
Chapter 4

Experimental tuning of PID
controllers

4.1 Introduction

This chapter describes several methods for experimental tuning of
controller parameters in P-, PI- and PID controllers, that is, methods for
finding proper values of Kp, Ti and Td. The methods can be used
experimentally on physical systems, but also on simulated systems.

The methods described can be applied only to processes having a time
delay or having dynamics of order higher than 3. Here are a few examples
of processes (transfer function models) for which the method can not be
used:

H(s) =
K

s
(integrator) (4.1)

H(s) =
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Ts+ 1
(first order system) (4.2)
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( sω0 )
2 + 2ζ s

ω0
+ 1

(second order system) (4.3)

Controller tuning for processes as above can be executed with a transfer
function based method, cf. Chapter 7.

The methods described in this chapter can be regarded as general methods
since their procedure is the same, regardless the dynamic properties of the
process to be controlled. There are processes for which the methods does
not fit well, for example a first order process with a time delay much larger
than the time constant. Chapter 7 describes tuning methods which are
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based on the given dynamic properties of the process as expressed in a
transfer function model, and the PID parameters are then tailored for this
process. You can expect that such model-based tuning methods will give
the control system better performance (as faster control) than if the
controller was tuned with a general tuning method. Despite this, the
general tuning methods are important because they have proven to work
well and because they are simple to use (they do not require an explicit
process model).

4.2 A criterion for controller tuning

A reasonable criterion for tuning the controller parameters is that the
control system has fast control with satisfactory stability. These two
requirements — fast control and satisfactory stability — are in general
contradictory: Very good stability corresponds to sluggish control (not
desirable), and poor stability (not desirable) corresponds to fast control. A
tuning method must find a compromise between these two contradictory
requirements.

What is meant by satisfactory stability? Simply stated, it means that the
response in the process output variable converges to a constant value with
satisfactory damping after a time-limited change of the setpoint or the
disturbance. Satisfactory damping can be quantified in several ways.
Ziegler and Nichols [20] who published famous tuning rules in the 1940s
claimed that satisfactory damping corresponds to an amplitude ratio of
approximately 1/4 between subsequent peaks in the same direction (due to
a step disturbance in the control loop), see Figure 4.1:

A2
A1

=
1

4
(4.4)

Ziegler and Nichols used this as a stability criterion when they derived
their PID tuning rules. However, there is no guaranty that the actual
amplitude ratio of a given control system becomes 1/4 after tuning with
one of the Ziegler and Nichols’ methods, but it should not be very different
from 1/4.

If you think that the stability of the control loop becomes too bad or too
good, you can try to adjust the controller parameters. The first aid, which
may be the only adjustment needed, is to adjust the controller gain Kp as
follows:

• Too bad stability: Decrease Kp somewhat, for example a 25%



Finn Haugen: PID Control 91

y

yr

A1

A2

t

t

v

Figure 4.1: Good stability (according to Ziegler and Nichols)

decrease.

• Too good stability (which corresponds to sluggish control): Increase
Kp somewhat, for example a 25% increase.

4.3 The P-I-D method

The P-I-D method is a simple and intuitive method (which does not
require the control system to have sustained oscillations, as in the
Ziegler-Nichols’ closed loop method, cf. Section 4.4). The method is based
on experiments on the established control system (or on a simulator of the
control system), see Figure 4.2. The method is as follows:

1. Bring the process to or close to the normal or specified operation
point by adjusting the nominal control signal u0 (with the controller
in manual mode).

2. Controller tuning:
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Figure 4.2: The P-I-D method is applied to the established control system.

• P controller: Ensure that the controller is a P controller with
Kp = 0 (set Ti =∞ and Td = 0). Increase Kp until the control
loop gets satisfactory stability as seen in the response in the
measurement signal after e.g. a step in the setpoint or in the
disturbance (exciting with a step in the disturbance may be
impossible on a real system, but it possible in a simulator).
If you do not want to start with Kp = 0, you can try Kp = 1
(which is a good initial guess in many cases) and then increase
or decrease the Kp value until you are content with the stability
of the control loop.

