2 1 0 1 2
Real

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Im
ag

in
ar

y

Pole Zero Map

Figure 42.6: Pole-zero plot.

42.2.6 The Padé-approximation of a time delay

The transfer function of a time delay is

e−Tds (42.14)

where Td is the time delay. In the Python Control Package, there is no function to define
this s-transfer function (while this is straightforward for z-transfer functions, cf. Ch.
42.5.1.2). However, you can use the control.pade() function to generate a
Padé-approximation of the time delay (42.14).

Once you have a Padé-approximation of the time delay, you may use the control.series()
function to combine it with the transfer function having no time delay:

Hwith delay(s) = Hwithout delay(s) ·Hpade(s) (42.15)

Example 42.9 Padé-approximation

Given the following transfer function with time constant of 10 s and no time delay:

Hwithout delay(s) =
1

10s+ 1
(42.16)

Assume that this transfer function is combined in series with a transfer function, Hpade(s),
of a 10th order Padé-apprioximation representing a time delay of 5 s. The resulting transfer
function is:

Hwith delay(s) = Hwithout delay(s) ·Hpade(s) =
1

10s+ 1
·Hpade(s) (42.17)

Program 42.9 generates these transfer functions and simulated a step response of
Hwith delay(s).

837

CHAPTER 42. PYTHON CONTROL PACKAGE

http://techteach.no/control/python/pade approx.py

Listing 42.9: pade approx.py

import numpy as np

import control

import matplotlib.pyplot as plt

%% Generating transfer function of Pade approx:

T_delay = 5

n_pade = 10

(num_pade , den_pade) = control.pade(T_delay , n_pade)

H_pade = control.tf(num_pade , den_pade)

%% Generating transfer function without time delay:

s = control.tf(’s’)

K = 1

T = 10

H_without_delay = K/(T*s + 1)

%% Generating transfer function with time delay:

H_with_delay = H_without_delay*H_pade

%% Simulation of step response:

t = np.linspace(0, 40, 100)

(t, y) = control.step_response(H_with_delay , t)

%% Plotting

plt.plot(t, y, label=’y’)

plt.legend ()

plt.title(’Step response of time delay with Pade -approx.’)

plt.xlabel(’t [s]’)

plt.grid()

plt.savefig(’pade_approx.pdf ’)

plt.show()

Figure 42.7 shows the step response of Hwith delay(s).

[End of Example 42.9]

42.3 Frequency response

42.3.1 Frequency response of transfer functions

The function control.bode plot() generates frequency response data in terms of magnitude
and phase. The function may also plot the data in a Bode diagram. However, in the

838

http://techteach.no/control/python/pade_approx.py

CHAPTER 42. PYTHON CONTROL PACKAGE

0 5 10 15 20 25 30 35 40
t [s]

0.0

0.2

0.4

0.6

0.8

1.0
Step response of time delay with Pade-approx.

y

Figure 42.7: Step response of Hwith delay(s) where the time delay is approximated with a
Padé-approximation.

following example, I have instead used the plt.plot() function to plot the data as this gives
more freedom to configure the plot.

Example 42.10 Frequency response

A first order lowpass filter has the following transfer function:

H(s) =
1

s
ωb

+ 1
(42.18)

where ωb = 1 rad/s, which is the bandwidth.

Program 42.10 generates and plots frequency response of H(s) in terms of magnitude and
phase.

http://techteach.no/control/python/bode plot lowpass filter.py

Listing 42.10: bode plot lowpass filter.py

import numpy as np

import control

import matplotlib.pyplot as plt

%% Creating transfer function:

s = control.tf(’s’)

wb = 1 # Bandwidth [rad/s]

H = 1/((1/ wb)*s + 1)

%% Generating Bode plot:

839

http://techteach.no/control/python/bode_plot_lowpass_filter.py

CHAPTER 42. PYTHON CONTROL PACKAGE

w0 = 0.1

w1 = 10

dw = 0.001

nw = int((w1 -w0)/dw) + 1 # Number of points of freq

w = np.linspace(w0, w1, nw)

(mag , phase_rad , w) = control.bode_plot(H, w)

%% Plotting:

plt.close(’all ’)

plt.figure(1, figsize =(12, 9))

plt.subplot(2, 1, 1)

plt.plot(np.log10(w), mag , ’blue ’)

#plt.xlabel(’w [rad/s]’)

plt.grid()

plt.legend(labels=(’ Amplitude gain ’,))

plt.subplot(2, 1, 2)

plt.plot(np.log10(w), phase_rad *180/np.pi , ’green ’)

plt.xlabel(’w [rad/s]’)

plt.grid()

plt.legend(labels=(’Phase shift [deg]’,))

plt.savefig(’bode_plot_filter.pdf ’)

plt.show()

Figure 42.8 shows the Bode plot. In the plot we can that bandwidth is indeed 1 rad/s
(which is at 0 = log10(1) rad/s in the figure).

[End of Example 42.10]

42.3.2 Frequency response and stability analysis of feedback loops

Figure 42.9 shows a feedback loop with its loop transfer function, L(s).

control.bode plot()

We can use the function control.bode plot() to calculate the magnitude and phase of L, and
to plot the Bode plot of L.

The syntax of control.bode plot() is:

(mag, phase rad, w) = control.bode plot()

Several input arguments can be set, cf. Example 42.11.

In addition to calculating the three return arguments above, control.bode plot() can show
the following analysis values in the plot:

840

CHAPTER 42. PYTHON CONTROL PACKAGE

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

0.2

0.4

0.6

0.8

1.0 mag

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
w [rad/s]

80

70

60

50

40

30

20

10 phase [deg]

Figure 42.8: Bode plot.

• The amplitude cross-over frequency, ωb [rad/s], which is also often regarded as the
bandwidth of the feedback system.

• The phase cross-over frequency, ω180 [rad/s].

• The gain margin, GM, which is found at ω180 ≡ ωg [rad/s] (g for gain margin).

• The phase margin, PM, which is found at ωb ≡ ωp [rad/s] (p for phase margin).

control.margin()

The control.bode plot() does not return the above four analysis values to the workspace
(although it shows them in the Bode plot). Fortunately, we can use the control.margin()
function to calculate these analysis values. control.margin() can be used as follows:

(GM, PM, wg, wp) = control.margin(L)

where L is the loop transfer function, and the four return arguments are as in the list above.
Note that GM has unit one; not dB, and that PM is in degrees.

Example 42.11 demonstrates the use of control.bode plot() and control.margin().

841

CHAPTER 42. PYTHON CONTROL PACKAGE

r y
L(s)

_

Figure 42.9: A feedback loop with its loop transfer function, L(s)

Example 42.11 Frequency response

Given a control loop where the process to be controlled has the following transfer function
(an integrator and two time constants in series):

P (s) =
1

(s+ 1)2s

The controller is a P controller:
C(s) = Kc

where Kc = 2 is the controller gain.

