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Preface

This dissertation is submitted for the academic degree of Philosophiae

Doctor (PhD) in the PhD study programme Process, Energy and

Automation Engineering at Telemark University College (TUC), Norway.

The dissertation consists of two main parts. Part I gives an introduction to

the research project. Part II consists of a collection of scientific articles

which have been published or submitted for publication, including the

background and the methods of each article.

It is assumed that the reader of this dissertation has basic knowledge

about anaerobic digestion, mechanistic mathematical modeling, automatic

control, and state estimation.

I have accomplished the study as a Research Fellow in a 3/4 employment

in parallel with a 1/4 academic employment at Telemark University

College, starting Fall 2009.

The research project is focused on a real pilot anaerobic digestion reactor

at a specific, typical Norwegian dairy farm, namely Foss farm, and a

planned full-scale reactor at the farm. Although these are specific

applications, I hope that the results can be useful also for other similar

applications.

To make the results as easily available as possible, the scientific articles

produced, are published, or submitted for publication, only in scientific

journals providing Open Access publication, which means that the articles

are freely available on the Internet.

My background is mainly in the field of engineering cybernetics, which

includes mathematical modeling, estimation and control of dynamic

systems. The field of biological systems, more specifically: anaerobic

digestion, has been new to me. The research has been application oriented,

aiming at improving design, operation and control of anaerobic digestion
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processes using model-based methods from engineering cybernetics and
optimization, regarding the specific application mentioned as an
application example.

I am grateful to have had the opportunity to accomplish this PhD study. I
have learnt a lot. Hopefully, I have given some contributions. And it has
been great fun!

Finn Aakre Haugen
Porsgrunn, Norway
February 24, 2014
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Summary

A pilot anaerobic digestion (AD) reactor fed with animal waste at a

typical Norwegian dairy farm is constructed, and a full-scale reactor is

planned. These reactors are of the UASB (upflow anaerobic sludge

blanket) type. The main aims of the research project based on these

reactors can be stated with the following questions. For the pilot reactor :

How to design a control system for controlling the methane gas production

to its setpoint, and how to keep the reactor at safe conditions as defined in

terms of concentration of volatile fatty acids? How to control the reactor

temperature to its setpoint? How to design and implement a state

estimator to estimate state variables of the anaerobic digestion process

which can not be measured directly, for use in control and monitoring

systems? For the planned full-scale reactor : How to determine the optimal

design and operation of a full-scale reactor able to process all the available

biological resources, i.e. animal waste? The approach taken to answer

these questions is mainly model-based, using practical experiments on the

pilot reactor to evaluate the proposed solutions.

The main results are as follows. A mechanistic dynamic anaerobic

digestion model, named the modified Hill model, has been adapted to the

pilot reactor using steady-state and dynamic data from on-line sensors and

laboratory analysis. The model is based on material balances of the

biodegradable volatile solids, volatile fatty acids, acid generating microbes,

and methane generating microbes. The main output variable of the model

is the methane gas flow. A dynamic model for the reactor temperature

based on an energy balance of the liquid is adapted to the pilot reactor.

It is demonstrated both in simulations and practical experiments that the

produced methane gas flow depends on the reactor temperature, indicating

a need for feedback temperature control. Simulations and practical

experiments show that both on-off control and industry-standard PI

control is appropriate for temperature control. Simulations indicate that

feedforward control based on measurement of the ambient and influent

xi
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temperatures can improve the control substantially. The Skogestad

method is the favoured open loop controller tuning method, while the

Relaxed Ziegler-Nichols tuning method is the favoured closed loop tuning

method compared with both the standard Ziegler-Nichols tuning method

and the Tyreus-Luyben tuning method. Simulations indicate that for

control system stability it is safe to tune the PI temperature controller at

minimum flow.

The produced power is proportional to the produced methane gas flow, at

fixed conditions. Therefore, a constant power production can be obtained

by controlling the methane flow control to a setpoint. Conditions for safe

operation of the reactor in terms of a maximum gas production, which

corresponds to a maximum feed rate, are found using steady-state

responses of dynamic simulations, taking into account the upper limit of

the volatile fatty acids concentration recommended in the literature,

namely 0.8 g/L. Both simulations and practical experiments indicate that

both the on-off controller and the PI controller are viable controllers for

methane gas flow control. The Skogestad method and the proposed

Relaxed Ziegler-Nichols tuning method are the favoured controller tuning

methods. Simulations show that for control system stability is is safe to

tune the PI controller at the lowest feed rate.

A state estimator, also denoted a soft sensor, is implemented in the form of

the Unscented Kalman Filter (UKF) algorithm based on the modified Hill

model and using the continuous measurement of methane gas flow. The

UKF also uses the measured reactor temperature and the known feed flow.

The UKF estimates continuously the four model state variables of the

modified Hill model, and an augmented state variable which is here the

concentration of volatile solids of the influent. The Unscented Kalman

Filter (UKF) algorithm is selected instead of the well-known Extended

Kalman Filter as it can be used without any linearization of the nonlinear

model.

Various model-based control systems have been designed using the

modified Hill model and the UKF: One is a predictive control system

aiming at controlling the methane gas flow to a setpoint which may be

varied, e.g. due to changing produced power demands. Simulations

indicate that, with a setpoint profile which is known in advance, the

setpoint tracking performance of a predictive control system is considerably

better comparing with PI control, which is as expected. With disturbance

changes not known in advance, the disturbance compensation is not much

better with predictive control compared with PI control, which also is as

expected since no controller can take any predictive action for such

disturbances. A successful practical application of the predictive controller
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on the real pilot reactor is presented. Also, a predictive controller aiming

at retaining the reactor at an operating point where the volatile fatty acids

(VFA) concentration has a maximum allowable value, is designed, and

compared with PI control based on feedback from VFA estimated with the

UKF. Simulations indicate the PI control system and the predictive

controller have similar performance, but the PI controller is much simpler.

The VFA control system is not yet tested on the real reactor.

Optimal design and operation of the planned full-scale reactor are

determined using optimization algorithms based on steady state

simulations of the modified Hill AD model combined with models of the

reactor temperature and heat exchanger temperatures based on energy

balances. Maximum available feedstock is 6 m3/d dairy waste. Three

alternative optimization problems are solved: Maximization of produced

methane gas flow, minimization of reactor volume, and maximization of

power surplus. Constraints of the optimization problems are an upper

limit of the VFA concentration, and an upper limit of the feed rate

corresponding to a normal animal waste production at the farm. The most

proper optimization problem appears to be minimization of the reactor

volume, assuming that the feed rate is fixed at its upper limit and that the

VFA concentration is at its upper limit. The optimal result is a power

surplus of 49.8 MWh/y, a hydraulic retention time of 6.1 d, and a reactor

temperature of 35.9 oC, assuming heat recovery with an heat exchanger,

and perfect reactor heat transfer insulation. It is shown that the optimal

solutions, i.e. the power surplus, are improved if the ratio of the solids

(biomass) retention time (SRT) to the hydraulic retention time (HRT) is

increased. Although not studied in this research project, this ratio may be

increased by adding granules to the reactor.

Both in reactor temperature control and methane gas flow control, the

original Ziegler-Nichols closed loop PI tuning settings give poor control

system stability. To improve the stability, a modification of the PI settings

is proposed based on a combination of the Skogestad tuning formulas for

“integrator plus time-delay” processes and the ultimate gain and ultimate

period from the Ziegler-Nichols tuning procedure. The modified settings

are here denoted the Relaxed Ziegler-Nichols PI settings.
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Part I — INTRODUCTION

1





Background of the research

project

Aims at the national level in Norway

The Norwegian Government’s Report to the Parliament (Stortingsmelding)

no. 39, 2008-2009, The Climate Changes — Agriculture as a Part of the

Solution (in Norwegian: Klimaendringene — landbruket en del av

løsningen) states as an aim to use 30 percent of the animal waste for

biogas production within year 2020. Research that is relevant to this aim

is conducted at Telemark University College (TUC) and other Norwegian

institutions.

In particular, TUC participates in the research project Biogas Reactor

Technology for Norwegian Agriculture granted by the Norwegian Research

Council (Norsk Forskningsråd)2. Some excerpts from the project

description which relates to my own research are as follows: “In order to

reduce the greenhouse gas emissions, much of the manure in Norway should

be treated by anaerobic digestion (AD).... Increased loading is also possible

if the process parameters are monitored online, making it possible with

early and adequate response to environmental changes. The development

and use of new sensor technology and process controlling system is another

important part of the project. Effective UASB AD reactors equipped with

advanced process control systems might be connected to the already

existing farm infrastructure. These biofilm reactors have low investment

cost and can operate at smaller farms. This technology is further

developed for implementation in Norwegian agriculture.”

My research, documented by this dissertation, attempts to contribute to

the issues in the excerpt above. The specific research aims, and the

approach taken, are stated later in the present part of the dissertation.

Below, some key issues from the above excerpt are discussed.

2Project number: 208019. Project period: 2011—2015.
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Why anaerobic digestion of animal waste?

A number of arguments in the favour of anaerobic digestion of animal

waste, compared with no special treatment, i.e. using the waste as fertilizer

directly and without any collection of biogas from the untreated waste, are:

1. Energy and power production: Methane gas (CH4) is a product

of anaerobic digestion of the waste, and can be combusted to release

energy. Under ideal conditions, the energy contents of methane gas is

9.95 kWh/m3, at standard temperature and pressure (STP). The

produced energy can be used for heating and power generation,

Deublein & Steinhauser (2010).

2. Reduction of greenhouse gas emissions: Animal waste releases

CH4, N2O (nitrous oxide gas or laughing gas), and CO2
(carbondioxide) gas into the atmosphere. According to the

Norwegian Government’s Report to the Parliament

(Stortingsmelding) no. 34, 2006-2007, Norwegian Climate Politics

(Norsk klimapolitikk), in Norway, approximately 9% of the total

release of climate gases measured as CO2 equivalents are due to

activities in the agricultural sector. Of these 9%, slightly less than

50% is CH4 gas release, and slightly less than 50% is N2O gas

release. Of the CH4 gas release, approximately 13% is due to storage

and dispersion of animal waste, while most of the remaining part

(85%) is due to the natural digestion in the livestock. According to

the Fourth Assessment Report (AR4) of the Intergovernmental Panel

on Climate Change (IPCC), 2007, the 100 year Global warming

potential (GWP) of CH4 is 25 times that of CO2, and the GWP of

N2O is 298 times that of CO2.

Anaerobic digestion of animal waste can contribute to a reduction of

these climate gas releases, by reducing CH4 and by reducing N2O. By

AD of fresh waste, the direct release of CH4 from the waste is of

course reduced. Furthermore, roughly 76% of the carbon in the fed

substrate is bound in (the total of) the CH4 and CO2 gases produced

by the AD process, Deublein & Steinhauser (2010). The combustion

of CH4 produces H2O and CO2. The N2O release may be reduced if

the AD process effluent is inserted into the soil, where the inorganic

nitrogen compounds, as NH3 and NH4-N, are converted into nitrate,

a good fertilizer. If not inserted into the soil, NH3 will be released, to

produce N2O, a strong greenhouse gas.

3. Possibility of production of good fertilizer: The AD process

effluent is not necessarily a good fertilizer. It has actually a higher
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concentration of inorganic nitrogen than that of the influent, due to

the AD process degradation of proteins and amino-acids, Deublein &

Steinhauser (2010). Indeed, laboratory analysis of samples taken

from the pilot reactor studied in this project shows that the

concentration of NH4-N is larger in the effluent than in the influent:

In the period January 9 — April 18, 2013, the average concentration

of NH4-N of 10 samples of the effluent is 1119 mg/L, while the

average concentration of 10 samples of the influent in the same

period is 841 mg/L. Furthermore, there is hardly no reduction of the

odor in the effluent compared to that of the influent.

Although not the focus of this dissertation, it is here appropriate to

point to the successful post-treatment of the AD process effluent

which is implemented at Foss Biolab, cf. Figure 6. The effluent is fed

to a nitrification reactor where oxygen is introduced to convert the

inorganic nitrogen compounds, NH3 and NH4-N, into nitrate,

NH3O−, which is a good fertilizer. Furthermore, the emission of N2O
is reduced since N2O is generated in a chemical reaction of NH3, and

the fertilizer is almost odorless.

Why UASB reactors?

Two commonly used types of AD reactors are:

• CSTR (Continuous stirred tank reactor), Tchobanoglous et al.

(2003). In an ideal CSTR, the substrate and the biomass, or

micro-organisms, are completely mixed. Thus, the hydraulic

retention time (HRT) and the biomass retention time, commonly

represented as the solids retention time (SRT) are equal. i.e. their

ratio is equal to one:

CSTR:
SRT

HRT
= 1 (1)

• UASB reactors, invented in the Netherlands by Lettinga and

co-workers, Lettinga et al. (1980). In these reactors, the SRT is

larger than the HRT:

UASB reactors:
SRT

HRT
 1 (2)

Figure 1 shows the principal construction of the UASB reactor used at

Foss farm in this research project. The key characteristic of UASB reactors

is the dense granulated sludge bed which retains the microorganisms, and
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Influent
(feed)

Effluent 
(liquid)

Sludge bed
(with microorganisms)

Liquid
(with suspended sludge)

Biogas

Figure 1: Principal construction of the UASB reactor used at Foss farm in

this research project.

prevents them from being washed out of the reactor with the effluent. The

formation of the granulated sludge is due to flocculation and gravity. There

is no need for agitation of the sludge other than what is caused by the gas

formation and the feed flow. Since the SRT is larger than the HRT for

UASB reactors, their reactor volume can be made smaller, or, alternatively,

their loading (feeding) rate can be higher compared with CSTRs.

As an illustration of the difference between CSTR and UASB reactors,

design of the full-scale reactor, similar to the design made in Article no. 5,

is accomplished. The minimum reactor volume, min, is found from the

requirement that the VFA concentration, vfa, is not exceeding 0.8 g/L

which is a critical limit for safe, or “healthy”, reactor operation, cf. Article

no. 5. Three cases are considered, characterized by their different

SRT/HRT ratio values. In Table 1, the SRT/HRT ratios are adjusted

variables (optimization variables), underlined to distinguish them from

variables having fixed values, while the volume is the objective, shown in

frames. The ratio value of 2.9 for one of the UASB cases is the same value

as is estimated for the real pilot reactor studied in this research project.

The ratio value of 20 is an assumed possible maximum value, cf. Article

no. 5. The reactor temperature, reac, and feed rate, feed, are fixed at the

values shown in Table 1. In the table, also the methane gas production,
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meth, is shown.
3 min is found from the steady state of dynamic

simulations based on the modified Hill AD model, cf. Article no. 5.

Table 1: Minimum reactor volume for three different cases described in the

text.
Unit CSTR UASB UASB

SRT/HRT d/d 1 2.9 20

vfa g/L 0.8 0.8 0.8

reac
oC 38 38 38

feed m3/d 4.2 4.2 4.2

meth m3/d 20.8 20.8 20.8

min m3 74.0 25.6 3.8

Table 1 shows that min depends largely on the SRT/HRT ratio. The

higher ratio, the smaller min. Of course, constructional costs, and the

power needed for daily operation of the reactor, are smaller if the reactor

volume is smaller. This illustrates one important benefit of using UASB

reactor comparing with using a CSTR.

How to design the UASB reactors?

Assuming that the whole amount the animal waste produced continuously

at the farm, is to be fed to the reactor, what is the optimal reactor size?

Here, “optimal” can be defined in a number of ways, for example,

maximum methane gas production, or minimum reactor volume, or

maximum power surplus taking into account the power needed to operate

the reactor. A mathematical model of the reactor is very useful for reactor

design. Model-based reactor design of a full-scale reactor at Foss farm is

discussed in Article no. 6.

Why monitoring and control?

The importance of monitoring and control is explained briefly in the

following:

Monitoring:

3meth is the same in all the cases because vfa has the same value in all of the cases

and the concentrations of the methane producing microorganisms are the same in all of

the cases.
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• Online measurements: Monitoring in the form of online

measurements can prevent shutdown of the reactor due to

abnormal situations, for example feed or gas blockings.

• State estimation: Monitoring can be in the form of a state

estimator, or soft sensor, which calculate online state variables

that are not measured, using a combination of a proper

mathematical model of the AD process and online measurement

of one of more AD process output variables, typically biogas

flow. Of course, only those variables which are included in the

model can be estimated. In the mathematical model used in

this project — the modified Hill model — the variables which can

be estimated are the concentrations [g/L] of

— biodegradable volatile solids,

— volatile fatty acids (VFA),

— acidogens (acid generating microbes), and

— methanogens (methane generating microbes).

Also the concentration of volatile solids in the reactor influent is

estimated in this project. Among the above variables, the VFA

concentration is the most important one because a high value

indicate that the reactor has “poor health”, as discussed in

Article no. 3. Online measurement of the VFA concentration is

possible, Madsen et al. (2011), but hardly a viable option for

the applications in focus of this dissertation. State estimation of

the pilot reactor is described in Article no. 4.

Control:

• Biogas production control : Under ideal conditions, the energy
contents of methane gas at standard temperature and pressure

(STP) is 9.95 kWh/m3. Therefore, a specific power production

by the reactor can be obtained by controlling the biogas flow to

the corresponding setpoint using feedback control. To this end,

industry standard controllers, like on-off and PI controllers, can

be used. Improved control can be obtained with predictive

control which is model-based control. On-off and PI biogas

control are discussed in Article no. 3, while predictive control is

discussed in Article no. 4.

• Reactor temperature control : Both simulations and experiments
on the real pilot reactor indicate that both the dynamic and

steady state methane gas production depend on the reactor

temperature. Consequently, to operate the reactor under

well-defined and fixed conditions, the reactor temperature must
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be controlled to a proper setpoint. Reactor temperature control

is discussed in Article no. 2.
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Aims of the research project

and the approach taken

Aims

The main aims of this research project are as follows. For the real pilot

reactor and the planned full-scale reactor:

• How to design a control system for controlling meth to a setpoint,

or, alternatively, to keep the reactor at safe conditions as defined in

terms of vfa? Furthermore, there is a need for a control system to

retain the reactor temperature at a setpoint.

• How to design and implement a state estimator to estimate state
variables of the AD process which can not be measured directly, for

use in control and monitoring systems?

• How to determine the optimal design and operation of a full-scale
reactor able to process all the available biological resources, i.e.

animal waste?

Approach

The approach taken to reach these aims is mainly model-based, see Figure

2. The mathematical model encapsulates only a part, of course, of the real

process, which here is the AD reactor including the AD process taking

place in the contents of the reactor, the reactor itself as a thermal system,

auxiliary systems, e.g. pumps and heat exchanger for preheating the

influent. With a model at hand, model-based tools are available for solving

various problems. In this research project, models are used as follows:

• Control:

11
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Real process (AD reactor)

Analysis

Simulation

Control
Optimiz‐
ation

Estimation

Mathematical model

Figure 2: Illustration of the approach taken in this project.

— Model-based PI controller tuning, articles 2, 3, 6, and 7.

— Predictive control which inherently uses a process model to

calculate optimal control signals, article 4.

• Estimation using the Kalman Filter algorithm, article 4.
• Optimization of design and operation, article 5.
• Analysis: In this project, models are used to analyze control systems
in terms of stability margins of control systems, all articles except

number 5.

• Simulations have been used for testing of control systems and state
estimators in all articles about control and estimation, all articles.



Description of the biological

and technical systems

Foss Biolab

The pilot AD reactor and the planned full-scale reactor are at Foss farm,

Skien, Norway. The laboratory which includes the pilot reactor at the farm

is denoted Foss Biolab. Figure 3 shows the farm, Figure 4 shows a part of

the laboratory, and Figure 5 shows the control cabinet and the PC running

the monitoring and control program.

Figure 3: Foss farm, Skien, Norway.

13
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Figure 4: At Foss Biolab: The AD reactor is behind the nitrification reactor

to the right in the picture.

Process description

The AD reactor is a part of the biological plant at Foss Biolab. Figure 6

shows a Piping & Instrumentation Diagram (P&ID) of the plant.

Input to the plant is dairy manure diluted with 25% water and filtered,

and outputs are high quality fertilizer and biogas consisting of 70—75%

methane. The plant is monitored and controlled with a PC running

LabVIEW. The main parts of the plant are as follows (numbers refer to

Figure 6).

1. A reservoir for raw dairy manure with approximately 25% added

water.

2. A sieve (separator), a rotary filter designed by staff at Foss Biolab, to

separate the manure into two fractions of similar total solid mass: 

70 % of the volume is wet fraction, and  30 % is dry fraction.

3. A high rate UASB reactor fed with filtered cow manure as substrate

for production of energy-rich biogas that contains mainly methane.

Effective reactor volume is approximately 250 L. Figure 1 shows the

construction of the reactor at Foss farm used in this research project.
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Figure 5: Control cabinet, and PC running National Instruments LabVIEW

software for monitoring and control.

4. A 200 L nitrification reactor fed with AD reactor effluent to produce

high quality liquid fertilizer and pellets fertilizer from formed foam.

The nitrification reactor is not included in this research project.

The present reactor has been in operation since April 2012, while a

previous similar reactor was in operation from August 2011 until April

2012.

Monitoring and control system

Figure 7 shows a block diagram of the reactor and the monitoring and

control system. The different parts of the block diagram are described in

the following.

Sensors

FT-1: AD reactor effluent flow sensor (home-made) based on measuring

the frequency of automatic effluent charge and discharge of a cup of
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Figure 6: Piping & Instrumentation Diagram (P&ID) of the biological

process line of the pilot plant at Foss Biolab.

fixed volume.

FT-2: Thermal biogas flow sensor.

CT-1: Infrared (IR)-based CH4 gas concentration sensor.

CT-2: Infrared (IR)-based CO2 gas concentration sensor.

TT-1: Pt100 reactor temperature sensor.

TT-2: Pt100 biolab room temperature sensor.

Actuators

P-1: A voltage controlled peristaltic pump which is operated using

Pulse-width modulation (PWM). Figure 8 illustrates the principle of
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Figure 7: Monitoring and control system for the pilot AD reactor.

PWM. With PWM an approximately continuous or smooth control

signal is obtained using factual binary control.

In the present application, the methane gas flow controller generates

 demandfeed , and the corresponding duty cycle, , which is used as input

to the PWM element, is calculated. The PWM element, which is

implemented with the Square Wave Point-by-Point function in

LabVIEW, sets the feed flow to feedon lasting for time on during

the fixed duty cycle period, p, according to the value of . In the

mean, feed becomes approximately equal to 
demand
feed if p is small

compared to the time-constant of the process to be controlled, as is

the case here. In the present application the PWM parameters are as

follows: Fixed cycle time of 700 s, on-value of control signal

corresponding to 714 L/d, and off-value corresponding to zero L/d.

There are several benefits of using PWM control compared with

analog control: The calibration of the pump is needed only at one
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Figure 8: The principle of pulse width modulation (PWM).

flow rate, feedon . And, as observed, PWM also reduces the frequency

of blockings in the feed pipeline.

H-1: An electrical heater which is controlled using PWM. The heater

comprises an electrical resistor wound around the reactor inside the

thermal insulation jacket. The maximum power delivered by the

heater is 200 W. The PWM cycle time is 30 sec which is neglibile

compared to the dynamics of the temperature control loop. The

control signal (in percent) calculated by the temperature controller is

the duty cycle of the PWM element. The PWM output signal

controls the SSR (solid state relay) on-off.

I/O-device

Low-cost USB-based I/O-devices (National Instruments) are used to

connect the PC to the sensors and actuators. Control and measurement

signals are analog voltages. So-called current loops are used to convert

measurement signal originally in the form of a milliampere signal to a

voltage signal.
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Computer and software

The computer program for monitoring and control is running on a laptop

PC which is connected to the Internet. The program is implemented with

LabVIEW, but some computational demanding parts are implemented in

MATLAB Nodes. Figure 9 shows the part of the front panel of the

LabVIEW program where the user can select among a large number of

tabs containing adjustable parameters.

Figure 9: Part of front panel of LabVIEW program for monitoring and

control.

The main parts of the LabVIEW program are described below (referring to

Figure 9).

Measurement filters are used to smooth measurement noise. The

filters are time-constant filters programmed from scratch in

LabVIEW. The time-constants are adjusted for appropriate noise

filtering without removing important process information. For

temperature measurements a time-constant of 10 min is used, for

biogas flow measurement a time-constant of 0.2 d is used, and for gas

concentration a time-constant of 1 h is used.

Scalings are transformation of measurement signals (voltages) to the

pertinent physical units, e.g. deg C, L/d, etc.

Methane gas flow control: An automatic methane gas flow control

system is implemented. The methane flow measurement is obtained

by multiplying the biogas flow measurement and methane

concentration measurement, cf. Figure 2.1. Several control functions

are implemented: On-off control; Industrial PID control

(proportional+integral+derivative); MPC (Model-based predictive

control) based on Hill’s model (1983), including a state estimator
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(Kalman Filter), and manual control. Results with PID and MPC

control are summarized in the next section.

The gas flow controller manipulates the feed pump P-1 which is

operated using PWM (Pulse-Width Modulation) with a fixed cycle

time of 10 min. The PWM is implemented with a Square Wave

function in LabVIEW on which the duty cycle (percentage of on-time

relative to a fixed period) is adjustable. PWM control has several

important practical benefits compared with analog control: The

calibration of the pump is needed only at one flow, namely the

maximum flow rate (i.e. the flow with PWM signal in the On-state),

and it is therefore easier to obtain any flow (in average) within the

minimum and the maximum flow ranges. PWM operation of the

pump seems to reduce the number of blockings in the feed pipeline.

Reactor temperature control: An automatic reactor temperature

control system is implemented. Several control functions are

implemented: Manual control, on/off control (thermostat control),

PID control. The temperature is measured with a Pt100-sensor.

The controller manipulates the heat supplied to the reactor. The

heat is provided by an electrical coil in the form of a resistor wound

about the reactor. The control signal from the temperature

controller sets the duty cycle of a PWM element with a fixed cycle

time of 60 seconds. The PWM elements turns an SSR element (Solid

State Relay) on or off thereby turning the 220 VAC across the

heating coil on or off.

Data logging: Measurement and control signals are written every 15

minutes to log files in both text-format (CSV format) for use in

MATLAB and binary format (TDMS files) for use in the Diadem

data analysis tool (National Instruments).

Simulation: An off-line simulator of the AD process is implemented.

The underlying mathematical model is based on Hill’s model (1983),

with some modifications. Model parameters are estimated offline

using data in logfiles and from laboratory analysis. The user can

adjust any model parameter and select any simulator time interval.

Alarm via sms: Automatic alarm submission via sms is implemented

with e-mail functions in LabVIEW. The e-mail message is forwarded

to by an external service4. The alarm condition here is blocking as

detected by the effluent flow sensor. Automatic alarming has

eliminated situations with no-feed to the reactor due to blockings.

4by Ipipi
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Remote access: A secure communication between the PC and the

Internet facilitates remote access to the screen and the file system on

the lab PC5. Data files can be downloaded any time. The LabVIEW

program can even be modified from a computer anywhere on the

Internet. The remote access has been of great practical help in this

project.

Laboratory analysis

In this research project, the volatile solids (VS) and volatile fatty acids

(VFAs) concentrations of both the reactor influent and effluent are used for

mathematical modeling. Their values are obtained from standard

laboratory analysis methods as described briefly below.

VS: Three parallel tests for each sample. The samples are dried in an

oven at 105 ◦C for approximately one day. Then, the (dried) samples
are combusted in a furnace at 550 ◦C for 2 hours. The VS
concentration in g/L is calculated as the weight lost during the

combustion divided by the sample volume.

VFAs: Two parallel tests for each sample. The samples are centrifuged

for 30 min, and then filtered. The samples are diluted with deionized

water, then added to small vials together with formic acid, capped,

and stored in a refrigerator until measurement is done. The VFA

concentrations in g/L are measured by a gas chromatograph (GC)

using three injections from each of the parallels.

5by LogMeIn
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Contributions by this

dissertation

1. Adaptation of a mechanistic dynamic model, based on material

balances, of the AD processes in a bioreactor fed with dairy waste

using a combination of steady state experimental (real) steady state

data and dynamic data from online sensors and laboratory analysis.

(Article no. 1.)

2. Demonstrating that the temperature dependency of Hashimoto et al.

(1981) in the modified Hill AD process model represents precisely the

dynamic response in methane gas flow due to temperature changes

for a real reactor. (Article no. 1.)

3. Demonstrating that industrial standard controllers such as on-off

controllers and PI controllers are viable controllers for controlling the

produced methane gas flow and the reactor temperature of an AD

reactor. (Articles nos. 2 and 3.)

4. Demonstration of how nonlinear predictive control can be

implemented in a computer application in which LabVIEW and

MATLAB are efficiently combined. (Article no. 4.)

5. Demonstrating how nonlinear predictive control can be applied to an

AD process. (Article no. 4.)

6. Demonstrating that the Unscented Kalman Filter can be successfully

applied to an AD process. (Article no. 4.)

7. Definition of alternative optimization objectives for optimal design

and operation of an AD reactor fed with dairy waste. Solving the

optimization problems using the model of the AD processes, which

are based on material balances, and the model of the reactor

temperature, which is based on energy balance. Demonstrating that

the simple and intuitive brute force optimization method is sufficient

23
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for solving the aforementioned optimization problems. (Article no.

5.)

8. Design of the Relaxed Ziegler-Nichols closed loop tuning method

which is shown to improve both the original Ziegler-Nichols PI

settings and the Tyreus-Leuben PI settings. (Article no. 6.)

9. Development of a procedure to estimate the phase margin for

simulated and practical nonlinear control systems directly from

experiments. (Article no. 6.)



Conferences attended

During my PhD study I have participated at the following relevant

conferences:

17th Nordic Process Control Workshop, Denmark Technical

University, Lyngby, 2012. Poster: State Estimation of a Pilot

Anaerobic Digestion Reactor.

IWA World Conference on Water, Climate and Energy 2012,

Dublin, May, 2012. Oral presentation: Mathematical Modelling for

Planning Optimal Operation of a Biogas Reactor for Dairy Manure.

13th World Congress on Anaerobic Digestion, Santiago de

Compostela, Spain, June, 2013. Poster: Modelling and Control of a

Pilot Anaerobic Digestion Reactor.

11th IWA conference on Instrumentation, Control and

Automation, Narbonne, France, September, 2013. Poster: An

advanced and flexible computer-based system for monitoring and

control of a pilot bioreactor.

The articles, posters and powerpoint presentations produced for these

conferences are not presented in this dissertation since the main results

presented there are included in the scientific articles, or in the section

entitled Background and methods preceding each of the articles.
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Future work

The present research project may be succeeded with the following work:

Adapting more comprehensive models to the reactor, for e.g.

simulation-based analysis, state estimation using a Kalman Filter (as

in Article 4), and optimization (as in Article 5). With more

comprehensive models than the modified Hill model used in the

present research project, additional variables, e.g. pH, alkalinity,

CO2, H2, and NH3 can be studied. These variables may be

important in AD processing of e.g. swine waste and co-digestion of

animal waste and food waste. Several possible models are evaluated

in Article 1. Among these, the following two models appear as most

attractive: The model by Hill & Barth (1977), and the ADM1 model

by Batstone et al. (2002).

Mathematical modeling of the nitrification reactor which succeeds

the AD reactor, cf. Figure 6. By combining that model with a proper

model of the AD reactor, cf. the item above, a model of the complete

biological plant may be obtained, to be used for e.g. analysis,

(optimal) design and state estimation.

Economical analysis revealing the economical feasibility of the AD

processing of the waste, possibly combined with nitrification.

27
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Abbreviations and

nomenclature for Part I

The abbreviations and nomenclature presented in the following apply to

the present part, Part I, of the dissertation. For each of the articles in Part

II, the abbreviations and nomenclature are given in the article.

Abbreviations

AD = Anaerobic digestion.

AD = Analog-digital.

BVS = Biodegradable volatile solids.

CSTR = Continuous stirred tank reactor.

DA = Digital-analog.

GC = Gas chromatograph.

GHG = Greenhouse gases.

GWP = Global warming potential.

HRT = Hydraulic retention time.

IAE = Integral of absolute value of control error.

I/O = Input/output.

IPCC = Intergovernmental panel on climate change.

LS = Least squares.

MPC = Model-based predictive controller.
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STP = Standard temperature and pressure; 0 oC, 1 bar.

ODE = Ordinary differential equation.

PID = Proportional plus integral plus derivative (control).

PWM = Pulse-width modulator.

SSE = Sum of squared errors.

SRT = Solids retention time.

SSR = Solid state relay.

UASB = Upflow anaerobic sludge blanket.

VFA = Volatile fatty acids.

VS = Volatile solids.

Nomenclature

CH4 is methane.

CO2 is carbondioxide.

feed [m
3/d] is influent or feed flow or load rate, assumed equal to effluent

flow (constant volume).

meth [L CH4/d] is methane gas flow.

NH3 is ammonia.

NH4— is ammonium.

NH3O— is nitrate.

N2O is nitrous oxide gas or laughing gas.

bvs [g BVS/L] is concentration of BVS in reactor.

vfa [g VFA/L] is concentration of VFA acids in reactor.

reac [
◦C] is reactor temperature.

acid [g acidogens/L]: Concentration of acidogens.

meth [g methanogens/L]: Concentration of methanogens.
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Article 1 — Adapting a

Dynamic Mathematical

Model to a Pilot Anaerobic

Digestion Reactor

Published in Modeling, Identification and Control, 34 (2), 2013.

Authors: Finn Haugen, Rune Bakke and Bernt Lie.

Authors’ roles in the article: Finn Haugen: Main ideas, implementation,

and writing. Rune Bakke (co-supervisor) and Bernt Lie (supervisor):

Discussions, comments, and proof readings.

Background and methods of the article

Background

In this research project, mechanistic dynamic models are used for

estimation (monitoring), control, and optimization of design and operation

of AD reactors. Design and results of applications are presented in the

articles constituting this dissertation. Obviously, the selection of a proper

model is crucial. Several model candidates are discussed in the paper. For

the ultimate model selection, the following generic rule is applied: “Among

appropriate model candidates, select the simplest one.” The selection is the

model in Hill (1983). This model assumes a CSTR reactor which implies

that the solids or biomass retention time (SRT) is equal to the hydraulic

retention time (HRT). However, since the present reactor is a UASB

reactor, the model should be modified to include the possibility of SRT

being larger than HRT. A motivation for this is given in Article no. 5,
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where it is shown that the ratio of SRT to HRT is a very important

parameter in optimization of design and operation of AD reactors.

The resulting model is denoted the modified Hill model, consisting of four

nonlinear differential equations representing the material balances of

biodegradable volatile solids, volatile fatty acids, acid generating microbes

(acidogens), and methane generating microbes (methanogens). The model

can predict the methane gas flow produced in the reactor.

The simplicity of the modified Hill is beneficial in the applications in the

present research project. In more demanding applications, this relatively

simple model is inadequate. Alternative, more complex models are

discussed in the article.

Also, a dynamic model for the reactor temperature based on an energy

balance of the liquid phase of the reactor, is adapted using experimental

data. This model is useful for testing reactor temperature control systems

and for optimization of reactor design and operation taking power surplus

into account.

Methods

The method of adaptation of the modified Hill model to the real reactor is

as follows: Using experimental data from a proper approximate steady

state operating point, the assumed unknown model parameters, except

one, are calculated from the steady state version of the dynamic Hill model

obtained by setting the time-derivatives to zero, thereby obtaining a set of

algebraic model equations. The number of unknown parameters equals the

number of equations, so the solution is easily obtained, manually. Then,

the remaining parameter, which is a yield factor in the formula for

methane gas flow, is estimated using the nonlinear least squares method,

i.e. optimization, to tune the pertinent parameter by adapting dynamic

simulations to dynamic operational data.

The principle of model adaptation applied here, where an optimization

method (least squares), dynamic simulations and experimental dynamic

data are combined, appears to be a powerful model adaptation method.

The method also avoids any model manipulation since the dynamic model,

i.e. its set of differential equations, is used in its original form.

The quality of the parameter estimates is analyzed as follows: The

standard deviation of the parameter estimates is calculated with

bootstrapping with parametric simulation, Davison & Hinkley (1997),
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where the standard deviations are calculated from simulations where the

laboratory data are perturbed with random noise similar to the observed

noise or variations. Furthermore, the sensitivity of the parameter estimates

are expressed with relative sensitivity of the estimates to assumed changes

in observed data used for the estimation.