• PI controller:
(a) Start by executing the procedure for a P controller (see

above).
(b) Activate the integral term by reducing Ti until the loop gets

a little too poor stability. Alternatively, you can jump to
the following Ti-value: Ti = Tp/1.5, where Tp is the time
period of the damped oscillations when using the P
controller. Because of the introduction of the I-term, the
loop will have a somewhat reduced stability than with the
P controller only.

(c) Adjust Kp (you can try decreasing Kp by 20%) until the
stability of the loop is satisfactory.

• PID controller:

(a) Start by executing the procedure for a P controller (see
above).

(b) Then activate both the integral term by reducing Ti — an
initial guess is Ti = Tp/2 where Tp is the time period of the
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damped oscillations for the P controller, and the derivative
term by increasing Td — an initial guess is Ti/4.

(c) Adjust Kp (you can try increasing it by 20%) until the
stability of the loop is satisfactory.

Example 4.1 Controller tuning of a wood-chip level control
system with the P-I-D method

I have used the P-I-D method on the simulator shown in Figure 2.15. The
PID parameter values became

Kp = 2.1; Ti = 10min = 600s; Td = 2.5min = 150s (4.5)

Figure 4.3 shows the resulting responses. The control system seems to have
satisfactory stability.

Figure 4.3: Example 4.1: Level control of the wood-chip tank with a P-
controller. (The front panel of the simulator is as shown in Figure 2.15.)

[End of Example 4.1]
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4.4 Ziegler-Nichols’ closed loop method

Ziegler and Nichols published in 1942 a paper [20] where they described
two methods for tuning the parameters of P-, PI- and PID controllers.
These two methods are the Ziegler-Nichols’ closed loop method (which is
described in this section) and the Ziegler-Nichols’ open loop method
(described in Section 4.6). These methods are still useful despite many
years of research on PID tuning, and they form the basis of some
auto-tuning methods (auto-tuning is described in Section 4.8).

The method is based on experiments executed on an established control
loop (a real system or a simulated system), see Figure 4.4.
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Figure 4.4: The Ziegler-Nichols’ closed loop method is executed on an estab-
lished control system.

The tuning procedure is as follows:

1. Bring the process to (or as close to as possible) the specified
operating point of the control system to ensure that the controller
during the tuning is “feeling” representative process dynamic1 and to
minimize the chance that variables during the tuning reach limits.
You can bring the process to the operating point by manually
adjusting the control variable, with the controller in manual mode,
until the process variable is approximately equal to the setpoint.

2. Turn the PID controller into a P controller with gain Kp = 0 (set
Ti =∞ and Td = 0). Close the control loop by setting the controller

1This may be important for nonlinear processes.
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in automatic mode.

3. Increase Kp until there are sustained oscillations in the signals in the
control system, e.g. in the process measurement, after an excitation
of the system. (The sustained oscillations corresponds to the system
being on the stability limit.) This Kp value is denoted the ultimate
(or critical) gain, Kpu .

The excitation can be a step in the setpoint. This step must be
small, for example 5% of the maximum setpoint range, so that the
process is not driven too far away from the operating point where the
dynamic properties of the process may be different. On the other
hand, the step must not be too small, or it may be difficult to
observe the oscillations due to the inevitable measurement noise.

It is important that Kpu is found without the actuator being driven
into any saturation limit (maximum or minimum value) during the
oscillations. If such limits are reached, you will find that there will be
sustained oscillations for any (large) value of Kp, e.g. 1000000, and
the resulting Kp-value (as calculated from the Ziegler-Nichols’
formulas, cf. Table 4.1) is useless (the control system will probably
be unstable). One way to say this is that Kpu must be the smallest
Kp value that drives the control loop into sustained oscillations.

4. Measure the ultimate (or critical) period Tu of the sustained
oscillations.

5. Calculate the controller parameter values according to Table 4.1, and
use these parameter values in the controller.

The lowpass filter time constant Tf (cf. Section 2.6.7) can be set to

Tf = 0.1Td (4.6)

(if no other specification exists).