The loop transfer function becomes:

L(s) = P (s) · C(s) =
Kc

(s+ 1)2s
=

Kc

s3 + 2s+ s
(42.19)

Program 42.11 generates and plots frequency response of H(s), and shows the stability
margins and the cross-over frequencies. The control.minreal() function is used to ensure
L(s) is a minimum transfer function, cf. Section 42.2.2.3.

http://techteach.no/control/python/bode plot with stab margins.py

Listing 42.11: bode plot with stab margins.py

import numpy as np

import control

import matplotlib.pyplot as plt

%% Creating the loop transfer function:

s = control.tf(’s’)

Kp = 1

C = Kp

P = 1/(s**3 + 2*s**2 + s)

L = C*P

L = control.minreal(L) # To obtain minimum transf func

%% Frequencies:

w0 = 0.1

842

http://techteach.no/control/python/bode_plot_with_stab_margins.py

CHAPTER 42. PYTHON CONTROL PACKAGE

w1 = 10

dw = 0.001

nw = int((w1 -w0)/dw) + 1 # Number of points of freq

w = np.linspace(w0, w1, nw)

%% Plotting:

plt.close(’all ’)

plt.figure(1, figsize =(12, 9))

(mag , phase_rad , w) = control.bode_plot(L,

w,

dB=True ,

deg=True ,

margins=True)

plt.grid()

%% Calculating stability margins and crossover frequencies:

(GM, PM, wg, wp) = control.margin(L)

%% Printing:

print(f’GM [1 (not dB)] = {GM:.2f}’)

print(f’PM [deg] = {PM:.2f}’)

print(f’wg [rad/s] = {wg:.2f}’)

print(f’wp [rad/s] = {wp:.2f}’)

%% Generating pdf file of the plotting figure:

plt.savefig(’bode_with_stab_margins.pdf ’)

Below are the results of control.margin() as shown in the console. The values are the same
as shown in the Bode plot in Figure 42.10 (2 dB ≈ 6).

GM [1 (not dB)] = 2.00
PM [deg] = 21.39
wg [rad/s] = 1.00
wp [rad/s] = 0.68

[End of Example 42.11]

42.4 State space models

42.4.1 How to create state space models

The function control.ss() creates a linear state space model with the following form:

ẋ = Ax+Bu (42.20)

843

CHAPTER 42. PYTHON CONTROL PACKAGE

10 1 100 101

60

50

40

30

20

10

0

10

20

M
ag

ni
tu

de
 (d

B)

10 1 100 101

Frequency (rad/sec)

270

225

180

135

90

Ph
as

e
(d

eg
)

Gm = 6.02 dB (at 1.00 rad/s), Pm = 21.39 deg (at 0.68 rad/s)

Figure 42.10: Bode plot including the stability margins and the crossover frequencies.

y = Cx+Bu (42.21)

where A,B,C,D are the model matrices.

The syntax of control.ss() is:

S = control.ss(A, B, C, D)

where S is the resulting state space model, and the matrices A, B, C, D are in the form of
2D arrays in Python. (Actually, they may be of the list data type, but I recommend using
arrays, cf. Section 42.1.5.)

Example 42.12 Creating a state space model

Figure 42.11 shows a mass-spring-damper-system.

z is position. F is applied force. d is damping constant. k is spring constant. Newton’s 2.
Law gives the following mathematical model:

mz̈(t) = F (t)− dż(t)− kz(t) (42.22)

Let us define the following state variables:

844

CHAPTER 42. PYTHON CONTROL PACKAGE

m [kg]

k [N/m]

d [N/(m/s)]

F [N]

0 z [m]

Figure 42.11: Mass-spring-damper system.

• Position:
x1 = z

• Speed:
x2 = ż = ẋ1

Let us define the position x1 as the output variable:

y = x1

Eq. (42.22) can now be expressed with the following equivalent state space model:

[
ẋ1
ẋ2

]
︸ ︷︷ ︸

ẋ

=

 0 1

− k
m − d

m


︸ ︷︷ ︸

A

[
x1
x2

]
︸ ︷︷ ︸

x

+

 0

1
m


︸ ︷︷ ︸

B

F (42.23)

y =
[
1 0

]︸ ︷︷ ︸
C

[
x1
x2

]
︸ ︷︷ ︸

x

+
[
0
]︸ ︷︷ ︸

D

F (42.24)

Assume following parameter values:
m = 10 kg

k = 4 N/m

d = 2 N/(m/s)

Program 42.12 creates the above state space model with the control.ss() function.

http://techteach.no/control/python/create ss.py

Listing 42.12: create ss.py

import numpy as np

import control

%% Model parameters:

m = 10 # [kg]

k = 4 # [N/m]

845

http://techteach.no/control/python/create_ss.py

CHAPTER 42. PYTHON CONTROL PACKAGE

d = 2 # [N/(m/s)]

%% System matrices as 2D arrays:

A = np.array ([[0, 1], [-k/m, -d/m]])

B = np.array ([[0] , [1/m]])

C = np.array ([[1, 0]])

D = np.array ([[0]])

%% Creating and printing the state space model:

S = control.ss(A, B, C, D)

print(’S =’, S)

The results as shown in the console of Spyder:

A = [[0. 1.]
[-0.4 -0.2]]

B = [[0.]
[0.1]]

C = [[1. 0.]]

D = [[0.]]

42.4.2 How to get the model matrices of a state space model

You can get (read) the model matrices of a given state space model, say S, with the
control.ssdata() function:

(A list, B list, C list, D list) = control.ssdata(S)

where the matrices are in the form of lists (not arrays).

To convert the lists to arrays, you can use the np.array() function, e.g.

A array = np.array(A list)

Example 42.13 Getting the model matrices of a given state space model

Program 42.13 creates a state space model and gets its matrices with the control.ssdata()
function.

http://techteach.no/control/python/get ss matrices.py

846

http://techteach.no/control/python/get_ss_matrices.py

CHAPTER 42. PYTHON CONTROL PACKAGE

Listing 42.13: get ss matrices.py

import numpy as np

import control

%% Creating a state space model:

A = np.array ([[0, 1], [2, 3]])

B = np.array ([[4] , [5]])

C = np.array ([[6, 7]])

D = np.array ([[8]])

S = control.ss(A, B, C, D)

%% Getting the model matrices as lists and then as arrays:

(A_list , B_list , C_list , D_list) = control.ssdata(S)

A_array = np.array(A_list)

B_array = np.array(B_list)

C_array = np.array(C_list)

D_array = np.array(D_list)

%% Displaying the matrices as arrays:

print(’A_array =’, A_array)

print(’B_array =’, B_array)

print(’C_array =’, C_array)

print(’D_array =’, D_array)

The results as shown in the console:

A array = [[0. 1.] [2. 3.]]
B array = [[4.] [5.]]
C array = [[6. 7.]]
D array = [[8.]]

[End of Example 42.13]

42.4.3 Simulation with state space models

Simulation with state space models can be done with the control.forced response() function:

(t, y, x) = control.forced response(sys, t, u, x0, return x=True)

where sys is the state space model, cf. Section 42.4.1.

Example 42.14 Simulation with a state space model

The program shown below runs a simulation with the state space model presented in
Example 42.12 with the following conditions:

847

CHAPTER 42. PYTHON CONTROL PACKAGE

• Force (input signal) F is a step of amplitude 10 N, with step time t = 0.

• Simulation start time: t0 = 0 s.

• Simulation stop time: t1 = 50 s.

• Simulation time step, or sampling time: dt = 0.01 s.

• Initial states: x1,0= 1 m, x2,0 = 0 m/s.