The dynamic model for the reactor temperature is derived from energy

balance of the liquid, assuming homogeneous conditions. The model

comprises one single differential equation, the same as presented in basic

mathematical modeling courses. Still, the model is able to predict the

temperature precisely. The only unknown model parameter is the heat

transfer coefficient of the reactor walls. Three different methods are

applied to estimate this parameter, namely (1) the least squares method

using the static model assuming steady state (static) conditions, (2) the LS

method using the dynamic model where the unknown parameter is

adjusted until the difference between the measured and the simulated

temperature is minimized in the LS sense, and (3) nonlinear LS where the

model includes also a lag in the form of a time constant which is

estimated, and, hence, there are two parameters to be estimated. The

third method gives the best estimate in as evaluated with the SSE index

(sum of squared errors) the estimated from experimental data.

Supplementary material: Causal diagram

This section shows a causal diagram of the modified Hill model, regarded

as supplementary material to Article no. 1.

Figure 10 shows a causal diagram for modified Hill’s model presented in

the article. The diagram is principally similar to the causal diagram in

Bala & Satter (1991). While not displaying the mathematical relations in

detail, the causal diagram may help understanding the interactions taking

place in the AD reactor, as far as the model is representative, of course.

The “inventories” represent mathematical integrators or accumulators with

the “level” representing the pertinent state variable. An increase is

represented by a plus sign, while a reduction is represented by a minus

sign. The (·) symbol represents mathematical functions according to the
mathematical model.

The dynamics of microorganisms (acidogens and methanogens) are slower

than the dynamics of the BVS and VFA which is indicated in Figure 10.

To illustrate the information conveyed by the causal diagram, assume that
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Figure 10: A causal diagram for Hill’s model showing the qualitative im-

pacts that the various variables have on other variables. The level of the

“inventories” or “tanks” represent the state variables.

the reactor initially is at steady-state with operating point data as shown

in Table 12 in the article, and that  then is changed as a step. Figure

11 shows the simulated responses due to this step. Comparing these

responses with the causal diagram:

• Simulation shows that the transient response in bvs increases, which

is in accordance with the positive input to the upper functional block

in Figure 10.

Eventually bvs flattens and becomes constant. This can be

explained by the negative feedback from bvs to its time-derivative in

the causal diagram: When bvs increases, the rate of change of bvs
decreases. Physically explained, when bvs increases, more BVS

leaves the reactor.

• The transient response in vfa increases, which is in accordance with
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Figure 11: Simulated responses due to a step change of feed.

the positive input to the second functional block. This increase and

eventual flattening of vfa can be explained in the same way as for

bvs above.

• The transient response in acid decreases, which is in accordance

with the negative input to the third functional block. Physically, the

decrease is due to a part of the acidogens being washed out from the

reactor due to the increased effluent flow caused by the increased

influent flow.

Eventually the reduction of acid decreases. acid flattens and

becomes constant which is due to increased bvs which in itself

causes a growth of acidogens, and this growth counteracts the

increased washout.

• The transient response in meth decreases, which is in accordance

with the negative input to the bottom functional block. Physically,

the decrease is due to a part of the methanogens being washed out

from the reactor due to the increased effluent flow caused by the

increased influent flow.

Eventually the reduction of meth decreases. meth flattens and

becomes constant which is due to increased vfa which in itself causes
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a growth of methanogens, and this growth counteracts the increased

washout.

• meth increases which is due to the increased vfa. Actually, meth
decreases, slowly, which in itself causes a reduction of meth.

However, the increase of vfa is larger than the decrease of meth,

and therefore the net effect is an increase of meth.
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Abstract

A dynamic model has been adapted to a pilot anaerobic reactor fed diary manure. Both steady-state data
from online sensors and laboratory analysis and dynamic operational data from online sensors are used in
the model adaptation. The model is based on material balances, and comprises four state variables, namely
biodegradable volatile solids, volatile fatty acids, acid generating microbes (acidogens), and methane
generating microbes (methanogens). The model can predict the methane gas flow produced in the reactor.
The model may be used for optimal reactor design and operation, state-estimation and control. Also, a
dynamic model for the reactor temperature based on energy balance of the liquid in the reactor is adapted.
This model may be used for optimization and control when energy and economy are taken into account.

Keywords: Anaerobic digestion, bioreactor, biogas, mathematical modeling.

1. Introduction

1.1. Anaerobic digestion of animal wastes

Anaerobic digestion (AD) of animal wastes can pro-
duce biogas with methane to be used as an energy
source, and a liquid effluent containing valuable nutri-
ents. Moreover, AD reduces methane emission, odours
and contaminants. AD bioreactors are effective as they
allow for relatively high load rates (feed rates) and
small reactor volumes. AD reactors may become un-
stable, i.e. a persistent decrease of gas production, be-
cause of inhibitory effects on methane-forming micro-
organisms due to large concentrations of volatile fatty
acids (VFA) and ammonia and too low pH. Instability
can also occur because of washout of microbes when
the feed (load) rate is too large.

Various theoretical and practical aspects of AD pro-
cesses are described in e.g. Tchobanoglous et al. (2003)
and Deublein and Steinhauser (2010). A presentation
of AD of animal wastes (dairy, beef, poultry, and swine)
is provided e.g. by Husain (1998).

1.2. Possible applications of mathematical
models

Foss Biolab, Haugen et al. (2012), is a pilot biological
plant at Foss dairy farm in Skien, Norway, for nutrient
and energy recovery from animal waste. The aims of
this paper are to adapt a dynamic mathematical model
of the anaerobic digestion (AD) processes of the reac-
tor in the plant able to predict the methane gas flow
produced in the reactor, and to adapt a dynamic model
able to predict the reactor temperature.

Possible applications of a mathematical model of the
AD processes in the reactor are as follows.

• Analysis of the dynamic and steady-state be-
haviour of the AD processes primarily based on
simulations. Using simulations can provide pro-
cess insight which would otherwise be practically
difficult to obtain.

• Optimal design and operation of a full-scale reac-
tor, i.e. designing optimal reactor size and calcu-
lating optimal feed rate according to proper opti-
mization criteria, Edgar et al. (2001).
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• Design of state estimators, also denoted soft-
sensors, which are algorithms calculating the state
of the process continuously, Simon (2006). The
most common state estimation algorithm is the
Kalman Filter which exists in different versions. A
state estimator is an essential part of model-based
predictive controllers, see below. It may also be
used as a soft-sensor on its own as a substitute for
real measurements.

• Model-based tuning of industry-standard PID con-
trollers (Proportional + Integral + Derivative),
Seborg et al. (2004), for biogas flow control to keep
the produced biogas flow at or close to a given set-
point.

• Design and implementation of model-based pre-
dictive controllers (MPCs), Grüne and Pannek
(2011), for biogas flow control.

Possible applications of a mathematical model of the
reactor temperature are:

• Optimal reactor design and operation taking en-
ergy and economy into account. A combination of
the AD process model and the reactor temperature
model will be necessary to solve this optimization
problem.

• Tuning a temperature controller for the reactor.

1.3. Outline of this paper

Section 2 gives a description of the pilot AD reactor
at Foss Biolab. Section 3 describes adaptation of a
dynamic mathematical model of the AD process to the
reactor. Section 4 describes mathematical modelling of
the reactor temperature. A discussion is given in Sec-
tion 5, and conclusions are given in Section 6. Nomen-
clature including abbreviations is given in Appendix
A. Laboratory analysis methods for relevant compo-
nents are described in Appendix B. For easy reference,
a summary of the modified Hill’s model adapted to the
pilot reactor is given in Appendix C.

MATLAB (by The MathWorks, Inc.) has been used
as computational tool for this paper.

2. The AD reactor

2.1. Overview

Figure 1 shows a Piping & Instrumentation Diagram
(P&ID) of the biological process plant at Foss dairy
farm. Input to the plant is dairy manure diluted
with 25% water and filtered, and outputs are fertil-
izer and biogas consisting of 70-75% methane. The

plant is monitored and controlled with a PC running
LabVIEW. The main parts of the plant are as follows
(numbers refer to Figure 1).

1. A reservoir for raw dairy manure with approxi-
mately 25% added water.

2. A sieve to separate the manure into two fractions
of similar total solid mass: > 70 % of the volume
is wetter fraction, and < 30 % is dryer fraction.
The dryer fraction is used for vermicomposting.

3. A high rate anaerobic digestion reactor fed filtered
cow manure as substrate for production of energy-
rich biogas that contains mainly methane. The
effective reactor volume is approximately 250 L.

4. A nitrification reactor of approximately 200 L fed
AD reactor effluent to produce liquid fertilizer and
pellets fertilizer from formed foam.

This paper concerns the AD reactor in the process
line.

The present reactor has been operational since April
2012, while a previous similar reactor was in operation
from August 2011 until April 2012.

2.2. Instrumentation

Below is a list of the instrumentation used with the AD
reactor depicted in Figure 1. The encircled numbers
refer to the diagram in Figure 1.

PC is a laptop PC running the computer program
for monitoring and control implemented in Lab-
VIEW. The PC is connected to sensors and actu-
ators via USB-based I/O-devices.

P2: A voltage controlled peristaltic pump which is
operated using pulse-width modulation (PWM)
with a fixed cycle time of 10 min.
There are several benefits of using PWM control
compared with analog control: The calibration of
the pump is needed only at one flow, namely the
maximum flow rate (i.e. the flow with PWM sig-
nal in the On state), and it is therefore easier to
obtain any flow (in average) within the minimum
and the maximum flow ranges. PWM may also
reduce blocking in the feed pipeline.

FT-1: AD reactor effluent flow sensor (home-made)
based on measuring the frequency of effluent
charging and discharging of a cup of fixed volume.

FT-2: Thermal biogas flow sensor.

The sensor output is normal litres of gas at NTP
(Normal Temperature and Pressure), i.e. temper-
ature 0 oC and pressure 1.013 bar.
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Figure 1: Piping & Instrumentation Diagram (P&ID)
of the biological process line of the pilot plant
at Foss Biolab, Skien, Norway. This paper
concerns the AD reactor.

The raw measurement signal from this sensor is
quite noisy with an observed standard deviation
of approximately 14 L/d (litres per day) which is
approximately 2% of the upper range limit (URL)
which is 720 L/d. To smooth the noise, a lowpass
filter with time-constant of 0.2 d is implemented
in the LabVIEW program.

CT-1: Infrared (IR)-based CH4 gas concentration
sensor.

To smooth the measurement signal from this sen-
sor, a first-order lowpass filter with time-constant
of 1 h (hour) is implemented in the LabVIEW pro-
gram.

CT-2: Infrared (IR)-based CO2 gas concentration
sensor.

The measurement signal is filtered with a lowpass
filter with time-constant of 1 h.

TT-1: Pt100 reactor temperature sensor.

Filter: Lowpass filter with time-constant of 10
min.

TT-2: Pt100 biolab room temperature sensor.

Filter: Lowpass filter with time-constant of 10
min.

TC-1: Reactor temperature controller which is op-
erated as an On-Off controller (i.e. thermostat
controller). The controller is an industrial stand-
alone temperature controller.

H-1: Electrical heater for the AD reactor which is
controlled using the built-in PWM option in TC-1.
The heater comprises an electrical resistor wound
around the reactor inside the thermal insulation
jacket.

2.3. Available data

Data used for model adaptation are offline-data from
laboratory analysis and online-data from sensors.

Samples for laboratory analysis have been taken reg-
ularly from the reactor since August 2011, following
sampling guidelines given by Esbensen and Paasch-
Mortensen (2010). A number of different variables
characterizing the reactor influent and effluent are an-
alyzed. Among these, concentration of volatile solids
(VS) and concentration of total volatile fatty acids
(VFA) are used for model adaptation in the present
study.

Online-data include feed flow (load rate), reactor
temperature, ambient (air) and feed temperature (as-
sumed to be the same and therefore measured with one
sensor), biogas flow, and methane gas concentration.
The latter two provide methane gas flow.

3. Adaptation of a mathematical
model to the AD reactor

3.1. Selection of dynamic model

Several dynamic mathematical models for AD pro-
cesses exist. Overviews of such models are given by e.g.
Gavala et al. (2003), Lyberatos and Skiadas (1999),
and Stromberg (2010).

3.1.1. Model selection criteria

For our purposes, cf. Section 1.2, a model is searched
for according to the following criteria:
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1. The model must be able to predict the produced
biogas. However, it is sufficient that methane gas
flow is predicted since the useful energy content of
the gas is related to the methane content only.

2. The model should be relatively simple since it is to
be used in a real-time implementation of a state es-
timator and a model-based controller. Relatively
simple models are preferable since they may be
easier to adapt and maintain.

3. The model should be able to represent the tem-
perature dependency of the dynamics of the AD
process. This is because the reactor may be
operated at different temperatures, although the
mesophile condition which is about 35oC is as-
sumed to give the optimal temperature condition
for the methane-producing micro-organisms, or
methanogens, Tchobanoglous et al. (2003). Op-
timality in terms of cost may imply a temperature
being different from 35oC.

3.1.2. Model candidates

A number of candidates of model for AD of dairy ma-
nure were considered in the light of the above criteria.
Below is a summarized characterization of these mod-
els.

• Andrews and Graef (1971):

– Model characteristics: The model is general,
and does not assume any particular type of
organic substrate. Substrate: Acetic acid.
Hydrolysis step is not included. Biological
reaction includes only convertion of volatile
acids to CO2 and CH4 by only one type of mi-
crobes, namely methanogenic microbes. pH
between 6 and 8 is assumed. Temperature 38
oC is assumed.

– State variables (there are five): Con-
centration of substrate; Concentration of
methanogens; Concentration of dissolved
CO2 in liquid phase; Partial pressure of CO2

in gas phase; Alkalinity.

– Gas predicted by the model: CH4 gas flow;
CO2 gas flow; Biogas flow as sum of these gas
flows.

• Hill and Barth (1977):

– Model characteristics: The model is general
for animal waste, and is validated using ex-
perimental data from reactors fed poultry
waste and swine waste. Hydrolysis step is
included. Model parameters are expressed as
Arrhenius-based functions of temperature.

– State variables (9): Concentration of volatile
matter; Concentration of soluble organics;
Concentration of volatile acids in the form of
acetate; Concentration of acidogens (“acid-
formers”); Concentration of methanogens
(“methane-formers”); Concentration of dis-
solved CO2 in liquid phase; Partial pressure
of CO2 in gas phase; Concentration of NH4

+

in liquid phase; Partial pressure of NH3 in gas
phase; Concentration of cations (other than
ammonia and hydrogen);

– Gas predicted by the model: CH4 gas flow;
CO2 gas flow; NH3 gas flow; Biogas flow as
sum of these gas flows.

• Hill (1983):

– Model characteristics: The model applies to
waste from poultry, beef, dairy, or swine with
two parameters – the biodegradability con-
stant and the acidity constant – being unique
for each of these wastes. Substrate: Volatile
solids (VS). A certain fraction of the fed VS
is assumed biodegradable. Hydrolysis step is
not included. Model is validated using ex-
perimental data with all four wastes men-
tioned above. Applicable temperature range
is 20oC – 60oC based on the temperature-
dependency of the maximum reaction rates
according to Hashimoto et al. (1981).

– State variables (4): Concentration of
biodegradable volatile solids (BVS); Concen-
tration of volatile fatty acids (VFA) as ac-
etate; Concentration of acidogens; Concen-
tration of methanogens;

– Gas predicted by the model: CH4 gas flow.

• Husain (1998):

– Model characteristics: Husain (1998) pre-
sented Hill’s model (1983) with more details
regarding chemical reactions. Husain also
changed some of the model parameter values,
and expressed the death rates of the acido-
gens and metanogens as VFA-based Monod
functions instead of relating the death rates
to the maximum reaction rates as Hill did.

– State variables (4) are as in Hill’s model.

– Gas predicted by the model as in Hill’s
model.

• Batstone et al. (2002):

– Model characteristics: This model is known
as ADM1 (Anaerobic Digestion Model No.
1). ADM1 is a general, complex AD model
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which describes biochemical and physico-
chemical processes. The biochemical steps
include disintegration, extracellular hydroly-
sis, acidogenesis, acetogenesis, and methano-
genesis. The physico-chemical equations de-
scribe ion association and dissociation, and
gas-liquid transfer.

In a representation of ADM1 in Rosen et al.
(2006) consisting of solely differential equa-
tions there are 35 state variables representing
various concentrations, and approximately
100 parameters.

Temperature-dependent parameters are ex-
pressed as Arrhenius-type functions of tem-
perature.

The ADM1 model is very stiff as the dy-
namics of pH and hydrogen are relatively
fast. The stiffness poses numerical chal-
lenges for implementation in e.g. MAT-
LAB/SIMULINK, Rosen et al. (2006). One
solution to the stiffness problem is to replace
the stiff state variables by algebraic states
calculated by a numerical solver at each sim-
ulation time step, Rosen et al. (2006), and
hence the model becomes a DAE model (dif-
ferential algebraic equations).

– State variables (35): Monosaccharides;
Amino acids; Long chain fatty acids; Valer-
ate; Butyrate; Propionate; Acetate; Hydro-
gen gas; Methane gas; Inorganic carbon; In-
organic nitrogen; Soluble inerts; Compos-
ites; Carbohydrates; Proteins; Lipids; De-
graders (seven) for sugar, amino acid, long
chain fatty acids, valerate & butyrate, pro-
pionate, acetate, and hydrogen; Particulate
inerts; Cations; Anions; Ion states (six) for
valerate, butyrate, propionate, acetate; bi-
carbonate, and ammonia; CH4 gas; CO2 gas;
H2 gas.

– Gas predicted by the model: CH4 gas flow;
CO2 gas flow; H2 gas flow; Biogas flow as
sum of these gas flows.

• Zaher et al. (2009):

– Model characteristics: The model applies to
dairy waste and includes hydrolysis, acido-
genesis, methanogenesis – hydrogenotrophic
and acetotrophic. The model is validated
against different real batch processes with
continuous mixing, operating at 35oC.

– State variables (15): Concentration of the
following microbial groups: Acidogens; Ace-
totrophic methanogens; Hydrogenotrophic

methanogens; Concentration of the follow-
ing materials: Biosolids (particulate sub-
strate); Degradable substrate (as sugars);
Volatile fatty acids (as acetate); Hydrogen;
Carbondioxide; Methane; Bicarbonate; Am-
monium; Phosphates; Moisture (water); Pro-
tons (H+); Cations.

– Gas predicted by the model: Biogas flow (the
individual gas components are however not
stated explicitly in Zaher et al. (2009).

3.1.3. Selection of the ultimate model

In the light of the criteria for model selection presented
in Section 3.1.1 Hill’s model, Hill (1983), is selected as
the ultimate model as it satisfies all the criteria and be-
cause it is simpler than comparable models, see below.
Support for this selection is found in the evaluations
of various AD models made by Stromberg (2010) and
Husain (1998) where they conclude favourably about
this model.

Brief evaluations of the other models presented
above in the light of our selection criteria are given
in the following.

The model by Andrews and Graef (1971) is not se-
lected because it is validated only at the fixed tempera-
ture 38oC. Also, we see it as drawback that it contains
only one type of microorganisms while two or more
types are very common in more modern models.

The model by Hill and Barth (1977) is attractive for
our purposes, but is not selected here because it is more
complicated than Hill’s model, Hill (1983). However,
this model may be selected in future projects.

The model presented by Husain (1998) is basically
the selected Hill’s model.

The ADM1 model, Batstone et al. (2002), is not se-
lected because it is very complex, and because numeri-
cal challenges may be expected in an online (real-time)
implementation of state estimators and model-based
controllers. Lyseng et al. (2012) adapted ADM1 quite
successfully to our pilot reactor in the AQUASIM sim-
ulation tool, Reichert (1998), however with poor pre-
dictions of produced biogas as the reactor temperature
was changed (simulated and measured experimental
gas production were clearly different).

The model by Zaher et al. (2009) is not selected here
because it is relatively complex, and the model param-
eters are not presented with any temperature depen-
dency. Also, it would be necessary to modify the model
originally made for batch AD processes to make it ap-
plicable to our bioreactor which has a continuous load
rate.
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3.2. Hill’s AD model

The reasons for selecting Hill’s model, Hill (1983), as
the ultimate model to be adapted to the pilot biore-
actor at Foss Biolab are given in Section 3.1. Hill’s
original model is presented in Section 3.2.1. A modi-
fied Hill’s model which is the model adapted to the AD
reactor at Foss Biolab is described in Section 3.2.2.

3.2.1. The original Hill’s model

Figure 2 shows the steps of the AD process on which
Hill’s model is based. The alphabetic identificators
used in Figure 2 refer to the model equations presented
in the present section.

Complex organic material

Soluble biodegradable 

organic material

Volatile fatty acids

Methane gas

Acidogens

Methanogens

C

B

D E

F

G

A

C

Hydrolytic

enzymes

Figure 2: The anaerobic digestion steps forming the ba-
sis of Hill’s model. The alphabetic indicators
refer to Hill’s model, eqs. (1)-(10). The sym-
bols resemble those in Zaher et al. (2009).

Hill’s model comprises eqs. (1)-(10) below, but a few
changes are made in the symbols to make the model
more readable and to have symbols which are in more
compliance with symbols in other AD models. The
differential equations stem from mass balances of the
pertinent components. Homogeneous conditions are
assumed.

The alphabetic identificators written in parentheses
in the following refer to the flow diagram in Figure 2.

Defining that portion of the raw waste which can
serve as substrate (A):

Sbvsin = B0Svsin (1)

Defining that portion of the biodegradable material
which is initially in the acid form (B):

Svfain
= AfSbvsin (2)

Mass balance of biodegradable volatile solids (C):

Ṡbvs = (Sbvsin − Sbvs)
Ffeed

V
− µ 1

Y
Xacid (3)

Mass balance of VFA (D):

Ṡvfa = (Svfain − Svfa)
Ffeed

V

+µ 1−Y
Y Xacid − µc

1
Yc
Xmeth

(4)

Mass balance of acidogens (E):

Ẋacid =

(
µ−Kd −

Ffeed

V

)
Xacid (5)

Mass balance of methanogens (F):

Ẋmeth =

(
µc −Kdc −

Ffeed

V

)
Xmeth (6)

Methane gas flow rate (gas production) (G):

Fmeth = V µckmeth
1− Yc
Yc

Xmeth (7)

The reaction rates are as follows:

µ = µm
1

Ks

Sbvs
+ 1 +

Svfa

Ki

(8)

µc = µmc
1

Ksc

Svfa
+ 1 +

Svfa

Kic

(9)

The maximum reaction rates µm, µmc are functions of
the reactor temperature as follows, Hashimoto et al.
(1981):

µm (Treac) = µmc (Treac) = 0.013Treac − 0.129 (10)

(20◦C < Treac < 60◦C)

The death rates are set to one tenth of the maximum
reaction rates:

Kd = 0.1µm (11)

Kdc = 0.1µmc (12)

Although Hill’s model is selected as the ultimate
model, we are motivated to implement a few changes
to the model as explained in Section 3.2.2.
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3.2.2. Modified Hill’s model

Differences from the original Hill’s model
In our study the following changes are made to the

original Hill’s model presented in Section 3.2.1. The
resulting model is referred to as “the modified Hill’s
model”.

• Parameters k1, k2, k3, and k5, replace the orig-
inal parameters (yields) 1/Y , (1 − Y )/Y , 1/Yc,
and kmeth(1 − Yc)/Yc. Parameters k1, k2 and k5

are estimated from experimental data, except k3

which is calculated from the parameter values in
the original Hill’s model.

• The Haldane functions in the reaction rates µ and
µc in Hill’s original model, eqs. (8) and (9), are
replaced with the simpler Monod functions:

µ = µm
Sbvs

Ks + Sbvs
(13)

µc = µmc
Svfa

Ksc + Svfa
(14)

This makes the calculations with the model in
the context of parameter estimation easier. Using
Monod functions is consistent with the compara-
ble model by Simeonov et al. (1996).

• The death rates, eqs. (11) and (12), are replaced
with constant parameters:

Kd = 0.02 [1/d] (15)

Kdc = 0.02 [1/d] (16)

which is in accordance with ADM1, Batstone et al.
(2002). This simplifies the model.

• In the original Hill’s model the retention time of
the biomass (here: acidogens and methanogens) is
equal to the hydraulic retention time (HRT):

Thr =
V

Ffeed
= HRT (17)

The retention time of the biomass is larger than
the hydraulic retention time in up-flow sludge bed
reactors such as applied here, where biomass is
retained by gravity, Tchobanoglous et al. (2003).
The retention time ratio b is here introduced. The
retention time of the biomass, which is denoted
the solids retention time (SRT), is assumed to be
b times the hydraulic retention time:

Tbr = bThr =
bV

Ffeed
=

V

Ffeed/b
= SRT (18)

where the term V/(Ffeed/b) expresses that the
biomass flow out of the reactor is smaller than the
flow of organic matter.

In the original Hill’s model it is implicitly assumed
that b = 1. Eq. (18) makes the model coherent
with the standard ADM1 model, Batstone et al.
(2002), in this respect though the SRT is repre-
sented differently (as an independent parameter)
in ADM1. Eq. (18) is in accordance with the rep-
resentation of SRT in e.g. Zaher et al. (2003) and
Bernard et al. (2001).

Model equations in the modified Hill’s model
Defining that portion of the raw waste which can

serve as substrate:

Sbvsin = B0Svsin (19)

Defining that portion of the biodegradable material
which is initially in the acid form:

Svfain = AfSbvsin (20)

Mass balance of biodegradable volatile solids:

Ṡbvs = (Sbvsin − Sbvs)
Ffeed

V
− µk1Xacid (21)

Mass balance of total VFA (see comment below):

Ṡvfa = (Svfain − Svfa)
Ffeed

V

+µk2Xacid − µck3Xmeth

(22)

Mass balance of acidogens:

Ẋacid =

(
µ−Kd −

Ffeed/b

V

)
Xacid (23)

Mass balance of methanogens:

Ẋmeth =

(
µc −Kdc −

Ffeed/b

V

)
Xmeth (24)

Methane gas flow rate (gas production):

Fmeth = V µck5Xmeth (25)

where the reaction rates, with Monod kinetics, are as
follows:

µ = µm
Sbvs

Ks + Sbvs
(26)

µc = µmc
Svfa

Ksc + Svfa
(27)

The maximum reaction rates µm, µmc are functions of
the reactor temperature as in the original Hill’s model,
eq. (10), repeated here for easy reference:

µm (Treac) = µmc (Treac) = 0.013Treac − 0.129 (28)

(20◦C < Treac < 60◦C)
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Above it is assumed that VFA is total VFA con-
sisting mainly of propionate, butyrate, valerate, and
acetate, Batstone et al. (2002). Acetate is the main
VFA component, and it is used in aceticlastic methano-
genesis which is the main methane-generating pro-
cess. Methane is also generated in hydrogenotrophic
methanogenesis. Hydrogen is generated from vari-
ous components including the VFA components propi-
onate, butyrate and valerate. To include effects of the
hydrogenotrophic methanogenesis, Svfa in our model
represents total VFA and not only acetate.

Figure 3 shows an overall block diagram display-
ing the variables and parameters of the modified Hill’s
model eqs. (19)-(28).

Xacid

[g/L]

Sbvs

[g/L]

Svfa

[g/L]

Xmeth

[g/L]

Ffeed 
[L/d] Fmeth

[L/d]

Modified Hill’s AD process 
model

State variables

Input 
variables

Output
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V
[m3]

Parameters

Svs,in
[g/L]

k1, k2, k3, k5, Ks, 
Ksc, Kd, Kdc

Treac

[oC]

b
[d/d]

Figure 3: Overall block diagram with variables and pa-
rameters of the modified Hill’s model (19)-
(28).

In Section 3.3.3 about parameter estimation the
steady-state (or static) version of the dynamic model is
needed. The steady-state model is obtained by setting
the time-derivatives in the above differential equations
equal to zero.

3.3. Adaptation of modified Hill’s model
to the AD reactor

In the the following subsections, 3.3.1-3.3.3, the modi-
fied Hill’s model, eqs. (19)-(28), is adapted to the AD
reactor ADR2. In Section 3.3.1 are presented param-
eter values found in literature references or known by
design. In Section 3.3.2 values of some of the param-
eters are calculated from a laboratory test. In Sec-
tion 3.3.3 the remaining unknown parameters, and un-
known values of two of the state variables (namely the

methanogens and acidogens concentrations) in a perti-
nent steady-state operating point, are estimated from
time-series of laboratory data and time-series from on-
line sensors. In Section 3.3.4 the temperature depen-
dency of the estimated model is demonstrated.

3.3.1. Known parameters in modified Hill’s model

Table 1 shows parameters which are assumed to have
known values.

Table 1: Parameters with known values. (Units are
listed in Appendix A.2.)

k3 = 1
Yc

= 31.7 Hill (1983)

Kd = 0.02 Batstone et al. (2002)
Kdc = 0.02 Batstone et al. (2002)
kmeth = 0.5 Hill (1983)
Ksc = 3 Husain (1998)
V = 250 Reactor design

3.3.2. Parameters in modified Hill’s model
calculated from laboratory test

Parameters B0 and Af are found from a laboratory
test as described below. Their values are shown in
Table 2.

Table 2: Parameters assumed to have known values

Af = 0.69 g VFA/L
g BVS/L Cf. comment in text

B0 = 0.25 g BVS/L
g VS/L Cf. comment in text

• B0 defines the ratio between BVS and VS in the
feed:

Sbvsin = B0Svsin (29)

It is assumed that a proper value of B0 can be
found from the following specific long-term test.
At time t0 = July 12, 2011 a fresh sample of the
subtrate was put into an incubator having con-
stant temperature of 35 oC.

The biogas production was registered regularly
until time t1 = Sept. 25, 2011 which is the
time where the biogas production became virtually
zero. The VS concentration, here denoted Svsin ,
of the substrate was measured at times t0 and t1,
cf. Table 3.

Since the biogas production is zero at t1 it is con-
cluded that the biodegradable part of the sub-
strate is completely degraded at t1. Thus, in the
long-term test,

Sbvsin = Svsin (t0)− Svsin (t1) (30)
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Table 3: Long-term test to find parameter B0

Time Svsin Biogas prod.
t0 = July 12, 2011 29.25 Non-zero
t1 = Sept. 25, 2011 21.92 Zero

From eq. (29) the following value of B0 is ob-
tained:

B0 =
Sbvsin

Svsin

=
Svsin (t0)− Svsin (t1)

Svsin (t0)

=
29.25− 21.92

29.25
= 0.25

g BVS/L

g VS/L
(31)

• Af defines the ratio between VFA and BVS in the
feed:

Svfain = AfSbvsin (32)

It is assumed that a proper value of Af can be
found from the approximate steady-state operat-
ing point around June 10, 2012 which is used for
estimation of the model parameters (except pa-
rameter k5 which is estimated from dynamic re-
sponses) using the steady-state version of the dy-
namic model. The pertinent values needed to cal-
culate Af are shown in Table 4. From eqs. (29)
and (32),

Af =
Svfain

Sbvsin

=
Svfain

B0Svsin

(33)

=
5.23

0.25 · 30.4
= 0.69

g VFA/L

g BVS/L
(34)

Table 4: Data used to calculate parameter Af

Time Svsin Svfain

t0 = 10. June 2012 30.4 5.23

3.3.3. Estimation of unknown parameters and
variables in modified Hill’s model using real
data

Parameters and variables to be estimated
The following parameters and variables in the mod-

ified Hill’s model, eqs. (19)-(28), are to be estimated:

k1, k2, k5, Ks, b, Xacid, Xmeth. (35)

In the model k1, k2, k5, Ks, and b appear as param-
eters, while Xacid and Xmeth are state variables. It
is necessary to estimate Xacid and Xmeth since their
values are not known.

Identifiability

Before trying to estimate parameters and variables,
their structural identifiability should be determined,
Dochain and Vanrolleghem (2001). Structural identifi-
ability concerns the possibility to give a unique value
to the unknown parameters and variables, and this
property can be assessed with a number of alternative
methods, e.g. the method of Generating series which
is based on calculating Lie derivatives, or by analyzing
the uniqueness of the parameters of the Laplace based
transfer function of a linearized version of the (nonlin-
ear) model. However, for the estimation method used,
see below, the structural identifiability is obvious since
independent analytical expressions for the pertinent
parameters and variables using steady-state data are
obtained, except for one parameter, namely k5, which
is found by optimization using dynamic data. Hence
a rigorous structural identifiability assessment is not
necessary and therefore not accomplished here.

Method of parameter estimation
Yield-parameter k5 is a crucial model parameter

since it is directly related to the methane gas flow rate,
cf. eq. (25). It is decided to estimate k5 using nonlin-
ear least squares (NLS) estimation based on optimiza-
tion using iterated simulations of the modified Hill’s
model. The simulations are based on the explicit Eu-
ler method implemented with for-loops in MATLAB.
The optimization problem is to minimize the difference
between real (measured) and simulated Fmeth in the
least squares sense over a specific time interval which
is from t = 66 d to 95 d in Figure 4. (t = 0 corresponds
to April 19, 2012.)

The iterations (including simulations) are executed
automatically by the optimization solver.1

From t = 72.3 d the methane gas flow is being con-
trolled by a feedback controller manipulating the feed
pump. The noise in gas flow measurement seen in Fig-
ure 4 is due to blockings and power outages. Because
of the feedback control, this noise imposes noise in the
feed flow, via the controller.

Before each of these simulations is started (auto-
matically by the optimization solver) the six param-
eters/variables k1, k2, Ks, b, Xacid, and Xmeth are cal-
culated from the steady-state version of the dynamic
model (19)-(28) using steady-state operational data at
a specific operating point assuming intially that k5 has
a “guessed” value which is set equal to the value in eq.
(7) of Hill’s original model:

k5guess = kmeth
1− Yc
Yc

= 15.4 (36)

Table 5 shows values of inputs and states in the per-
tinent steady-state operation point which is t = 66 d
in Figure 4. (t = 0 = April 19, 2012.)

1The optimization solver is the lsqnonlin function in MATLAB.

43



Modeling, Identification and Control

70 75 80 85 90
0

10

20

30

40

50

60

70

Feed flow

[L
/d

]

70 75 80 85 90

180

190

200

210

220

230

240

250
CH4 gas flow: Real (meas) = blue. Sim = red.

[L
/d

]

Time, t [d]. Time ref (t=0):19.Apr.2012

Figure 4: Upper plot: Measured feed flow. Lower plot:
Measured (blue) and simulated (red) methane
gas flow.

Table 5: Values of inputs and states in the steady-state
operation point (t = 66 d; t = 0 = 19. April
2012) used for model adaption. Units are
listed in Appendix A.2.

Variables Comments

Ffeed = 50 Applied by feed pump

Treac = 35 Sensor reading

Sbvsin = 32.4 Lab analysis

Sbvs = 5.81 Lab analysis

Svfa = 1.13 Lab analysis

Fmeth = 227.9 Sensor reading

The formulas for calculating the above mentioned
six parameters/variables, namely k1, k2, Ks, b, Xacid,
Xmeth, from the steady-state version of the dynamic
model (19)-(28) are given below.

• b is calculated from the steady-state version (i.e.
the time-derivative term is set to zero) of eqs. (24)
and (27) to give

b =
Ffeed

V

µmc
Svfa

Svfa+Ksc
−Kdc

(37)

• Ks is calculated from the steady-state version of
eqs. (23) and (26) to give

Ks = Sbvs

(
µm

Kd +
Ffeed

bV

− 1

)
(38)

• Xmeth is calculated from the steady-state version
of eq. (25) to give

Xmeth =
Fmeth

V µck5
(39)

• Xacid is calculated with

Xacid = ramXmeth (40)

Here, ram is (in the steady-state calculations) set
to

ram = 3.4 (41)

as it was observed in simulations for various
feed rates with the original Hill’s model with
parameters from Husain (1998) that the ra-
tio Xacid/Xmeth varied only slightly around 3.4.
However, this ratio is not necessarily 3.4 after the
estimation procedure is finished.

• k1 is calculated from the steady-state version of
eqs. (19) and (26) to give

k1 =
(Sbvsin − Sbvs)Ffeed

V µXacid
(42)

• k2 is calculated from the steady-state version of
eqs. (22), (26) and (27) to give

k2 =
µck3Xmeth − (Svfain

− Svfa)
Ffeed

V

µXacid
(43)

The simulations used in the optimization (to esti-
mate k5) are based on the dynamic model (19)-(28).
In the simulated model a lag of time-constant equal to

θlag = 0.2 d (44)

is included. This time-constant represents the lowpass
filter used in the real system at Foss Biolab to smooth
the noisy biogas flow measurement, cf. Section 2.2.

Figure 5 illustrates the estimation method used to
estimate the parameters/variables (35). In this figure,
p is the parameter to be estimated which is

p = k5 (45)

In Figure 5, the measured output (time series) is

ymeas = Fmethmeas
(46)

and inputs (time series) are

u = [Ffeed, Treac] (47)

The output of the optimization objective function f
(and this output is to be minimized) is the sum of
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Figure 5: The estimation of parameter vector p = k5 is
based on optimization (minimization) using
iterated simulations.

squares of prediction errors over the estimation time
interval:

f(M,p) = SSEepred (48)

=

N∑
k=1

[epred(tk)]
2

(49)

= ET
predEpred (50)

Epred is the time-series (vector) of prediction errors:

Epred = [epred(t1), . . . , epred(tN )]
T

(51)

where N is the number of time-steps in the estimation
time interval. In the present application, epred(tk) is

epred(tk) = Fmethmeas
(tk)− Fmethsim

(tk) (52)

where Fmethmeas
is measured reactor methane flow, and

Fmethsim
is simulated Fmeth.