If the stability of the control loop is poor, try to improve the stability
by decreasing Kp.

Kp Ti Td
P controller 0.5Kpu ∞ 0

PI controller 0.45Kpu
Tu
1.2 0

PID controller 0.6Kpu
Tu
2

Tu
8 =

Ti
4

Table 4.1: Formulas for the controller parameters in the Ziegler-Nichols’ closed
loop method.
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Example 4.2 The Ziegler-Nichols’ closed loop method

Figure 4.5 shows the signals in the simulated wood-chip level control
system shown in Figure 2.15 (page 32). The system was excited by a step
in the setpoint from 10m to 10.5m. The ultimate gain was Kpu = 3.1, and

Figure 4.5: Example 4.2: The tuning phase of the Ziegler-Nichols’ closed-loop
method. (The front panel of the simulator is as shown in Figure 2.15.)

the ultimate period is approximately Tu = 18min. From Table 4.1 we get
the following PID parameters:

Kp = 1.86; Ti = 9min = 540s; Td = 2.25min = 135s (4.7)

Figure 4.6 shows signals of the control system with the above PID
parameter values. The control system has satisfactory stability. The
amplitude ratio in the damped oscillations is less than 1/4, that is, which
means that the stability is a little better than prescribed by Ziegler and
Nichols’.

[End of Example 4.2]
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Figure 4.6: Example 4.2: Time responses with PID parameters tuned using the
Ziegler-Nichols’ closed loop method

Some comments to the Ziegler-Nichols’ closed loop method

1. You do not know in advance the amplitude of the sustained
oscillations. The amplitude depends partly of the initial value of the
process measurement. By using the Åstrøm-Hägglund’s tuning
method described in Section 4.5 in stead of the Ziegler-Nichols’
closed loop method, you have full control over the amplitude, which
is beneficial, of course.

2. For sluggish processes it may be time consuming to find the ultimate
gain in physical experiments. The Åstrøm-Hägglund’s method
reduces this problem since the oscillations come automatically.

3. If the operating point varies and if the process dynamic properties
depends on the operating point, you should consider using some kind
of adaptive control or gain scheduling, where the PID parameter are
adjusted as functions of the operating point.
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If the controller parameters shall have fixed value, they should be
tuned in the worst case as stability is regarded. This ensures proper
stability if the operation point varies. The worst operating point is
the operation point where the process gain has its greatest value
and/or the time delay has its greatest value.

4. The responses in the control system may become unsatisfactory with
the Ziegler-Nichols’ method. 1/4 decay ratio may be too much, that
is, the damping in the loop is too small. A simple re-tuning in this
case is to reduce the Kp somewhat, for example by 20%.

A possibly better way to re-tune the controller for better stability is
described by Ziegler and Nichols in [20]. They suggested to decrease
Kp, 1/Ti and Td with the same factor, for example 10%.2

In the beginning

The Ziegler and Nichols’ methods have definitely proven to be useful, but
they actually met some resistance in the beginning. In [2] Ziegler reports
from a meeting in the American Society of Mechanical Engineers (ASME):
“The questions at the end were pretty bitter because they (the ‘old-timers’)
could not stomach this ultimate sensitivity3. The questions got worse and
worse and I was answering them. Finally a little guy in the back of the
room got up. He was from Goodyear. Since he was on the committee he
had received an advance copy of the paper. He stuttered some, and
stammered out for all to hear: ‘We had one process in our plant, a very
bad one, and so I tried this method and it just worked perfectly.’ That
broke up the meeting.”

4.5 Åstrøm-Hägglund’s On/off method

Åstrøm-Hägglund’s On/off method can be regarded as a practical
implementation of the Ziegler-Nichols’ closed loop method described in
Chapter 4.4. There are a few practical problems with the Ziegler-Nichols’
method:

• It may be time-consuming to find the least controller gain Kp which
gives sustained oscillations.

2Note: Decreasing 1/Ti is the same as increasing Ti.
3which implies that the control system is on the stability limit and oscillates