Program 42.14 implements the simulation.

http://techteach.no/control/python/sim ss.py

Listing 42.14: sim ss.py

%% Import:

import numpy as np

import control

import matplotlib.pyplot as plt

%% Model parameters:

m = 10 # [kg]

k = 4 # [N/m]

d = 2 # [N/(m/s)]

%% System matrices as 2D arrays:

A = np.array ([[0, 1], [-k/m, -d/m]])

B = np.array ([[0] , [1/m]])

C = np.array ([[1, 0]])

D = np.array ([[0]])

%% Creating the state space model:

S = control.ss(A, B, C, D)

%% Defining signals:

t0 = 0 # [s]

t1 = 50 # [s]

dt = 0.01 # [s]

nt = int(t1/dt) + 1 # Number of points of sim time

t = np.linspace(t0, t1, nt)

F = 10*np.ones(nt) # [N]

%% Initial state:

x1_0 = 1 # [m]

x2_0 = 0 # [m/s]

x0 = np.array ([x1_0 , x2_0])

848

http://techteach.no/control/python/sim_ss.py

CHAPTER 42. PYTHON CONTROL PACKAGE

%% Simulation:

(t, y, x) = control.forced_response(S, t, F, x0,

return_x=True)

%% Extracting individual states:

x1 = x[0,:]

x2 = x[1,:]

%% Plotting:

plt.close(’all ’)

plt.figure(1, figsize =(12, 9))

plt.subplot(3, 1, 1)

plt.plot(t, x1 , ’blue ’)

plt.grid()

plt.legend(labels=(’x1 [m]’,))

plt.subplot(3, 1, 2)

plt.plot(t, x2 , ’green ’)

plt.grid()

plt.legend(labels=(’x2 [m/s]’,))

plt.subplot(3, 1, 3)

plt.plot(t, F, ’red ’)

plt.grid()

plt.legend(labels=(’F [N]’,))

plt.xlabel(’t [s]’)

plt.savefig(’sim_ss.pdf ’)

plt.show()

Figure 42.12 shows the simulated signals.

[End of Example 42.14]

42.4.4 From state space model to transfer function

The function control.ss2tf() derives a transfer function from a given state space model. The
syntax is:

H = control.ss2tf(S)

where H is the transfer function and S is the state space model.

Example 42.15 From state space model to transfer function

849

CHAPTER 42. PYTHON CONTROL PACKAGE

0 10 20 30 40 50
1.0

1.5

2.0

2.5

3.0

3.5
x1 [m]

0 10 20 30 40 50

0.4

0.2

0.0

0.2

0.4

0.6

0.8
x2 [m/s]

0 10 20 30 40 50
t [s]

9.6

9.8

10.0

10.2

10.4 F [N]

Figure 42.12: Plots of the simulated signals of the mass-spring-damper system.

In Example 42.12 a state space model of a mass-spring-damper system is created with the
control.ss() function. The program shown below derives the following two transfer functions
from this model:

• The transfer function, H1, from force F to position x1. To obtain H1, the output
matrix use is set as

C = [1, 0]

• The transfer function, H2, from force F to position x2. To obtain H2, the output
matrix is set as

C = [0, 1]

Program 42.15 derives the two transfer functions from a state space model.

http://techteach.no/control/python/from ss to tf.py

Listing 42.15: from ss to tf.py

import numpy as np

import control

850

http://techteach.no/control/python/from_ss_to_tf.py

CHAPTER 42. PYTHON CONTROL PACKAGE

%% Model params:

m = 10 # [kg]

k = 4 # [N/m]

d = 2 # [N/(m/s)]

%% System matrices as 2D arrays:

A = np.array ([[0, 1], [-k/m, -d/m]])

B = np.array ([[0] , [1/m]])

D = np.array ([[0]])

%% Creating the state space model with x1 as output:

C1 = np.array ([[1, 0]])

S1 = control.ss(A, B, C1 , D)

%% Deriving transfer function H1 from S1:

H1 = control.ss2tf(S1)

%% Displaying H1:

print(’H1 =’, H1)

%% Creating the state space model with x2 as output:

C2 = np.array ([[0, 1]])

S2 = control.ss(A, B, C2 , D)

%% Deriving transfer function H2 from S2:

H2 = control.ss2tf(S2)

%% Displaying H1:

print(’H2 =’, H2)

The result of the code above, as shown in the console of Spyder, is shown below. The very
small numbers – virtually zeros – in the numerators of H1 and H2 are due to numerical
inaccuracies in the control.ss2tf() function.

H1 =
0.1

sˆ2 + 0.2 s + 0.4

H2 =
0.1 s + 1.665e-16

sˆ2 + 0.2 s + 0.4

851

CHAPTER 42. PYTHON CONTROL PACKAGE

[End of Example 42.15]

42.5 Discrete-time models

42.5.1 Transfer functions

42.5.1.1 Introduction

Many functions in the Python Control Package are used in the same way for discrete-time
transfer functions, or z-transfer functions, as for continuous-time transfer function, or
s-transfer function, except that for z-transfer functions, you must include the sampling time
Ts as an additional parameter. For example, to create a z-transfer function, the control.tf()
is used in this way:

H d = control.tf(num d, den d, Ts)

where Ts is the sampling time. H d is the resulting z-transfer function.

Thus, the descriptions in Ch. 42.2 gives you a basis for using these functions for z-transfer
functions as well. Therefore, the descriptions are not repeated here. Still there are some
specialities related to z-transfer function, and they are presented in the subsequent sections.

42.5.1.2 How to create transfer functions

The control.tf() function is used to create z-transfer functions with the following syntax:

H = control.tf(num, den, Ts)

where H is the resulting transfer function (object). num (representing the numerator) and
den (representing the denominator) are arrays where the elements are the coefficients of the
z-polynomials of the numerator and denominator, respectively, in descending order from left
to right, with positive exponentials of z. Ts is the sampling time (time step).

Note that control.tf() assumes positive exponents of z. Here is one example of such a
transfer function:

H(z) =
0.1z

z − 1
(42.25)

(which is used in Example 42.16). However, in e.g. signal processing, we may see negative
exponents in transfer functions. H(z) given by (42.25) and written in terms of negative
exponents of z, are:

H(z) =
0.1

1− z−1
(42.26)

(42.25) and () are equivalent. But, in the Python Control Package, we must use only
positive exponents of z in transfer functions.

852

CHAPTER 42. PYTHON CONTROL PACKAGE

Example 42.16 Creating a z-transfer function

Given the following transfer function5:

H(z) =
0.1z

z − 1
(42.27)

Program 42.16 creates H(z). The code print(’H(z) = ’, H) is used to present the transfer
function in the console (of Spyder).

http://techteach.no/control/python/create tf z.py

Listing 42.16: create tf z.py

import numpy as np

import control

%% Creating the z-transfer function:

Ts = 0.1

num = np.array ([0.1 , 0])

den = np.array([1, -1])

H = control.tf(num , den , Ts)

print(’H(z) =’, H)

The result as shown in the console:

H(z) =
0.1 z

z - 1

dt = 0.1

[End of Example 42.16]

42.5.1.3 Discretizing an s-transfer function

The control.sample system() function can be used to discretize given continuous-time
models, including s-transfer functions:

sys disc = control.sample system(sys cont, Ts, method=’zoh’)

where:

5This is the transfer function of an integrator based on the Euler Backward method of discretization:
yk = yk−1 + Ts · ukwith sampling time Ts = 0.1 s.

853

http://techteach.no/control/python/create_tf_z.py

CHAPTER 42. PYTHON CONTROL PACKAGE

• sys cont is the continuous-time model – a transfer function, or a state space model.