In eq. (48), M represents the model comprising eqs.
(19)-(28).

The optimal (best) estimate of p is the value of p
which minimizes SSEepred :

pest = popt : min
p

SSEepred (53)

Results
In the time interval 80-95 d in Figure 4, the simu-

lated Fmeth based on the estimated model is plotted
together with real Fmeth. The simulation runs with
initial state equal to the real state at t = 66 d. In this
time interval the maximum difference between the sim-
ulated Fmeth and the real Fmeth is approximately 10
L/d while the maximum gas flow is approximately 235
L/d. It seems that the adapted modified Hill’s model
is able to predict the produced methane gas quite well.

Figure 6 shows in the upper plots real values (from
laboratory analysis) and simulated values of the state
variables Sbvs and Svfa together with the respective
real concentrations in the feed.
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Figure 6: Upper plots: Real values (from laboratory
analysis) and simulated values of the state
variables Sbvs and Svfa together with the
respective real concentrations in the feed.
Lower plots: Simulated values of the state
variables Xacid and Xmeth for which we do
not have laboratory analysis data.

The lower plots show simulated values of the state
variables Xacid and Xmeth for which no laboratory
analysis data are available.

Table 6 shows the values of the estimated variables
and parameters together with standard deviations (σ),
both absolute and relative, obtained with simulations
as described later in the present section.

Uncertainty of estimates in terms of standard
deviation

Uncertainty in the estimates can be expressed by
the variability of the estimates. The variability may
be calculated in a number of ways, e.g.:
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Table 6: Values of estimated variables and parameters,
and absolute and relative standard deviations
(σ). Units are listed in Appendix A.2. The
standard deviations are found from bootstrap-
ping simulations as described in the present
section.

Estimates Abs σ Rel σ [%]
b = 2.90 0.030 0.030·100

2.90 = 1.0
Ks = 15.5 0.24 1.5
k1 = 3.89 0.11 2.8
k2 = 1.76 0.058 3.3
k5 = 26.3 0.27 1.0
Xacid = 1.32 0.024 1.8
Xmeth = 0.39 0.0070 1.8

• Calculation of the covariance of the parameter es-
timation error from Fisher’s Information Matrix
which involves numerical or analytical calculation
of model output sensitivities (i.e. calulation of
partial derivatives, or linearization) with respect
to model parameters, Dochain and Vanrolleghem
(2001). With a complex model analytical sensi-
tivies may be calculated using computer tools for
symbolic mathematics.

A possible alternative way of calculating the pa-
rameter estimation error covariances is with the
calculation of so-called sigma points using the non-
linear model directly, without any linearization, as
in the Unscented Kalman Filter, Simon (2006).

• Bootstrapping with parametric simulation, Davi-
son and Hinkley (1997), which involves running a
large number of simulations where the pertinent
input data used in the estimation are varied ran-
domly according to an assumed probability dis-
tribution which (should) resemble the actual dis-
tribution of the real data used in the estimation.
(Bootstrapping with parametric simulation resem-
bles Monte Carlo simulations.) The parameter un-
certainty can then be assessed from the observed
variations of the estimates in the simulations typ-
ically in terms of standard deviation of the varia-
tion.

The method of bootstrapping is selected since this
method is relatively straightforward and applicable.

Table 7 lists three quantities used as input data in
the parameter estimation. These quantities are varied
randomly and independently in the bootstrapping sim-
ulations. These quantities represent the steady-state
operating point used in the parameter estimation, as
explained above in the present section. Table 7 shows
the pertinent standard deviations (σ) calculated from a

number of laboratory analysis data sets taken over sev-
eral weeks in the summer of year 2012. This time inter-
val includes the steady-state operating point, namely
day 66, see Figure 4). In the simulations it is assumed
that their probability distributions are Gaussian.

Table 7: Standard deviations of quantities which are
varied (randomly) in bootstrapping with
parametric simulation used to assess varia-
tions of estimated parameters.

σSvsin
[g/l] σSbvs

[g/l] σSvfa
[g/l]

0.253 0.256 0.0119

The resulting standard deviations of the estimates
found from the bootstrapping simulations are shown
in Table 6. Note that these standard deviatons express
only the variations in the estimates due to variations
in the three quantities given in Table 7. There are
several other factors which contribute to the (total)
uncertainty of the estimates, as model structure errors
and systematic measurement errors.

Sensitivity of estimates with respect to as-
sumptions

It is informative to assess the sensitivity of the esti-
mates with respect to assumptions for the estimation
method. The relative sensitivity of parameter p to pa-
rameter a is defined as

Sp,a =

∂p
p

∂a
a

≈
∆p
p0

∆a
a0

=

p1−p0

p0

a1−a0

a0

(54)

where p0 and a0 are nominal values. p0 is a parameter
shown in Table 6. a0 is a parameter shown in Table
2 or Table 5. p1 and a1 are respective values after a
change is made in a.

Table 8 shows relative sensitivities as found by per-
turbing parameters ai with a 10% positive additive
change and observing the corresponding change in the
estimated parameter p. For example, Sb,B0

= −0.62
in Table 8 means that a 10% additive increase in the
assumed value of B0 causes an additive change in the
estimated b of −0.62 · 10% = −6.2%.

Note that Xacid and Xmeth in Table 8 are actually
estimated values for the steady-state operating point,
and serve as initial values in the simulations which are
run as a part of the estimation of parameter k5 using
optimization. Thus the simulated responses in Xacid

and Xmeth varies with time, see Figure 6.

None of relative sensitivities shown in Table 8 has
extreme values. Hence it is concluded that the relative
sensitivities do not demand a change of the assumed
values of the pertinent a-parameters.
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Table 8: Relative sensitivities Sa,b

p ↓, a→ Svsin Af B0 Kd

b 0 0 0 0.30
Ks 0 0 1 0
k1 1.3 −1.5 −0.62 −0.066
k2 2.6 1.7 1.7 0.28
k5 −1.7 −1.5 −1.5 −0.066
Xacid 2.0 1.7 1.7 0.066
Xmeth 2.0 1.7 1.7 0.066

3.3.4. Temperature dependency

In the modified Hill’s model (as in the original model)
the reaction rates, eqs. (26) and (27), depend on the
reactor temperature Treac, cf. (28). In the model adap-
tion made in Section 3.3.3 Treac was kept constant at
35 oC. Simulations with modified Hill’s model, though
not shown here, indicate that a change in Treac gives
a dynamic response in Fmeth. We do not have exper-
imental results with varying Treac for reactor ADR2
which is used in the present study. However, exper-
imental results exist for reactor ADR1 which was in
use at Foss Biolab from August 17, 2011 until April
19, 2012. It is fair to assume that the temperature
dependency as expressed in Hill’s model holds equally
well for ADR2 as for ADR1 since the physical appear-
ances of the two reactors are similar and the operation
and feed (manure from the same dairy livestock) are
similar.

Figure 7 shows responses in Fmeth due to changes in
Treac and Ffeed for the reactor ADR1.

During the time period shown in Figure 7 both Treac
and the feed flow Ffeed were changed, but only the vari-
ations caused by the temperature change are of inter-
est here. The simulations are based on a mathematical
model adapted to ADR1 using the same method for
model adaptation as is used for model adaptation to
ADR2 as described in Section 3.3.3.

As seen in Figure 7, Treac was increased twice:

• At time t = 60.5 d: From approximately 24oC to
approximately 30oC.

• At time t = 67.5 d: From approximately 30oC to
approximately 35oC.

These temperatures are in the mesophilic range.
The changes were implemented as step-wise changes of
the temperature setpoint in the temperature controller
TC1, cf. Figure 1.

Since the simulated Fmeth and the real Fmeth plot-
ted in Figure 7 show similar responses, it can be con-
cluded that eq. (28) represents the temperature de-
pendency of the real reactor quite accurately, at least
in the mesophilic temperature range.

Figure 7: Reactor ADR1: Responses in Fmeth (middle)
due to changes in Treac (lower) and Ffeed

(upper).

4. Reactor temperature model

The reactor temperature Treac is actually a (dynamic)
state variable although it is assumed to be a parameter
in the modified Hill’s model, cf. eq. (28). In some sit-
uations it is useful to have a dynamic model describing
the dynamic behaviour of Treac, e.g. in optimization
of the reactor design and operation where energy and
economical cost are taken into account, and in model-
based tuning of a temperature controller for the reac-
tor. A dynamic model describing Treac is now derived
and adapted the model to the real bioreactor (ADR2).
Treac depends on a number of variables and param-

eters, e.g. the manipulated supplied power to the elec-
trical heater for the reactor, the temperature of the
reactor feed, the feed flow rate, etc. It is reasonable
to assume that Treac can be modelled with an energy
balance for the liquid of the reactor. Due to the mix-
ing which takes place in the reactor it is assumed that
there are homogeneous conditions in the reactor. The
energy balance can be written as

dTreac
dt

=
1

cρV
[Pheat

+ cρFfeed (Tfeed − Treac) (55)

+G (Troom − Treac)]

The liquid in the reactor is assumed having the same
thermal characteristics as water. All model parame-
ters in eq. (55) except the thermal conductivity G are
assumed known, cf. Table 9.
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Table 9: Assumed known parameters of reactor tem-
perature model.

c = 4200 J/(kg K)

ρ = 1000 kg/m3

V = 250 L

All variables and parameters in eq. (55) are assumed
to have SI units, although some are presented in dif-
ferent units in the present section.

Measured time series of all variables in eq. (55), i.e.
Treac, Pheat, Ffeed and Troom, are available. Ffeed is
constantly 55 L/d. Troom varies between 12.7 oC and
15.8 oC with mean value 13.7 oC. Tfeed is assumed to
be equal to Troom.
G is estimated from experimental data. Three alter-

native methods are applied:

1. Least squares (LS) method with static
model: By assuming that all variables, including
Treac, in eq. (55) have constant values, dTreac/dt
can be set to zero. Solving the resulting static
model for G gives

G =
−Pheat − cρFfeed (Tfeed − Treac)

Troom − Treac
(56)

from which G can be estimated with the LS
method.

2. LS method with dynamic model: The model
(55) is linear in the unknown parameter G:

G =
1

Troom − Treac
[cρV

dTreac
dt

(57)

− Pheat − cρFfeed (Tfeed − Treac)]

Here, dTreac/dt is calculated using simple numer-
ical differentiation2:

dTreac
dt

=
Treac(tk+1)− Treac(tk)

Ts
(58)

G is estimated from eq. (57) with the LS method.

3. Nonlinear least squares (NLS) method with
dynamic model and additional lag: It is as-
sumed that the original model (55) describes the
dynamic properties of Treac. It is also assumed
that there may be additional dynamic phenomena
due to energy capacitance in the heating element
(the coil) and in the reactor wall. Furthermore,
a measurement filter in terms of a discrete-time
algorithm resembling a time-constant system with
time-constant Tf = 600 s is actually in operation

2We used the diff function in MATLAB.

in the AD reactor. This filter also adds dynamics
to the temperature behaviour. To obtain a total
model able to represent these additional dynam-
ics, the original model (55) is augmented with the
following general “lag model” incorporating time-
constant dynamics:

dTreaclag

dt
=

(
Treac − Treaclag

)
θtemp

(59)

where θtemp [d] is a time-constant. One motivation
for this augmentation is the expectation that the
estimation of G in eq. (55) will be improved if also
θtemp in eq. (59) is estimated. Thus, both G and
θtemp are estimated. The measured temperature is
now represented with Treaclag

, while Treac is actu-
ally unknown which makes it difficult to apply the
ordinary LS method for estimation. Instead, NLS
estimation is used based on optimization using it-
erated simulations. The procedure is the same as
was used to estimate parameter k5 in the modified
Hill’s model, cf. Section 3.3.3. Therefore, Figure
5 applies, but with the following changes. The
measured output is

ymeas = Treacmeas (60)

and inputs (time series) are

u = [Pheat, Troom, Tfeed] (61)

where Troom = Tfeed. The prediction error,
epred(tk), is

epred(tk) = Treacmeas(tk)− Treaclagsim
(tk) (62)

where Treaclagsim
is simulated Treaclag

.

The model used in the iterated simulations exe-
cuted by the optimization function consists of the
differential equations (55) and (59).

The parameter vector to be estimated is

p =

[
G

θtemp

]
(63)

The following guessed (initial) parameter values
for the estimation are used:

pguessed =

[
Gguessed

θtempguessed

]
=

[
1.0 · 105 (J/d)K

1.0 d

]
(64)

The guessed value of Gguessed stems from some
calculations made with the previous AD reactor
(ADR1).
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Table 10: Results of estimation of G with different es-
timation methods

Method G θtemp SSE RMSE

[(J/d)/K] [d] [K2] [K]

1. LS static 1.88·105 – 23.4 0.38
2. LS dyn 2.11·105 – 18.7 0.34
3. NLS dyn&lag 1.96·105 0.023 11.1 0.26

Estimated parameters and performance indices with
the above three methods of estimation of G are shown
in Table 10.

To check the quality of the estimates, both SSE (sum
of squared error) which is defined by eq. (48), and
RMSE which is the Root Mean Squared Error index,
Varmuza and Filzmoser (2009), are calculated:

RMSE =

√√√√ 1

N

N∑
k=1

[epred(tk)]
2

(65)

SSE is the same function as is used to solve the NLS es-
timation problem, but it does not have the same unit as
the prediction error, e. RMSE resembles the standard
deviation, and it has the same unit as the preduction
error, e. Therefore, RMSE may be more useful than
SSE as a performance index for model validation, while
SSE is more useful in solving estimation (optimization)
problems since it is a square function, Varmuza and
Filzmoser (2009).

Figure 8 shows simulated Treac for three cases of pa-
rameter estimation, cf. Table 10, together with real
(measured) Treac, Pheat, and Troom = Tfeed. (The os-
cillations in Pheat are due to the On/Off control signal
from the temperature controller.) The respective time
intervals of the timeseries of data used for estimation
in the three cases are shown in the upper plot in Figure
8.

Notes to the plots in Figure 8:

• Around t = 161.4 d and 161.9 d the changes in the
measured Treac appears earlier than the changes
in Pheat assumed to cause the changes in Treac.
The sampling time is Ts = 15 min = 0.0104 d,
which is in the same range as of the periods of the
changes of Pheater.

• The simulated Treac is clearly larger than the mea-
sured Treac between t = 160.6 and 161.0 d. The
difference may be due to disturbances for which
the controller compensates by increasing the (av-
erage) Pheater. These disturbances are not due to
the observed reduction of Troom since the actual
values of Troom are used in the simulation. We can
not identify these disturbances, but they may be
unknown variations in Tfeed.
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Figure 8: Upper plot: Real (measured) and simu-
lated Treac, and time intervals for estimation
(marked ’o’). Middle plot: Real Pheat. Lower
plot: Troom = Tfeed.

The results shown in Table 10 and Figure 8 show no
large difference between the three estimation methods
used here, and all of the simulated responses of Treac
resembles quite well the measured Treac. Still, the best
result is obtained with the third method (NLS with
augmented dynamic model). Hence, the ultimate esti-
mated value of G is selected as

G = 1.96 · 105 (J/d)K (66)

The thermal time-constant, θthermal, can now be cal-
culated from the model (55). Using the pertinent nu-
merical values for the parameters,

θthermal =
cρV

cρFfeed +G
(67)

=
4200 · 1000 · 0.25

4200 · 1000 · 0.055 + 1.96 · 105
(68)

= 2.46 d (69)

In some applications of the thermal model derived in
the present section, for example in optimization of reac-
tor design and operation where thermal energy is taken
into account, it will be sufficient to use only the main
part of the model. The main part is given by eq. (55).
However, in temperature controller tuning more appro-
priate controller parameter values can be expected by
taking into account also the lag-model (59).
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5. Discussion

The modified Hill’s model which has been adapted to
the pilot bioreactor fed dairy manure is a relatively
simple model compared with alternative models since
the model does not contain neither ammonia, alkalin-
ity, nor pH as variables. These variables are more im-
portant in reactors fed manure from swine or poultry
because their values may have higher impact on the
stability of such reactors.

The modified Hill’s model is assumed to be suffi-
ciently accurate as a basis for optimal reactor design
and operation, state-estimation and control for a re-
actor fed dairy manure where the main output is the
produced methane gas flow. In applications requiring
a prediction of hydrogen or carbondioxide gas produc-
tion alternative models must be used.

The parameters B0 (biodegradability constant) and
Af (acidity constant) are estimated from data from
one experiment only. Ideally, more experimental data
should have been used.

In the original Hill’s model, Haldane functions are
used in the reaction rates. Instead, Monod functions
are used, mainly to simplify model adaptation. These
simplifications have support in some literature refer-
ences.

In the orignal Hill’s model, the solids residence time
and the hydraulic residence time were assumed to be
equal. In our study, this assumption caused prob-
lems with the model adaptation (results are not shown
here), while assuming different residence times, related
with a proportionality factor, worked well.

The dynamic model based on energy balance describ-
ing the temperature in the liquid phase of the biore-
actor assumes homogeneous conditions in the reactor.
A model with acceptable accuracy was adapted under
this idealized assumption. However, the model adap-
tation was improved by including an additional time-
constant lag in the model. This lag can be regarded as
a representation of inhomogeneous conditions, or spa-
tial variations, in the reactor.

6. Conclusions

A dynamic model has been adapted to a pilot anaero-
bic reactor fed dairy manure using steady-state and dy-
namic operational data. The model is a modification of
a model originally developed by Hill (1983). The model
is based on material balances, and comprises four state
variables, namely biodegradable volatile solids, volatile
fatty acids, acidogens, and methanogens. Simulations
compared with measured methane gas flow indicate
that the model is able to predict the methane gas flow
produced in the reactor.

The steady-state data used for the model adapta-
tion are feed flow (loading rate), reactor temperature,
methane gas flow, and laboratory analysis values of
influent and effluent VS and VFA concentrations at
one specific steady-state operating point. The dy-
namic data used are feed flow, reactor temperature and
methane gas flow over a time-interval of 15 days.

Also, a dynamic model for the reactor temperature
based on an energy balance of the liquid is adapted to
the pilot reactor. The model is able to predict the re-
actor temperature. A combination of this model and
the model of the the anaerobic processes can be useful
in optimization of reactor design and operation when
energy production and economical costs are taken into
account. Furthermore, this model can be used for tem-
perature controller tuning.
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A. Nomenclature

A.1. Abbreviations

AD = Anaerobic digestion

ADM1 = Anaerobic Digestion Model No. 1

ADR1 = Anaerobic digestion reactor 1 which was in
use at Foss Biolab from 17. August 2011 until 19.
April 2012

ADR2 = Anaerobic digestion reactor 1 which has
been in use at Foss Biolab from 19. April 2012

BVS = Biodegradable volatile solids

HRT = Hydraulic retention time

LS = Least squares

MPC = Model-based predictive control

NLS = Nonlinear least squares
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PWM = Pulse-width modulation

RMSE = Root mean squared error

SSE = Sum squared error

VFA = Volatile fatty acids

VS = Volatile solids

A.2. Nomenclature of model of AD
processes

The nomenclature is in alphabetical order.

Af [(g VFA/L)/(g BVS/L)] is acidity constant.

b [d/d] is retention time ratio.

B0 [(g BVS/L)/(g VS/L)] is biodegradability con-
stant.

Ffeed [L/d] is influent or feed flow or load rate, as-
sumed equal to effluent flow (constant volume).

Fmeth [L CH4/d] is methane gas flow.

k1 [g BVS/(g acidogens/L)] is a yield constant.

k2 [g VFA/(g acidogens/L)] is a yield constant.

k3 [g VFA/(g methanogens/L)] is a yield constant.

k5 [L/g methanogens] is a yield constant.

Ki [g VFA/L] is VFA inhibition constant for acido-
gens.

Kic [g VFA/L] is VFA inhibition constant for
methanogens.

Ks [g BVS/L] is Monod half-velocity constant for aci-
dogens.

Ksc [g VFA/L] is Monod half-velocity constant for
methanogens.

Kd [d−1] is specific death rate of acidogens.

Kdc [d−1] is specific death rate of methanogens.

µ [d−1] is reaction (growth) rate of acidogens.

µc [d−1] is reaction (growth) rate of methanogens.

µm [d−1] is the maximum reaction rate for acidogens.

µmc [d−1] is the maximum reaction rate for
methanogens.

σy is standard deviation of signal y.

Sp,a is relative sensitivity of parameter p with respect
to parameter a.

Svfa [g VFA/L] is concentration of VFA acids in re-
actor.

Svfain
[g VFA/L] is concentration of VFA in

biodegradable part of influent.

Sbvs [g BVS/L] is concentration of BVS in reactor.

Sbvsin [g BVS/L] is concentration of BVS in influent.

Svsin [g VS/L] is concentration of volatile solids in
influent.

Treac [◦C] is reactor temperature.

θbio [d] is time-constant of lag in methane gas re-
sponses.

V [L] is effective reactor volume.

Xacid [g acidogens/L] is concentration of acidogens.

Xmeth [g methanogens/L] is concentration of
methanogens.

Y [g acidogens/g BVS] is yield coefficient of acidogens.

Yc [g methanogens/g VFA] is yield coefficient of
methanogens.

A.3. Nomenclature of model of reactor
temperature

The nomenclature is in alphabetical order.

c [J/(kg K)] is specific heating capacity of reactor liq-
uid.

G [(J/d)/K] is thermal conductivity.

Pheat [J/d] is supplied power to electrical heater.

ρ [kg/m3] is density of reactor liquid.

Tfeed [oC] is temperature of reactor feed.

Troom [oC] is air (ambient) temperature.

θtemp [d] is time-constant of lag in temperature re-
sponses.

θtherm [d] is the thermal time-constant calculated
from the energy balance of the reactor.

V [m3] is effective volume of reactor liquid.
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B. Laboratory analysis methods

Below is a description of the methods of laboratory
analysis of the components in the bioreactor influent
and effluent used in the mathematical modeling pre-
sented in this paper.

VS: Three parallel tests for each sample. The samples
are dried in an oven at 105◦C for approximately
one day. Then, the (dried) samples are combusted
in a furnace at 550◦C for 2 hours. The VS con-
centration in g/L is calculated as the weight lost
during the combustion divided by the sample vol-
ume.

VFAs: Two parallel tests for each sample. The
samples are centrifuged for 30 min, and then fil-
tered. The samples are diluted with deionized wa-
ter, then added to small vials together with formic
acid, capped, and stored in a refrigerator until
measurement is done. The VFA concentrations in
g/L are measured by a gas chromatograph (GC)
using three injections from each of the parallels.

Other components analyzed, but not used in the
modeling in this paper are tCOD, sCOD, ammonia,
TS, TSS, VSS, pH, and alkalinity (measured as cal-
cium carbonate).

C. Summary of modified Hill’s
model

For easy reference, the modified Hill’s model, eqs. (19)-
(28), adapted to the AD reactor ADR2 at Foss Biolab
in Section 3.3, is summarized in this appendix. The
modified Hill’s model is originally presented in Section
3.2.2. Nomenclature is defined in Appendix A. Param-
eter values are given in Table 11.

Defining that portion of the raw waste which can
serve as substrate:

Sbvsin = B0Svsin (70)

Defining that portion of the biodegradable material
which is initially in acid form:

Svfain
= AfSbvsin (71)

Mass balance of biodegradable volatile solids:

Ṡbvs = (Sbvsin − Sbvs)
Ffeed

V
− µk1Xacid (72)

Mass balance of total VFA:

Ṡvfa = (Svfain
− Svfa)

Ffeed

V
+µk2Xacid−µck3Xmeth

(73)

Mass balance of acidogens:

Ẋacid =

(
µ−Kd −

Ffeed/b

V

)
Xacid (74)

Mass balance of methanogens:

Ẋmeth =

(
µc −Kdc −

Ffeed/b

V

)
Xmeth (75)

Methane gas flow rate (gas production):

Fmeth = V µck5Xmeth (76)

where the reaction rates, with Monod kinetics, are as
follows:

µ = µm
Sbvs

Ks + Sbvs
(77)

µc = µmc
Svfa

Ksc + Svfa
(78)

where the maximum reaction rates are functions of the
reactor temperature as follows:

µm (Treac) = µmc (Treac) = 0.013Treac − 0.129 (79)

(20◦C < Treac < 60◦C)

Table 11: Parameters in Hill’s model adapted to AD
reactor at Foss Biolab

Af = 0.69
b = 2.90
B0 = 0.25
k1 = 3.89
k2 = 1.76
k3 = 31.7
k5 = 26.3
Kd = 0.02
Kdc = 0.02
Ks = 15.5
Ksc = 3
V = 250

In analysis of reactor dynamics and stability and in
design of some types of state estimators and controllers
it may be necessary to define a proper steady-state
operation point. A steady-state operating point can be
found from e.g. a simulation by reading off the value
of the state variables at steady-state. One example of
a steady-state operating point is given in Table 12.
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Background and methods of the article

Background

Both theoretical results, i.e. simulations based the modified Hill model

derived in Article no. 1, and experiments on the real pilot reactor indicate

that both the dynamic and steady state methane gas production depends

clearly on the reactor temperature. Assuming that it is desirable to

operate the reactor under well-defined conditions, the reactor temperature

must be controlled to a proper setpoint. According to Tchobanoglous et al.

(2003), 35 oC is a typical temperature at mesophilic conditions. Due to

inevitable disturbances — variations in influent and ambient temperatures —

a feedback temperature control system is necessary, otherwise the

temperature may drift too far away from the desired temperature.

Both the on-off controller and the proportional plus integral (PI) controller

are appropriate temperature controllers for the reactor. The main benefit

of the on-off controller is its simplicity — it can be used virtually without
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any tuning. Its drawback is the inevitable sustained oscillations. The

benefit of the PI controller is that it gives smooth control with ideally zero

steady state control error. Its drawback is that the controller parameters,

which are the controller gain and the integral time, requires tuning to

ensure proper control system stability. In this project, the PI controller is

selected as the ultimate temperature controller.

Methods

In this article, all controller functions and controller tunings are tested on

a simulator based on the temperature model derived in Article no. 1,

before implementation on the real reactor, thereby saving time and effort.

For PI controller tuning, both open loop tuning methods and closed loop

tuning methods are available. It is shown both theoretically and

practically that open loop tuning with the Skogestad method, Skogestad

(2004), works well on the reactor.

Furthermore, it is shown that closed loop tuning with the well-known

Ziegler-Nichols method, Ziegler & Nichols (1942), is unsuccessful. Applying

the well-known Tyreus-Luyben modifications of the Ziegler-Nichols

settings, Tyreus & Luyben (1992), are also not successful. The unsuccessful

tunings can be explained by the process time delay being considerably

smaller than the time delay. Motivated by these unsuccessful tuning

methods, improved PI settings are derived, reported in Article no. 6.

To analyze the control systems for different controller settings, standard

frequency response measures are calculated. The stability margins, i.e. the

gain margin and the phase margin, and the closed loop response time

which is estimated as the inverse of the amplitude crossover frequency (the

bandwidth), are calculated with the margin() function of MATLAB. The

frequency response is calculated from transfer functions. The practical

control system is not analyzed, except its dynamical (transient) responses

are observed to evaluate qualitatively the control system stability.
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Abstract

Results of analysis and design and implementation of a temperature control system for a practical pilot
anaerobic digestion (AD) bioreactor fed with dairy waste are presented. A dynamic model of the reactor
temperature is used as the basis for theoretical results, including simulations. Controller functions include
on-off control, proportional plus integral (PI) control, and feedforward control. Various PI controller tuning
methods are compared. The need for adaptivity of PI settings is investigated. Results for a simulated
full-scale reactor are given.
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forward control.

1. Introduction

The main aim of this paper is to present the results
of analysis and design and implementation of a tem-
perature control system for a practical pilot anaerobic
digestion (AD) bioreactor fed with dairy waste. The
bioreactor is a part of the biological plant for nutrient
and energy recovery at Foss Biolab, Skien, Norway. A
description of the plant and the monitoring and con-
trol system can be found in Haugen et al. (2013a) and
Haugen et al. (2013b). Results of analysis and design
of a temperature control system for a hypothetical full-
scale reactor is also included.

This paper focuses on feedback control with on-off
control and PI control (proportional + integral), and
feedforward control. An advanced alternative to these
traditional control methods is MPC (model-based pre-
dictive control) which is possible to use for the present
reactor control since a fairly accurate dynamic reac-
tor temperature model exists and the crucial variables
are measured. However, MPC is not included in this
paper since the temperature setpoint is constant and
disturbances as ambient temperature changes can be

compensated for effectively using the aforementioned
control methods. However, MPC may be the preferred
control method in applications where the setpoint (pro-
file) is changing, and in applications where the trade-off
between small control error and smooth control actions
should be directly adjustable by the user.

The outline of this paper is as follows. A process de-
scription is given in Section 2. In Section 3, rationales
of bioreactor reactor temperature control are given.
On-off temperature control is described in Section 4.
Smooth control with PI control is covered in Section
5. Model-based and model-free feedforward control of
a simulated reactor are described in Section 6. Results
for temperature control of a full-scale reactor are pro-
vided in Section 7. A discussion is given in Section 8,
and conclusions are given in Section 9. A dynamical
mathematical model used for analysis and simulation
is presented in Appendix A. Abbreviations and nomen-
clature are given in Appendix B.

Energy recovery design, e.g. using relatively warm
reactor liquid effluent to preheat cold influent, and us-
ing biogas combustion to heat the reactor, is not cov-
ered in this paper. Energy recovery and other issues in
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optimal reactor design and operation will be addressed
in future publications.

MATLAB and SIMULINK (MathWorks, Inc.) are
used for numerical computations and simulations based
on the models described in Section A. The software of
the real temperature control system is implemented in
LabVIEW (National Instruments, Inc.).

2. Process description

Figure 1 depicts the temperature control system.
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Figure 1: Temperature control system for AD reactor.

The feed temperature, Tfeed, is assumed to be the
same as the ambient – here: room – temperature, Tamb,
since the feed resides for several days in an intermediate
storage in the room where the reactor is placed.

Detailed information about the system components
are given in the following.

Reactor is cylindrical with 250 L effective liquid vol-
ume. Height (0.40 m) is 5 times reactor diameter
(2.00 m). Gas volume is assumed negligible com-
pared to liquid volume.

TT-1 is a Pt100 reactor temperature sensor. It has
an accuracy of approximately ± 0.3 ◦C. The re-
peatability is not known.

The temperature measurement signal is noisy. It is
assumed that the noise, n, is a random stochastic
signal with zero mean value. From a representa-
tive unfiltered measurement time-series,

σn = 0.0829 ◦C (1)

TC-1 is the temperature controller implemented in
LabVIEW (National Instruments) running on a
PC. The available controller functions are manual
control, PID control, and on-off control. The time-
step of the control loop is 2 s.

H-1 is an electrical heater for the AD reactor which is
controlled using pulse-width modulation (PWM)
option in TC1. The heater comprises an electri-
cal resistor wound around the reactor inside the
thermal insulation jacket. The maximum power
delivered by the heater is 200 W.

PWM is a pulse-width modulation element imple-
mented with the Square Wave Point-by-Point
function in LabVIEW. The PWM element oper-
ates with a fixed cycle time of 30 sec which is
negligible compared to the dynamics of the tem-
perature control loop. The control signal (in per-
cent) calculated by the temperature controller is
the duty cycle of the PWM element. PWM control
emulates analog control.

SSR is a solid state relay (semiconductor) which is
turned on-off with a voltage (5/0 V) corresponding
to the state of the PWM element (on-off) which
controls the SSR. The SSR switches the 220 VAC
mains voltage onto/off the heater.

A secure communication between the PC and the
Internet with the LogMeIn software facilitates remote
access to the computer screen and to the file system on
the lab PC.

3. Rationales of bioreactor
temperature control

In the following, rationales of bioreactor temperature
control are given in terms of temperature dependency
of methane production and temperature disturbance
compensation.

3.1. Temperature dependency of methane
production

For a bioreactor, the produced methane flow depends
on the reactor temperature, Treac. The tempera-
ture dependency is expressed in e.g. Hill’s model
of AD of animal wastes, Hill (1983). In Hill’s
model the maximum reaction rate, µmax, of the acid-
generating microorganisms – acidogens – and the
methane-generating microorganisms – methanogens –
is temperature-dependent. This dependency is rep-
resented by the following linear function, Hashimoto
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et al. (1981):

µmax (Treac) = 0.013Treac − 0.129 (2)

(20 ◦C < Treac < 60 ◦C)

In the ADM1 model (Anaerobic Digestion Model No.
1), Batstone et al. (2002), the temperature dependency
of a number of model parameters is expressed in terms
of Arrhenius-like functions.

Figure 2: Reactor ADR1: Responses in Fmeth (middle)
due to changes in Treac (lower) and Ffeed (up-
per). For Fmeth: Measured is blue. Simula-
tion is red. [This plot also appears in Haugen
et al. (2013a)].

As an illustration of the dependence of Fmeth on
Treac, Figure 2 shows measured (and simulated) time-
series in Fmeth due to changes in Treac and in Ffeed

for the reactor ADR1 which was in use at Foss Biolab
from August 17, 2011 until April 19, 2012. The rest
of the present paper focuses on reactor ADR2 which
has been in use from April 19, 2012. However, it is as-
sumed that the temperature dependency holds equally
well for ADR2 as for ADR1 since the physical appear-
ances of the two reactors are similar and the operation
and feedstock (waste from the same dairy livestock)
are similar.

During the time interval in Figure 2 both Treac and
the feed flow Ffeed were changed, but only the varia-
tions caused by the temperature change is of interest
here. Treac is increased twice (implemented as step-wise
changes of the temperature control setpoint):

• At time t = 60.5 d (days): From 24oC to 30oC.

• At t = 67.5 d: From 30oC to 35oC.

Figure 2 illustrates clearly the dependence of Fmeth on
Treac.

The simulations of Fmeth shown in Figure 2 are based
on the modified Hill’s model adapted to ADR1. Adap-
tation of modified Hill’s model to ADR1 is not pub-
lished. (Model adaptation to ADR2 is presented in
Haugen et al. (2013a).)

The temperature effect on gas production is a re-
sult of gas solubility changes, reduced microbial growth
rates, and stress caused by the temperature transition,
Tchobanoglous et al. (2003).

Tchobanoglous et al. state that methanogens are
sensitive to temperature changes, and that these mi-
crobes should not be excited to temperature variations
larger than ± 0.5 ◦C. Consequently, a temperature con-
trol system should be designed to be able to keep the
temperature offset from the specified temperature set-
point less than ± 0.25 ◦C.

Tchobanoglous et al. also point out that most AD
processes are designed for operation at mesophile con-
ditions, i.e. at temperatures in the range 30-38 oC.
While it is important to determine the optimal reactor
temperature, this is not address in the present paper,
but instead in a forthcoming paper based on theoretical
optimization methods applied to mathematical models
of the AD reactor.

The most important disturbances acting on the re-
actor temperature are

• the ambient temperature, Tamb,

• the temperature of the feed flow, Tfeed (assumed
to be the same as Tamb for the practical reactor),

• the feed flow, Ffeed.

3.2. Disturbance compensation

A well operating temperature control system will com-
pensate for changes in these disturbances automati-
cally. To demonstrate the importance of temperature
control, Figure 3 shows the responses in Treac, u, and
Tamb with (automatic) control with and without con-
trol for reactor ADR2. The setpoint, Tsp, is 30◦C. In
the period from t = 389.25 to 389.96 d the tempera-
ture is controlled automatically with a PI controller.
In this period the control error, which is the difference
between Tsp and Treac, is within ±0.05 K. In the pe-
riod from t = 389.96 to 390.75 d the control system
is deactivated; The reactor is operated with open loop
control, or “blind” control with a constant control sig-
nal, u = 39.8%, which is actually the average value over
a time interval of 1 d with automatic control. Figure 3
shows that with open loop control, Treac tends to drift
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away from Tsp, due to inevitable variations in Tamb.
Due to external demands about operation of the re-
actor, the controller was switched back to automatic
mode at t = 390.75 d. At that point of time the offset
from the setpoint had increased to approximately 0.18
oC, i.e. the slope is approximately −1 oC/d. If this
decrease continues the temperature will deviate from
its setpoint by the maximum deviation of 0.25 oC after
0.25 d = 6 h (hours).
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Figure 3: Responses on the real reactor (ADR2): t =
389.25-389.80 d: Automatic closed loop (feed-
back) temperature control. t = 389.80-390.75
d: Open loop control, or “blind” control.