• Ts is the sampling time.

• The discretization method is ’zoh’ (zero order hold) by default, but you can
alternatively use ’matched’ or ’tustin’. (No other methods are supported.)

• sys disc is the resulting discrete-time model – a transfer function, or a state space
model.

Example 42.17 Discretizing an s-transfer function

Given the following s-transfer function:

Hc(s) =
3

2s+ 1
(42.28)

Program 42.17 discretizes this transfer function using the zoh method with sampling time
0.1 s.

http://techteach.no/control/python/discretize tf.py

Listing 42.17: discretize tf.py

import control

%% Creating the s-transfer function:

s = control.tf(’s’)

H_cont = 3/(2*s + 1)

%% Discretizing:

Ts = 0.1 # Time step [s]

H_disc = control.sample_system(H_cont , Ts , method=’zoh ’)

print(’H_disc(z) =’, H_disc)

The result as shown in the console:

H disc(z) =
0.1463

z - 0.9512

dt = 0.1

[End of Example 42.17]

854

http://techteach.no/control/python/discretize_tf.py

CHAPTER 42. PYTHON CONTROL PACKAGE

42.5.1.4 Exact representation of a time delay with a z-transfer function

In Section 42.2.6 we saw how to use the control.pade() function to generate a transfer
function which is an Padé-approximation of the true transfer function of the time delay,
e−Tds. As alternative to the Padé-approximation, you can generate an exact representation
of the time delay in terms of a z-transfer function.

The z-transfer function of a time delay is:

Hd(z) =
1

znd
(42.29)

where

nd =
Td

Ts
(42.30)

Example 42.18 Creating a z-transfer function of a time delay

Assume the time delay is
Td = 5 s

and the sampling time is
Ts = 0.1 s

So, the transfer function of the time delay becomes

Hdelay(z) =
1

znd

with

nd =
Td

Ts
=

5

0.1
= 50

Python program 42.18 creates Hdelay(z), which represents this time delay exactly. The
program also simulates the step response of Hdelay(z).

6

http://techteach.no/control/python/time delay hz.py

Listing 42.18: time delay hz.py

import numpy as np

import control

import matplotlib.pyplot as plt

%% Generating a z-transfer function of a time delay:

Ts = 0.1

Td = 5

nd = int(Td/Ts)

denom_tf = np.append ([1], np.zeros(nd))

6For some reason, the returned simulation array, y, becomes a 2D array. I turn it into a 1D array with y
= y[0,:] for the plotting.

855

http://techteach.no/control/python/time_delay_hz.py

CHAPTER 42. PYTHON CONTROL PACKAGE

H_delay = control.tf([1], denom_tf , Ts)

%% Displaying the z-transfer function:

print(’H_delay(z) =’, H_delay)

%% Sim of step response of time delay transfer function:

t = np.arange(0, 10+Ts, Ts)

(t, y) = control.step_response(H_delay , t)

plt.plot(t, y)

plt.xlabel(’t [s]’)

plt.grid()

plt.savefig(’step_response_hz_time_delay.pdf ’)

The result as shown in the console:

H delay(z) =
1

zˆ50

dt = 0.1

Figure 42.13 shows the step response of Hdelay(z).

0 2 4 6 8 10
t [s]

0.0

0.2

0.4

0.6

0.8

1.0

Figure 42.13: The step response of Hdelay(z)

[End of Example 42.18]

856

CHAPTER 42. PYTHON CONTROL PACKAGE

42.5.2 Frequency response

Frequency response analysis of z-transfer functions is accomplished with the same functions
as for s-transfer function. Therefore, I assume it is sufficient that I refer you to Ch. 42.3.

However, note the following comment in the manual of the Python Control Package: “If a
discrete time model is given, the frequency response is plotted along the upper branch of
the unit circle, using the mapping z = exp(j omega dt) where omega ranges from 0 to pi/dt
and dt is the discrete timebase. If not timebase is specified (dt = True), dt is set to 1.”

42.5.3 State space models

In the Python Control Package, discrete-time linear state space models have the following
form:

xk+1 = Adxk +Bduk (42.31)

yk = Cdxk +Budk (42.32)

where Ad, Bd, Cd, Dd are the model matrices.

Many functions in the package are used in the same way for both discrete-time linear state
space models and for continuous-time state space models, except that for discrete-time state
space models, you must include the sampling time Ts as an additional parameter. For
example, to create a discrete-time state space model, the control.ss() is used in this way:

S d = control.ss(A d, B d, C d, D d, Ts)

where Ts is the sampling time. S d is the resulting discrete time state space model.

Thus, the descriptions in Ch. 42.4 gives you a basis for using these functions for
continuous-time state space models as well. Therefore, the descriptions are not repeated
here.

857

Chapter 43

OpenModelica

The free tool OpenModelica can be used to simulate block diagram models.

Figure 43.1 shows a picture of the OpenModelica homepage on:

https://openmodelica.org

A video-based tutorial to simulation with OpenModelica is available via the link below.
The video shows how to simulate the response in the level due to a step in the feed screw
flow of the wood chips tank presented in Ch. 38.1.

https://www.dropbox.com/s/le29x24bkihkwa4/sim wood chips tank.mp4?dl=0

The resulting OpenModelica simulator is available on:

http://techteach.no/control/openmodelica/wood chips tank 2023 01 02.mo

858

https://openmodelica.org
https://www.dropbox.com/s/le29x24bkihkwa4/sim_wood_chips_tank.mp4?dl=0
http://techteach.no/control/openmodelica/wood_chips_tank_2023_01_02.mo

CHAPTER 43. OPENMODELICA

Figure 43.1: The OpenModelica homepage (https://openmodelica.org).

859

Chapter 44

SimView

SimView is a set of about 45 freely available simulators in the area of dynamic systems and
control systems which I have developed. The address of SimView is:

http://techteach.no/simview

Each simulator is in the form of an executable (an exe file). SimView is developed with
LabVIEW, but only the LabVIEW Run-time Engine (version 2017), which is freely
available from ni.com, is needed to run the simulators.

The simulators are interactive, and run in real time, or scaled real time, which gives an
experience which is quite realistic.

Figure 44.1 shows a part of the home page of SimVIEW.

860

http://techteach.no/simview

CHAPTER 44. SIMVIEW

Figure 44.1: SimView home page (http://techteach.no/simview).

861

Chapter 45

Selected mathematical formulas

45.1 Differentiation of vector functions

In the formulas below, it is assumed that v is a column vector:

v =

v1...
vn

 (45.1)

Assuming s is scalar, then

ds

dv
=


∂s
∂v1
...
∂s
∂vn

 (45.2)

Assuming v is a vector and c is a constant vector:

d

dv

(
cT v
)
= c (45.3)

d

dv

(
vT c
)
= c (45.4)

Assuming M is a matrix:
d

dv

(
vTMv

)
= 2Mv (45.5)

862

Bibliography

Åstrøm, K. J. & Hägglund, T. (1995), PID Controllers: Theory, Design and Tuning, ISA.

Blickley, G. J. (1990), ‘Modern control started with ziegler-nichols tuning’, Control
Engineering 2.

Cutler, C. R. & Ramaker, B. L. (1980), ‘Dynamic matrix control - a computer control
algorithm’, Proc. Joint Automatic Control Conference, USA-CA .

Edgar, T. F., Himmelblau, D. & Lasdon, L. (2001), Optimization of Chemical Processes,
McGraw-Hill.

Haugen, F., Bakke, R. & Lie, B. (2013), ‘Adapting dynamic mathematical models to a pilot
anaerobic digestion reactor’, Modeling, Identification and Control 34(2), 35–54.

Haugen, F. & Lie, B. (2013), ‘Relaxed Ziegler-Nichols Closed Loop Tuning of PI
Controllers’, Modeling, Identification and Control 34(2), 83–97.

Hill, D. T. (1983), ‘Simplified monod kinetics of methane fermentation of animal wastes’,
Agric. Wastes 5.

Johnson, C. D. (2000), Process Control Instrumentation Control Technology, Prentice-Hall.

Lee, J. H. (2011), ‘Model predictive control: Review of the three decades of development’,
International Journal of Control, Automation, and Systems 9(3), 415–424.

Maciejowski, J. (2002), Predictive Control with Constraints, Prentice-Hall.

Nocedal, J. & Wright, S. J. (2006), Numerical Optimization, 2nd ed., Springer.

Qin, S. J. & Badgwell, T. A. (2003), ‘A survey of industrial model predictive control
technology’, Control Engineering Practice 11, 733–764.

Seborg, D. E., Edgar, T. F. & Mellichamp, D. A. (2004), Process Dynamics and Control,
John Wiley and Sons.

Simon, D. (2006), Optimal State Estimation, Wiley.

Skogestad, S. (2003), ‘Simple analytic rules for model reduction and PID controller tuning’,
Journal of Process Control 14.

Ziegler, J. & Nichols, N. (1942), ‘Optimum settings for automatic controllers’, Trans.
ASME 64(3), 759–768.

863

Index

Åstrøm and Hägglund, 413
Åstrøm and Hägglund Relay tuning

method, 413

a posteriori estimate, 689
a priori estimate, 689
AC motor, 150
academic PID, 46
Acc, 173
Accumulation, 173
actuator, 141
adaptive control, 443
age drift, 134
air heater, 769
amplitude crossover frequency, 581
amplitude gain, 551
analysis of control systems, 568
anti wind-up, 382
anti windup, 723
Arduino, 105
Argument variation principle, 577
asymptotically stable, 529
asymptotically stable system, 535
augmentative states, 693
augmented Kalman Filter, 693
auto-covariance, 662
auto-tuning, 417
automatic mode, 44
averaging level control, 479

Balance Law, 173
bandpass filters, 557
bandstop filters, 557
bandwidth, 558, 559, 570, 841
batch LS formula, 343
biogas reactor, 776
black-box modeling, 171

block diagram, 36
block diagram manipulation, 269
block diagram simulation, 261
block diagrams, 174, 258
Bode diagram, 553
Bode-Nyquist stability criterion, 583
brute force method, 801
brute(), 334
buffer tank, 765
bumpless transfer, 385

capasitor, 186
cascade control, 468
center difference method, 364
centrifugal pump, 148
certainty equivalence principle, 713
characteristic polynomial, 269, 545
chip tank, 761
closed loop control, 33
closed loop transfer function, 829
coloured noise, 665
compensation properties, 391
computed torque control, 739
computed torque controller, 748
concave, 795
confidence intervals, 347
constant control, 33
control blocking, 732
control grouping, 732
control loop, 34
control signal scaling, 153
control valves, 142
controllability, 716
controller canonical block diagram, 274
convergence of LS-estimate, 347
correlation, 664
cross-covariance, 663

864

INDEX

crossover frequency, 571
current loop, 127

D filter, 46
D-kick, 380
DA converter, 155
DCS control systems, 100
dead-time, 307
decoupling, 739
dependent variables, 174
Derivative filter, 46
Derivative gain, 48
derivative kick, 380
difference equation, 607
differential equations, 171
digital twin, 215
digital-analog converter, 155
displacement pump, 149
disturbance, 174, 201
downhill simplex algorithm, 334
downhill simplex method, 339
duty cycle, 156
dynamic system, 171
dynamics, 285

eigenvalues, 276, 537
elektriske systemer, 184
elementary mathematical blocks, 261
encoder, 123
energy balance, 177
environmental variable, 201
environmental variables, 174
equal percentage valve characteristic, 144
equation-error vector, 342
equilibrium point, 209
error-model, 691
error-model of Kalman Filter, 691
Euler Backward, 233
Euler Explicit, 233
Euler Forward method, 218
Euler Implicit, 233
excitation in parameter estimation, 328
Expectation value, 660
exponentially weighted moving average

(EWMA) filter, 140
extended Kalman Filter, 679

Fail Closed (FC) valve, 86
Fail Open (FO) valve, 86

feasible region, 794
feedback, 829
feedback linearization, 739
feedback loops, 34
feedforward control, 59, 508
filter, 41, 557
First principles modeling, 171
flow rate, 114
flow velocity, 114
force balance, 179
Fourier series approximation, 415
frequency components, 550
frequency response, 550, 553, 555
frequency response analysis, 569
frequency response and transfer function,

554

gain
for second order system, 298

gain, 289
gain function, 553
gain margin, 582
gain scheduling, 438
global minimum, 795
grid method, 797

head, 148
heater, 151
highpass filters, 557
hydraulic retention time, 297

IAE, 66
impulse response, 528
independent variables, 174
inductor, 186
initial slope, 294
input disturbance, 421
input variable, 201
Integral gain, 48
integral of absolute value of control error,

66
integrator, 285
integrator anti wind-up, 382
integrator gain, 285
interlocks, 88
Inverse dynamics control, 739

Kalman Filter, 678
Kalman Filter algorithm, 686

865

INDEX

kinetic system, 179
Kirchhoff’s current law, 184
Kirchhoffs spenningslov, 185

Laplace transform, 785
least squares, 326, 359
least squares estimation, 346
level sensor, 112
LHP, 531
linear motion, 179
linear MPC, 729
linear valve characteristic, 144
linearization of non-linear models, 206
local maximum, 795
local minimum, 795
local model, 207
logarithmic valve characteristic, 144
loop transfer function, 393, 544
lowpass filter, 41, 558
lowpass filters, 557
LQ control, 713
LQR, 713
lstsq(), 346

magnetic flow rate sensor, 118
Manipulating variables, 174
manual control, 33
manual mode, 44
marginally stable, 529
marginally stable system, 535
mass balance, 175
mass system, 175
mass-spring-damper, 180, 202, 277, 536,

844
dynamics, 299
static response, 204

mathematical block diagram, 258
mathematical model, 173
mathematical modeling, 171
mean value, 660
measurement accuracy, 133
measurement filter, 41
measurement-updated estimate, 689
Mechanistic modeling, 171
minimal transfer function, 830
model, 171
model errors, 171, 708
model predictive control, 728
model uncertainty, 171

modeling, 171
momentum, 179, 181
momentum balance, 179, 181
motion systems, 179
Moving averaging filter, 43
MPC, 728
multiloop PID controller, 739