4. On-off control

The on-off controller can be regarded as the simplest
feedback controller available. The controller function
is

u =

{
uon for e ≥ de
uoff for e < −de

}
(3)

where e is control error:

e = Tsp − Treac (4)

and de an adjustable dead-band to avoid switching of
u due to (measurement) noise in e. Noise-triggered
switching is also counteracted using a measurement
lowpass filter with a properly adjusted time-constant,
τf , to attenuate the noise properly. In the present ap-
plication, τf = 10 min, found by trial-and-error, and
de = 0.

Simulations

Figure 4 shows simulated responses of Treac and u with
Tsp = 30 oC. Tamb is set to 17 oC which is representa-
tive for the room temperature in the real experiment
reported below. uon = 100%. uoff = 0%. The time
interval of the plot is 0.32 d which is the same as for
the real time-series plotted in Figure 4.

From the simulated time-series:

• Pu = 0.055 d = 79.2 min.

• Amplitude of oscillation of Treac is 0.04 oC.

• |e|max = 0.07 oC.

• µe = Tsp − µTreac
= −0.016 oC.
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Figure 4: Simulated time-series for the reactor with on-
off temperature control. Random measure-
ment noise is included.

Practical results

Figure 5 shows experimental Treac, Tsp, u, and Tamb.
From the experimental time-series:

• Pu = 0.045 d = 64.8 min.

• Amplitude of oscillation of Treac is 0.05 oC.

• |e|max = 0.07 oC.

• µe = Tsp − µTreac = −0.019 oC.
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Figure 5: Real time-series for the reactor with on-off
temperature control. Treac is filtered with
time-constant 10 min. The sampling time-
step of time-series is 15 min.

Comments and conclusions

• The simulated responses are in good accordance
with the real responses, which indicates that the
dynamic model used for simulation is quite accu-
rate.

• For the real responses: |e|max ≈ 0.07 oC is ac-
ceptable. Also, µe = 0.019 oC is acceptable. The
oscillatory behaviour of Treac is acceptable since
the variation is within ±0.25 oC.

• The on-off behaviour of the control signal, u, is
also acceptable in our application since the actu-
ator is an electrical heater with no moving parts.
However, in applications with a mechanical actu-
ator like a pump or valve used to manipulate the
flow of e.g. hot water or steam, smooth or contin-
uous control with PI(D) control may be preferred,
cf. Section 5.

5. PID control

5.1. Controller function

PID control is prevalent in industrial applications, Se-
borg et al. (2004). The PID controller provides smooth
control as opposite to on-off control. The PID con-
troller used in this paper is based on discretization of

the following continuous-time PID controller:

u = uman +Kce+
Kc

τi

∫ t

0

e (τ) dτ +Kcτdė (5)

The discretization is based on the implicit Euler
method with time-step τs = 2 s.

Typically, the derivative term provides control sta-
bility and agility, but it also propagates measurement
noise which may cause too noisy control signal. In the
present application, representative time-series of the
raw (unfiltered) temperature measurement show a con-
trol signal standard deviation of 1.3 K with PI control
and 4.5 K with PID control. Although the actuator
in the present application is an electrical heater with
no moving parts so the control noise can not make any
mechanical problems, it was decided to not use the
derivative term. This decision is made to increase the
relevancy of controller tuning results in the present pa-
per to systems with mechanical actuators.

A great number of controller methods for tuning con-
troller parameters exist, Seborg et al. (2004), O’Dwyer
(2003). Selected open loop controller tuning methods
applied to the reactor are presented in Section 5.3,
while applications of selected closed loop methods are
presented in Section 5.4. Summaries of tuning results
are given in Section 5.2.

5.2. Summary of results with various
tuning methods

Sections 5.2.1 and 5.2.2 below summarize the results of
controller tuning for the simulated temperature control
system and for the real system, respectively. Tuning
details are in Sections 5.3 and 5.4.

5.2.1. Simulated temperature control system

Table 1 summarizes the results for the simulated tem-
perature control system based on the model presented
in Appendix A.1. The table shows controller settings,
GM (gain margin), phase margin (PM), and the closed-
loop response-time τr [d] which is calculated as the in-
verse of the bandwidth which is here defined as the
amplitude crossover frequency, ωc [rad/d]:

τr =
1

ωc
(6)

τr indicates the speed of the response of the control
system due to a setpoint step change. τr is approxi-
mately the time-constant of the control system. The
above frequency response characteristics are based on
the transfer functions model in Appendix A.2.

Seborg et al. (2004) recommend the following ranges
for the stability margins, where the lower limits can be

103



Modeling, Identification and Control

Table 1: Results with various PI tuning methods for
simulated temperature control system: S =
Skogestad. ZN = Ziegler-Nichols. R-ZN =
Relaxed Ziegler-Nichols.

Method
Kc

[%/K]
τi GM

PM

[deg]

τr
[d]

S 152
0.080 d

= 6912 s

7.76
= 17.8

[dB]

40.5 0.038

ZN 716
0.046 d

= 3960 s

1.32
= 2.39

[dB]

6.4 0.012

Rx-ZN

(kr = 4)
203

0.138 d

11880 = s

6.5
= 16.2

[dB]

47.8 0.031

regarded as critical:

1.7 = 4.6 dB ≤ GM ≤ 4.0 = 12.0 dB (7)

and
30o ≤ PM ≤ 45o (8)

5.2.2. Real temperature control system

Table 2 summarizes the controller settings for the real
temperature control system.

Table 2: Results with various PI tuning methods for
the real temperature control system: S = Sko-
gestad. ZN = Ziegler-Nichols. R-ZN = Re-
laxed Ziegler-Nichols.

Method
Kc

[%/K]
τi

S 149
0.080 d
= 6912 s

ZN 573
0.038 d
= 3240 s

Rx-ZN
(kr = 4)

162
0.113 d
= 9720 s

5.3. Open-loop controller tuning

5.3.1. Introduction

There are many open loop controller tuning methods
available, for example the Ziegler and Nichols open
loop method, Ziegler and Nichols (1942), Direct Syn-
thesis methods including the Lambda tuning method,
Seborg et al. (2004), Internal Model Control (IMC)
methods, Seborg et al. (2004), the Hägglund-Åstrøm
Robust Tuning method, Hägglund and Åstrøm (2002),

and the SIMC method (Simple IMC) by Skogestad
(2004), here denoted the Skogestad method.

The Ziegler and Nichols open loop method has no
adjustable settings, and typically give very fast con-
trol but with relatively small stability margins. The
Hägglund-Åstrøm method has no adjustable settings.
The IMC, Lambda, and the Skogestad method each has
one tuning parameter which determines the closed loop
time constant, and typically for these methods the set-
point step responses are without oscillations indicating
relatively large stability margins.

It is convenient to use a tuning method. This leaves
out the Ziegler and Nichols open loop method and the
Hägglund-Åstrøm method. Among the remaining can-
didates, the Skogestad method is selected as we are not
aware of important benefits with the other methods
over the Skogestad method. It is evaluated favourably
in Haugen (2010) comparing with a number of open
loop methods, and closed loop methods.

5.3.2. The Skogestad method (SIMC method)

Skogestad (2004) has developed PID controller tuning
formulas for a number of processes given by their trans-
fer functions. As shown in Appendix A.2, the reactor
can be represented by a transfer function comprising a
dominant time-constant term representing the energy
balance of the reactor liquid with some additional lag.
In controller tuning, it is safe regarding control sys-
tem stability to assume that this lag is a time-delay of
the same amount as the lag, Skogestad and Postleth-
waite (2007). Thus, it is safe to use the Skogestad PI
tuning formulas for the following “time-constant with
time-delay” model of the reactor:

∆Treac(s)

∆u(s)
=

K

τreacs+ 1
e−τdelays (9)

For this type of process, Skogestad designates a PI con-
troller. As pointed out in Haugen and Lie (2013), cf.
also DiRuscio (2010), the Skogestad PI tuning formulas
for eq. (9) become identical with the tuning formulas
for the following “integrator with time-delay” process
which approximates eq. (9) in the transient phase:

∆Treac(s)

∆u(s)
=
Kip

s
e−τdelays (10)

where

Kip =
K

τreac
(11)

The Skogestad PI settings for the process model eq.
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(10) become

Kc =
1

Kip (τc + τdelay)
(12)

=
1

2Kipτdelay
(13)

τi = 2 (τc + τdelay) (14)

= 4τdelay (15)

Comments: In eqs. (13) and (15), Skogestad’s rule-of-
thumb τc = τdelay are used. The factor 2 in eq. 14 and
4 in eq. 15 are due to the modification of the τi set-
ting introduced in Haugen and Lie (2013) to give faster
disturbance compensation, while retaining acceptable
stability margins. In Skogestad’s original settings, the
factors are 4 and 8, respectively.

The process parameters Kip and τdelay can be found
experimentally, or from a model, as explained in the
following.

Estimating τdelay from an experimental response

Figure 6 shows the response in the Treac due to a step
change in the control signal, u, from 62% to 82%, hence
a step amplitude of ∆u = 20%.
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Figure 6: The response in Treac (upper plot, blue) due
to a step change in the control signal, u,
(lower diagram) from 62% to 82% (∆u =
20%), and the ramp-wise response (upper
plot, red) adapted to Treac. (The sampling
time of the data is 15 min = 0.0104 d.)

The measurement filter which is normally in use, is
bypassed in this experiment to obtain parameter val-
ues that are independent of the filter dynamics. Fig-
ure 6 also shows (in red colour) the ramp-like response
adapted to the real Treac. The slope of this ramp-like
response determines parameter Kip , as explained be-
low.

From the response shown in Figure 6 which is with-
out measurement filtering, a lag of approximately 0.01
d can be observed. Under normal operation of the re-
actor a measurement filter of time-constant 15 min =
0.0069 d is used. Thus, the total lag is approximately
0.01 + 0.0069 = 0.0169. Furthermore, the sampling
time of the data shown in Figure 6 is 15 min = 0.0104
d which adds uncertainty to the estimation of the afore-
mentioned lag of 0.01 d. Consequently, a total lag, τlag,
is estimated visually as

τlag ≈ 0.02 d (16)

The estimate eq. (16) is in good accordance with the
lag estimated with a nonlinear least square method as
0.023 d in Haugen et al. (2013a). There, the lag was
estimated at a lower feed rate, namely 45 L/d, while
the feed rate in the present study is 65 L/d.

As argued in the beginning of the present section,

τdelay = τlag = 0.02 d (17)

Estimating Kip from an experimental response

Kpi can be found as the normalized initial slope of the
step response in the reactor temperature:

Kip =
S

∆u
(18)

where S is slope and ∆u is amplitude of step change of
u. A step response test can be accomplished during a
few hours, while it may take several days to obtain Kpi

from eq. (11) if K and τreac are estimated from a step
response since the (theoretical) τreac for the reactor is
typically several days (in the operating point defined
in Table 6 it is 2.24 d).

For the present reactor, Kpi is found as follows.
Figure 6 shows (in red colour) the ramp-like step re-
sponse adapted to the real Treac over the time-interval
t0 = 340.94 – 341.20 d using the following assumed
model for this ramp:

T ramp
reac = a (t− t0) + b (19)

where t [d] is time. The coefficients a and b are esti-
mated with the least squares method. However, only
a is of interest here. It is estimated as

aest = 3.35 K/d (20)

105



Modeling, Identification and Control

Now, Kip can be calculated from eq. (11):

Kip =
S

∆u
=

a

∆u
(21)

=
3.35 K/d

20%
(22)

= 0.168 (K/d)/% (23)

Calculating Kip from the reactor model

Kip can be calculated from eq. (18) where K and τreac
can be calculated from the transfer function derived
from the energy balance of the reactor, cf. Appendix
A.2. From eq. (11), using eqs. (53) and (54),

Kip =
K

τreac
=

Ku

cρV
(24)

=
2 (W = J/s)/% · 86400 s/d

4200 J/(kgK) · 1000 kg/m
3 · 0.25 m3

= 0.165 (K/d)/% (25)

which agrees very well with the experimental value in
eq. (23).

Simulations

The PI settings are calculated with Kpi given by eq.
(24) and τdelay given by eq. (17). The PI settings
are shown in Table 1. Figure 7 shows simulations of
the control system. The responses indicate acceptable
stability. The stability margins shown in Table 1 have
acceptable values, though GM is large.

Practical results

PI settings are calculated with eqs. (13)-(15) with Kpi

given by eq. (23) and τdelay given by eq. (17). The
resulting settings are shown in Table 2. Figure 8 shows
responses on the real reactor with these settings.

With the above Skogestad PI settings the standard
deviation of Treac (10 min time-constant filter) over 20
days is 0.015 K. The mean of Treac is very close to its
setpoint. The variations of Treac are within approxi-
mately ±0.05 oC.1

Comments and conclusions

With the Skogestad tuning method:

• The tuned control loop shows good stability.

• The tuning experiment does not involve any trial-
and-error, i.e. iterations are not needed, which is
beneficial from a practical point of view.

1Due to external demands for the operation of the reactor,
Treacsp = 25oC in the pertinent time-series, while Treacsp
is varied around 35oC in Figure 8.
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Figure 7: Simulations of temperature control system
with the Skogestad PI settings.

5.4. Closed loop controller tuning

5.4.1. Introduction

Closed loop tuning methods are applied with the con-
troller in place (in the loop). The following closed loop
methods are considered:

• The well-known Ziegler-Nichols (ZN) closed loop
method, Ziegler and Nichols (1942), with Åström-
Hägglund’s relay-method, Åstrøm and Hägglund
(1995) to find the ultimate gain and period. (Sec-
tion 5.4.2.)

• The Relaxed Ziegler-Nichols (R-ZN) closed loop
PI tuning method, proposed by Haugen and Lie
(2013). This method is based on the same experi-
ments as in the ZN (closed loop) method, but re-
laxes the PI settings to obtain a smoother control
signal and to improve the stability compared with
the original ZN method. The method is based on
a combination of the Skogestad method and the
ZN closed loop method. (Section 5.4.3.)

• The Tyreus-Luyben method, Tyreus and Luyben
(1992), which is, probably, the best known method
to modify the ZN closed loop PI settings to ob-
tain more relaxed control. However, it is shown
by Haugen and Lie (2013) that the R-ZN method
is beneficial compared with the Tyreus-Luyben
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Figure 8: Real time-series for reactor with PI tem-
perature controller tuned with the Skogestad
method.

method. These benefits are confirmed in simula-
tions of the reactor (detailed results are not shown
here).

• The Good Gain method, Haugen (2012), which
has similarities with the ZN method. Sustained
oscillation in the tuning phase is avoided, and
in addition the final stability of the control sys-
tem is typically improved comparing with the ZN
method. However, the method can be used reli-
ably only if the noise and disturbances affecting
the process measurement is small to make it pos-
sible to read off the tuning parameter Tou (time
from overshoot to undershoot after a setpoint step
with a P controller). On the real reactor the noise
and disturbances are so prevalent that the Good
Gain method is not applicable. This problem is
confirmed in simulations containing realistic noise
(responses are not shown).

5.4.2. The ZN closed loop method based on relay
tuning

Åstrøm and Hägglund (1995) suggest a relay or on-
off controller to replace the P controller in the tun-
ing phase of the ZN closed loop (or Ultimate Gain)
method, Ziegler and Nichols (1942), thereby avoid-
ing the trial-and-error procedure since the oscillations
come automatically. The ultimate controller gain is

calculated as

Kcu =
4A

πE
(26)

where A is the amplitude of the on-off control signal.
If uon = 100% and uoff = 0%, as in our application,
A is 50%. E is the amplitude of the oscillations in the
process measurement.

The PI controller settings are

Kc = 0.45Kcu = 0.45
4A

πE
(27)

τi =
Pu
1.2

(28)

where Pu is the period of the oscillation.
Due to external demands it was necessary to operate

the reactor at approximately 30 oC in the experiments
with the ZN method, while 35 oC was used in experi-
ments with the Skogestad method.

Simulations

The simulations with on-off controller shown in Figure
4 are the basis for relay tuning. From the simulations,
E = 0.04 K and Pu = 0.055 d. Furthermore, A = 50%.
This gives PI settings as shown in Table 1, where also
stability margins, and response-time are shown. The
resulting stability margins, cf. Table 1, are very small.
Although not shown here, simulations show oscillatory
responses, with little damping.

Practical results

The real responses with on-off controller shown in Fig-
ure 5 are used for relay tuning. From the responses,
E = 0.05 K and Pu = 0.045 d. Furthermore, A = 50
%. This gives

Kcu =
4 · 50

π · 0.05
= 1273 %/K (29)

The resulting PI settings are calculated with eqs. (27)-
(28) to give PI as shown Table 2. Figure 9 shows re-
sponses on the real reactor.

Comments and conclusions

• Both the model and the real system shows poor
stability. This poor stability is actually typical
when the ZN tuning is applied to a process where
there is a small or no pure time-delay, as is the
case here.

• It is concluded that the ZN closed loop method
is inappropriate for tuning the temperature con-
troller.
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Figure 9: Real time-series for reactor with PI temper-
ature controller tuned with relay-based ZN
method.

5.4.3. Relaxed ZN PI tuning

Relaxed ZN PI settings, as proposed by Haugen et al.
(2012b), are calculated from the ultimate gain, Kcu ,
and the ultimate period, Pu, found from e.g. relay
oscillations:

Kc =
2

π (kr + 1)
Kcu (30)

and

τi =
kr + 1

2
Pu (31)

where kr is a parameter determined by the user to ob-
tain a proper closed loop system time-constant,

τc = krτdelay (32)

where τdelay is the process time-delay. kr = 1 kan be
regarded as the default value. With kr = 1 eq. (32)
is the same as Skogestad’s rule-of-thumb: τc = τ . En-
hanced relaxed control can be obtained with kr > 1.

Haugen et al. (2013b) recommend kr = 1 in eqs.
(30)-(31) if the process has a dominating lag or inte-
grator, due to energy or material balance, plus a note-
able time-delay, and kr = 4 if the process has zero or
neglible time-delay, but some lag, in addition to the
dominating lag or integrator. The bioreactor has a
dominating lag – approximately an integrator – due to
the energy balance of the liquid, and an additional rel-
atively small lag due to dynamics in the heater and the
reactor wall. There is also a relatively small lag due to

the measurement filter. A physical reason for a clear
pure time-delay is not obvious. Thus, kr is set to 4 in
the PI settings given by eqs. (30)-(31), giving

Kc = 0.13Kcu (33)

and
τi = 2.5Pu (34)

Simulations

Using Kcu = 1273 %/K and Pu = 0.055 d, cf. Sec-
tion 5.4.2, gives PI settings as shown in Table 1. The
resulting stability margins are relative large, cf. Table
1. However, it is decided not to retune the controller
since the settings shown in Table 1 are safe regarding
control system stability, and the PM value of 47.8o is
actually close to (but outside) the non-critical limit of
45o. Simulation (not shown here) show well damped
responses, coherent with large stability margins. Also,
kr = 1 is tried, but the phase margin is relatively small
(17.1o), as expected.

Practical results

kr = 4 is used in eqs. (33)-(34) with Kcu = 1273 %/K
and Pu = 0.045 d from Section 5.4.2. The resulting
PI settings are shown in Table 2. Figure 10 shows
responses on the real reactor with these PI settings.
(The PI settings with kr = 4 were applied just before
the setpoint step.) The responses indicate acceptable
stability. Also, kr = 1 is applied on the real reactor,
but responses (not shown here) indicate poor stability.

Comments and conclusions

• Both theoretical analysis, i.e. simulations (though
not shown here) and stability margins, and prac-
tical results indicate successful controller tuning
using enhanced R-ZN settings with kr = 4. The
stability margins are large, cf. Table 1, and the
simulated and real responses are smooth.

• R-ZN settings with kr = 1 are not recommended
here.

5.5. Control system robustness against
process parameter changes

5.5.1. Introduction

The transfer function model of the temperature control
system presented in Appendix A.2 forms a good basis
for a stability robustness analysis of the control system.
It is assumed that the controller is a PI controller tuned
with the Skogestad method at one specific operating
point. The Skogestad model-based PI settings formulas
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Figure 10: Real responses in the temperature control
system with enhanced R-ZN PI settings with
kr = 4.

also make a good basis for adaptation of the PI settings
if known changes of model parameters occur.

The PI settings are given by eqs. (13) and (15).
Assuming Kip is given by eq. (24), the PI settings
become

Kc =
1

2Kipτdelay
=

cρV

2Kuτdelay

τi = 4τdelay

In the following subsections the control system robust-
ness against changes in parameters assumed most apt
to changes, is discussed. The changes are:

• Changes in the feed flow, Ffeed.

• Changes in the reactor lag, τlag.

The impact that changes in these two parameters
have on the dynamic properties of the control system is
analysed. To this end, it is assumed that the controller,
which is assumed a PI controller, is tuned with the
Skogestad method as in Section 5.3.2.

5.5.2. Changes in feed flow

The tuning is based on the process having “integrator
with time-delay” dynamics, cf. Section 5.3.2. These
settings are valid as long as the time-constant is larger
than four times the time-delay, and this assumption
is always valid for a practical reactor – even with a

varying Ffeed. As an example, assume the relatively
high value Ffeed = 87 L/d which is the feed flow which
gives the maximum methane gas flow in steady state
as calculated from Hill’s model adapted to the present
bioreactor by Haugen et al. (2013a). The reactor time-
constant is then

τreac =
cρV

cρFfeed +G
(35)

=
4200 · 1000 · 0.25

4200 · 1000 · 87
1000 + 1.96 · 105

(36)

= 1.87 d (37)

which is much more than four times the effective lag
of 0.02 d used as a time-delay in the Skogestad tuning
method. So, the above PI settings, which are indepen-
dent of Ffeed, apply even if Ffeed has its largest value.
Obviously, they also apply for the smallest resonable
value of Ffeed since a small value makes a relatively
large value of τreac. In other words, the stability of the
control loop is essentially independent of Ffeed since
the assumptions of Skogestad’s PI tuning rules remain
valid.

Assuming that variations of Ffeed are the only pa-
rameter variations which affect the reactor dynamics,
it is concluded that there is no need for adjusting the
PI settings as functions of the varying Ffeed. This is
also confirmed in simulations.

5.5.3. Changes in lag or time-delay

Although the transfer function model presented in Ap-
pendix A.2 does not contain any pure time-delay trans-
fer function, it is useful to assume that such a time-
delay is present since the time-delay margin is a safe
(conservative) estimate of the lag margin. It can be
shown, see e.g. Haugen and Lie (2013), that the time-
delay margin (increase), ∆τ , can be calculated from
the phase margin, PM, with eq. (38) below. Insert-
ing numbers related to PI controller tuning with the
Skogestad method given in Table 1, yields the results
given in eq. (40) below.

∆τ [d] =
PM [deg] · π

360 [rad/deg]

ωb [rad/d]
(38)

=
40.8 [deg] · π

360 [rad/deg]

26.3 [rad/d]
(39)

= 0.0135 d = 19.5 min (40)

One implication of this value of ∆τ is that stability
problems may occur if the measurement filter time-
constant, τf , is increased by an amount approximately
19.5 min. If it is necessary to increase τf , it should be
accompanied by an equal increase in τdelay used in the
Skogestad tuning formulas, eqs. (13) and (15).
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6. Feedforward control

6.1. Introduction

Feedforward control can compensate very effectively
for variations in process disturbances, Seborg et al.
(2004). The following variables are regarded as dis-
turbances acting on the bioreactor here regarded as a
thermal system: Tamb, Tfeed, and Ffeed.

Figure 11 shows the structure of a temperature con-
trol system for the bioreactor with both feedforward
and feedback control.

Bioreactor
Tsp ue PID-

controller

STroom

Feed-

forward 

controller

uff

ufb

STreac

Sensors for

feedforward

Treac

STfeed

SFfeed

Sensor for

feedback

Disturbances:

Ffeed

Tfeed

Troom

Feedforward

Feedback

Figure 11: Temperature control system for the bioreac-
tor with both feedforward and feedback con-
trol.

The total control signal is calculated as the sum of
the feedback and feedback control terms:

u = ufb + uff (41)

Results presented in previous sections indicate that
for the reactor studied, feedback control is sufficient
to keep the reactor temperature close to the setpoint.
Hence, there is hardly any need for feedforward con-
trol. However, in other cases with severe, varying dis-
turbances due to e.g. large ambient temperature vari-
ations, feedforward control may give a substantial im-
provement of the control. It will be shown how to de-
sign feedforward control for the present bioreactor, and
the results should be transferable to other reactors or
similar thermal systems.

In the following respective sections, two alternative
feedforward controllers are developed:

• Model-based feedforward controller using a phe-
nomenological model, i.e. an energy balance of
the reactor.

• Model-free feedforward controller using steady-
state operational data only.

Simulation results are shown in the following. How-
ever, no practical results are shown since feedforward
control is not implemented on the real system.

6.2. Model-based feedforward control

The feedforward controller can be designed from the
process model, eq. (46), as follows: First, the reactor
temperature Treac is substituted by its setpoint Tsp.
Then the resulting model is solved for the control vari-
able u, now denoted uff , to get the feedforward con-
troller:

uff = 1
Ku

[cρV Ṫsp
−cρFfeed (Tfeed − Tsp)
−G (Tamb − Tsp)]

(42)

which can be implemented assuming all parameters
and variables on the right-side of eq. (42) are known
apriori or from measurements, which is a realizable as-
sumption here.

Simulations

The feedforward controller, eq. (42), is applied to a
simulated reactor having model parameter values as
shown in Table 6. The setpoint is constant. Tamb =
Tfeed (as in all subsequent simulations) is varied as a
sinusoid of amplitude 10 oC with a period of 1 d, which
assumed a representative variation if the reactor is out-
doors, and with mean value 15 oC. In the simulation,
Tamb pass through a lag of time-constant 0.01 d before
it enters the contents of the reactor. This lag is meant
to represent additional thermal dynamics of a real re-
actor. However, this lag is not included in the feed-
forward controller. Hence, a (relatively small) model
error is included.

Figure 12 shows responses with and without feedfor-
ward control. Both cases include feedback PI control
with the controller tuned with the Skogestad method
with Kc = 152 %/oC and Ti = 6912 s.

Table 3 shows analysis results. |e|max is the maxi-
mum control error. The IAE index is calculated from
t = 0.5 to 5 d.

Table 3: Results for temperature control with and
without feedforward control, but with feed-
back PI control in both cases.

Feedforward? |e|max IAE

Without 0.0892 0.256
With 0.0056 0.016
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Figure 12: Simulation of temperature control with and
without feedforward control, with feedback
PI control in both cases.

Note: When the feedforward controller is active, it
is necessary to set the output range of the PI controller
to cover both positive and negative values to make the
PI controller be able to compensate for the imperfect
feedforward control signal, which is due to model error,
with both positive and negative values. If the output
range is only positive, the compensation may be insuf-
ficient, and the result may be a nonzero steady state
control. If the output range of the PI controller can
cover positive values only, an alternative solution is to
subtract a proper negative constant, e.g. 20%, from
the PI control signal, thereby forcing the PI control
signal to become positive.

Comments and conclusions

• Feedforward control improves the control perfor-
mance considerably.

• The simulations show that the control signal time-
series appears very similar in feedback (only) con-
trol and in feedforward control, indicating that the
“timing” of the control action is crucial for good
control performance, and good timing is provided
by feedforward control.

• The reason why there is a nonzero control error
with feedforward control is the inclusion of the as-
sumed realistic thermal dynamics in terms of a lag

of 0.01 d. Without this model error, the control
error would have been zero with feedforward con-
trol.

6.3. Model-free feedforward control

A feedforward controller may be designed from steady-
state operational data. It is assumed here that Tamb =
Tfeed is the most important varying disturbance for our
reactor. T

• For each of N distinct values of the disturbance,
Tamb, observe the value of the control signal u
which gives approximately zero steady state con-
trol error. This may be done during PI(D) feed-
back control. Typically, feedback control is used
together with feedforward control, so no extra ef-
fort is needed to run the feedback control here.
The result is a table of corresponding values of
Tamb and us (steady-state value).

• Use table lookup, i.e. some interpolation method,
to calculate the instantaneous feedforward control
signal uff from the instantaneous measured Tamb.

This is an approximate design method since it is
based on only steady-state data, but it can improve
the disturbance compensation substantially. If the dis-
turbance is a so-called input disturbance, i.e. the dis-
turbance enters the process dynamically at the same
“position” as the control variable does, the model-free
feedforward may perform as well as the model-based
feedforward. This is the case in the simulation exam-
ple described below.

Simulations

Table 4 shows the corresponding steady-state values of
Tamb = Tfeed and u found under steady-state conditions
with PI control (subindex “s” means steady-state).
The conditions are the same as in the simulation in
Section 6.2. The simulated responses with model-free
feedforward is virtually indistinguishable from the re-
sults with model-based feedforward shown in Figure 12
and Table 3.

Table 4: N = 5 corresponding values of Tamb = Tfeed

and u.

Tambs [oC] us [%]

5 81.4
10 67.9
15 54.3
20 40.7
25 27.1
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7. Temperature control of a
full-scale reactor

Reactor description

In this section results for the pilot reactor presented in
previous sections are applied to a simulated full-scale
reactor having the same form of mathematical model as
for the pilot reactor, cf. Appendix A, with the following
parameter and operational values:

• The reactor volume is V = 10 m3. This size is
assumed representative for reactors at farms using
animal waste as feed.

• The reactor is assumed rectangular with height,
H, and depth, D, being equal, and width, W ,
being twice the depth, as is approximately the
case for anaerobic baffle reactors (ABR).2 From
the known volume, H = D = W/2 = 1.71 m.

• The area-specific heat conductivity is same as for
pilot reactor. Hence, the heat conductivity of full-
scale reactor is Gfs = GAfs/Apilot = 2.08 · 106

(J/d)K. G is conductivity of pilot reactor. Afs

and Apilot are conductive areas of the respective
reactors. Apilot is calculated from the given vol-
ume and design of the pilot reactor, cf. Section 2
(detailes not given here). Assuming for simplicity
that all areas are conductive, Afsis calculated as
10H2.

• The reactor lag is guessed as τlag = 0.05 d, while
it is 0.01 d for the pilot.

• The temperature measurement filter time-
constant is as for pilot reactor, τf = 10 min
= 0.0069 d.

• An extreme operating point, with maximum
power demand, is assumed: Temperature setpoint
is Tsp = 38 oC. Ambient temperature is Tamb =
−20 oC. Temperature of liquid feed is Tfeed = 0
oC. Feed flow Ffeed = 1000 L/d giving hydraulic
retention time HRT = 10000 L/10000 L/d = 1 d.

• Using the extreme operating point (above) in the
static version of the dynamic energy balance eq.
(46), and allowing for 50% design margin, the
maximum power to be delivered by the electrical
heater is 29.8 kW.

• The controller output, u, is in unit of kW, not
percent as for the pilot.

2An ABR reactor of this size is being constructed at Skoglund
farm, Porsgrunn, Norway.

The main specification of the temperature control
system is:

• The control error is limited, cf. Section 3:

|e| ≤ 0.25 oC = E (43)

The following conditions are assumed for simulation
and analysis: Tsp = 38 oC, Tfeed = 0 oC, Ffeed = 10000
L/d. Tamb is assumed sinusoidal with period 1 d, as-
sumed to represent a relatively large, still realistic, out-
door temperature variation:

Tamb(t) = −10oC + 10oC · sin
(

2π

1 d
t

)
(44)

where t is time [d]. Table 5 summarizes the results of
simulations and analysis for different controllers and
controller settings. The results are commented in the
following.

Table 5: Results with three different controllers. R-ZN
PI = PI controller with R-ZN settings. S PI
= PI tuned with Skogestad settings. On-off =
On-off controller.

R-ZN PI S PI On-off

Kc 9.6 4.3 N/A

τi[min] 463 328 N/A

|e|max [oC] 0.026 0.065 0.34

µe [oC] 0 0 0.10

|S(jω1)| 0.35
= −9.1 dB

0.88
= −1.1 dB

N/A

GM 7.3 15.1 N/A

PM 38.2o 43.0o N/A

Simulations

Simulations have been run, but plots are not shown
here, with the following three controllers:

• PI controller tuned with the R-ZN method with
tuning parameter kr = 4, cf. Section 5.4.3.

• PI controller tuned with the Skogestad method,
cf. Section 5.3.2.

• On-off controller, cf. Section 4.

Frequency response analysis

Figure 13 shows for each of the two PI controller set-
tings, a Bode plot of the magnitude of the sensitiv-
ity function of the control loop, S(jω) = S(j2πf) =
1/ [1 + L(j2πf)] where L is the loop transfer function
defined in Appendix A.2.
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Figure 13: Bode plot of the magnitude of the sensitivity
function of the control loop for two different
PI controller settings.

The frequency f1 = 1 d−1 is the frequency of the
sinusoidal Tamb in the simulations. The |S|-plot shows
how much the response in the process output vari-
able due to a sinusoidal process disturbance is reduced
by using feedback control, compared with no feedback
control, Seborg et al. (2004). The smaller the value of
|S(j2πfj)|, the more effective the feedback disturbance
compensation for a sinusoidal disturbance of frequency
fj [d−1]. If |S(j2πfj)| ≈ 1 = 0 dB, the feedback makes
no difference compared with open loop control (con-
stant control signal).

Let Hd(s) be the open loop transfer function from
Tamb to Treac. Hd(s) can be calculated from eq. (46).
|Hd(j2πfj)| expresses the self-regulation of the reactor
for sinusoidal Tamb of frequency fj [d−1]. Assume fj =
1 d−1 = f1, corresponding to eq. (44). Calculations
show that |Hd(j2πf1)| ≈ 0.0079 for Ffeed between the
assumed large value of 10 m3/d and small value of 1
m3/d. Hence, without feedback control, the amplitude
of Treac is 0.0079 · 10 oC = 0.079 oC which satisfies
ineq. (43) if no other disturbances exist. However, in
practice, feedback control is needed to compensate for
static or low-varying disturbances.

Comments and conclusions

• The values of GM and PM indicate that the sta-
bility is acceptable with both PI settings.

• The Bode plot in Figure 13, and Table 5, shows
that with Skogestad PI settings, |S(j2πf1)| =
0.88. This indicates that the feedback control loop
reduces the impact of the assumed sinusoidal Tamb

on Treac by only 12%. With the R-ZN settings the
reduction is far better, namely 65%.

• Inequality (43) is not satisfied with the on-off con-
troller due to a permament mean offset from set-
point. However, ineq. (43) may be satisfied if the
value of uon is reduced.

• Assume that the ineq. (43) is not satisfied with
PI control. An attempt to optimize the controller
tuning can be made using loop-shaping, Skogestad
and Postlethwaite (2007), or optimization meth-
ods, Edgar et al. (2001). The controller settings
must satisfy the following requirement:

|S(j2πf1)| |Hd(j2πf1)|ATamb
≤ E (45)

where ATamb
is the maximum amplitude of Tamb,

e.g. 10oC, E is given by ineq. (43), and f1 is
the frequency [d−1] of the sinusoidal Tamb, here
assumed 1 d−1.

Also, activating the derivative term should be con-
sidered to reduced the control error.

• The control error may be reduced considerably
with feedforward control, cf. Section 6. Model-
based feedforward is implemented on the simu-
lated full-scale reactor with the aformentioned re-
sult, but responses are not shown here. However,
the results above indicate that feedback PI control
is sufficient.

8. Discussion

Model accuracy

For the pilot reactor, the practical performance of the
reactor temperature control systems with on-off con-
trol and with PI control is in good accordance with the
theoretical performances as seen in simulations. This
indicates that the mathematical models used are suf-
ficiently accurate to be used for analysis, design, and
simulations. The accuracy of the models in the present
study motivates for use of models for design of planned
reactors having different physical dimensions.

The present reactor is heated by an electrical resistor
wound around the reactor inside the thermal insulation
jacket. If the reactor is heated differently, e.g. by heat-
ing the influent, we think that just simple modifications
of the model are necessary.

Sensor accuracy

According to technical specifications the reactor tem-
perature sensor, a Pt100 sensor, has an accuracy of
approximately ± 0.3 oC in the pertinent temperature
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range. In various experiments that are conducted in
this study, the observed temperature responses vary
less than this accuracy. Although we have no data for
the repeatability of the sensor, the good accordance be-
tween measured and simulated responses indicate that
the repeatability is sufficient for us to rely on the tem-
perature measurements.

9. Conclusions

It is demonstrated that the produced methane gas
flow depends clearly on the bioreactor temperature.
Moreover, according to literature references, methane-
generating microbes should not be exposed to temper-
ature changes larger than 0.5 oC in amplitude. Thus,
the temperature should be controlled to a setpoint with
a maximum control error of ± 0.25 oC.