Nelder-Mead, 356
Nelder-Mead algorithm, 334
Nelder-Mead optimization, 335
Nelder-Mead solver, 339
Newton’s second law, 180
NLP, 339
non-minimal transfer function, 830
nonlinear decoupling, 739
nonlinear MPC, 729
nonlinear programming, 339, 356
nonlinear state space model, 202
normal equation, 343
normalized flow rate, 143
Nyquist’s spesial stability criterion, 581
Nyquist’s stability criterion, 577
Nyquist’s stability criterion for open

stable systems, 581

observability, 680
observability matrix, 681
observed variable, 341
On-off control algorithm, 54
On-off tuning method, 413
one quarter decay ratio, 404
open loop control, 33
open loop transfer function, 831
OpenModelica, 858
operating point, 207
optimal control, 713
order

transfer function, 269
output variable, 201
overdamped systems, 302
overshoot factor, 304

P&I D, 35, 81
P-kick, 380
PAC, 97
Padé-approximation, 308
parallel, 827
parallel PID, 46

866

INDEX

parameter, 201
parameter vector, 341
passband, 557
performance, 391
performance of control system, 64
peristaltic pump, 149
phase crossover frequency, 581
phase function, 553
phase lag, 551
phase margin, 582
PI control algorithm, 50
Piping & Instrumentation Diagram, 35
plantwide control systems, 99
PLC, 96
pole, 269
poles, 275, 537
poles and stability, 529
positioner, 495
power, 188
power of a signal, 662
prediction-error vector, 342
primary loop, 468
Process & Instrumentation Diagram, 81
process controller, 93
process gain, 378
programmable automation controllers, 97
programmable logical controllers, 96
proportional band, 47
proportional kick, 380
pulse-width modulation, 155
pump, 148
PWM, 155

Quasi Ziegler-Nichols tuning, 412

range, 133
rangeability, 144
Raspberry Pi, 102
Raspberry Pi Pico, 104
ratio control, 477
RC-circuit, 186, 313, 560
Recursive least squares method, 360
regression, 330
regression model, 341
regression variable, 341
regression vector, 341
relative damping factor, 298
Relaxed Ziegler-Nichols settings, 410
relay tuner, 417

Relay tuning method, 413

repeats per minute, 47

Resistance temperature detectors, 107

resistance wire, 151

resistor, 186

resistors, 185

resolution, 130

response-time, 309

RHP, 533

RHP (right half plane), 578

robust control, 708

robustness, 587

rotational motion, 181

Routh’s stability criterion, 577

RTD, 107

SCADA control systems, 100

scipy.optimize.brute(), 334

second order systems, 298

secondary controller, 468

secondary loop, 468

Seebeck effect, 109

self regulation, 575

sensitivity bandwidth, 571

sensitivity transfer function, 393

separation principle, 713

sequential control, 521

serial PID controller, 433

series, 826

shaping filter, 665

ship, 763

signal filter, 557

simulation, 833

simulation with block diagrams, 261

SimView, 860

Skogestad method, 420

slsqp, 734

soft sensor, 678

solid state relay, 155

span, 133

specifications of control system, 404

speed sensor, 125

split-range control, 478

SSR, 155

stability, 455, 528

stability margin, 459

stability margins, 582

standard deviation, 662

867

INDEX

state, 203
state feedback, 476
state machine, 522
state space, 203
state space model, 200
state space models, 174
state trajectory, 203
state variable, 201
static control error, 65
static response, 204, 608
statisk transferfunksjon, 271
steady state control error, 65
steady state Kalman Filter gain, 688
steepest descent optimization method, 809
stochastic signals, 659
stopband, 557
System and Control Diagram, 88
system matrix, 537

tachogenerator, 126
temperature control, 440
temperature drift, 134
testing, 679
thermal mass flow rate sensor, 120
thermoelectric sensitivity, 109
thermometers, 106
time constant, 289
time constant model, 289
time delay, 237, 307
time-updated estimate, 689
torque balance, 181
tracking properties, 391
tracking transfer function, 545
transfer function and frequency response,

554
transfer functions, 266, 267
transfer functions, 174

transfer functions (s), 823

transfer functions (z), 852

transformed process, 741

transition matrix, 690

transportation time, 237

ultrasonic level sensor, 112

undamped resonance frequency, 298

undamped system, 306

underdamped system, 304

unit pulse, 664

unstable, 529

unstable system, 535

valve capacity index, 143

valve characteristics, 144

valve constant, 143

valve equation, 142

valve opening, 142

vortex sensor, 121

Water resource recovery facilities, 480

weight matrices, 714

white noise, 664

White-box modeling, 171

wood chip tank, 761

WWRF, 481

zero, 133, 269

zero order hold (zoh), 626

zero-pole gain form of transfer functions,
269

Ziegler-Nichols closed loop method, 406

Ziegler-Nichols open loop method, 435

Ziegler-Nichols process reaction curve
method, 435

ZOH discretization, 626

868

	I INTRODUCTION
	Flash course in automatic control
	Introduction
	What can be obtained with control?
	Process variables that are typically controlled
	Feedback control
	Manual feedback control
	Automatic feedback control
	Brief presentation of components of general feedback control loops
	Block diagram of a general control loop
	Process
	Automation hardware
	Sensor
	AD converter
	Measurement signal scaling
	Measurement signal filter
	Controller
	Auto/man-switch
	Control signal scaling
	DA converter
	Actuator

	PID controller
	Continuous-time PID controller
	PID parameters
	Discrete-time PID algorithm
	How does the PID controller work?

	On-off controller
	The basic On-off controller
	On-off controller for processes with negative process gain
	On-off controller with deadband

	Feedforward control
	Performance measures of control systems
	Problems for Chapter 1
	Solutions to problems for Chapter 1

	II INSTRUMENTATION OF CONTROL SYSTEMS
	Piping & Instrumentation Diagrams
	Instrument codes
	Letter codes
	Numeric codes
	Localization

	Signals
	Material flows
	Process equipment
	Codes of process equipment
	Valves
	Rotational flow components
	Heat exchangers
	Vessels
	Mathematical functions
	Logical functions

	Problems for Chapter 2
	Solutions to problems for Chapter 2

	Components of control systems
	Introduction
	Automation hardware
	Introduction
	Process controllers
	Programmable logic controllers (PLCs)
	Programmable automation controllers
	Plantwide control systems
	Platforms for home-made automation systems
	Standard PC with I/O device
	Raspberry Pi
	Arduino

	Sensors
	Introduction
	Temperature sensors
	Resistance thermometer
	Thermocouple thermometers

	Pressure sensors
	Level sensors
	Ultrasonic level sensor
	Dp cells as level sensor

	Flow rate sensors
	Flow rate measurement with orifice and dp cell
	Ultrasonic flow rate measurement
	Coriolis flow rate sensor
	Magnetic flow rate sensor
	Thermal flow rate sensor
	Vortex flow rate sensor

	Sensors for gas concentration
	Position sensors
	Encoder

	Speed sensors
	Encoder
	Tachogenerator

	Signal conditioning of measurement signals
	Analog measurement signals
	Current loop
	Analog-digital (AD) conversion
	Scaling of measurement signals
	Accuracy of measurement signals
	Measurement filters
	Moving averaging (MA) measurement filter (revisited)
	Time constant filter
	Continuous-time filter function
	Analog RC circuit filter

	Actuators
	Introduction
	Valves
	Structure and operation
	Valve equation and valve characteristics

	Pumps
	Centrifugal pumps
	Displacement pumps

	Electrical motors
	AC motors
	DC motors

	Electrical heaters

	Signal conditioning of control signals
	Scaling of control signals
	Digital-analog (DA) conversion
	Pulse-width modulation
	Converting current to voltage