On-off feedback control may be used for temperature
control, given that the on-off operation is acceptable,
which may not be the case with a mechanical actuator.
The mean control error (offset) from the setpoint is
typically non-zero. The maximum control error may
be unacceptable.

A PI controller can be tuned successfully with the
Skogestad method and with the R-ZN tuning method.
The original ZN closed loop method is not appropriate
because of poor resulting stability.

The robustness of the PI control system is inves-
tigated assuming model-based Skogestad PI settings.
The PI settings are independent of the feed flow, so
the tuning is robust against feed flow variations. Fre-
quency response analysis shows a time-delay margin of
approximately 20 minutes which is here assumed a safe
value.

Both model-based feedforward controller designed
from the energy balance of the reactor, and a model-
free controller using table lookup on operational data,
are applied to a simulated reactor, with almost iden-
tical performances. Comparing with only feedback
control, feedforward control improves the temperature
control considerably.

A temperature control system for a simulated full-
scale reactor is simulated. The self-regulation of the
reactor is sufficient to limit the impact on the reactor
temperature by an assumed large sinusoidal daily vari-
ation of the ambient temperature. In practice, feed-
back control is needed to compensate for static or low-
varying disturbances.

Acknowledgments

Funding of this research is supplied by the Norwegian
government through Innovasjon Norge, Statens Land-

bruksforvaltning, Utdannings- og forskningsdeparte-
mentet, and The Research Council of Norway. Tele-
mark University College has provided practical and
economical support.

Thanks to Knut Vasdal, Eivind Fjelddalen and
Wenche Bergland, and students of the master study
in Environmental Engineering at Telemark University
College, Norway, for practical support.

A. Mathematical models

A.1. Phenomenological reactor model

A mathematical model describing the dynamic be-
haviour if the reactor temperature, Treac, is developed
by Haugen et al. (2013a). The model is based on an
energy balance for the liquid of the reactor. The liquid
is assumed having the same thermal characteristics as
water. Homogeneous conditions due to proper mixing
are assumed. The model is as follows:

Ṫreac =
1

cρV
[Pheat

+ cρFfeed (Tfeed − Treac) (46)

+G (Tamb − Treac)]

The supplied electrical power, Pheat, is proportional to
the control signal:

Pheat = Kuu (47)

Model parameter values are given in Table 6. G is
estimated from experimental data by Haugen et al.
(2013a). The value of Ffeed is as in experiments.

Table 6: Parameters of reactor temperature model.

c = 4200 J/(kg K)
ρ = 1000 kg/m3

V = 250 L
G = 1.96 · 105 (J/d)K
Ku = 2 W/%
Ffeed = 65 L/d
τlag = 0.01 d

Unless otherwise stated, it is assumed that

Tfeed = Tamb (48)

In practice, some lag can be observed in the tempera-
ture. This lag is probably due to energy capacitance in
the reactor wall and it also accounts for imperfect mix-
ing in the reactor. The following time-constant model
is used to represent the lag:

Ṫreaclag =

(
Treac − Treaclag

)
τlag

(49)
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Figure 6 shows the response in Treaclag due to a step
in the control signal, u. From this response the lag is
estimated visually with the value given in Table 6.

A.2. Transfer functions model of the
temperature control system

For simplicity, the same symbol is here used for a
variable in both the Laplace domain and in the time-
domain.

Figure 14 shows a block diagram of a transfer func-
tions model of the control system. This model is used
as the basis for the frequency response analysis in Sec-
tion 5.

Hreac(s) Hlag(s) Hfilt(s)

Reactor Lag Meas

filter

u Tmf

Hp(s)

Hc(s)
eTsp

Process

Controller

Figure 14: Block diagram of a transfer functions model
of the control system.

Loop transfer function

From Figure 14,

L(s) = Hc(s)Hreac (s)Hlag (s)Hfilt (s)︸ ︷︷ ︸
Hp(s)

(50)

The individual transfer functions of eq. (50) are defined
in the following.

Controller transfer function

Assuming PI controller,

∆u(s)

∆e(s)
= Kc

(
1 +

1

τis

)
= Hc(s) (51)

Process transfer function

From eq. (46) and eq. (48),

∆Treac(s)

∆u(s)
=

K

τreacs+ 1
= Hreac(s) (52)

where

K =
Ku

cρFfeed +G
(53)

τreac =
cρV

cρFfeed +G
(54)

Lag transfer function

From the lag model, eq. (49),

∆Treaclag(s)

∆Treac(s)
=

1

τlags+ 1
= Hlag(s) (55)

Filter transfer function

The raw temperature measurement, Tmr, which here
is the same as Treaclag , is quite noisy and is therefore
filtered with a time-constant filter having the following
transfer function model:

∆Tmf(s)

∆Tmr(s)
=

1

τfs+ 1
= Hfilt(s) (56)

where τf is the filter time-constant. For the present
reactor, τf is set to 10 min.

Note: Above, Tmf represents the filtered measured
reactor temperature. However, in most sections in this
paper, it is practical to use symbol Treac for filtered
measured reactor temperature.

B. Abbreviations and nomenclature

B.1. Abbreviations

AD: Anaerobic digestion

GM: Gain margin

HRT: Hydraulic retention time

IMC: Internal model control

MPC: Model-based predictive control

PID: Proportional + integral + derivative

PM: Phase margin

PWM: Pulse-width modulation

R-ZN: Relaxed Ziegler-Nichols

SSR: Solid-state relay

TC: Temperature controller

TT: Temperature transmitter (-sensor)

ZN: Ziegler-Nichols
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B.2. Nomenclature

Variables and parameters in alphabetic order:

c [J/(kg K)]: Specific heating capacity of liquid.

de [K] deadband of on-off controller.

e [K]: Control error (setpoint minus measurement).

Ffeed [L/d]: Influent or feed flow or load rate,
assumed equal to effluent flow (constant volume).

Fmeth [L CH4/d]: Methane gas flow.

G [(J/d)K]: Thermal conductance of reactor.

Ghe [(J/d)K]: Thermal conductance of heat ex-
changer.

kr: Adjustable parameter in the R-ZN controller
tuning method.

Kc [%/K]: Controller gain.

Ku [W/%]: Actuator or heater gain.

τc [s] or [min] or [d]: Closed-loop time-constant in
the Skogestad controller tuning method.

τd [s] or [min] or [d]: Derivative time.

τdelay [s] or [min] or [d]: Time-delay.

τf [s] or [min] or [d]: Measurement filter time-
constant.

τi [s] or [min] or [d]: Integral time.

τlag [d]: Lag time-constant.

µ [d−1]: Reaction (growth) rate of acidogens.

µc [d−1]: Reaction (growth) rate of methanogens.

µm [d−1]: Maximum reaction rate of acidogens.

µmc [d−1]: Maximum reaction rate of methanogens.

ρ [kg/m3]: Density of reactor liquid.

Tmf [◦C]: Filtered measurement signal.

Tmr [◦C]: Raw (non-filtered) measurement signal.

Treac [◦C]: Reactor temperature.

Tsp [◦C]: Setpoint of reactor temperature.

u [%]: Control signal.

ufb [%]: Feedback control term.

uff [%]: Feedforward control term.

uman [%]: Manual control signal.

V [L]: Effective reactor volume.
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Background and methods of the article

Background

This article assumes that a setpoint of the methane gas flow produced by

an AD reactor is specified. It is shown how the actual methane gas flow

can be retained at this setpoint using feedback control despite various

process disturbances. A specified gas flow setpoint may stem from a

specified net power production since, under ideal conditions, the energy

contents of methane gas at standard temperature and pressure (STP) is

9.95 kWh/m3. It should be noted that with methane gas flow control, the

volumetric feed rate, which is here the control variable, will vary somewhat

due to inevitable disturbances like variations in the feed composition.
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Methods

In this article it is assumed that the controllers are standard process

controllers, namely the on-off controller and the PI controller, using the

feed rate as control variable. The control systems are tested in simulations

based on the modified Hill model presented in Article no. 1. The

Skogestad method, which is an open loop method, and the Relaxed

Ziegler-Nichols closed loop method, which is presented in Article no. 6, are

tuned both on a simulator and on the real reactor. The two tuning

methods give approximately the same PI settings. The Skogestad method

is ranged as the best method as it requires less tuning time, and because it

is easier to change the PI settings at known changes in the process

dynamics. Skogestad’s method is successfully applied to the real reactor.

To analyze the simulated control systems for different controller settings,

both performance and stability robustness measures are calculated. As

performance measures, the IAE index (Integral of Absolute value of control

Error), both for setpoint changes and for disturbance changes, and the

closed loop response time are calculated from simulations and from the

crossover frequency of the open loop frequency response, respectively. As

stability robustness measures, the gain margin and the phase margin are

calculated from the open loop frequency response. The frequency response

is calculated from a linearized model with the margin() function of

MATLAB. The practical control system is not analyzed, except its

dynamical (transient) responses are observed to evaluate qualitatively the

control system stability.
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On-off and PI Control of Methane Gas Production
of a Pilot Anaerobic Digestion Reactor
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Abstract

A proposed feedback control system for methane flow control of a real pilot anaerobic digestion reactor
fed with dairy waste is designed and analyzed using the modified Hill model, which has previously been
adapted to the reactor. Conditions for safe operation of the reactor are found using steady-state responses
of dynamic simulations, taking into account the upper limit of the VFA concentration recommended in
the literature. The controllers used are standard process controllers, namely the on-off controller and the
PI controller. Several PI controller tuning methods are evaluated using simulations. Two methods are
favoured, namely the Skogestad method, which is an open loop method, and the Relaxed Ziegler-Nichols
closed loop method. The two methods give approximately the same PI settings. Still, the Skogestad
method is ranged first as it requires less tuning time, and because it is easier to change the PI settings at
known changes in the process dynamics. Skogestad’s method is successfully applied to a PI control system
for the real reactor. Using simulations, the critical operating point to be used for safe controller tuning is
identified.

Keywords: Anaerobic digestion, bioreactor, gas flow control, on-off control, PI control, feedback.

1. Introduction

This paper attempts to answer the following questions
related to a real pilot upflow anaerboic sludge blanket
(UASB) reactor fed with dairy waste: What are the
benefits and drawbacks of feedback, or closed loop, con-
trol of the produced methane flow compared to using
open loop control, i.e. a constant feed rate? Assuming
the use of standard process controllers, namely on-off
and proportional-integral (PI) control, how does the
control systems perform? How should the PI controller
be tuned? Some of these questions are addressed us-
ing both simulations and practical experiments, while
some are addressed only using simulations.

The pilot plant

The reactor is a part of a pilot biological plant for nu-
trient and energy recovery named Foss Biolab, situated

at Foss farm, Skien, Norway. Input to the plant is dairy
waste diluted with 25% water and filtered with a sieve,
and outputs are fertilizer and biogas consisting of 70-
75% methane. The reactor temperature is kept fixed
at its setpoint with an automatic temperature control
system, Haugen et al. (2013b). A description of the
plant, including its monitoring and control system, is
provided in Haugen et al. (2013c).

Anaerobic digestion (AD) of animal wastes

AD of animal wastes can produce biogas with methane
to be used as an energy source, and a liquid efflu-
ent containing valuable nutrients. Moreover, AD re-
duces methane emission, odours and contaminants.
AD bioreactors are effective as they allow for relatively
high load rates (feed rates) and small reactor volumes.
Various theoretical and practical aspects of AD pro-
cesses are described e.g. in Tchobanoglous et al. (2003)
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and Deublein and Steinhauser (2010). A presentation
of AD of animal wastes, from dairy, beef, poultry, and
swine, is provided e.g. in Husain (1998).

Literature review of reactor control

Bernard et al. (2001b) have implemented a model-
based adaptive linearizing controller and a fuzzy con-
troller designed to maintain the intermediate alkalin-
ity (VFA, volatile fatty acids) and the total alkalinity
within specified limits to ensure stable process condi-
tions and avoid VFA accumulation despite organic load
disturbances. The so-called AM2 model, Bernard et al.
(2001a), is used for design and simulation.

Puñal et al. (2003) have designed an automatic fuzzy
logic-based control system to maintain the online mea-
sured VFA concentration at a proper setpoint.

Méndez-Acosta et al. (2005) have designed a model-
based controller for maintaining the COD (chemical
oxygen demand) of the reactor effluent at its setpoint,
using the AM2 model, Bernard et al. (2001a).

Méndez-Acosta et al. (2010) have designed a multi-
variable control system for controlling the concentra-
tion of VFA in the reactor to its setpoint using the feed
rate, and controlling the total alkalinity to its setpoint
using the addition of an alkali solution.

In neither of the ablove control systems, the biogas
flow is controlled. Focus is on reactor stability rather
than on energy production (1 Nm3 methane at NTP
= 9.95 kWh). In the papers referred below, the biogas
flow is controlled.

Strömberg (2010) have identified, using simulations,
three controllers for AD processes to be the most suit-
able ones for maximizing gas production while being
able to react properly to process disturbances due to
variations in pH, ammonia, and concentration in the
reactor feed. The simulations are based on the ADM1
model, Batstone et al. (2002). All of the controllers
have the feed rate as control variable (controller out-
put). The controllers resemble an expert system, with
logics (if-clauses) in the control function. A short de-
scription of these controllers follows.

The extremum-seeking variable gain controller by
Liu et al. (2006) has the structure of a cascade con-
trol system where the primary loop implements biogas
flow control, and the secondary loop implements pH
control to stabilize pH.

In the disturbance monitoring controller by Steyer
et al. (1999), disturbances in the form of pulses are
added to the feed rate, and from the gas flow response
the feed rate is adjusted to obtain maximum produc-
tion. Pulsing is stopped if measured pH is below a
critical value.

In the hydrogen-based variable gain controller by Ro-
driguez et al. (2006), online measurements of methane

and hydrogen concentrations of the biogas are mea-
sured online are used by the controller for approaching
a preset maximum methane gas flow. The controller
is based on a relation between hydrogen concentration
and effluent COD (Chemical Oxygen Demand) concen-
tration as found from the ADM1 model, Batstone et al.
(2002).

Strömberg et al. (2013) note that no uniform tuning
method could be derived to tune the three controllers.
Instead, the controllers were tuned by first running a
large number of simulations to become familiar with
the controller performances, and then the parameters
were tuned manually.

Paper outline

This paper is organized as follows. Section 2 gives a
short description of the proposed methane gas flow con-
trol system. Section 3 covers on-off control. Section 4
covers PI control, including an analysis of the control
system robustness against process parameter changes.
A discussion is given in Section 5, and conclusions are
given in Section 6. Appendix A describes mathemati-
cal models used, and abbreviations and nomenclature
are given in Appendix B.

Computing tools

MATLAB and SIMULINK (MathWorks, Inc.) are
used for numerical computations and simulations. The
algorithms of the real control system are implemented
in LabVIEW (National Instruments, Inc.) running on
a laptop PC.

2. The proposed methane flow
control system

2.1. Control system objective

As is clear from the control systems referred in Section
1, there are alternative objectives for reactor control,
i.e. obtaining a specified VFA concentration, or alka-
linity, or obtaining a specified biogas production.

For the present reactor, the control objective is pro-
posed as follows: Fmeth is maintained at its setpoint,
Fmethsp

, assuming safe operation conditions, defined
below.

Generally, the specific value of Fmethsp may be cal-
culated as the solution of a model-based optimiza-
tion problem with a proper optimization criterion, e.g.
maximum gas production, or economic optimization
where power loss, energy prices, and value of money
are taken into account. However, formulation of the
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optimization problem is not discussed further in the
present paper, but in a forthcoming paper.

2.2. Selection of control variable

Fmeth is the process output variable to be controlled.
An obvious candidate control variable is Ffeed as it
has a clear impact on Fmeth. Also Treac, which in
the present reactor is controlled to its setpoint using a
feedback control system, has a clear impact on Fmeth,
cf. Haugen et al. (2013b). Therefore, Treac is a can-
didate as control variable. However, as pointed out in
Tchobanoglous et al. (2003), Treac should be kept ide-
ally constant, variations within ±0.5 oC being accept-
able, to avoid stressing the methane-generating micro-
organisms (methanogens). Therefore, Treac is not con-
sidered a usable control variable.

2.3. Implementation of the control system

In the methane gas flow control systems studied in
the present paper, Ffeed is the control variable while
Fmeth is the process output variable. Figure 1 shows
the structure of the methane flow control system.

AD reactor

Biogas

Effluent

(liquid)

Filtered

manure Ffeed

Pump

FT

FC

Fmeth

Fmeth,SP

Treac

Figure 1: Methane flow control system.

The control signal from the gas flow controller, FC,
acts on the feed pump (actuator) which is assumed
to provide the feed flow, Ffeed, demanded by the con-
troller. The controller adjusts Ffeed based on the con-
trol error which is the difference between the Fmeth

measurement and its setpoint. This measurement is
provided by sensor FT. In practice, this measurement

is obtained by multiplying the online biogas flow mea-
surement from a thermal gas flow sensor and the online
methane concentration measurement from an IR-based
sensor. The raw measurement signals are smoothed in
filters which are described in Appendix A.3.

The gas flow controller manipulates the peristaltic
feed pump using PWM (Pulse-Width Modulation). It
is found that proper PWM settings are as follows:
Fixed cycle time of 700 sec, on-value of control signal
corresponding to 714 L/d, and off-value correspond-
ing to zero L/d. Two factual benefits of using PWM
control compared with analog control are (1) the cali-
bration of the pump is needed only at the on-state of
the flow rate, and (2) blockings in the feed pipeline are
reduced.

2.4. Control functions

The controllers reviewed in Section 1 can be regarded
as non-standard process controllers (though it can be
claimed that a fuzzy logic controller is a standard con-
troller). For the present reactor, it is proposed to use
standard process controllers as on-off controllers and
PI controllers, which are relatively simple controllers.
For the latter there are many tuning procedures avail-
able, but there is no guarantee that any method gives
successful PI settings. In this paper, several tuning
methods are tested to identify the most suitable meth-
ods.
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Figure 2: Plot of Svsin from laboratory analysis over
one year. Mean value: µSvsin

= 29.7 g/L.

Standard deviation: σSvsin
= 2.0 g/L.

In general, feedforward control can be a very ef-
ficient control method to compensate for severe dis-
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turbances, assuming that these disturbances are mea-
sured continuously or are estimated continuously using
a soft-sensor, e.g. a Kalman Filter algorithm, Dochain
(2008), Simon (2006). For the present pilot reactor,
variations in the volatile solids (VS) concentration of
the feed, Svsin [g/L], are regarded as the most impor-
tant disturbance acting on Fmeth. Figure 2 shows a plot
of Svsin over a period of one year.The largest change
between the samples occurs around t = 150 d, and is
approximately ∆Sbvsin = 6 g/L.

A simulation is here used to indicate the response in
Fmeth due to a change in Sbvsin . It is assumed that the
change is a step of amplitude 6 g/L. Fmeth is controlled
with a PI controller tuned with the Skogestad method,
cf. Section 4.4.1. Figure 3 shows simulated responses
of the control system due to a step change in Svsin .
(The response due to a step change in the setpoint of
Fmeth at t = 5 d, is relevant in Section 4.4.1.)
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Figure 3: Simulated responses of the control system due
to a setpoint step and a disturbance step in
Svsin . The PI controller is tuned with the
Skogestad method.

The maximum transient offset of Fmeth from the set-
point is 1.9 L CH4/d, which volume-normalized is 1.9
L CH4/d/250 L = 0.0075 L CH4/d/L. Assuming this
transient offset is acceptable in a practical application,
feedforward control is not needed.

Assuming the offset due to the variations in Svsin

is problematic, there is still a practical problem about
implementing feedforward control because of the lack of

appropriate online sensors. A soft-sensor for Svsin is an
alternative, but is here regarded an advanced method,
and is therefore not discussed in the present paper.
Using a soft-sensor for Svsin is relevant for model-based
control, to be addressed in a forthcoming paper.

2.5. Safe reactor operation and attainable
operating points

Hill et al. (1987) have found, from a comprehensive
study of literature reporting operational data for reac-
tors fed with swine and beef waste, and confirmed by
their own laboratory experiments, that Svfa = 0.8 g/L
is a good indicator of the reactor health. Svfa ≥ 0.8
g/L indicates an impending reactor failure, i.e. a re-
duction of methane production, while Svfa ≤ 0.8 g/L
indicates that the reactor is operated successfully, i.e.
that the reactor is healthy. Hill et al. found that also
the proprionic to acetic acid (P/A) ratio is a good in-
dicator. However, this ratio can not be calculated from
the mathematical model used in this paper, and there-
fore, the analysis here is not based on this ratio.

Hill et al. did not use dairy waste in their analysis
since reliable data for such waste were not available.
Nevertheless, it is here assumed that the aformentioned
limit applies approximately also for reactors fed with
dairy waste. A support for this assumption is that the
validated AD reactor model by Hill (1983) has the same
parameters describing the AD process for dairy, swine,
poultry, and beef waste, except for parameters express-
ing the fraction of the organic feed that is degradable,
but the AD process dynamics are independent of the
latter parameters.

There are several alternative AD process indicators
and control parameters. Angelidaki et al. (1993) iden-
tify e.g. ammonia as an important parameter for AD
process control, particularly for animal waste rich on
ammonia. Bernard et al. (2001b) reports that the in-
ternal alkalinity to total alkalinity ratio is an impor-
tant indicator, and control parameter. According to
Tchobanoglous et al. (2003), a pH level lower than 6.8
is inhibitory on the methanogenesis. These importance
of monitoring and controlling these, and other, param-
eters, depends on the type of fed substrate, e.g. food
waste, industrial waste, etc. However, from the lit-
erature, the ammonia content is relatively small and
therefore hardly inhibitory for dairy waste (but it is
for swine and poultry waste), the alkalinity is rela-
tively large and not subject to large variations, and
the buffer capacity is high implying that a proper pH
level is maintained. Thus, VFA remains the main AD
process parameter to be used here.

It is assumed that the reactor is represented by the
modified Hill model which is adapted to the pilot re-
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Figure 4: Simulated static (steady-state) values of a number of variables versus Ffeed (constant) at Treac = 35
oC. Vertical and horizontal lines are explained in the text.

actor by Haugen et al. (2013a). The model contains
e.g. a Monod-based rate-limiting effect of high VFA
concentration on conversion of VFA to methane, and
it can predict washout of biomass, i.e. of acidogens and
methanogens.

Figure 4 shows simulated static (steady-state) re-
sponses to a range of constant feed rates (Ffeed). Treac

is 35 oC which is typical for AD reactors. The global,
unconstrained maximum of Fmeths

is found as 214 L
CH4/d which is obtained with Ffeed = 83.4 L/d, repre-
sented with right green vertical lines in Figure 4. How-
ever, at this operating point, Xacids is virtually zero,
which is coherent with the middle left plot showing
that Sbvsin is not being degraded. Therefore, this un-
constrained maximum is not regarded as a viable op-
erating point.

In Figure 4, the cyan horizontal line in the Svfa plot
represents Svfa = 0.8 g/L. At this value, Ffeed = 35.3
L/d, which is represented by red vertical lines in the
plots. At this feed flow, Fmeths = 174 L CH4/d which is
then the maximum attainable Fmeths

under safe con-
ditions. The corresponding hydraulic retention time

(HRT) of the reactor is 174/35.3 = 4.9 d.

Assume that the controller output range, i.e. the
range of Ffeed, is restricted by the user to ensure safe
operating conditions. To continue the above example,
assume that the upper limit of Ffeed is set to 35.3 L/d
which, according to the model, corresponds to Fmeths

=
174 L CH4/d. The setpoint is set to Fmethsp

= 174
L CH4/d. Assume that for the practical reactor, the
factual Fmeths

that is obtained with Ffeed = 35.3 L/d,
is less than 174 L CH4/d. Then, obviously, the steady-
state control error is non-zero. To obtain zero steady-
state error, either the upper limit of Ffeed should be set
higher than 35.3 L/d, or Fmethsp

should be set smaller
than 174 L CH4/d, of which the latter alternative is
the safest.

2.6. Comparing feedback control with
open loop control

To demonstrate the effect of Fmeth control, Figure 5
shows experimental time-series of Fmeth and Ffeed, and
Treac, with (automatic) control and without control.
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It is clearly demonstrated that Fmeth drifts less with
control than without control. Fmeth remains close to
Fmethsp even after the setpoint is changed. In the case
of feedback control, Ffeed is of course varying, while it
is constant in open loop control. Treac is actually dif-
ferent in the two cases, but it is assumed the difference
between the two cases is independent of the tempera-
ture difference.
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Figure 5: Fmeth and Ffeed, and Treac, for the real re-
actor, with (automatic) control and without
control. (The length of each of the time in-
tervals for these two cases are different.)

If the drift of Fmeth is acceptable when a constant
Ffeed is used, feedback control may be superfluous.

3. On-off control

The on-off controller can be regarded as the simplest
feeedback controller available, Johnson (2000). It can
be used without any tuning, except deciding the on-
value and the off-value of the controller output. With
on-off control the control system oscillates, and typi-
cally, the offset of the mean value of the control error
from the setpoint is non-zero.

The on-off controller function can be defined as

u =

{
uon for e ≥ de
uoff for e < −de

(1)

where e is the control error,

e = Fmethsp
− Fmeth [L CH4/d] (2)

and de is an adjustable dead-band to avoid switching
of u due to (measurement) noise in e. uon and uoff are
constant control signal levels. In applications with the
pilot reactor, de = 0.5 L CH4/d.

Table 1 summarizes a number of settings and abso-
lute and volume-normalized characteristics found from
simulated and experiments on the real reactor further
described in the following.

Table 1: Settings and steady-state characteristics for
simulated and practical experiments with on-
off control.

Characteristics Units Sim Real

uon [L CH4/d] 45 45

uoff [L CH4/d] 5 5

Fmeth [L CH4/d] 88 88

Treac [oC] 25 25

Pu [d] 1.16 1.1

Ae [L CH4/d] 3.3 2.0

Ae/V [L CH4/d] 0.013 0.008

|e|max [L CH4/d] 4.2 2.2

|e|max/V [L CH4/d] 0.017 0.009

µe [L CH4/d] −1.0 −0.2
µe/V [L CH4/d]−0.0041−8.0 · 10−4

Simulations

In simulations, though not displayed here, Fmethsp
(t)

has the typical form of a sinusoidal oscillation, while
u(t) is a square wave.

Responses of the real reactor

Figure 6 shows Fmeth from an experiment with on-off
control on the real reactor.

Comments and conclusions

• The period, Pu, of the simulated and real oscilla-
tions are approximately equal which indicates that
the dynamics of the reactor is well captured by the
model. However, the amplitude of the oscillations
differ by a factor of approximately 1.7. It is not
clear what is the model error that causes this dif-
ference.

• For the real reactor, |e|max ≈ 2.2 L CH4/d, or nor-
malized: |e|max/V ≈ 0.009 L CH4/d/L, is proba-
bly acceptable.

• For both the simulated and real reactor the mean
control error are nonzero, but probably acceptable
for both the simulated and the real reactor.
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Figure 6: Experimental Fmeth with on-off methane gas
flow control.

• The on-off behaviour of the control signal, and
hence the feed flow, may be acceptable in prac-
tical applications. Actually, it is observed that for
the present reactor, discontinuous feeding reduces
the frequency of the blockings.

4. PID control

4.1. Controller function

PID control is prevalent in industrial applications. The
PID controller provides smooth control as opposed to
on-off control, but its parameters must be tuned to
fit the dynamics of the process to be controlled. The
applied PID controller is based on Euler backward dis-
cretization of the following continuous time PID con-
troller, with time-step τs = 2 s:

u(t) = uman +Kce(t)+
Kc

τi

∫ t

0

e (τ) dτ +Kcτdė(t) (3)

Typically, the derivative term may provide control sta-
bility and agility, but is nevertheless often deactivated,
i.e. τd = 0, in practical applications because of its
problematic propagation of measurement noise caus-
ing a noisy control signal. For the pilot reactor, it is
decided to not use the derivative term.

4.2. Selection of controller tuning methods

It is of interest to compare different PI(D) tuning meth-
ods to arrive at a conclusion about recommended meth-
ods. The following methods are applied to the simu-
lated reactor, and some of them are applied to the real
reactor: Among open loop methods, the SIMC method
(Simple IMC), Skogestad (2004), here denoted the Sko-
gestad method, is selected. Comparing it with the fa-
mous Ziegler and Nichols open loop method, Ziegler
and Nichols (1942), the Skogestad method benefits by
having an adjustable parameter. Furthermore, the
Skogestad method includes tuning formulas for var-
ious types of process dynamics. Other well-known
open loop methods are the Lambda tuning method
and the Internal Model Control (IMC) methods, Se-
borg et al. (2004), but it is not clear whether these
methods have important benefits compared with the
Skogestad method.

Among closed loop tuning methods, the famous
Ziegler Nichols (ZN) closed loop method is applied,
although it is expected to give small stability mar-
gins. As an alternative, the Relaxed Ziegler Nichols
(R-ZN) method proposed by Haugen and Lie (2013) is
tested. The Tyreus and Luyben (TL) method, Tyreus
and Luyben (1992), is probably the best known method
to modify the ZN closed loop PI settings to obtain more
relaxed control. However, the R-ZN method compares
favourably with the TL method, cf. Haugen et al.,
(2013d). Therfore, the TL method is not tested here.

4.3. Summary of results

Table 2 gives a summary of results for a simulated reac-
tor based on the model presented in Appendix A, and
for the real reactor. The table shows controller set-
tings, the gain margin (GM), the phase margin (PM),
and the closed-loop response-time, τr [d], which is es-
timated as

τr =
1

ωc
(4)

τr is approximately the time-constant of the control
system. The above frequency response characteristics
are based on the transfer functions model described in
Appendix A.3, except for the tuning method denoted
“Skogestad with estimated transfer function” where
the frequency response characteristics is based on the
estimated transfer function. Seborg et al. (2004)
present the following ranges of the stability margins:

1.7 = 4.6 dB ≤ GM ≤ 4.0 = 12.0 dB (5)

and
30o ≤ PM ≤ 45o (6)

Comments to Table 2:
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Table 2: Results with various PI tuning methods for
simulated and for real reactor.

Method

Kc

[(L/d)/

(LCH4/d)]

τi
[d]

GM
PM

[deg]

τr
[d]

Sim: Skogestad 2.46 0.92
3.2
= 10.0
[dB]

32.3 0.39

Real: Skoge. 4.89 1.24 N/A N/A N/A

Sim: ZN 3.45 0.97
2.3
= 7.2
[dB]

25.6 0.30

Sim: R-ZN 2.44 1.16
3.4
= 10.7
[dB]

37.5 0.40

Real: R-ZN 5.00 1.16 N/A N/A N/A

Sim: Optimal 2.12 1.04
3.8
= 11.6
[dB]

38.0 0.44

Real: Skoge.

with estim.

transf. func.

13.5 0.54
2.8
= 8.9
[dB]

37.4 0.25

• The values of Kc for the simulated reactor are
roughly half of the values for the real reactor, while
the values of τi differ little. The variation in Kc

is of course due to modeling errors. Actually, the
modified Hill model was adapted to various time-
series from time intervals relevant to controller
tuning, but with no significant changes in the per-
tinent model parameters, nor in Kc. From this it
can be concluded that using a phenomenological
mathematical model as the basis for tuning a con-
troller for the real reactor, is dubious. However,
for the present reactor, the difference in values of
Kc is safe.

• The PI settings calculated from the estimated pro-
cess transfer function have approximately double
the value of Kc and half the value of τi compar-
ing with the respective settings found by the Sko-
gestads method and the R-ZN method applied di-
rectly to the real reactor, and thus, the former set-
tings are expected to give more aggressive control.
Due to practical obstacles, the PI settings found
from the estimated process transfer function have
not been applied to the real reactor, so it is not
known if they are applicable on the real reactor,
or not.

4.4. Applications of controller tunings

4.4.1. Skogestad tuning

Simulations and real experiments indicate that the re-
actor dynamics can be characterized approximately as
“time-constant with time-delay” with a time-constant
of a few days and a time-delay of a few hours. As
pointed out in Haugen and Lie (2013), the Skogestad
method, with a proposed justified reduction of the in-
tegral time setting, gives the following PI settings for
processes where the time-delay is less than one eighth
of the time-constant, which is the case for the pilot
reactor:

Kc =
1

2Kipτdelay
(7)

τi = 4τdelay (8)

where Kip , the integrator gain, and τdelay, the (appar-
ent) time-delay, can be found from a simple process
step response. Kip can be calculated as

Kip =
S

∆Ffeed
(9)

where ∆Ffeed [L/d] is the applied step amplitude, and
S [(L CH4/d)/d] is slope of the time-delayed ramp-
formed response in Fmeth.

Simulations

Kip and τdelay are found from an open-loop step re-
sponse where Ffeed is changed as a step of amplitude
∆Ffeed = 1 L/d. From the step response shown in Fig-
ure 7, where the red line is the “time-delayed ramp”
step response of the assumed integrator with time-
delay, S = 0.883 (L CH4/d)/d and τdelay = 0.23 d.
This gives Kpi = S/∆Fmeth = 6.6/20 = 0.33 [(L
CH4/d)/(L/d)]/d. The resulting PI settings and fre-
quency response characteristics calculated from the lin-
ear model presented in Appendix A.3 are presented in
Table 2. The stability margins are within the accept-
able limits given by ineqs. (5)-(6).

Figure 3 shows simulated responses of the control
system due to a setpoint step and a disturbance step
in Svsin .

Responses of the real reactor

Figure 8 shows the response in Fmeth due to a step in
Ffeed from 39 L/d to 19 L/d, i.e. the step amplitude is
∆Ffeed = −20 L/d. A negative step is used because the
initial value of Ffeed is relatively large. From the step
response, τdelay = 0.31 d and S = −6.6 (L CH4/d)/d
are estimated. The resulting PI settings are shown in
Table 2.
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Figure 7: Simulated open-loop step response where
Ffeed is changed as a step of amplitude 1 L/d.

Figure 9 shows responses on the real reactor with
the above PI settings. There is no indication of poor
stability. The relatively large response in Fmeth be-
tween t = 446.0 and 446.5 d is assumed being due to a
disturbance.

Comments and conclusions

• The Skogestad PI tuning method, here used as
an open loop step response method, gives good
results.

• The step response test can be accomplished within
approximately half a day which is considerably
shorter than e.g. relay-based tuning methods
which may require more than two days, cf. Section
4.4.2.

4.4.2. Ziegler-Nichols PI tuning based on relay
oscillations

Åstrøm and Hägglund (1995) suggested a relay or on-
off controller to replace the P controller in the tuning
phase of the ZN closed loop method, thereby avoid-
ing the trial-and-error procedure since the oscillations
come automatically. During the relay tuning the con-
trol signal becomes a square wave. Assuming the os-
cillation in the process output is (approximately) si-
nusoidal, as is the case with the present reactor, the
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Figure 8: Open-loop step response for the real reactor.

ultimate gain, Kcu , is calculated as

Kcu =
4Au
πAe

(10)

where Au is the amplitude of the on-off control signal,
and Ae is the amplitude of the control error and the
process output. For a PI controller, the ZN settings
are Kc = 0.45Kcu and τi = Pu/1.2 where Pu is the
period of the oscillation.

Results

Using simulations with on-off controller (not shown) as
the basis for relay tuning, gives Au = (45− 5)/2 = 20
L/d, Ae = 3.3 LM, Pu = 1.16 d. The resulting PI set-
tings are shown in Table 2 together with control system
characteristics. The phase margin (PM) is 25.6o which
is less than the lower limit in eq. (6). Simulations, not
shown here, confirm relatively small stability margins
as responses are oscillatory. It was decided not to use
the Ziegler-Nichols method with the real reactor since
the theoretical results are not satisfactory.

4.4.3. Relaxed Ziegler-Nichols PI tuning

The Relaxed Ziegler-Nichols (R-ZN) PI tuning method
is proposed by Haugen and Lie (2013) to give more
relaxed control, i.e. improved stability, compared with
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Figure 9: Responses on the real reactor with PI
methane flow controller tuned with Skoges-
tad’s method.

the ZN closed loop method. The PI settings are:

Kc =
2

π (kr + 1)
Kcu

kr=1
= 0.32Kcu (11)

τi =
kr + 1

2
Pu

kr=1
= Pu (12)

where Kcu and Pu can be found from relay oscillations.
The tuning parameter kr can be used for enhanced
relaxation. Simulations with the modified Hill model,
Haugen et al. (2013a), indicate that the default value
kr = 1 works well with the present pilot reactor.

Simulations

PI settings are calculated from simulated relay oscil-
lations, not shown here. Table 2 shows the resulting
PI settings, and control system characteristics. The
stability margins have acceptable values. Since these
PI settings differ little from those found with the Sko-
gestad method in Section 4.4.1, simulations with R-ZN
settings are not shown here (Figure 3 shows responses
with Skogestad PI settings).