	Problems for Chapter 3
	Solutions to problems for Chapter 3

	III MODELING and SIMULATION OF DYNAMIC SYSTEMS
	Mechanistic modeling
	Introduction
	What is a dynamic system?
	A procedure for mathematical modeling
	Mathematical modeling of material systems
	Mathematical modeling of thermal systems
	Mathematical modeling of kinetic systems
	Systems with linear motion
	Systems with rotational motion
	Momentum balance
	Relations between rotational and linear motion
	Coupled mechanical systems

	Mathematical modeling of electric systems
	Kirchhoff's law
	Kirchhoff's Current Law
	Kirchhoff's Voltage Law

	Resulting resistance
	Resistors in series
	Resistors in parallel

	Models of resistor, capacitor, and inductor
	Power
	Instantaneous power
	Mean power

	Physical component based simulators
	OpenModelica
	Aspentech Hysys
	Simscape

	Problems for Chapter 4
	Solutions to problems for Chapter 4

	State space models
	Introduction
	The state space model
	The response of a state space model
	Dynamic response
	Static response

	Linear state space models
	Standard model form of linear state space models
	Linearization of non-linear models
	When do we have to linearize?
	Deriving the linearization formulas

	Problems for Chapter 5
	Solutions to problems for Chapter 5

	Simulation algorithms of state space models
	Why simulate?
	Simulation algorithm for state space models
	Introduction
	The simulation algorithm
	How to test the simulator
	Static test of the simulator
	Dynamic test of the simulator
	Conclusion of static and dynamic testss

	How to choose the simulation time step, dt?
	Simulation along real time or scaled real time?
	Why predict?
	Euler Forward vs. Euler Backward

	Simulation of second order differential equation models
	Simulation algorithm of time delays
	Problems for Chapter 6
	Solutions to problems for Chapter 6

	Block diagram models
	Introduction
	How to draw block diagrams
	Simulation with block diagram models
	Problems for Chapter 7
	Solutions to problems for Chapter 7

	Transfer functions
	Introduction
	Definition of the transfer function
	Characteristics of transfer functions
	Combining transfer functions blocks in block diagrams
	How to calculate responses from transfer function models
	Static transfer function and static response
	Simulation with transfer functions
	Introduction
	Simulation with Python Control Package
	Simulation with OpenModelica

	From transfer function to differential equation
	From transfer function to state space model
	From state space model to transfer function
	Problems for Chapter 8
	Solutions to problems for Chapter 8

	Process dynamics
	Introduction
	Integrators
	Integrator model
	Differential equation
	Block diagram
	Transfer function
	Pole

	Dynamics in terms of step response

	Time constant systems
	The standard model of time constant systems
	Differential equation
	Block diagram
	Transfer function
	Pole
	Dynamics in terms of step response
	Step response of time constant systems when initial state is non-zero

	Time constant model expanded with process disturbance as input

	Second order systems
	Mathematical model
	Transfer function model
	Differential equation
	State space model

	Classification of second order systems
	Overdamped systems
	Underdamped system
	Undamped system

	Time delays
	Approximation of time delay by Padé approximation

	Higher order systems
	Problems for Chapter 9
	Solutions to problems for Chapter 9

	Adaptation of models to data
	Introduction
	Model adaptation as an optimization problem
	How to find the best model
	Good excitation is necessary!

	Adaptation of static models to data
	Adaptation using grid optimization
	Introduction
	Model adaptation of static models using native grid optimization
	Model adaptation of static models with Python's brute() function

	Adaptation of static models using nonlinear programming (NLP)
	Adaptation of static models using standard least squares method
	The standard regression model
	The LS problem
	The LS solution
	Properties of the LS estimate
	Criterion for convergence of estimate towards the true value

	Adaptation of dynamic models to data
	Adaptation of dynamic models using grid optimization
	Introduction
	Adaptation of dynamic models using grid optimization
	Model adaptation of dynamic models with Python's brute() function

	Adaptation of dynamic models using nonlinear programming (NLP)
	Adaptation of dynamic models using the least squares method

	Recursive (real-time) model adaptation
	Problems for Chapter 10
	Solutions to problems for Chapter 10

	IV BASIC CONTROL METHODS
	PID control (continued)
	Introduction
	Transfer function of the PID controller
	Practical aspects of the PID controller
	Reverse or direct controller action?
	What is meant by reverse action and direct action?
	How to select between reverse action and direct action modes?

	Reducing P-kick and D-kick caused by setpoint changes
	Integrator anti wind-up
	Bumpless transfer between manual and auto modes

	Problems for Chapter 11
	Solutions to problems for Chapter 11

	Transfer functions of feedback control systems
	Introduction
	Definition of setpoint tracking and disturbance compensation
	Sensitivity transfer function
	Definition of Sensitivity transfer function
	Calculation of response in control error
	Response in error due to setpoint
	Response in error due to disturbance

	Tracking transfer function
	Definition of Tracking transfer function
	Calculation of response in control error

	Analytical calculation of responses with transfer functions
	Problems for Chapter 12
	Solutions to problems for Chapter 12

	Simulation of PID control systems
	Introduction
	Simulation with elementary code in Python
	Simulation of transfer function model with Python Control package
	Simulation of block-diagram model with OpenModelica
	Problems for Chapter 13
	Solutions to problems for Chapter 13

	Tuning of PID controllers
	Introduction
	Ziegler-Nichols closed loop method
	Relaxed Ziegler-Nichols PI settings
	Quasi Ziegler-Nichols tuning
	Åstrøm-Hägglund Relay tuning method
	Auto-tuning
	Good Gain method
	Skogestad controller tuning method
	Background of the Skogestad method
	Controller tuning for “integrator with time delay” processes
	Mathematical model and dynamics
	Controller settings
	PI tuning for pretended “integrator with time delay” processes
	Tuning for integrator without time delay

	Controller tuning for “time constant with time delay” processes
	Mathematical model and dynamics
	Controller settings

	Controller tuning for “double integrator” processes
	Mathematical model
	Controller settings

	Ziegler-Nichols open loop method
	PID tuning when process dynamics varies
	Introduction
	PID parameter adjustment based on the Skogestad PID tuning method
	Gain scheduling of PID parameters
	Adaptive controller

	Problems for Chapter 14
	Solutions to problems for Chapter 14

	Control loop stability
	Heuristic stability analysis
	Experimental gain margin (GM) and phase margin (PM)
	Problems for Chapter 15
	Solutions to problems for Chapter 15

	Control structures based on the PID control loop
	Cascade control
	The principle of cascade control
	Benefits of cascade control
	Selection of control functions
	Controller tuning
	Cascade control and state feedback

	Ratio control
	Split-range control
	Averaging level control
	What is averaging level control?
	Tuning of the PI controller for averaging level control

	Plantwide control
	Problems for Chapter 16
	Solutions to problems for Chapter 16

	Feedforward control
	Introduction
	Designing feedforward control from differential equation models
	Designing feedforward control from experimental data
	Problems for Chapter 17
	Solutions to problems for Chapter 17

	Sequential control
	Problems for Chapter 18
	Solutions to problems for Chapter 18

	V ANALYSIS OF CONTINUOUS-TIME FEEDBACK SYSTEMS
	Stability analysis using poles
	Introduction
	Stability properties and impulse response
	Stability properties and poles
	Stability analysis of state space models
	Problems for Chapter 19
	Solutions to problems for Chapter 19