Practical results

The relay oscillations shown in Figure 6 are used as the
basis for the PI controller tuning. The on and off values
of the controller are Ffeedon

= 45 L/d and Ffeedoff
= 5

L/d, respectively, giving Au = (45 − 5)/2 = 20 L/d.
From the oscillations, Ae = 2.0 L/d and Pu = 1.1 d.
The resulting PI settings are shown in Table 2. Since
these settings differ little from those found with the
Skogestad method, cf. Section 4.4.1, it was decided
not to perform separate experiments on the real reactor
with R-ZN settings.

Comments and conclusions

• Both simulations and real experiments indi-
cate successful controller tuning using the R-ZN
method. The PI settings become close to those
obtained with the Skogestad method, which is not
a surpise since this method is designed from a
combination of the Skogestad method and the ZN
method.

• The Skogestad method is here favoured compared
with the R-ZN method, due to the following ob-
servations: Firstly, the Skogestad method has a
shorter tuning phase, namely approximately 0.7
d, cf. Figure 8, while the tuning phase of the R-
ZN method is 2-3 days. Secondly, in the Skoges-
tad method, retuning the controller in the case of
a known process parameter change, e.g. an in-
crease of the apparent τdelay due to an increased
filter time-constant, can be accomplished without
performing any new experiment. With the R-ZN
method, a new experiment is needed.

4.4.4. Optimal PI tuning based on the modified
Hill model

In this method, PI controller parameter vector pc =
[Kc, τi] is tuned at a specific operating point to mini-
mize the objective function fobj(pc),

min
pc

fobj(pc) s.t. C (13)

(s.t. is “subject to”). C represents constraints. The
following fobj(pc) is here proposed:

fobj(pc) =

∫ t2

t1

(|e|+R|u̇|) dt (14)

where e is the control error, u̇ = Ḟfeed is the rate of
change of the control signal, and R is a user-selected
cost coefficient. With R = 0, eq. (14) is identical to
the well-known IAE index, Seborg et al. (2004). The
larger R, the more cost of control signal variations, and
smoother, but also slower, control actions can be ex-
pected. Having only one parameter, R, to be tuned is
a much easier tuning problem than having two param-
eters, Kc and τi. Furthermore, R has an intuitive in-
terpretation. Many alternative objective functions are
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possible, e.g. quadratic functions instead of absolute
values, frequency response-based functions, etc. Equa-
tion (14) is here selected since it is an enhancement
of the IAE index. A quadratic objective function was
tested, but no benefits were identified compared to the
selected function.

In eq. (13), C is a constraint on the stability mar-
gins in terms of |S(jω)|max, where S(s) = 1/[1 +L(s)],
where L(s) = Hc(s)HADm(s) is the loop transfer func-
tion. HADm

(s) is given by eq. (25). The acceptable
range of |S(jω)|max is set as [1.2, 2.0], according to Se-
borg et al. (2004). However, this constraint was not
active at the optimal solution (its value was 1.87).

fobj(pc) is calculated from simulations with the (non-
linear) modified Hill model, Haugen et al. (2013a). The
simulator is based on numerical integration of the dif-
ferential equations using the Euler explicit numerical
method implemented in native for-loops in a MATLAB
script.1

The optimization problem is here solved using “brute
force” (BF), i.e. fobj(pc) is calculated over a grid of
equidistant values of Kc and τi defined in respective
arrays (MATLAB), and the optimal pc is found by
searching the matrix of stored values of fobj for the
minimum. This gives a global, approximate solution.

If a more precise value is desired, either BF opti-
mization can be repeated but with the new grid cells
covering the original grid cells containing the global
optimum candidate, or a local optimizer, Edgar et al.
(2001), can be applied with the global optimum candi-
date as the initial guess.2 Both these alternatives were
tested, with approximately the same optimum, but the
repeated BF method being considerably easier to im-
plement.

Application to simulated reactor

In eq. (14), t1 = 0 d, and t2 = 5 d. The reactor is
initially in steady-state. Fmethsp is constant (88 L/d).
At t = 1 d, Svsin is increased as a step of amplitude
2 g/L. The arrays of Kc and τi are equidistant with
100 elements each. By trial-and-error, a proper value
of R is found as 0.3. Table 2 shows the resulting op-
timal PI settings. The stability margins and response-
time as calculated from the linear model presented in
Appendix A.3. The stability margins have acceptable
values. Figure 10 shows a simulation with the optimal
PI settings, indicating acceptable stability.

1Comparing with implementation of the simulator in
SIMULINK, the computational time is reduced by a factor
of about 100 with for-loops.

2One example of a local optimizer is MATLAB’s fmincon func-
tion.
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Figure 10: Simulation of control system with optimal
PI settings.

Comments

• The optimal PI settings do not differ much from
those found with the Skogestad method and the
R-ZN method.

• Optimal tuning has not been applied to the real
reactor. However, the optimal PI settings found
from simulations will probably work well on the
real reactor sinceKc is smaller thanKc found from
the Skogestad method applied to the real reactor,
and the values of τi do not differ much.

• Optimal tuning is a flexible tuning method since
it allows for alternative types of models and alter-
native objective functions.

4.4.5. PI tuning using estimated transfer function

Figure shows real Fmeth and Ffeed, and simulated Fmeth

using the real Ffeed, over time interval of 4 d.
The simulation is based on transfer function Hp(s)

estimated from the shown real Fmeth and Ffeed. Hp(s)
is estimated using the n4sid function in MATLAB with
automatic detection of the best model order3, and us-
ing the delayest function to estimate the time-delay

3Using input argument NX = ’best’.
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Figure 11: Real and simulated Fmeth.

used in n4sid. The resulting estimate becomes

Hp(s) =
1.15

4.21s+ 1
e−0.135s =

Ke

τes+ 1
e−τdes (15)

Models estimated from other time-series do not differ
much from eq. (15). Among the large number of con-
troller tuning methods which can be used for eq. (15),
the Skogestad method is selected. Since τde is con-
siderably smaller than τe, the Skogestad PI setting for
“integrator with time-delay” processes given in Section
4.4.1 with Kpie

= Ke/τe = 0.27 [(L CH4/d)/(L/d)]/d
can be applied. The resulting PI settings are given in
Table 2. The PI control system with eq. (15) as con-
trolled process has stability margins of GM = 2.8 = 8.9
dB and PM = 37.4o, which are within the acceptable
ranges ineqs. (5)-(6).
Kc and τi found here are, respectively, larger and

smaller compared with the values found using the Sko-
gestad method in Section 4.4.1 applied directly to the
real reactor, cf. 2. This is due to τde = 0.135 d be-
ing smaller than the time-delay of 0.31 d, and to the
integral gain Kpie

= 0.27 [(L CH4/d)/(L/d)]/d being
smaller than Kpi = 0.33 [(L CH4/d)/d]/(L/d) found
in Section 4.4.1.

4.4.6. Conclusions about PI tuning method

From the results in the above sections, the Skogestad
method is favoured among the various tuning meth-
ods due to the following benefits. The step response
experiment is simple, and the experimental period is
short which is an important benefit with slow processes

such as bioreactors. Known changes in the (apparent)
time-delay can be accounted for in the PI(D) settings
without new experiments. The control agility can eas-
ily be adjusted via the closed loop time-constant. The
method can be applied without any prior mathematical
model. Finally, the method has proven, in the present
and in other application, to give good tuning results.

The R-ZN PI tuning method also works well, and
can be expected to give tuning results similar to the
Skogestad method. However, accomplishing the for-
mer method may take 3 or more times longer time
compared with the Skogestad method. Furthermore,
known changes in the (apparent) time-delay are not
easily accounted for, without a new tuning.

4.5. Control system robustness against
process parameter changes

4.5.1. Introduction

Figure 12 shows the static (steady-state) Fmeth, here
denoted Fmeths

, as a function of constant Ffeed for three
different Treac found by simulations with the modified
Hill model, Haugen et al. (2013a).
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Figure 12: Steady-state Fmeth as a function of constant
Ffeed for different Treac.

The static process gain is defined as

Kp =
∂Fmeths

∂Ffeed
(16)

Kp is the slope of the curve in Figure 12. Depending on
Ffeed, Kp is positive, zero or negative. In Figure 12 it
can be seen that for a given Treac, there is a maximum
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achievable Fmeths
, which defines the feasible setpoint

of Fmeth.

4.5.2. Dependency on Treac

To illustrate temperature dependency, the operating
point value is set to Ffeedop = 5 L/d, and the response
in ∆Fmeth(t), which is the deviation from the operat-
ing point due to a step change of Ffeed of amplitude
∆Ffeed = 1 L/d, is simulated for Treac = 25 oC and
35 oC. Figure 13 shows ∆Fmeth(t) simulated with the
linearized model presented in Appendix A.2. The sim-
ulations indicate that the dynamics of the reactor is
faster the larger Treac. To quantify the agility of the
dynamics, the 63% response time, resembling the time-
constant, is approximately 7.5 d with Treac = 25 oC and
approximately 4.1 d with Treac = 35 oC.
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Figure 13: ∆Fmeth(t) due to a step change of Ffeed of
amplitude 1 L/d at Treac = 25 oC and 35
oC.

4.5.3. Dependency on Ffeed

For illustration, Treac is set to 35 oC. Figure 14 shows
simulated ∆Fmeth(t) for a number of different values of
Ffeedop

due to a step change of amplitude 1 L/d of Ffeed

from Ffeedop . The simulations show that the dynamics
of ∆Fmeth(t) varies substantially with Ffeedop .

4.5.4. Detecting critical operating point for
controller tuning

Here, focus is on finding the critical operating point
with respect to control system stability. PI control is
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Figure 14: Simulated ∆Fmeth(t) for a number of differ-
ent values of Ffeedop

due to a step change
of amplitude 1 L/d of Ffeed from Ffeedop

.
Treac = 35 oC.

assumed. Assume that the controller will have fixed
settings. If a controller is tuned at the critical operat-
ing point, the control system will remain stable in any
other operating point. On the other hand, if the con-
troller is tuned at a non-critical operating point, the
control system may become unstable at other operat-
ing points.

Some alternatives to using fixed controller settings
to handle varying process dynamics are:

• Continuous adaptive tuning based on continuous
estimation of a transfer function model, Åstrøm
and Wittenmark (1994).

• Gain scheduling – experimental with table-lookup,
or model-based, Seborg et al. (2004).

Implementation of experimental Gain scheduling is
straightforward. Treac and Ffeed may be used as in-
put variables to the table, and the PI settings are the
output variables. Each of the PI settings can be found
experimentally using e.g. the Skogestad method. How-
ever, implemention of the above mentioned alternatives
are not designed nor analyzed here.

For the analysis of the control system stability the
transfer function model of the methane flow control
system presented in Appendix A.3 is used. The anal-
ysis is accomplished as follows: A PI controller is
tuned using the R-ZN method (with tuning parame-
ter kr = 1) at one specific operating point which is
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here denoted the basic operating point: (Ffeed = 10
L/d, Treac = 25 oC). In this tuning method the ul-
timate gain, Kcu , and the ultimate period, Pu, are
needed to calculate PI settings Kc and τi. In the tun-
ing, Kcu = 1 and τi = ∞ initially. Then, Kcu = GM
and Pu = 2π/ω180 where ω180 [rad/d] is the gain mar-
gin crossover frequency. The PI settings are used at
different operating points, and the stability margins,
namely the gain margin, GM, and the phase margin,
PM, are calculated from the transfer function model.

From the results, a conclusion is made in the fol-
lowing about what is the critical operating point for
controller tuning, and an attempt is made to explain
the results using the (nonlinear) mathematical reactor
model.

Table 3 summarizes the results. The fixed PI settings
found at the basic operating point are Kc = 1.29 (L
CH4/d)/(L/d), and τi = 0.91 d. The upper left cell of
Table 3 represents the basic operating point.

Table 3: Stability margins of the methane control sys-
tem at various operating points. The upper
left cell is the basic operating point.

Treac [oC]
Ffeed = 10

[L/d]
Ffeed = 25

[L/d]

25
GM = 5.3
PM = 38.8o

GM = 7.6
PM = 42.3o

30
GM = 3.3
PM = 35.5o

GM = 3.5
PM = 39.0o

35
GM = 2.4
PM = 30.0o

GM = 2.3
PM = 30.8o

In Table 3 the following observations are made:

1. The stability margins decrease with increasing
Treac.

2. Except at Treac = 35 oC, where the stability mar-
gins are almost independent of Ffeed, the stability
margins decrease with decreasing Ffeed.

From these observations, the following general guide-
line is proposed, at least for Treac less than 35 oC: The
critical operating point regarding controller tuning is
maximum Treac and minimum Ffeed. A PI controller
with fixed tuning should be tuned in this operating
point. (At Treac = 35 oC, the controller tuning seems
to become independent of Ffeed.)

Below is an attempt to explain the above two obser-
vations using the mathematical reactor model.

1. Regarding observation 1: Figure 12 shows the
steady-state Fmeth as a function of constant Ffeed

for different Treac. The static process gain is de-
fined with eq. (16). At least for Ffeed = 10 L/d

and 25 L/d which are assumed above, Kp increases
with Treac, and hence, a reduction of control sys-
tem stability margins can be expected.

An alternative explanation may be found directly
from the modified Hill model: From model eqs.
(25), (27), (28) in Haugen et al. (2013a), it is seen
that Fmeth becomes more sensitive to Svfa as the
temperature increases, hence the process gain in-
creases. This increased sensitivity may explain the
reduced stability (margins) as Treac is increased.

2. Regarding observation 2: From Figure 12, Kp be-
comes larger, and hence the control system stabil-
ity margins are reduced, if Ffeed is reduced.

5. Discussion

Ideally, all the questions stated in the Introduction
should be addressed with practical experiments. How-
ever, this was not possible of practical reasons, so some
questions are addressed using simulations only. Since
the modified Hill model has shown to represent the
pilot AD reactor well, Haugen et al. (2013a), it is as-
sumed that the results obtained from simulations hold
qualitatively, and to some extent, quantitatively.

Both on-off control and PI control are found be-
ing successful for controlling the methane gas flow, on
a simulated reactor as well as on the practical reac-
tor. For PI controller tuning, the Skogestad method,
which is an open loop tuning method, is identified as
the favoured tuning method. Also the R-ZN method,
which is a closed loop method based on relay oscilla-
tions, works well. It is believed that the identification
of these tuning methods can reduce time and efforts in
controller tuning for AD processes.

Dairy waste as AD feedstock has large buffering ca-
pacity, and its composition is relatively constant. If the
feedstock is more complex, as with poultry and swine
waste and food waste, a richer mathematical model
able to predict other AD variables than those of the
Hill model, e.g. pH, alkalinity, partical alkalinity (PA),
pH, ammonia, and carbon dioxide may be useful. Two
model candidates are the AM2 model by Bernard et al.
(2001a) and the ADM1 model, Batstone et al. (2002).
Overviews over AD models are given in e.g. Gavala
et al. (2003) and Strömberg (2010).

6. Conclusions

Using a mathematical model of the AD reactor and
the specific upper limit of the concentration of volatile
fatty acids, known from the literature, safe operating
conditions for the reactor can be found. These con-
ditions imply an upper limit of the feed rate, and an
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upper limit of the gas flow setpoint. This limits are
theoretical, and should be adjusted on a practical re-
actor to avoid non-zero steady state control error.

For the present pilot reactor, both simulatons and
practical experiments indicate that on-off control is a
viable feedback controller if the oscillation in the feed
rate and biogas flow can be tolerated. If smooth control
is important, PI control is appropriate. The Skogestad
method is favoured as a PI controller tuning method
since it is easy to apply and gives good tuning results
with the present reactor. Also, the R-ZN closed loop
tuning method works well, but the time needed to ac-
complish the tuning is longer than with the Skogestad
method.

Simulations indicate that it is safe for control loop
stability to tune a PI controller with fixed parameters
at low feed flow.
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A. Mathematical models

A.1. The modified Hill model

In this paper, simulations are based on the modified
Hill model adapted to the pilot AD reactor. The model
is derived in Haugen et al. (2013a).

A.2. Linearized model

For linear analysis and design, e.g. frequency response
based method, a local linear version of the modified
Hill model is used. The model has the standard form:

∆ẋ = A∆x+B∆Ffeed (17)

∆Fmeth = C∆x+D∆Ffeed (18)

where x is the state vector:

x = [Sbvs, Svfa, Xacid, Xmeth]T = [x1, x2, x3, x4]T (19)

The symbol ∆ represents “deviation from operating
point”, i.e. ∆x = x − xop, ∆Ffeed = Ffeed − Ffeedop

,
and ∆Fmeth = Fmeth − Fmethop

.

In eqs. (17)-(18), A, B, C, and D are Jacobian ma-
trices. Their elements are presented in Haugen et al.
(2013c).

A.3. Transfer function model

The transfer function from from ∆Ffeed to ∆Fmeth can
be calculated from the linear state space model, eqs.
(17) and (18), with

∆Fmeth(s)

∆Ffeed(s)
≡ HAD(s) = C (sI −A)

−1
B +D (20)

where matrices A, B, C, and D are given in Section
A.2.

In eq. (20), ∆Fmeth represents the (deviation of)
the “raw” CH4 gas flow. In practice, the CH4 gas flow
is known from the multiplication of the biogas flow
online measurement and the CH4 concentration on-
line measurement. These measurements are smoothed
with lowpass filters with the following respective time-
constants:

• Time-constant of main biogas flow measurement
filter:

τf1 = 0.2 d (21)

• Time-constant of additional biogas flow measure-
ment filter:

τf2 = 1400 min = 0.0162 d (22)

• Time-constant of CH4 concentration measurement
filter:

τf3 = 1 h = 0.0417 d (23)

Furthermore, it is observed that there is a time delay
in the observed measured responses in the CH4 gas flow
which is approximately

τd = 0.05 d (24)

Taking the above mentioned dynamic elements into
account, the following transfer function from the feed
flow to the methane gas flow measurement is obtained:

∆Fmethm
(s)

∆Ffeed(s)
= HADm

(s) = HADHdHf1Hf2Hf3 (25)

where, for i = 1, 2, and 3,

Hd(s) = e−sτd (26)

Hfi(s) =
1

s
τfi

+ 1
(27)

Figure 15 illustrates the composition of the resulting
transfer function, HADm

(s), eq. (25).
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Figure 15: The composition of the transfer function
HADm

(s), eq. (25).

B. Abbreviations and nomenclature

B.1. Abbreviations

AD: Anaerobic digestion

BF: Brute force (optimization method)

BVS: Biodegradable volatile solids

COD: Chemical Oxygen Demand

FC: Flow controller

FT: Flow transmitter (sensor)

HRT: Hydraulic retention time

IAE: Integral of absolute value of control error

NTP: Normal Temperature and Pressure: 0 oC, 1 atm

MPC: Model-based predictive control

NLS: Nonlinear least squares

NOC: Normal operating conditions

OP: Operating point

P/A: Proprionic to acetic acid ratio

PID: Proportional-integral-derivate

PWM: Pulse-width modulation

R-ZN: Relaxed Ziegler-Nichols, Haugen and Lie
(2013)

TL: Tyreus and Luyben, Tyreus and Luyben (1992)

UASB: Upflow anaerboic sludge blanket

VFA: Volatile fatty acids

VS: Volatile solids

ZN: Ziegler-Nichols, Ziegler and Nichols (1942)

B.2. Nomenclature

In the paper, but not shown in the list below, subindex
“s” is used to represent “steady-state” or “static”.

The list below contains only symbols which are used
in this paper. A complete list of symbols for the mod-
ified Hill model is in Haugen et al. (2013a).

Ae: Amplitude of the control error and the process
output.

Au: Amplitude of the on-off control signal.

c: Factor used to define lower limits of biodegraders
Xacid and Xmeth.

fobj: Objective function.

Ffeed [L/d]: Influent or feed flow or load rate, assumed
equal to effluent flow (constant volume).

Fmeth [L CH4/d]: Methane gas flow.

GM: Gain margin.

kr: Parameter of the Relaxed Ziegler-Nichols tuning
method.

Kp [(L CH4/d)/(L/d)] = ∂Fmeths
/∂Ffeed: Static pro-

cess gain.

ωc [rad/d]: Amplitude crossover frequency, which
may be defined as the control system bandwidth.

Pu [d] Period of oscillation.

PM [degrees]: Phase margin.

Svfa [g VFA/L]: Concentration of VFA acids in reac-
tor.

Svfain [g VFA/L]: Concentration of VFA in biodegrad-
able part of influent.

Sbvs [g BVS/L]: Concentration of BVS in reactor.

Sbvsin [g BVS/L]: Concentration of BVS in influent.

Svsin [g VS/L]: Concentration of volatile solids in in-
fluent.

Treac [◦C]: Reactor temperature.

τi [d]: Controller integral time.

τd [d]: Controller derivative time.

V [L]: Effective reactor volume.

Xacid [g acidogens/L]: Concentration of acidogens.

Xmeth [g methanogens/L]: Concentration of
methanogens.
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Background and methods of the article

Background

A state estimator, also denoted soft sensor, can be useful for monitoring

purposes. With the present reactor and the modified Hill model, a

continuous measurement of the methane gas flow, the reactor temperature,

and the known feed flow, are used to continuously estimate the values of

the state variables of the reactor, which in the present research project are

the concentrations of biodegradable volatile solids, volatile fatty acids,

acidogens, and methanogens, plus the assumed unknown concentration of

volatile solids of the influent. Among these states, the concentration of

volatile fatty acids is of particular interest since, according to Hill & Barth

(1977), a concentration above 0.8 g/L indicates a pending reactor failure.
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In most practical applications, an online sensor for this concentration is

not available, so an estimator can be an attractive alternative.

A state estimator may also be useful in advanced, model-based control, as

in the present article where a predictive controller is used to retain the

reactor at a specified operating point defining for example safe reactor

operation, and to track a time-varying methane gas flow setpoint. In the

predictive controller, the state estimates are used in the controller for

prediction of the future process output. This prediction is the basis of the

calculation of the optimal control sequence.

Methods

For the state estimator and the model-based controllers presented in this

article, the modified Hill AD model presented in Article no. 1, is used. As

an AD process model this model is relatively simple, yet it is sufficiently

comprehensive for the aforementioned purposes.

As state estimator, the Unscented Kalman Filter (UKF), Julier &

Uhlmann (1997) is used. The UKF algorithm implemented is the same as

presented in Simon (2006). An alternative is the well-known Extended

Kalman Filter (EKF), but the UKF is selected to avoid the linearization

needed in the EKF. Simulations based on the modified Hill model have

shown that the UKF and the EKF have almost the same performance.

The model-based controllers used in different control problems, include a

PI controller based on feedback from the concentration of volatile fatty

acids as estimated with the UKF, and a predictive controller for retaining

the methane gas flow at its setpoint.

As predictive controller, a relatively simple, straightforward,

implementation is made, using the function fmincon() in Optimization

Toolbox in MATLAB to calculate the optimal future control sequence that

minimizes the optimization objective of the controller. fmincon() uses

simulations of the nonlinear model in its search for the optimal control

sequence. Although alternative model-based controller functions exist, e.g.

the linear quadratic controller and the pole placement controller — both

based on state feedback, we see no reason to select any of these instead of

the nonlinear predictive controller.

The predictive controller algorithm has been tested on a simulated

laboratory-scale air heater where the air temperature is to be controlled,

Haugen (2013), then on the real air heater. The algorithm was then tested
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on a simulated AD reactor using the modified Hill model. As expected,

some errors were observed, but eventually the test were completed

successfully. Finally, the algorithm was applied successfully to the real

reactor. This approach to testing, i.e. starting with a simple simulated

application, then the simple real application, and finally a simulated full

application, has turned out to be very effective. This approach of testing is

depicted using general terms in Figure 12.

Application to
simulated simple system

Application to
real simple system

Algorithm
to be tested

Ok?

Ok?

Ok?

Improvement of 
algorithm

Application to
simulated full system

Application to
real full system

Ok?

Result

Yes

No

Improvement of 
algorithm

Result

Yes

No

Improvement of 
algorithm

Result

Yes

No

Improvement of 
algorithm

Result

Yes

No

Finished

Figure 12: The applied procedure of algorithm testing.

To analyze the control systems in simulation applications, both

performance and stability robustness measures are calculated. As

performance measures, the IAE index (Integral of Absolute value of control
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Error) is calculated for setpoint changes and for disturbance changes. As

stability robustness measures, the gain margin (GM) and the phase margin

(PM) are calculated from experimental simulations with the nonlinear

model by introducing a gain, ∆, and a time delay, ∆ , in the control

loop. Initially, ∆ = 1 and ∆ = 0. From the gain increase, ∆, and

the time delay increase, ∆, that (may) bring the control system to the

stability limit, i.e. showing sustained oscillations, GM and PM are

calculated, as follows:

GM = ∆ (3)

PM =
∆


· 360o (4)

where  is the period of the sustained oscillations, Haugen (2012),

Appendix A. These GM and PM are equivalent to the GM and PM known

from stability analysis of linear feedback systems.

Supplementary material: Implementation of the

predictive controller in MATLAB

There are predictive controller algorithms for linear models, Maciejowski

(2002), Haber et al. (2011), and for nonlinear models, Grüne & Pannek

(2011). Since the modified Hill model is nonlinear, it was decided to try a

predictive algorithm for this nonlinear model, and not for the

corresponding linear model which can represent the original model only

about a given operating point. Furthermore, the implementation will

probably be simpler if the linearization can be avoided.

The function fmincon() in MATLAB’s Optimization toolbox is used to

calculate the optimal future control sequence. fmincon() is a local

nonlinear optimizer which can automatically select the most proper

optimization algorithm. In general terms, fmincon() calculates the optimal

value of objective variables which minimizes the given objective function.

In this application, each of the objective variables is each of the elements

in the future control signal sequence, {opt()}. Since the time step for the
predictive controller is 0.025 d and the prediction horizon is 1 d, the

number of elements in {opt()} is 1/0.025 = 40, i.e. the number of
optimization variables. The objective function of the predictive controller

to be minimized is

obj =

Z +h



£
2 () + du̇

2 ()
¤
 +h

2 (h) (5)
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The constraint on  is: min ≤ () ≤ max.  is the control error. du and

h are cost (or weight) coefficients.  is the present time. h is the

prediction horizon.

In Article 4, predictive control is used both for control of meth and for

control of vfa. Below, the implementation of predictive control of meth of

the simulated reactor is presented in detail, but the implementation of

predictive control of vfa is similar. The algorithm is presented in the

MATLAB code excerpt below, however, straightforward details are

omitted to save space. The implementation for the real reactor, cf. Article

4, is similar.

Figure 13 shows the function connections in the script implementing

nonlinear predictive control of the AD reactor. The reactor is represented

with the modified Hill model. The function fmincon() calculates the

optimal control sequence (array).

Calculation of 

state estimates

Calculation of 

optimal control 
sequence (array), 

u_opt

Simulation
and calculation of 

f_obj

obj_mpc()

Calculation of 
constraint

equations

con_mpc()

fmincon()

function_ukf()

Main
loop

f_obj

params

params
and

x_est

script_main

Iterations

constraint

eqs.

Iterations

u_opt(1)x_est

Simulation/
real process

y=F_meth

Figure 13: Illustration of the function connections of the program imple-

menting predictive control.
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In the code excerpt presented below, the possibility of using different model

parameters in the MPC/UKF and the simulator to study the effect of

model parameters errors, is implemented. The complete MATLAB script,

including the functions involved, is available at Haugen et al. (2013).6

The following functions used in the code excerpt below are described after

the excerpt:

• fmincon()
• objfun_mpc() (which is invoked by fmincon)
• confun_mpc() (which is invoked by fmincon)
• function_ukf()

%Hill params used in MPC and UKF:

b = 2.9;

K_s = 15.5;

...

p_mpc_ukf=[b,K_s,...];

%Hill params representing "real" process,

%which may be set different from p_mpc_ukf:

b_real = 2.9;

K_s_real = 15.5;

...

p_real=[b_real,K_s_real,...];

%----------------------------------------------------

T_reac=35;

std_F_meth_noise=1.2*0;

%------------------------------------------------

%Time params:

Ts=0.025; %Time-step

t_pred_horizon=1;

Np=t_pred_horizon/Ts;

t_start=0;

t_stop=16;

Nsim=(t_stop-t_start)/Ts;

t=[t_start:Ts:t_stop-Ts]’;

%---------------------------------------------------

%Init states:

6The script also contains PI control of meth for easy comparison with predictive con-

trol.
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S_bvs_init= 3.417;

S_vfa_init= 0.661;

X_acid_init = 2.029;

X_meth_init = 0.387;

F_meth_init = 150;

S_vs_in_init=30.2;

%---------------------------------------------------

%Initial guessed optimal control sequence (u=F_feed):

u_guess=0*zeros(Np,1)+28.19;

%---------------------------------------------------

%State-space model implementing time-delay in "real" process:

Timedelay_real_process=0.2;

nd_real_process=ceil(Timedelay_real_process/Ts);

Ad_real_process=diag([ones(nd_real_process-1,1)],-1);

Bd_real_process=[nd_real_process=1;zeros(nd_real_process-1,1)];

Cd_real_process=[zeros(1,nd_real_process-1),nd_real_process=1];

Dd_real_process=[nd_real_process==0];

x_delay_real_process_k=zeros(length(Ad_real_process),1)+u_const;

%State-space model implementing time-delay in MPC:

Timedelay_mpc=0.2;

nd_mpc=ceil(Timedelay_mpc/Ts);

Ad_mpc=diag([ones(nd_mpc-1,1)],-1);

%...Similar to above (details not shown here).

%-----------------------------------------------------

%Creating future setpoint profile, assumed known for MPC:

F_meth_sp=... (details not shown here)

%----------------------------------------------------

%Creating S_vs_in profile for simulation

%(S_vs is still assumed unknown for UKF and MPC):

S_vs_in=... (details not shown here)

%-------------------------------------------------

%%%%%%%%%%%%%%%%%%%%%%%%

% MPC with UKF

%%%%%%%%%%%%%%%%%%%%%%%%

%Tuning of UKF:

%Giving values to x_init, x_apost_k_minus_1, Q, R

(Details omitted here.)

%--------------------------------------------
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%Preallocation of arrays:

S_bvs=zeros(Nsim-Np,1)+S_bvs_init;

... (similar details omitted here)

%--------------------------------------------

%Matrices defining linear constraints for use in fmincon:

A=[];B=[];Aeq=[];Beq=[];

%--------------------------------------------

%Lower and upper limits of optim variable for use in fmincon:

lb=u_guess*0;

ub=u_guess*0+40;

%--------------------------------------------

%MPC costs:

c_e=1;

c_u=0;

c_du=0.01;

c_final=0;

costs=[c_e c_u c_du c_final];

%--------------------------------------------

%For-loop for calculating optimal control sequence applied to

simulated process:

for k=1:Nsim-Np

%Updating future setpoint profile as time elapses:

F_meth_sp_to_optim=F_meth_sp(k:k+Np);

%Time-shift of state:

x_mpc_init=x_apost_k_minus_1;

%Defining fun handle for fmincon:

fun_handle=@(u) objfun_mpc(Ad_mpc,Bd_mpc,Cd_mpc,...

Dd_mpc,u,T_reac,F_meth_sp_to_optim,p,costs,x_mpc_init,Np,Ts);

%Using fmincon for Calculating optimal future control

sequence:

optim_options=optimset(’Algorithm’,’active-set’,’LargeScale’,’on’,...

’MaxIter’,10000,’MaxFunEvals’,1000*length(u_guess),’Display’,’off’);

[u_opt,fval,exitflag,output,lambda,grad,hessian] =...

fmincon(fun_handle,u_guess,A,B,Aeq,Beq,lb,ub,...

@confun_mpc,optim_options);

%Using optimal control sequence as guessed optim solution

%in next iteration:

u_guess=u_opt;

%Applied controller output set as first sample
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%of optimal control sequence:

u(k)=u_opt(1);

%------------------------------------------------------

%Applying optimal control signal to simulated "real" process:

mu_m=0.013*T_reac-0.129;

mu_mc=mu_m;

mu=mu_m/(K_s_real/S_bvs(k)+1+0*S_vfa(k)/K_i_real);

mu_c=mu_mc/(K_sc_real/S_vfa(k)+1+0*S_vfa(k)/K_ic_real);

in_delay_real_process_k=u(k);

x_delay_real_process_k_plus_1=Ad_real_process*...

x_delay_real_process_k+Bd_real_process*in_delay_real_process_k;

out_delay_real_process_k=Cd_real_process*x_delay_real_process_k+...

Dd_real_process*in_delay_real_process_k;

F_feed(k)=out_delay_real_process_k;

%Time-derivatives of state variables:

dS_bvs_dt=(B0_real*S_vs_in(k)-S_bvs(k))*...

F_feed(k)/V_real-mu*k1_real*X_acid(k);

dS_vfa_dt=(Af_real*B0_real*S_vs_in(k)-S_vfa(k))*F_feed(k)/V_real+...

mu*k2_real*X_acid(k)-mu_c*k3_real*X_meth(k);

dX_acid_dt=(mu-K_d_real-(F_feed(k)/b_real)/V_real)*X_acid(k);

dX_meth_dt=(mu_c-K_dc_real-(F_feed(k)/b_real)/V_real)*X_meth(k);

%Euler forward step:

S_bvs(k+1)=S_bvs(k)+Ts*dS_bvs_dt;

... (similar details omitted here)

F_meth(k)=V*k5_real*mu_c*X_meth(k);

x_delay_real_process_k=x_delay_real_process_k_plus_1;

%------------------------------------------------------

%UKF:

y_k=F_meth(k)+std_F_meth_noise*randn;

F_feed_k=F_feed(k);

[P_apost_k,x_apost_k,y_pred_k,K_k]=...

function_ukf(y_k,P_apost_k_minus_1,x_apost_k_minus_1,Ts,...

F_feed_k,p,T_reac,Q,R);

F_meth_est(k)=y_pred_k;

%------------------------------------------------------

%Time shift:

x_apost_k_minus_1=x_apost_k;

P_apost_k_minus_1=P_apost_k;

S_bvs_est(k)=x_apost_k(1);
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... (similar details omitted here)

end %for loop

Functions used in the code excerpt above are described in the following.

fmincon()

The function fmincon() in MATLAB’s Optimization toolbox is used to

calculate the optimal future control sequence. fmincon() is a local

nonlinear optimizer which can automatically select the most proper

optimization algorithm. In general terms, fmincon() calculates the optimal

value of objective variables which minimizes the given objective function.

In this application, each of the objective variables is each of the elements

in the future control signal sequence, {opt()}. Since the time step for the
predictive controller is 0.025 d and the prediction horizon is 1 d, the

number of elements in {opt()} is 1/0.025 = 40, i.e. the number of
optimization variables. The objective function of the predictive controller

to be minimized is

obj =

Z +h



£
2 () + du̇

2 ()
¤
 +h

2 (h) (6)

The constraint on  is: min ≤ () ≤ max.  is the control error. du and

h are cost (or weight) coefficients.  is the present time. h is the

prediction horizon.

objfun_mpc()

fmincon() invokes objfun_mpc() which calculates obj, eq. (6), to be

minimized by fmincon(). A portion of objfun_mpc() is shown below.

function f =

objfun_mpc_kf_pi_delay(Ad_mpc,Bd_mpc,Cd_mpc,Dd_mpc,...

u,T_reac,F_meth_sp,p,costs,x_mpc_init,Np,Ts)

%Params:

b=p(1);

K_s=p(2);

%...(similar details omitted here).

%Costs:

c_e=costs(1);c_u=costs(2);c_du=costs(3);c_final=costs(4);
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%Preallocation and initialization:

S_bvs=zeros(1,Np)+x_mpc_init(1);

%...(similar details omitted here).

x_delay_mpc_k=zeros(length(Ad_mpc),1)+u(1);

F_meth=zeros(1,Np);

e=zeros(1,Np);

J1=zeros(1,Np);

u_k_minus_1=u(1);

for k=1:Np

mu_m=0.013*T_reac-0.129;

mu_mc=mu_m;

mu=mu_m/(K_s/S_bvs(k)+1+0*S_vfa(k)/K_i);

mu_c=mu_mc/(K_sc/S_vfa(k)+1+0*S_vfa(k)/K_ic);

input_delay_mpc_k=u(k);

x_delay_mpc_k_plus_1=Ad_mpc*x_delay_mpc_k+Bd_mpc*input_delay_mpc_k;

output_delay_mpc_k=Cd_mpc*x_delay_mpc_k+Dd_mpc*input_delay_mpc_k;

F_feed(k)=output_delay_mpc_k;

dS_bvs_dt=(B0*S_vs_in(k)-S_bvs(k))*F_feed(k)/V-mu*k1*X_acid(k);

dS_vfa_dt=(Af*B0*S_vs_in(k)-S_vfa(k))*F_feed(k)/V+...

mu*k2*X_acid(k)-mu_c*k3*X_meth(k);

dX_acid_dt=(mu-K_d-(F_feed(k)/b)/V)*X_acid(k);

dX_meth_dt=(mu_c-K_dc-(F_feed(k)/b)/V)*X_meth(k);

S_bvs(k+1)=S_bvs(k)+Ts*dS_bvs_dt;

S_vfa(k+1)=S_vfa(k)+Ts*dS_vfa_dt;

X_acid(k+1)=X_acid(k)+Ts*dX_acid_dt;

X_meth(k+1)=X_meth(k)+Ts*dX_meth_dt;

F_meth(k)=V*k5*mu_c*X_meth(k);

e(k)=F_meth_sp(k)-F_meth(k);

du_dt_k=(u(k)-u_km1)/Ts;

%Updating objective:

J1(k+1)=J1(k)+Ts*(c_e*e(k)*e(k)+c_u*u(k)*u(k)+c_du*du_dt_k*du_dt_k);

%Time shift:

u_k_minus_1=u(k);

x_delay_mpc_k=x_delay_mpc_k_plus_1;

end %for loop

%Calculating the objective function:

J=J1(end)+c_final*e(end)*e(end);
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f = J;

end %function

confun_mpc()

fmincon() invokes confun_mpc() in which the user can define equality and

inequality contstraints. However, in the present application, no such

constraints are implemented. Upper and lower limits on the optimization

variables, i.e. {()}, is instead defined with the pertinent arguments of
fmincon().

function_ukf()

function_ukf(), developed for the present application, implements the

Unscented Kalman Filter (UKF) algorithm presented in Simon (2006)

which estimates the augmented state vector,

 = [bvs vfaacidmeth vsin ]
 (7)

using the modified Hill model summarized in Appendix A of Article 4. The

UKF state estimate is used in objfun_mpc() as the initial state in the

simulation used to calculate the steady state value of meth.
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1 Introduction

Anaerobic digestion (AD) of organic substrates can
produce biogas which consists mainly of methane and
carbondioxide, [40], [7], [42]. In a well-operated AD
reactor, the methane content is sufficiently large to
make the biogas combustible, i.e. the AD process
produces applicable energy. Moreover, the reactor
digestate is often high in nutrients and can be used in
fertilization. Animal waste, in many cases combined
with e.g. food waste, is a typical feedstock of AD
reactors. A presentation of AD of animal wastes,
from dairy, beef, poultry, and swine, is provided e.g.
in [23].

UASB (upflow anaerobic sludge blanket) type re-
actors are effective AD reactors as they allow for rel-
atively high load rates (feed rates) and/or small re-
actor volumes, [25], [40]. The effectiveness is due
to relatively large solids retention time (SRT), which
is the retention time of the micro-organisms which
degrades the substrate and generates e.g. methane,
compared with the hydraulic retention time (HRT) of
the reactor. The AD reactor studied in the present
article is an UASB reactor.

Anaerobic digestion a complex and nonlinear dy-
namic process and most plants suffer from a lack of
robust online-measurement systems for online process
monitoring [42]. Therefore, automatic plant control
is a challenging task. The present article presents
an attempt to using a mathematical dynamic model
to estimate, online, non-measured AD state variables,
and to using these estimates in a model-based control
system. Results of the application of state estimation
and model-based control to a real pilot AD reactor
using dairy waste as feedstock are shown. The reactor
is situated at Foss Farm, Skien, Norway. The results
from the pilot reactor are assumed to be transferable
to a planned full-scale reactor at the farm.

In this article, state estimates are used both in
industry-standard PI controllers and in predictive
controllers. The only online measurement used by the
estimator, and thus by the controllers, is the methane
gas flow. The reactor temperature is retained at a
constant setpoint by means of a temperature control
system [17].

Several control systems are designed and applied

to the reactor: One aims at retaining the produced
methane flow at a setpoint which can stem from
a specified power production. Another control sys-
tem aims at retaining the reactor at a safe operating
point, where the concentration of the VFA (volatile
fatty acids) is not above a certain value.

The model-based design and the simulations are
based on the modified Hill model adapted to the pilot
reactor [15]. This model is summarized in Section 3.3.

This paper is organized as follows. Section 2 gives
a literature review. Section 3 provides a system de-
scription, including the mathematical reactor model
used as the basis for state estimation and model-
based control. In Section 4, safe reactor operation
conditions is defined in terms of an acceptable range
of VFA (volatile fatty acids). Section 3.2 presents a
general structure of a model-based optimization and
control system, applicable to the reactor. Application
of the Unscented Kalman Filter (UKF) to estimate
the state variables of the reactor and its main distur-
bance, namely Svsin , is described in Section 5. These
estimates are used for control of Fmeth, which is de-
scribed in Section 6, which includes both simulated
and real results. The estimates are also used for con-
trol of Svfa, which is described in Section 7, which is
simulation study. Conclusions are given in Section 8.

MATLAB and SIMULINK (MathWorks, Inc.) are
used for numerical computations and simulations.
The real control system is implemented in LabVIEW
(National Instruments, Inc.) running on a laptop PC.
In the LabVIEW program, the algorithms of the UKF
and the predictive controller are implemented in a
Matlab Script Node.

2 Literature review

State estimators for AD reactors

Literature about state estimators applied to AD reac-
tors fed specifically with dairy manure have not been
found. Below are references to state estimators ap-
plied to reactors fed with other types of substrates,
assumed being relevant also for the present applica-
tion.

In a simulation study, Jones et al. [24] apply an Ex-
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tended Kalman Filter (EKF) to estimate four states
of a simplified version of the AD model by Hill and
Barth [21], using five online measurements.

Bernard et al. [5] estimate the six states of a real
AD reactor fed with effluents from a wood process-
ing plant using an asymptotic observer [2]. Avail-
able online measurements were CH4 gas flow and CO2

gas flow. Influent concentrations are assumed known.
The estimator is based on a state variable transfor-
mation leading to a model having auxiliary state vari-
ables where the reaction rates are eliminated. These
rates are then estimated from the state estimates.
The estimator is designed so that the estimation er-
rors converge towards zero with dynamics of the mass
balances of the model, determined by e.g. the feed
rate. The asymptotic observer is an open loop esti-
mator, and has no tuning parameters, contrary to a
Luenberger observer and a Kalman Filter which are
closed loop, or feedback, estimators with parameters
which can readily be used for performance adjust-
ment.

Alcaraz-Gonzalez et al. [1] estimate four out of
six states of a real AD reactor fed with industrial
wine distillery vinasses, namely the methanogens and
acidogens concentrations, COD (chemical oxygen de-
mand), and alkalinity, by using online measurements
of CO2 gas flow, VFA, and TIC (total inorganic car-
bon). The AD process model is as in [5]. The estima-
tor is an interval observer based on the structure of
an asymptotic observer. An important property of an
interval observer is that the estimates are guaranteed
to be within bounds given by uncertainty bounds of
model parameters and AD process inputs.

In a study based on real data, Theilliol et al.
[41] estimate the six state variables, and three un-
known inflow concentrations, namely COD, VFA and
TIC, of an AD reactor fed with industrial wine
distillery vinasses, using five online measurements:
COD, VFA, alkalinity, CH4 gas flow and CO2 gas
flow. The estimator is based on manipulating the
original state space model using SVD (singular value
decomposition) to a find an observable subsystem in-
sensitive to unmeasured inputs. Then, a Luenberger
observer based on this subsystem is used to estimate
the state and the unmeasured inputs.

In a simulation study based on a full-scale agricul-

tural biogas plant, Gaida et al. [10] uses discriminant
analysis and classification based pattern recognition
methods to find the static mapping function between
the measurement data, which are biogas flow, CH4

and CO2 gas concentrations, pH in the reactor, and
the amount of each substrate, and the state of the AD
process. The state variables are those of the ADM1
model (Anaerobic Digestion Model No. 1) [3]. The
various substrates considered are maize silage, grass,
manure and manure solids.

Dochain [8] and Bogaerts et al. [6] give an
overview over various state estimators suitable for
bio-processes, including the estimators applied in the
references above.

In the applications referred to above, the estima-
tors use two or more online measurements. In the
present paper, only one measurement is used, namely
Fmeth (CH4 gas flow). Furthermore, in the present
paper the Unscented Kalman Filter (UKF) is used.
The UKF can be used without any linearization or
model manipulation, i.e. it uses the nonlinear state
space model directly in the algorithm. We have not
found literature on application of the UKF to AD
reactors.

Model-based control of AD reactors

We have not found literature on model-based con-
trol systems of AD reactors fed specifically with dairy
waste. Below are references to model-based control
systems of reactors fed with other types of substrates,
assumed being relevant also for the present applica-
tion.

Bernard et al. [5] have implemented a model-
based adaptive linearizing controller and a fuzzy con-
troller designed to maintain the intermediate alkalin-
ity (VFA, volatile fatty acids) and the total alkalinity
within specified limits to ensure stable process con-
ditions and avoid VFA accumulation despite organic
load disturbances. The so-called AM2 model, [4], is
used for design and simulation.

Puñal et al. [31] have designed an automatic fuzzy
logic-based control system to maintain the online
measured VFA concentration at a proper setpoint.

Méndez-Acosta et al. [28] have designed a model-
based controller for maintaining the COD (chemical
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oxygen demand) of the reactor effluent at its setpoint,
using the AM2 model, [4].

Méndez-Acosta et al. [29] have designed a multi-
variable control system for controlling the concentra-
tion of VFA in the reactor to its setpoint using the
feed rate, and controlling the total alkalinity to its
setpoint using the addition of an alkali solution.

Strömberg et al. [39] has identified, using simula-
tions, three controllers for AD processes to be the
most suitable ones for maximizing gas production
while being able to react properly to process distur-
bances due to variations in pH, ammonia, and con-
centration in the reactor feed. The simulations use
the ADM1 model [3]. All of the controllers have the
feed rate as control variable (controller output). The
controllers resemble an expert system, with logics
(if-clauses) in the control function. The three con-
trollers are: 1. The extremum-seeking variable gain
controller by Liu et al. [26]. 2. The disturbance
monitoring controller by Steyer et al. [38]. 3. The
hydrogen-based variable gain controller by Rodrigues
et al. [33]. Strömberg et al. note that no uniform
tuning method could be derived to tune the three
controllers. Instead, trial-and-error procedures are
used.

In a simulation study, Gaida et al. [9] have imple-
mented a nonlinear predictive controller to control
a simulated ADM1, assuming all states are available,
and therefore, a state estimator is not used. The con-
troller allows alternative optimization criteria, e.g.
economical optimization and minimum methane con-
centration of the biogas. The plant is the same as in
[10], cf. the above section about state estimation.

In a simulation study, Ordace et al. [30] have im-
plemented a predictive controller based on transfer
functions adapted to the ADM1 model to control the
ADM1. The optimization criterion of the controller
contains the square of the control error, while the
control signal usage is not included, i.e. it has no
cost in the criterion.

3 System description

3.1 AD reactor with control system

Figure 1 depicts the AD reactor with its control sys-
tem. The reactor type is UASB (upflow anaerobic
sludge blanket). The reactor is a part of a pilot bio-
logical plant for nutrient and energy recovery named
Foss Biolab, situated at Foss farm, Skien, Norway.
Input to the plant is dairy manure diluted with 25%
water and filtered with a sieve, and outputs are fer-
tilizer and biogas consisting of approximately 70%
methane. The reactor temperature is kept fixed at
its setpoint with an automatic temperature control
system.

In Figure 1, the block denoted “Model-based Con-
troller” may comprise a state estimator and alterna-
tive controller functions (predictive controller and PI
controller with feedback from state estimates). The
model-based controller uses an online measurement
of Fmeth which is provided by sensor FT. This mea-
surement is obtained by multiplying the online biogas
flow measurement from a thermal gas flow sensor and
the online methane concentration measurement from
an IR-based sensor. The raw measurement signals

Filtered 
manure

Effluent 
(liquid)

Sludge bed
(with microorganisms)

Liquid
(with suspended sludge)

Biogas

Ffeed

Pump

FT

Fmeth

Fmeth,SP Model-based
Controller

u

Figure 1: Control system of the AD reactor
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are smoothed using software filters.
Ffeed is used as control variable. The demanded

flow is obtained with a peristaltic feed pump operated
with PWM (Pulse Width Modulation) with a cycle
time of 700 sec.

In principle, also Treac is a candidate as control
variable since it has a clear impact on Fmeth, but in
[16] we argue why Treac is not considered a usable
control variable.

An online measurement of Treac is used by the con-
troller, since Treac is an important model variable.
Treac is retained at its (fixed) setpoint with a sepa-
rate temperature control system where the controller
is a PI (proportional plus integral) controller [17].

In this article, Treac is kept at 35 oC because this
is a typical temperature at which AD reactors are
operated (mesophile conditions). However, this tem-
perature is not necessary optimal. In [18] we show
how the temperature can be specified using model-
based optimization.

3.2 Control system structure

Figure 2 shows the structure of the control system.

Process
(real or simulated)

x

xest

Estimator

Controller

Operational

objectives

 incl. 

constraints

d

yMa Mr

Ma

Control

Designer

Ma

yest dest

u

Disturbances

Process 

outputs

Control

variables

Slow loop

Legend: Ma : Assumed model. Mr : ’Real’ model used in simulations.

Control 

design, e.g. 

structure, 

setpoints, and 

tuning

parameters

(e.g. costs for 

predictive 

control)

Figure 2: Block diagram of model-based optimization
and control system. (Terms and variables are defined
in the text.)

In the block diagram: u = Ffeed, and d =
Svsin . x comprises here the four state variables
of the modified Hill model, cf. Section 3.3: x =
[Sbvs, Svfa, Xacid, Xmeth]

T
. Depending on the appli-

cations in this paper, y = Fmeth, cf. Section 6, or

y = Svfa, cf. Section 7. Furthermore: The Process
is the reactor. The Controller implements predictive
control or PI control or manual control. The Esti-
mator is an Unscented Kalman Filter (UKF). The
Control Designer is the algorithm or strategy used
to transform the specifications of the optimal opera-
tion into (optimal) setpoints and/or control signals.
The Control Designer may also set parameters for
controller tuning, e.g. cost factors in the optimiza-
tion criterion of a predictive controller, or it may be
an optimization algorithm to calculate optimal set-
points.

The symbol Ma in various blocks in Figure 2 rep-
resents the assumed mathematical model used in the
block. The Mr symbol in the Process block is the
model representing the real system (process). Only
if model errors are assumed zero, Ma and Mr are
identical.

The connections from d and/or dest to the Control
Designer are due to d being an input to the process,
and the value of d or dest is included in the model-
based optimization. For example, the value of Svsin in
the feed of the reactor have an impact on the specific
value of Ffeed needed to produce a specified Fmeth

which in turn is closely related to the power produc-
tion in the reactor.

In general, the operational objectives, which are
the inputs to the Control Designer in Figure 2, may
be adjusted based on results of an evaluation of the
factual process operation, but this possible adjust-
ment is not depicted in Figure 2.

A large number of model-based controllers exists
[11]. In this paper, a predictive controller [12] [32] is
selected.1 The selection of a predictive controller is
due to its popularity (as model-based controller) in
the process industry [13], and due to our view that
it implements most of important controller features
which would otherwise require a number of special
solutions, i.e. feedback, feedforward, integrator anti
windup, constraints handling, and time delay com-
pensation. When nonlinear predictive control is used,
as in this paper, process nonlinearites are taken into
account naturally and without approximations. Fur-

1A predictive controller is also denoted model-based pre-
dictive controller (MPC).
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thermore, a predictive controller is relatively easy to
tune, if the process model is accurate.

3.3 AD process model

The mathematical model of the AD processes in
the reactor is a modification of the Hill model [20]
adapted to the pilot reactor [15]. The model is based
on material balances of biodegradable volatile solids,
volatile fatty acids, acidogens and methanogens, and
a calculation of the produced methane gas flow. The
model is summarized below.

Material balances:

Ṡbvs = (B0Svsin − Sbvs)
Ffeed

V
− µk1Xacid (1)

Ṡvfa = (AfB0Svsin − Svfa)
Ffeed

V
(2)

+µk2Xacid − µck3Xmeth (3)

Ẋacid =

(
µ−Kd −

Ffeed/b

V

)
Xacid (4)

Ẋmeth =

(
µc −Kdc −

Ffeed/b

V

)
Xmeth (5)

Methane gas production:

Fmeth = V µck5Xmeth (6)

Reaction rates:

µ = µm
Sbvs

Ks + Sbvs
(7)

µc = µmc
Svfa

Ksc + Svfa
(8)

µm = µmc = 0.013Treac − 0.129 (9)

for 20◦C < Treac < 60◦C

Table 1 shows model parameter values as adapted
to AD reactor at Foss Farm, [15].

One example of a set of steady-state values of the
AD process variables is given in Table 2.

Table 1: Parameters in the modified Hill model
adapted to the AD reactor at Foss Farm

Parameter Value Unit

Af 0.69 (g VFA/L)/(g BVS/L)
b 2.90 d/d
B0 0.25 (g BVS/L)/(g VS/L)
k1 3.89 g BVS/(g acidogens/L)
k2 1.76 g VFA/(g acidogens/L)
k3 31.7 g VFA/(g methanogens/L)
k5 26.3 L/g methanogens
Kd 0.02 d−1

Kdc 0.02 d−1

Ks 15.5 g BVS/L
Ksc 3 g VFA/L
V 250 L

4 Safe operation condition

The various control systems proposed in this paper
are designed to retain the reactor at a safe reactor op-
eration condition, defined below. Hill et al. [22] have
found, from a comprehensive study of literature re-
porting operational data for reactors fed with swine
and beef manure and confirmed by their own lab-
oratory experiments, that Svfa > 0.8 g/L indicates
an impending reactor failure, causing a reduction of
methane production. Hence, it is here stated that

Svfa ≤ 0.8 g/L = Smax
vfa (10)

defines safe operation conditions for the reactor. For
practical reasons, we have not been able to conduct
our own experiments to verify ineq. (10), or to iden-
tify a different Smax

vfa . However, a new value of Smax
vfa

will not change the principal results of this article.
Hill et al. found that also the proprionic to acetic

acid (P/A) ratio is a good indicator of health. How-
ever, this ratio can not be calculated from the math-
ematical model used in this paper, and therefore, the
analysis here is not based on this ratio.

Hill et al. did not use dairy manure in their analysis
since reliable data for such manure were not available.
Nevertheless, it is here assumed that the aforemen-
tioned safe range of Svfa applies approximately also
for reactors fed dairy manure. A support for this as-
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sumption is that the validated AD reactor model by
Hill [20] has the same parameters describing the AD
process for dairy, swine, poultry, and beef manure,
except for parameters expressing the fraction of the
organic feed that is degradable, but the AD process
dynamics are independent of the latter parameters.

Figure 3 shows simulated static (steady-state) re-
sponses in a number of variables to a range of con-
stant feed rates (Ffeed). The cyan horizontal line in
the Svfa plot represents Svfa = 0.8 g/L. The green
intervals on the abscissas indicate safe reactor opera-
tion, and conversely, the red interval indicate unsafe
operation.

Table 2 shows the values of several variables at the
ultimate safe steady state operating point. The set of
three corresponding values, (Svfa, Ffeed, Fmeth), con-
stitutes the ultimate safe steady state operating point
of the reactor. Table 2 also shows, for completeness,
values of other model parameters and variables than
those discussed here.

Table 2: The ultimate safe steady state operating
point.

Variable Value Unit

Svfa 0.8 g/L
Ffeed 35.3 L/d

Ffeed/V = D 0.14 (L/d)/L
V/Ffeed = HRT 7.1 d

Fmeth 174.2 L CH4/d
Fmeth/V 0.70 (L CH4/d)/L
Sbvs 4.14 g/L
Xacid 1.80 g/L
Xmeth 0.39 g/L
Svsin 30.2 g/L
Treac 35 oC

One question arises about the applicability of the
modified Hill model to predict safe/unsafe operation
of the reactor: Is it necessary to include Smax

vfa = 0.8
g/L explicitly to find the ultimate (maximum) safe
operating point? Assuming the reactor model is ac-
curate, safe operating points should be implicit in the
model, i.e. they can be calculated from the model,
e.g. by simulations. The modified Hill model used
in the present paper is relatively simple. It is not

clear, because appropriate experiments have not be
run here, to what extent the model is able to predict
a possible failure of the real reactor due to high con-
centration of VFA. Therefore, as long as this simple
model is chosen, it will be safer to define Smax

vfa explic-
itly instead of relying on the model alone to predict
a possible failure.

Defining explicit limits on model variables for safe
operation is consistent with the approaches in e.g. [5]
and [29] where limits on VFA and TA (total alkalin-
ity) are set explicitly.

5 State estimation

State estimation is used in the control systems de-
scribed in Sections 6 and 7. State estimators can
also be useful solely for monitoring purposes, i.e. for
estimation of state variables in the lack of sensors.
The state estimator used in the present article is a
Kalman Filter [35] algorithm based on the modified
Hill model presented in Section 3.3. While there ex-
ist several state estimation algorithms, cf. Section
2, we select here the Kalman Filter because it has a
relatively simple and straightforward structure, and
because it can be easily fine-tuned.

The modified Hill model is a nonlinear model. The
Extended Kalman Filter (EKF) is a commonly used
extension of the basic Kalman Filter for nonlinear
models. The EKF involves linearization of the pro-
cess model. An alternative to the EKF is the Un-
scented Kalman Filter (UKF) [35]. Two benefits of
the UKF, compared to the EKF, are that no lin-
earization is necessary, and that the estimates are
more accurate as the propagation of the estimation
covariances, needed to calculate the optimal state es-
timates, are calculated more accurately. Because of
these two benefits, the UKF is selected as state esti-
mator in this paper.

Variables and parameters of the model

The state variables of the modified Hill model are, cf.
Section 3.3, Sbvs, Svfa, Xacid, and Xmeth. They are
estimated with the UKF. It is decided to also esti-
mate Svsin with the UKF since it it assumed that its
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Figure 3: Simulated static (steady-state) values of a number of variables versus Ffeed (constant) at Treac =
35oC. The green intervals on the abscissas indicate safe reactor operation as defined in ineq. (10). Conversely,
the red intervals represent unsafe reactor operation.
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value may vary, though slowly. As is common, Svsin

is modelled as a “random walk”: Ṡvsin = w where w
is a random disturbance. Thus, the augmented state
vector to be estimated by the UKF is

x = [Sbvs, Svfa, Xacid, Xmeth, Svsin ]
T

(11)

Ffeed is regarded as an input variable to the UKF.
Ffeed is the control variable, which is always known.

The model parameters are known from model
adaptation [15]. Treac may vary, but is always known
as it is measured continuously.

The process measurement, y, used by the UKF is
Fmeth available from sensor FT in Figure 1. Hence,
y = Fmeth in the UKF.

Observability

The linearized reactor model, augmented with Svsin ,
is found observable at a number of typical operating
points using the obsv function of the MATLAB Con-
trol System Toolbox (further details are not shown
here).

Tuning of the UKF

The tuning parameters of the UKF are as follows
x̂(t0|t0) (initial estimated state; the initial aposteri-
ori estimate), P̂ (t0|t0) (initial state estimation error
covariance), R (measurement noise covariance), and
Q (process noise covariance). Ideally, these parame-
ters are set equal to their known values, but some of
them may not be available. Good tuning guidelines
are actually hard to find. Even an otherwise thor-
ough book as [35] gives little advice. In this paper
the tuning is done as follows.

• x̂(t0|t0) is set equal to the values from labora-
tory analysis at the start of the pertinent time
interval. This applies ideally to Sbvs, Svfa, and
Svsin . However, for Svsin we impose on for the
purpose of demonstration, a large initial estima-
tion error by setting the initial estimate of Svsin

equal to 20% of the value known from laboratory
analysis.

Xacid and Xmeth are not known, but their initial
values are calculated from the model assuming

steady state (details of the calculation can be
found in [15]).

• P̂ (t0|t0) is set as a diagonal matrix as follows:

P̂ii(t0|t0) = [kP x̂i(t0|t0)]
2

(12)

with kP = 0.01.

• R is a diagonal matrix, which, since the number
of measurements is one (Fmeth), is reduced to
a scalar – the measurement variance. From a
representative real time series,

var(Fmeth) = 1.44 = R (13)

• Q is typically set as a constant matrix (diago-
nal). Assuming that x̂(t0|t0), P̂ (t0|t0) and R are
set, Q can be used as final tuning parameter:

– Increasing Qi,i makes the estimate for state
variable xi converge faster to the assumed
true value, but with the drawback that
the estimate for xi becomes more noisy
(caused by the increased propagation of the
measurement noise, via the Kalman Filter
gain(s)).

– Reducing Qi,i has the opposite effects.

It is proposed to relate the diagonal element (i.e.,
the process noise variance) to the magnitude of
the pertinent state variable:

Qi,i = [kQmixi(t0|t0)]
2

(14)

With the initial setting of mi = 1, it is found
that kQ = 0.0005 is a proper value. Then the
ultimate tuning is made by adjusting mi. By
trial-and-error, {mi} = {10, 1, 1, 1, 10}.

Results and discussion

Figure 4 shows estimates with the UKF together with
real data from online sensors and laboratory analysis
over a time interval of 85 days. (This time interval
includes the interval where the UKF is applied to the
real reactor as a part of the predictive controller, cf.

9



120 140 160 180
0

20

40

60

80
Ffeed: blue. Treac: magenta.

[L
/d

] a
nd

 [D
eg

 C
]

120 140 160 180
100

150

200

250

300
Fmeth. Real (measured): blue. Estim: red.

[L
/d

]

120 140 160 180
0

2

4

6

8
Sbvs. Real (analysis) = blue o. Estim: red.

[g
/L

]

120 140 160 180
0

0.5

1

1.5

2
Svfa. Real (analysis): blue o. Estim: red.

[g
/L

]

120 140 160 180
0

1

2

3

4
Xacid,estim: magenta. Xmeth,estim: blue.

[g
/L

]

120 140 160 180
0

10

20

30

40
Svs,in = VSin. Real (analysis): blue. Estim: red.

[g
/L

]

t [d]. t=0:2012−04−19. From:2012−07−28. To:2012−10−21

Figure 4: Estimates and real data from laboratory analysis with UKF. Standard deviations of estimation
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Section 6.5.) The process measurement used by the
UKF is Fmeth.

Overall, the UKF gives reasonably good estimates
(real values of Xacid and Xmeth are not known).

The large initial estimation error Svsin imposed on
purpose is effectively reduced during approximately
15 days.

From t = 150 d, there is a noticeable difference
between the estimate and the laboratory analysis of
Svfa. It is not clear what is the cause of this dif-
ference. If the model is trusted, the difference may
indicate an inaccuracy of the laboratory analysis.

6 Control of methane gas pro-
duction

6.1 The effect of feedback control

To demonstrate the effect of feedback (or automatic
or closed loop) control of Fmeth, Figure 5 shows,
for the real pilot reactor, experimental time-series of
Fmeth and Ffeed (and Treac) with feedback control and
without control. It is clear that Fmeth varies less with
control than without control. Fmeth remains close to
Fmethsp

even after the setpoint is changed. The vari-
ations are due to inevitable disturbances. In the case
of feedback control, Ffeed is of course varying, while
it is constant in the case of no control (i.e. open loop
control). Treac is actually different in the two cases,
but it is assumed the difference between the two cases
is independent of the temperature difference.

Whether the variations in Fmeth in open loop con-
trol is acceptable or not, must be decided in each spe-
cific application. A comparison of the performance of
closed loop control and open loop control when dis-
turbances are assumed, can be made using simula-
tions with the AD model presented in Section 3.3.

6.2 Operational objective and control
strategy

It is here assumed that a sufficient rationale for feed-
back control of Fmeth exists. The operational objec-
tive is stated as producing a demanded methane gas
flow. A specific value of Fmeth is related to the power,
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Figure 5: Fmeth and Ffeed, and Treac, for the real re-
actor, with (automatic) control and without control.
(The length of each of the time intervals for these two
cases are different.) [Reprinted from [16] by permis-
sion.]

P [kW], as the energy content of methane gas is 9.95
kWh/m3 at NTP.

The methane gas flow setpoint must be feasible.
The feasibility can be checked with steady state sim-
ulations. More specificly, it can be checked using the
upper-left plot in Figure 3.

Furthermore, safe reactor operation must be en-
sured, which here means that ineq. (10) is satisfied.

Relating to Figure 2, the above specifications con-
cerning Fmeth, the limitation of variations of Ffeed,
and the condition ineq. (10) are inputs to the Con-
trol Designer. Outputs from the Control Designer are
F sp
meth and Cdu. The latter is the cost factor of the

control signal variations of a predictive controller.

6.3 Control functions

In control system design, the PI(D) controller should
normally be taken into account when different con-
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trollers are evaluated. If oscillations can be tolerated,
even the on-off controller should be considered. Using
on-off controllers and PI controllers for Fmeth control
of the pilot reactor is discussed in detail in [16].

In many cases, advanced controllers can give im-
proved control compared with the simple PI(D) con-
troller and the on-off controller, but typically the im-
plementation is considerably more demanding. As ar-
gued in Section 3.2, a predictive controller is used as
advanced controller in this paper. A predictive con-
troller to retain Fmeth at its setpoint is implemented
both on a simulator of the reactor and on the real
reactor. The model is the modified Hill model, cf.
Section 3.3. A time-delay of τd = 0.2 d is included at
the control input of the model:

Ffeed(t) = u(t− τd) (15)

where Ffeed is the feed rate of the modified Hill model
and u is the control signal. This time-delay accounts
approximately for the dynamics not included in the
modified Hill model presented in Section 3.3. The
optimization objective of the predictive controller is

min
u

fobj (16)

where

fobj =

∫ t+τh

t

[
e2 (θ) + Cduu̇

2 (θ)
]
dθ (17)

with constraint umin ≤ u(t) ≤ umax which is included
in the optimization problem formulation, i.e. it is
an input argument in the fmincon function call in
MATLAB. t is the present time instance. e is the
control error, e = F sp

meth−Fmeth. The time derivative,
u̇, represents the control signal changes. The larger
Cdu, the smoother control actions.

In implementations, the discretized version of fobj
is minimized, giving an optimal control sequence,
{u}opt, over the prediction horizon. The first ele-
ment of this sequence, i.e. u(t0)opt, is applied as con-
trol signal at the present time point. The prediction
horizon is receding, and the procedure of obtaining
{u}opt and u(t0)opt is repeated as time evolves.

The prediction made by the controller is based on
the modified Hill model discretized with the Euler ex-
plicit (forward) method. {u}opt is calculated with the

nonlinear optimization function fmincon in the Op-
timization toolbox of MATLAB. The present state,
x(t), needed for the prediction, is calculated with
the augmented Unscented Kalman Filter presented
in Section 5.

6.4 Simulations

Controller settings

The settings of the predictive controller in the simu-
lations are as follows.

A time-step of τs = 0.025 d is used in the discrete-
time version of the modified Hill model used for pre-
diction. This is also the time step of the discretization
of fobj. τh corresponds to 1/0.025 = 40 time steps,
which is then the prediction horizon in number of
time-steps.
Cdu = 0.01 in eq. 17 is found by trial-and-error on

a simulator. A proper value of the prediction horizon
is found as τh = 1 d (with τh < 0.5 d, a change in
performance can be observed).

In the simulations, the predictive controller is com-
pared with the predictive controller. The PI con-
troller is tuned at the operating point shown in Table
2 using the Skogestad method [36], with the modifi-
cation of the τi setting as proposed in [19]. The PI
settings are Kc = 0.89 [(L CH4/d)/(L feed/d)] and
τi = 0.8 d.

Performance and robustness measures

The control system performance and robustness mea-
sures applied in the simulations, are described in the
following.

IAE (performance)
The IAE index (Integral of Absolute Error) is com-

monly used measure of control system performance.
IAEs measures the setpoint tracking:

IAEs =

∫ tfs

tis

|e| dt (18)

The IAEd measures the disturbance compensation:

IAEd =

∫ tfd

tid

|e| dt (19)
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Control signal variations (performance)
As measures of the variation of the control signal,

both the standard deviation, σu, and the mean of
the absolute value of the rate of changes, µ|u̇|, are
calculated.

Stability margins (robustness)
The traditional measure for robustness of linear

control systems are the gain margin (GM) and the
phase margin (PM). The predictive controller is a
nonlinear controller, and the (reactor) is a nonlinear
process. Thus, the predictive control system and the
PI control system are nonlinear systems. We propose
here to expand the use of GM and PM as stability
margins also for these nonlinear system, as explained
in the following.

An adjustable gain, ∆K, is inserted into the loop
(between the controller and the process), see Figure
6. Normally, ∆K = 1. The (ultimate) value, ∆Ku,

Process

w/actuator

and sensor 

and filter

ySP Cont-

roller

d

ymfu
DK (t-Dt)

Adjustable 

gain

Adjustable

time-delay

Disturbance

Process 

measurementSetpoint

Figure 6: An adjustable gain and time-delay are in-
serted into the loop to find the stability margins (gain
margin and phase margin) experimentally.

that brings the (simulated) control system to the sta-
bility limit, with sustained oscillations, is found by
trials. Then,

GM = ∆Ku (20)

To calculate the PM, an adjustable time-delay,
∆τdelay, is inserted into the loop, see Figure 6. Nor-
mally, ∆τdelay = 0. The value ∆τdelayu

that brings
the control system to the stability limit, i.e. causing a
sustained oscillation, is found experimentally on the
simulator. Denote the period the oscillation as Pu [s].
As shown in [14] (Appendix 1),

PM [deg] = 360o
∆τdelayu

Pu
(21)

Seborg et al. [34] propose the following ranges for

appropriate values of the stability margins: 1.7 = 4.6
dB ≤ GM ≤ 4.0 = 12.0 dB, and 30o ≤ PM ≤ 45o.

Relating to Figure 2, ∆K and ∆τdelay are included
before the Process block, after the branch from u to
the Estimator.

Simulations

Figure 7 shows simulated time-series with predictive
control and, for comparison, PI control. The initial
operating point of the reactor is as shown in Table 2,
which is the ultimate (maximum) safe steady state
operating point. The setpoint F sp

meth is varied as a
sequence of two ramps of slope ±2 (L CH4/d)/d each
lasting for 1 d. The disturbance Svsin is varied as a
ramp of slope 2 (g/L)/d during 1 d which is a realistic
variation [16].

The simulations shown in Figure 7 are without
measurement noise. To measure the control signal
variations, simulations have been run with measure-
ment noise in the form of a normally distributed ran-
dom signal with zero mean and standard deviation
σn = 1.2 L CH4/d, which is realistic for the present
reactor. The simulations are run over 10 d with a
constant setpoint and a constant disturbance (simu-
lations are not shown here).

Results and discussion

Table 3 shows performance and robustness measures
with predictive control and with PI control. The IAE
indexes, eqs. 18 and 19, are calculated with tis = 1
d, tfs = 7 d, tid = 7 d, and tfd = 14 d.

Table 3: Performance and robustness measures for
predictive control and PI control.

Predictive PI Ratio: Pred./PI
IAEs 0.093 0.72 0.13
IAEd 1.46 2.20 0.66
σu 0.69 1.29 0.67
µ|u̇| 7.07 25.2 0.28
GM ≈ ∞ 2.6 N/A
PM 63.9o 47.6o 1.34

Comments to the results shown in Table 3:
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Figure 7: Simulated responses with predictive control and PI control.

• IAEs with predictive control is 13% of IAEs with
PI control. Hence, predictive control is clearly
best.

• IAEd with predictive control is 66% of IAEd with
PI control. Again, predictive control is best, but
the improvement compared with PI control is
not large.

• σu with predictive control is approximately 67%
of the value with PI control, while µ|u̇| with pre-
dictive control is approximately 28% of the value
with PI control. These numbers vary with the
realization of the random processes generated in
the simulation, but they are representative.

By detuning the PI controller for more relaxed
control (reducing Kc and increasing τi according

to Skogestad’s formulas), both σu and µ|u̇| are re-
duced. By a proper retuning, either of them can
become approximately equal to the value with
predictive control. The consequence of such a
retuning is that the IAE measures with PI con-
trol will increase. In one simulated example, the
PI controller was retuned so that µ|u̇| with pre-
dictive control and PI control was approximately
equal. The IAEd with PI control then increased
4.5 times, i.e. the control performance became
radically worse.

The smoother control actions with predictive
control compared with PI control has been ob-
served on experiments on the real reactor.

• GM is acceptable with PI control. With pre-
dictive control the notion of GM is questionable,
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since the simulated control system does not actu-
ally become unstable for any gain increase at the
process input. Rather, the gain increase is seen
by the UKF as a change in the disturbance, or,
more specifically, as an increase in Svsin . Conse-
quently, the estimate of Svsin is increased, which
in turn is used in the prediction by the predic-
tive controller, causing a large overshoot or un-
dershoot in Fmeth before it eventually reaches
F sp
meth (plots of simulations not shown). From

simulations it is found that F sp
meth is back at its

setpoint during 1-2 d for 0.5 ≤ ∆Ku ≤ 4.