	Stability analysis of feedback systems using poles
	Introduction
	Stability analysis of feedback systems
	Problems for Chapter 20

	Frequency response
	Introduction
	How to calculate frequency response from sinusoidal input and output
	Bode diagram
	How to calculate frequency response from transfer function
	Filters
	Filter types
	First order lowpass filters

	Problems for Chapter 21
	Solutions to problems for Chapter 21

	Frequency response analysis of feedback systems
	Introduction
	Analysis of setpoint tracking and disturbance compensation
	Introduction
	Frequency response analysis of setpoint tracking
	Frequency response analysis of disturbance compensation

	Stability analysis of feedback systems
	Introduction
	Nyquist's stability criterion
	Stability margins
	Stability margins in terms of gain margin and phase margin
	Stability margins in terms of maximum sensitivity amplitude

	Stability analysis in a Bode diagram
	Robustness in term of stability margins

	Problems for Chapter 22
	Solutions to problems for Chapter 22

	VI ANALYSIS OF DISCRETE-TIME FEEDBACK SYSTEMS
	Discrete-time signals
	Problems for Chapter 23
	Solutions to problems for Chapter 23

	Difference equations
	Difference equation models
	Calculating responses from difference equation models
	Problems for Chapter 24
	Solutions to problems for Chapter 24

	Discrete-time state space models
	General form of discrete-time state space models
	Linear discrete-time state space models
	Discretization of continuous-time state space models
	Problems for Chapter 25
	Solutions to problems for Chapter 25

	The z-transform
	Definition of the z-transform
	Properties of the z-transform
	z-transform pairs
	Inverse z-transform
	Problems for Chapter 26
	Solutions to problems for Chapter 26

	Discrete-time (or z-) transfer functions
	Introduction
	From difference equation to transfer function
	From transfer function to difference equation
	Calculating time responses for discrete-time transfer functions
	Static transfer function and static response
	Poles and zeros
	From s-transfer functions to z-transfer functions
	Problems for Chapter 27
	Solutions to problems for Chapter 27

	Frequency response of discrete-time systems
	Problems for Chapter 28
	Solutions to problems for Chapter 28

	Stability analysis of discrete-time dynamic systems
	Definition of stability properties
	Stability analysis of transfer function models
	Stability analysis of state space models
	Problems for Chapter 29
	Solutions to problems for Chapter 29

	Stability analysis of discrete-time feedback systems
	Problems for Chapter 30
	Solutions to problems for Chapter 30

	VII STATE ESTIMATION
	Stochastic signals
	Introduction
	How to characterize stochastic signals
	Realizations of stochastic processes
	Probability distribution of a stochastic variable
	The expectation value and the mean value
	Variance. Standard deviation
	Auto-covariance. Cross-covariance

	White and coloured noise
	White noise
	Coloured noise

	Propagation of mean value and co-variance through static systems
	Problems for Chapter 31
	Solutions to problems for Chapter 31

	State estimation with Kalman Filter
	Introduction
	Observability of discrete-time systems
	The Kalman Filter algorithm
	The assumed process model
	The result of Kalman Filtering: an optimal state estimate
	The Kalman Filter algorithm – step by step
	Features of the Kalman Filter
	The error-model
	The dynamics of the Kalman Filter
	The stability of the Kalman Filter

	Tuning the Kalman Filter
	Estimating parameters and disturbances with Kalman Filter
	Introduction
	The augmentative state (xa) is constant
	The augmentative state (xa) has constant rate

	Kalman Filtering when process measurement is absent
	Problems for Chapter 32
	Solutions to problems for Chapter 32

	VIII MODEL-BASED CONTROL
	How to test robustness with simulations
	Problems for Chapter 33
	Solutions to problems for Chapter 33

	Linear Quadratic (LQ) optimal control
	Introduction
	The basic LQ controller
	LQ controller with integral action
	Introduction
	Including integrators in the controller
	Discrete-time implementation of the LQ controller

	Problems for Chapter 34
	Solutions to problems for Chapter 34

	Model Predictive Control (MPC)
	Introduction
	The MPC method
	The principle of MPC
	The optimization objective function of MPC
	Control signal blocking
	Tuning factors of MPC
	The need for a state estimator

	Problems for Chapter 35
	Solutions to problems for Chapter 35

	Inverse dynamics control
	Introduction
	Inverse dynamics control of first order processes
	The process model
	PI tuning
	Feedforward controller
	The resulting control signal
	About the resulting control system

	Inverse dynamics control of second order prosesses
	The process model
	PID tuning
	Feedforward controller
	The resulting control signal
	About the resulting control system
	Computed torque control

	Problems for Chapter 36
	Solutions to problems for Chapter 36

	IX APPENDICES
	Some good control questions
	Selected process models
	Wood chips tank
	System description
	Variables and parameters
	Overall block diagram
	Mathematical model

	Ship
	System description
	Variables and parameters
	Overall block diagram
	Mathematical model

	Buffer tank
	System description
	Variables and parameters
	Overall block diagram
	Mathematical model

	Heated liquid tank
	System description
	Variables and parameters
	Overall block diagram
	Mathematical model

	Air heater
	System description
	Variables and parameters
	Overall block diagram
	Mathematical model
	Data file

	Kettle
	System description
	Parameters and variables
	Overall block diagram
	Mathematical model

	DC-motor
	System description
	Overall block diagram
	Variables and parameters
	Mathematical model
	Datafile

	Biogas reactor
	System description
	Variables and parameters
	Overall block diagram
	Mathematical model
	Operating point

	Pendulum on cart
	System description
	Variables and parameters
	Overall block diagram
	Mathematical model

	The Laplace transform
	Introduction
	Definition of the Laplace transform
	Laplace transform pairs
	Laplace transform properties

	Introduction to optimization
	The optimization problem
	Introduction
	Mathematical formulation of the optimization problem
	Feasibility region
	Some characteristics of the optimal solution
	What about maximization problems?

	How to solve optimization problems
	Introduction
	Analytical solution
	The brute force method of optimization
	Iterative methods of optimization
	Steepest decent optimization method
	The Newton optimization method

	Global optimization
	Testing: Have you actually found the minimum?

	Python
	About Python
	Installing Python
	Learning Python

	Python Control package
	Introduction
	What is the Python Control package?
	About this guide
	Installing the Python Control package
	Importing the Python Control package into Python
	Using arrays for numerical data

	Transfer functions
	How to create transfer functions
	Creating transfer functions using the Laplace variable
	Creating transfer functions using coefficient arrays of numerator and denominator

	Combinations of transfer functions
	Series combination
	Parallel combination
	Feedback combination

	How to get the numerator and denominator of a transfer function
	Simulation with transfer functions
	Poles and zeros of transfer functions
	The Padé-approximation of a time delay

	Frequency response
	Frequency response of transfer functions
	Frequency response and stability analysis of feedback loops

	State space models
	How to create state space models
	How to get the model matrices of a state space model
	Simulation with state space models
	From state space model to transfer function

	Discrete-time models
	Transfer functions
	Introduction
	How to create transfer functions
	Discretizing an s-transfer function
	Exact representation of a time delay with a z-transfer function

	Frequency response
	State space models

	OpenModelica
	SimView
	Selected mathematical formulas
	Differentiation of vector functions

	Bibliography
	Index