• PM is larger with predictive control (63.9o) com-
pared with PI control (47.6o).

Concluding remarks

Above, the predictive controller has been com-
pared with the PI controller tuned using a standard
method, namely the Skogestad method [36]. Sim-
ulations indicate that predictive control has better
performance and better robustness than the PI con-
troller. It can also be claimed that the predictive con-
troller, here including the state estimator, is more in-
tuitive to adjust since its parameters have a direct re-
lation to practical factors such as measurement noise
and control signal variation. The drawbacks with
predictive control is that a mathematical model of
the reactor is required, and that it is more compli-
cated to implement.

The setpoint tracking performance of the predic-
tive controller is considerably better than with the
PI controller, while the improvement in disturbance
compensation is not large. Taken into account that
the PI controller is much easier to implement, it may
be claimed that the PI controller is the preferred con-
troller if the setpoint is constant.

6.5 Experiments on the real reactor

Predictive control has been applied to the real reac-
tor. Some of the settings in the practical experiment
differ from those used in the simulation study pre-
sented in Section 6.4, which has been accomplished
approximately one year after the practical experi-
ment. (However, simulations were used to test the

control system before the practical implementation.)
The differences in settings are:

• In the practical experiments, τs = 0.05 d, and
τp = 2 d. In the simulations in Section 6.4,
τs = 0.025 d, and τp = 1 d. τs = 0.05 d has
been tested in simulations, giving a slight change
in performance, probably due to less accurate
numerical integration (explicit Euler is used).
Np = τp/τs = 40 is the same both in the practi-
cal experiments and in the simulations.

• Ffeed is limited to 40 L/d, which is also used
in the simulations in Section 6.4. This limit is
reached in the practical experiment, but is not
reached in the simulations since the perturba-
tions are relatively small there.

• No time delay term is included in the model
used by the predictive controller in the practi-
cal experiment, while it is found appropriate to
include a time delay in the simulation study as
the model analysis in [15] indicate that a time
delay is present.

• The cost factor Cdu in eq. (17) was set to 0.8
in the practical experiment, while 0.01 is found
appropriate in the simulation study, cf. Section
6.4. The smaller Cdu in the simulations may be
due to dynamic phenomena of the real reactor
not encapsulated by the model. In any case, Cdu

is typically a tuning parameter.

Results and discussion

Figure 8 shows the time-series of the practical exper-
iments. Below are comments to this figure.

• At t = 99.8 d, F sp
meth was reduced instantly from

190 to 150 L/d. Since the reduction was instant,
the predictive controller could not take any con-
trol action in advance. The response in the gas
flow is stable and shows acceptable stability, but
the stability is reduced compared with the sim-
ulated response. The control error is less than 3
L/d after approximately 1 d.

A possible explanation of the damping of the
real response being less than in the simulated

15



100 100.5 101 101.5 102 102.5 103 103.5 104
140

150

160

170

180

190

200
Methane gas flow: Setpoint: Red. Meas: Blue.

[L
/d

]

100 100.5 101 101.5 102 102.5 103 103.5 104
−10

0

10

20

30

40

50
Feed flow (control signal): Blue. Upper and lower limits MPC control: Red.

[L
/d

] a
nd

 [d
eg

 C
]

Time, t [d]. Time ref (t=0):19−Apr−2012 14:05:00. First time in plot:28−Jul−2012 02:05:00. Final time in plot:02−Aug−2012 02:05:00

Figure 8: Time-series from application of predictive control of Fmeth on the real reactor.

16



response, is that the predictive controller does
not include any process model time delay while,
as pointed out above, there is actually a time
delay in the real process.

• At t = 102.3 d, a preset ramped setpoint profile
started. The predictive controller adjusts Ffeed

before F sp
meth starts increasing. The tracking is

accurate. The upper bound of Ffeed of 40 L/d is
eventually reached, causing the rate of change of
Fmeth to become less than the rate of change of
F sp
meth.

• At t = 102.8 d, the rate of change of F sp
meth is in-

stantly adjusted from +20 (L CH4/d)/d to −20
(L CH4/d)/d. The observed lag in Fmeth can be
explained with the instant change of F sp

meth which
prevents predictive control action.

• At t = 104.1 d, a preset step change of F sp
meth

from 150 to 155 L CH4/d is applied. The predic-
tive adjustment of Ffeed is obvious. Fmeth shows
a clear overshoot, but it is expected that the re-
sponse will stabilize.

• At t = 104.4 d, the predictive control experi-
ment had to be stopped as other experiments
were scheduled to start at this point of time. The
controller was actually set to manual mode. The
saved future control signal sequence generated
by the predictive control shows a declining be-
haviour, indicating that Fmeth eventually would
have been brought back to its setpoint.

As pointed out earlier, the methane gas flow set-
point must be feasible. For the above experiments,
the feasibility can be checked using the upper-left plot
in Figure 3. According to this plot, the setpoint val-
ues used in the experiments, cf. Figure 8, are actually
feasible.

7 Control for safe reactor oper-
ation

7.1 Objective and control strategies

Here, the operational objective of the reactor is de-
fined as retaining the reactor at the ultimate safe
steady state operating point given in Table 2 (this
is the input to the Control Designer in Figure 2).
To this end, the following three alternative control
strategies are tested (they comprise the “output”
from the Control Designer in Figure 2):

1. Ffeed is controlled to a setpoint of F sp
feed, which

is 35.3 L/d, assuming the operating point shown
in Table 2. This control strategy is described in
Section 7.2.

2. Svfa is controlled to a setpoint of Ssp
vfa, which is

0.8 g/L according to Table 2. In principle, this
control requires feedback from the measurement
of Svfa. Such sensors do exist [37] [27], but it is
not in use on the present reactor. Instead, the
estimate of Svfa calculated continuously with a
state estimator (Kalman Filter) is used, cf. Sec-
tion 5. This control strategy is described in Sec-
tion 7.3.

3. Fmeth is controlled to a setpoint of F sp
meth, which

is 174 L CH4/d according to Table 2. This con-
trol requires feedback from the measurement of
Fmeth. This control strategy is described in Sec-
tion 7.4, where also PI control is applied for com-
parison.

In each of the control strategies, the feed rate is
used as control variable, u = Ffeed, cf. Section 3.2.

The applicability of the three control strategies de-
scribed above is demonstrated with simulations in the
following subsections. In each of the simulations, a
disturbance in Svsin is applied.

7.2 Control of Ffeed

Ffeed is held constant at 35.3 L/d, cf. Table 2. On
the real reactor, this can be implemented easily since
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the feed pump is a peristaltic pump which gives the
demanded flow without feedback (flow) control.

Figure 9 shows the simulated response with con-
stant Ffeed. Table 4 shows performance measures.

7.3 Control of Svfa

Svfa is controlled to its setpoint, Ssp
vfa = Smax

vfa , using
feedback from Sest

vfa from the Kalman Filter, cf. Sec-
tion 5. Both predictive control and PI control are
tested.

Predictive control

The optimization criterion of the predictive controller
is selected as

min
u

fobj (22)

where

fobj =

∫ t+τh

t

[
e2 (θ) + Cduu̇

2 (θ)
]
dθ + Che

2 (τh)

(23)
with constraint umin ≤ u(t) ≤ umax. The control
error is e = Ssp

vfa − Sest
vfa. Comparing with the cri-

terion of predictive control of Fmeth, eq. (17), the
term e2 (τh), which is e2 at the end of the prediction
horizon, is now included. The term brings e(t + τh)
approximately to zero. Without this term, e(t + τh)
is 0.1 g/L, and the control signal is actually constant.
It is found that Cdu = 0.2 and Ch = 20 are proper
settings.

It is found that the predictive control is consider-
ably smoother with τh = 4 d than with τh = 1 d
which is used in Section 6. Increasing τs from 0.025
d, which is used in Section 6, to 0.1 d, here, has
very little impact on the control system performance
over the simulation time interval used here, while the
computational burden is noticeably less.

PI control

PI controller is also applied. The PI settings areKc =
50.9 (L/d)/(g VFA/L) and τi = 0.9 d found using the
Relaxed Ziegler-Nichols closed loop method based on
relay oscillations [19] which is a quick method to use
on a simulator.

Simulations

The initial operating point is as shown in Table 2.
The setpoint is Ssp

vfa = Smax
vfa = 0.8 g/L. At t = 10 d,

the disturbance Svsin is changed as a ramp of slope
2 (g/L)/d during 1 d, which is the same variation as
in Fmeth control, cf. Section 6. This is a reasonable
variation for the real reactor. Measurement noise is
not included in simulations.

Figure 9 shows simulated responses in Svfa, Fmeth,
Ffeed and Svsin with predictive control and PI control,
and with constant Ffeed. Table 4 shows performance
measures.

Results and discussion

Table 4 shows performance and robustness measures
with the three control strategies above. IAEd, defined
by eq. (19), is calculated over the simulated time
interval. |e|max is the maximum control error. GM
and PM are found as explained in Section 6.4.

Table 4: Performance measures for three control
strategies for controlling Svfa.

Measure Const. F feed Predictive PI
IAEd 1.52 0.20 0.090
GM N/A ≈ ∞ 5.5
PM N/A ≈ ∞ 71.0o

Comments:

• In Figure 9 it is seen that the setpoint tracking
works for both predictive control and PI control.
However, the PI controller gives a more smooth
response in Svfa.

• The lower right plot in Figure 9 shows the ma-
nipulated Ffeed which is adjusted by the con-
trollers. The control action is smoother with PI
control than with predictive control.

• The performance measures shown in Table 4 in-
dicate that PI control of Svfa, based on feedback
from UKF is the best control strategy here.

• Also using a constant Ffeed can be regarded ac-
ceptable with the disturbance change simulated.
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Figure 9: Control of Svfa with different control functions: Constant Ffeed, predictive control (MPC), and PI
control. Simulated responses in Svfa, Fmeth, Ffeed and Svsin are shown.

• The upper right plot in Figure 9 illustrates that
Fmeth is not under control. Although not shown
here, Fmeth settles at steady state at approxi-
mately t = 120 d.

• GM is large with PI control. With predictive
control, the notion of GM is questionable, since
the simulated control system does not actually
become unstable for any gain increase at the pro-
cess input. Rather, the gain increase is seen by
the UKF as an increase in Svsin . The relatively
large estimate of Svsin is used in the prediction
by the predictive controller, causing a large over-
shoot in Fmeth before it eventually reaches F sp

meth

(plots are not shown here). This behaviour is the

same as with predictive control of Fmeth, cf. Sec-
tion 6.4.

• PM is large with PI control. With predictive
control, no limit was found, i.e. the controller
handles unmodelled time delays in the controlled
process even as large as 10 d.

7.4 Control of Fmeth

Controllers

The third control strategy proposed in Section 7.1 is
controlling Fmeth to a setpoint, F sp

meth, set equal to
the value of Fmeth at the ultimate operating point,
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cf. Table 2. Both predictive control based on feed-
back from UKF estimates and PI control based on
measurement of Fmeth are simulated.

Simulations

The simulation scenario differs from the scenario of
the simulations in Section 7.3 as Svsin is now de-
creased instead of increased. Decreasing Svsin is here
selected because in the corresponding response, Svfa

increases (in steady state), and an increase of Svfa is
more critical than a decrease.

In the predictive controller, τs is set as 0.05 d, and
τh is 1 d.

Figure 10 shows simulated responses in Svfa, Fmeth,
Ffeed and Svsin with predictive control based on feed-
back from UKF estimates, and PI control based on
measurement of Fmeth.

Results

• As seen in Figure 10, Fmeth is much closer to
F sp
meth with predictive control than with PI con-

trol.

• With both predictive control and PI control, Svfa

increases. Simulations over 400 d shows that Svfa

goes toward approximately 1.05 g/L, which is
0.25 larger than the critical value of 0.8 g/L. This
makes this control strategy questionable.

What is the best control strategy for safe re-
actor operation?

From the results in Sections 7.3, 7.2 and 7.4 it can
be concluded that the best control strategy for safe
reactor operation is controlling Svfa to a (fixed) set-
point using feedback from the state estimator (UKF).
In the aforementioned control strategy, PI control is
evaluated as better than predictive control. These
two controllers give a similar disturbance compen-
sation, but the control signal is smoother with PI
control than with predictive control.

8 Conclusions

The original four states of the modified Hill model,
Sbvs, Svfa, Xacid, Xmeth, and the assumed unknown
organic content, Svsin , of the feedstock of a real pilot
AD reactor have been mainly successfully estimated
with an Unscented Kalman Filter (UKF), but with
an estimation error for Svfa in a part of the time
interval.

These estimates, together with the model, have
been applied in two different model-based control sys-
tems: The first system aims at retaining Fmeth at
a possibly time-varying setpoint, which may origi-
nate from a demanded power production by the re-
actor. Simulations indicate that the setpoint tracking
performance of the predictive controller is consider-
ably better while disturbance compensation, assum-
ing that the disturbance has an unknown value, is
not much better compared with PI control, confirm-
ing a well-known fact, cf. e.g. [13]. Consequently,
assuming the setpoint is constant, the PI controller
competes well with the predictive controller. A suc-
cessful application of predictive control of the real
reactor is reported.

The second control system aims at retaining the re-
actor at an ultimate, safe operating point where Svfa

has a critical maximum value. This operating point is
characterized by three corresponding values of Ffeed,
Svfa and Fmeth, as found from steady state simula-
tions of the reactor model. These operating point
values can be used as setpoints in pertinent control
systems. Simulations indicate that the best control
solution among the three alternatives is PI control
based on feedback of Svfa estimated by Kalman Fil-
ter.

The results of this paper indicate that a model-
based control system, using a relatively simple mech-
anistic dynamical reactor model, can be designed and
implemented on real AD reactors.

A Abbreviations

AD: Anaerobic digestion.

BVS: Biodegradable volatile solids.
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Figure 10: Predictive control and PI control of Fmeth. The process perturbation is a change in Svsin .
Simulated responses in Svfa, Fmeth, Ffeed and Svsin are shown.

COD: Chemical oxygen demand.

EKF: Extended Kalman Filter.

FC: Flow controller.

FT: Flow transmitter (sensor).

HRT: Hydraulic retention time.

IAE: Integral of absolute error.

MPC: Model-based predictive control.

NTP: Normal Temperature and Pressure: 0 oC, 1
atm.

PI: Proportional plus integral (control).

PWM: Pulse width modulation.

TIC: Total inorganic carbon.

UKF: Unscented Kalman Filter.

VFA: Volatile fatty acids.

VS: Volatile solids.

B Nomenclature

Ae: Amplitude of the control error and the process
output (measurement).

Af [(g VFA/L)/(g BVS/L)] is acidity constant.

Au: Amplitude of the on-off control signal.
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B0 [(g BVS/L)/(g VS/L)] is biodegradability con-
stant.

Cdu: Cost (weight) factor of u̇2 in predictive control.

Ch: Cost (weight) factor of e2(τh) in predictive con-
trol.

D [d−1]: Dilution rate.

e: Control error.

fobj: Objective function.

Ffeed [L/d]: Influent or feed flow or load rate, as-
sumed equal to effluent flow (constant volume).

Fmeth [L CH4/d]: Methane gas flow.

F sp
meth [L CH4/d]: Setpoint of Fmeth.

GM: Gain margin.

k: Discrete-time index.

k1 [g BVS/(g acidogens/L)] is a yield constant.

k2 [g VFA/(g acidogens/L)] is a yield constant.

k3 [g VFA/(g methanogens/L)] is a yield constant.

k5 [L/g methanogens] is a yield constant.

Ks [g BVS/L] is Monod half-velocity constant for
acidogens.

Ksc [g VFA/L] is Monod half-velocity constant for
methanogens.

Kd [d−1] is specific death rate of acidogens.

Kdc [d−1] is specific death rate of methanogens.

µ [d−1] is reaction (growth) rate of acidogens.

µc [d−1] is reaction (growth) rate of methanogens.

µm [d−1] is the maximum reaction rate for acido-
gens.

µmc [d−1] is the maximum reaction rate for
methanogens.

P [kW]: Power.

Pu [d]: Period of oscillation.

P̂ : State estimation error covariance.

PM [degrees]: Phase margin.

Q: Process noise covariance.

R: Measurement noise covariance.

Svfa [g VFA/L]: Concentration of VFA acids in re-
actor.

Sest
vfa [g VFA/L]: Estimate of Svfa.

Svfain [g VFA/L]: Concentration of VFA in
biodegradable part of influent.

Smax
vfa [g VFA/L]: Upper limit of safe range of con-

centration of VFA in reactor.

Ssp
vfa [g VFA/L]: Setpoint of Svfa.

Sbvs [g BVS/L]: Concentration of BVS in reactor.

Sbvsin [g BVS/L]: Concentration of BVS in influent.

Svsin [g VS/L]: Concentration of volatile solids in
influent.

σu [L/d]: Standard deviation of control signal.

Treac [◦C]: Reactor temperature.

τh: Prediction horizon.

τi [d]: Controller integral time.

θ [d]: Integration variable in predictive control cri-
terion.

V [L]: Effective reactor volume (assumed filled with
liquid).

x̂: Estimated state vector.

Xacid [g acidogens/L]: Concentration of acidogens.

Xmeth [g methanogens/L]: Concentration of
methanogens.
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feedforward/feedback control for an anaerobic
digester. Computers and Chemical Engineering,
29:1613–1623, 2005.

[29] H. O. Méndez-Acosta, B. Palacios-Ruiz,
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Background and methods of the article

Background

The specific aim of this article it to determine the optimal design and

steady state operation of a planned full-scale AD reactor at Foss dairy

farm, Norway. The optimization is based on steady state simulations of the

modified Hill AD process model originally adapted to the real pilot reactor

combined with models of the reactor temperature and heat exchanger

temperatures based on energy balances. Alternative optimization problems

are solved, i.e. alternative objective optimization functions, obj, are

defined, namely maximization of produced methane gas flow, minimization

of reactor volume, and maximization of power surplus. Although a specific
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case is studied in the article, it can be assumed that the results obtained

are useful also for other cases.

The article does not address economical optimization, which would involve

constructional, capital, and operational cost. In economical optimization,

the value of the reactor effluent may also be taken in to consideration. The

models and results of the present paper may, however, constitute a part of

the total model used in economical optimization.

Methods

The value of obj is calculated from the steady-state values of the dynamic

simulations of the modified Hill model of the AD process combined with

the steady-state models of the reactor temperature and the heat exchanger

temperatures based on energy balances. The simulator is based on the

Euler explicit numerical method implemented in for-loops. Tests indicates

that a simulation using this simple implementation is executed a few

hundreds times faster than an implementation in e.g. SIMULINK or with

an ODE-solver. Hence, the total execution time needed to get the results

in MATLAB, is dramatically reduced with the simple implementation.

The optimization problems are solved using the straightforward “brute

force” (BF) method where the objective function, obj, is calculated over a

grid of the optimization variables, here denoted . The optimal value, opt,

is found by searching the matrix of stored values of obj for the optimum.

For each of the optimization variables, a reasonable range of each of the

optimization variable is guessed. The grid resolution is adapted (manually)

to each of the optimization problems, typically 1/100 of the range of the

pertinent optimization variable. For illustration, Figure 14 shows a 3-D of

a obj = sur (power surplus) as a function of the two optimization

variables, 1 = reac (reactor temperature) and 2 =  (reactor volume)

for optimization problem PP1 in the article. In the article, the resolution is

1/100 both for 1 and 2, but is 1/25 in Figure 14 to make the plot

clearer. The optimum is maxsur = 554 MWh/year corresponding to


opt
1 = 

opt
reac = 249

oC and 
opt
2 =  opt = 137 m3.

The BF method can detect the global maximum (with reasonable

precision), while a local optimizer like fmincon() in MATLAB may get

stuck in a local maximum if the initial guess of  is unfortunate. The plot

in Figure 14 shows no local optimum, however.

In general, precise solutions are desired. To obtain more precise solutions,

the following alternative approaches were tested on some of the
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Figure 14: A 3-D plot of obj = sur (power surplus) as a function of the

two optimization variables, 1 = reac (reactor temperature) and 2 = 

(reactor volume) for optimization problem PP1 in the article.

optimizations problems: Reducing the range, improving the resolution by

increasing number of grid intervals, and applying a local optimizer, namely

fmincon() in MATLAB, with the global optimal solution found with the BF

method as the initial (guessed) optimal solution. The fmincon in MATLAB

was used as local optimizer. It was found that the difference between using

a local optimizer and the other two alternative approaches were negligible.

Several methods for global optimization exist, Edgar et al. (2001). For the

present article, the BF method is considered sufficient.
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Abstract

Optimal design and operation of a planned full-scale UASB reactor at a dairy
farm are determined using optimization algorithms based on steady state sim-
ulations of a dynamic AD process model combined with models of the reac-
tor temperature and heat exchanger temperatures based on energy balances.
Available feedstock is 6 m3/d dairy manure produced by the herd. Three alter-
native optimization problems are solved: Maximization of produced methane
gas flow, minimization of reactor volume, and maximization of power surplus.
Constraints of the optimization problems are an upper limit of the VFA concen-
tration, and an upper limit of the feed rate corresponding to a normal animal
waste production at the farm. The most proper optimization problem appears
to be minimization of the reactor volume, assuming that the feed rate is fixed
at its upper limit and that the VFA concentration is at its upper limit. The
optimal result is a power surplus of 49.8 MWh/y, a hydraulic retention time
of 6.1 d, and a reactor temperature of 35.9 oC, assuming heat recovery with
an heat exchanger, and perfect reactor heat transfer insulation. In general, the
optimal solutions are improved if the ratio of the solids (biomass) retention time
to the hydraulic retention time is increased.

Keywords: Anaerobic digestion, UASB reactor, Biogas, Mathematical
models, Optimization, Design, Operation.

1. Introduction

The aim of this paper is to optimize the design and steady-state opera-
tion of a planned full-scale upflow anaerobic sludge blanket (UASB) reactor fed
with dairy cattle waste with 6 m3/d available feedstock. The optimization is
based on a mathematical model of the reactor comprising a dynamic AD process
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model combined with models of the reactor temperature and the heat exchanger
temperatures based on energy balances. The biological parameters of the AD
process model was estimated from experiments on a real pilot reactor using the
same feedstock as the planned full-scale reactor.

Three sets of optimization problems are studied: Maximization of the pro-
duced methane gas flow, minimization of the reactor volume, and maximization
of the power surplus. The biological product considered in the optimization
problems is the produced methane gas. The value of the liquid effluent is not
taken into account.

An early attempt to use a dynamic AD model for optimization of anaerobic
digestion (AD) reactors was made by Hill (1983a). In that study, a series of
simulations based on the model presented by Hill (1983b) were used to detect
the optimum hydraulic retention time (HRT) that maximized the volumetric
methane productivity defined as steady-state volumetric methane gas flow di-
vided by reactor volume. The solids retention time (SRT) was assumed equal to
the HRT, as in a continuous stirred tank reactor (CSTR). In the present study,
the reactor is a UASB type reactor, making SRT larger than HRT.

Poels et al. (1983) reported experiences from AD processing of swine waste on
a farm of typical size for Belgium. They emphasized the importance of insulation
and preheating the (cold) influent by the (warm) influent was emphasized.

Bozinis et al. (1996) showed in a simulation study of a hypothetical central-
ized wastewater treatment plant based on co-digestion of a number of wastewa-
ter streams how optimization methods, namely nonlinear programming (NLP),
can be used to identify the optimal number of CSTR AD reactors and their
volumes that minimize costs. They also showed how to identify the optimal
mixing of the wastewater streams that maximize the total COD (chemical oxy-
gen demand) conversion of the plant. Simple steady-state AD process models
based on Monod kinetics were assumed.

Ciotola et al. (2011) used emergy analysis to evaluate biogas production
and energy generation from small-scale AD reactors. While emergy is a useful
concept, we decided not to consider emergies in the present paper to keep the
analysis simple.

The methods of formulation and solution of optimization problems for tech-
nical systems and industrial plants presented in (Edgar et al., 2001) have been
useful for the present paper as they are applicable also to biological plants.

The outline of this paper is as follows. A description of the planned AD
reactor and the optimization method used are described in Section 2. Opti-
mization results are presented in Section 3. A discussion is given in Section 4,
and conclusions are given in Section 5. Mathematical models are presented in
Appendix Appendix A.

Notation
Unless otherwise stated, the numerical values of variables presented in this

paper are steady-state values.
Computing tool
MATLAB (The MathWorks, Inc.) is used for numerical computations.
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2. Materials and methods

2.1. The AD reactor

The AD reactor is a part of a (planned) full-scale biological plant for nutrient
and energy recovery, named Foss Biolab, situated at Foss farm, Skien, Norway.
A small-scale pilot plant has been in operation for about two years. The feed
to the pilot reactor, which has 250 L liquid volume, is dairy waste diluted with
approximately 25% water and filtered with a sieve to remove larger particles to
avoid technical problems. The produced biogas consists of approximately 70%
methane. A description of the pilot plant, including its monitoring and control
system, is in (Haugen et al., 2013a).

Figure 1 depicts the planned full-scale reactor. (The pilot reactor has no
heat exchanger.)

Tfeed
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Ffeed

Effluent

Fmeth
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Heat
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Figure 1: Planned full-scale AD reactor. (Nomenclature is in Appendix Appendix C.)

2.2. Mathematical models

The mathematical model used for optimization of the planned full-scale re-
actor comprises the following sub-models:

1. The modified Hill model of the AD processes adapted to the pilot reactor
(Haugen et al., 2013a). For easy reference, this model is summarized in
Appendix Appendix A.1.

2. A model of the reactor liquid temperature based on energy balance (Hau-
gen et al., 2013a), summarized in Appendix Appendix A.2.

3. A model of the temperatures of heat exchanger based on energy balances.
The model is derived in Appendix Appendix A.3.
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2.3. Optimization objectives and variables

Figure 2 shows alternative optimization variables and objective variables.
In the various optimization problems discussed in Sections 3.2 – 3.4, various
subsets of these variables are used.

AD reactor 

with heat 

exchanger

Fmeth

Ffeed

Treac

V

b

ghx

Alternative 

optimization

variables

Alternative 

objective

variablesPsur

V

U

Figure 2: Alternative optimization variables and objective variables.

Optimization objectives

Figure 2 defines alternative optimization objective variables (the outputs in
the block diagram):

Fmeth, to be maximized, which is an appropriate objective if the gas is supplied
(sold) to a gas grid.

V , to be minimized, which is an appropriate objective to save space and con-
structional and installation costs.

Psur, to be maximized, which is an appropriate objective if the gas is applied
for heating within the farm.

Optimization variables and their constraints

In the following, the optimization variables are characterized as either oper-
ational or design optimization variables. The former can be changed while the
reactor is being operated, while design optimization variables can be changed
in the design or constructional phase.

The various optimization variables shown in Figure 2, and their constraints,
are described in the following.

Ffeed: The livestock of the pertinent farm counts approximately 60 cows, each
producing approximately 0.1 m3 diluted raw waste per day. The wet
fraction which remains after the separation, amounts to approximately
0.7 (weight base), which is fed to the reactor. Thus, feasible values of
Ffeed is

0 ≤ Ffeed ≤ 4.2m3/d = Fmax
feed (1)

Ffeed is an operational optimization variable.

4



Treac: According to Tchobanoglous et al. (2003), most AD reactors are operated
in the mesophilic temperature range which is 30–38 oC. For the planned
reactor, it is of interest to also investigate temperatures below this range
mainly because of the relatively cold climate in Norway. The modified Hill
model is applicable for Treac in the range 20 ≤ Treac ≤ 60 oC, cf. Appendix
Appendix A.1. The following range of Treac is considered in this paper:

Treacmin
= 20 ≤ Treac ≤ 38oC = Tmax

reac (2)

Treac is an operational optimization variable.

V : Above, it is defined as an optimization objective, but it is also used as an
optimization design variable in some of the optimization problems.

b: In (Haugen et al., 2013a), the retention times ratio is defined as

b =
SRT

HRT
(3)

where SRT is the solids (biomass) retention time, and HRT is the hydraulic
retention time (HRT) which is defined as (Tchobanoglous et al., 2003):

HRT =
V

Ffeed
(4)

SRT can not be less than HRT. Therefore, b is lower bounded to 1. It is
assumed that b does not have a larger value than 20, i.e.

bmin = 1 ≤ b ≤ 20 = bmax (5)

This assumption is supported by simulations: Figure 3, plot 3a, indicates
that the sensitivity of Fmeth to b is relatively small for b above 20.

b is a design optimization variable, but may be changed after the reactor
has been set into operation. As shown in Section 3, it is beneficial in
the optimization scenarios that b is as large as possible. Dairy waste is
relatively rich on particles, making it difficult to obtain a large b. For the
real pilot reactor, b is estimated from time-series as 2.9 (Haugen et al.,
2013a).

ghx, the heat exchanger coefficient, is defined with eq. (A.14) in Appendix
Appendix A. ghx is a design optimization variable. In the optimization
problems, ghx has value either ∞ (perfect heat exchange) or 0 (no heat
exchange). On a real heat exchanger, perfect heat exchange can of course
not be obtained, corresponding to a limited value of ghx. Still, it is decided
to assume an ideal heat exchanger to avoid complicating the analysis.
Also, the principal difference between applying heat exchange and not, is
expected to be principally the same for a real heat exchanger as for an
ideal heat exchanger.
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U , the specific heat transfer coefficient of the reactor, is calculated from the
value of the real pilot reactor as explained in Appendix Appendix A.
U = 0 implies perfect thermal insulation of the reactor walls. U is a
design optimization variable.

Although not an optimization variable, the constraints on Svfa is an impor-
tant optimization constraint. According to the discussion in (Haugen et al.,
2013b) based on the results in (Hill et al., 1987), the range of Svfa for safe
reactor operation is

Svfa ≤ 0.8g/L = Smax
vfa (6)

2.4. Optimization algorithm

The optimization problems are solved using the straightforward “brute force”
(BF) method where the objective function, fobj, is calculated over a grid of the
optimization variables, here x. The optimal value, xopt, is found by searching
the matrix of stored values of fobj for the optimum. For each of the optimiza-
tion variables, a reasonable range is guessed. The grid resolution is adapted
(manually) to each of the optimization problems. For optimization variable xi,
the resolution is typically selected as 1/Nxi

where Nxi
= 100 (number of grid

intervals).
In general, precise solutions are desired. To obtain more precise solutions,

the following alternative approaches were tested on some of the optimizations
problems: Reducing the range, improving the resolution by increasing number
of grid intervals, and applying a local optimizer (Edgar et al., 2001) with the
global optimal solution found with the BF method as the initial (guessed) op-
timal solution. The fmincon in MATLAB was used as local optimizer. It was
found that the difference between using a local optimizer and the other two
alternative approaches were negligible. The computer program implementation
of the BF method is considerably simpler and more flexible (scalable) than an
implementation using fmincon. Therefore, the BF method, without any local
optimizer, is the selected method in this paper.

The value of fobj is calculated from the steady-state of the dynamic simula-
tions of the modified Hill model of the AD process combined with the steady-
state models of the reactor temperature and the heat exchanger temperatures
based on energy balances. The simulator is based on the Euler explicit numer-
ical method implemented in for-loops. This approach to find fobj is similar to
that in (Rivas et al., 2008) where a wastewater treatment plant is optimized.
There, the GRG21 algorithm implemented in Microsoft Excel is used.

3. Results

3.1. Summary

Table 1 summarizes the results of the optimization problems presented in the
following sections. Units of the table entries are defined in Appendix Appendix

1Generalized Reduced Gradient
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C. Underlines denote values of the optimization variables. Frames denote ob-
jective variables.

The optimization problems are categorized as follows:

• In problems PFi , Fmeth is maximized.2

• In problems PVj
, V is minimized.

• In problems PPk
, Psur is maximized.

The power surplus, Psur, is calculated with eq. (A.20), where all power terms
are in units of MWh/y.

In Table 1, γmeth is the gas productivity:

γmeth =
Fmeth

Ffeed
(7)

and γP is here defined as the power surplus productivity:

γP =
Psur

NLU
(8)

In Table 1, ghx = ∞ corresponds to using an ideal heat exchanger for pre-
heating the feed, while ghx = 0 corresponds to no such preheating (no heat
exchanger).

In each of the optimization problems, both Tamb and Tfeed are set to 10 oC.3

Implementation of optimal solutions

Due to inevitable disturbances, the optimal solutions should be retained
with feedback control. Control of the pilot reactor is studied in (Haugen et al.,
2013b) and (Haugen et al., 2013c).

The implementation of feedback control may not be trivial. For example, in
the optimization problems PV1 -PV5 , cf. Table 2, Svfa is assumed being retained
at Smax

vfa = 0.8 g/L, its setpoint. Since Svfa is not measured online, the control
feedback can not be based on a measurement. Instead, feedback can be made
from an estimate of Svfa calculated by a state estimator (Kalman filter), which
requires a dynamic model of the AD processes (Haugen et al., 2013a).

3.2. Maximization of Fmeth

To maximize Fmeth, the following variables are considered as optimization
variable candidates in the optimization problems discussed in the following sec-
tions: Ffeed, Treac, b, and V . To provide insight into the steady-state behaviour
of the reactor when these variables are varied, Figure 3 shows Fmeth and Svfa vs.

2PF5 is actually not an optimization problem, but is included for demonstration purposes,
cf. Section 3.2.

3In an online system for optimal reactor operation, online temperature measurements may
be used as inputs to the optimizer.
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each of these variables.4 Svfa is plotted since its value determines whether the
reactor is in a safe operation condition, or not, cf. Section 2.3. The simulations
are based on the modified Hill model adapted to the pilot reactor applied to
the planned full-scale reactor. The reactor volume is set as V = 10 m3 which
is assumed a possible, but not necessarily optimal, volume of an AD reactor
fed with animal waste at Norwegian farms. The magenta circle with star in
each plot corresponds to the steady-state operating point given in Table 2. This
operating point is more or less randomly chosen, but so that ineq. (6) is satis-
fied: Svfa = 0.66 g/L ≤ Smax

vfa = 0.8 g/L. Along the abscissa axes in Figure 3,
green color represents safe operation, i.e. Svfa ≤ Smax

vfa there, ineq. (6). Con-
versely, red color along the abscissa axes corresponds to Svfa > Smax

vfa , i.e. unsafe
operation. The red vertical lines in Figure 3 correspond to Svfa = Smax

vfa .
Comments to the plots of Figure 3 regarding each of the four optimization

variables:

• Ffeed: Plot 1a shows that the maximum Fmeth is obtained with Ffeed = 3.34
m3/d. However, this maximum is regarded as non-feasible since ineq. (6)
is violated, cf. plot 1b.

As Ffeed is increased beyond Ffeed = 3.34 m3/d, Fmeth decreases, which
can be explained by a “wash-out” of the methanogens. For Ffeed beyond
5.5 m3/d, no methane gas is produced.

• Treac: Plot 2a shows that Fmeth is monotonically increasing with Treac.
Plot 2b shows that a reduction of Treac increases Svfa. If Treac is too
small, ineq. (6) is violated.

• b: Plot 3a shows that Fmeth is monotonically increasing with b. Plot 3b
shows that a relatively small b will violate ineq. (6). Although b can be
regarded as an optimization variable, it is rather a design parameter than
an operational parameter.

• V : Plot 4a shows that Fmeth is monotonically increasing with V . Plot
4b shows that a relatively small V will violate ineq. (6). Manipulating
the reactor volume during reactor operation is theoretically possible, but
hardly a practical option.

Optimization problems:

PF1 :
max

Ffeed,Treac

Fmeth

b and V are fixed. Results are: The optimal Ffeed of 1.63 m3/d is less than
Fmax

feed , which is due to the limitation by ineq. (6). The optimal Treac is 38 oC
which is the maximum acceptable value.

4The simulations are run over a time interval of 1000 d which is sufficient for the dynamic
Fmeth(t) to get into an approximate steady state.
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Table 1: Results of various optimization problems. Underlines denote values of the optimiza-
tion variables. Frames denote objective variables. (6.5e4 = 6.5 · 104.)

PF1
PF2

PF3
PF4

PF5
PV1

PV2
PV3

PV4
PV5

PP1
PP2

PP3
PP4

PP5

Ffeed 1.63 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 1.63 1.14

Treac 38 38 38 25 25 38 38 35.9 35.9 32.1 24.9 25.5 21.5 38 27.9

V 10 10 700 10 10 25.5 25.5 28.3 28.3 5.2 137 39.5 58.5 10 10

b 2.9 20 2.9 20 2.9 2.9 2.9 2.9 2.9 20 2.9 20 20 2.9 2.9

ghx ∞ ∞ ∞ ∞ ∞ 0 ∞ ∞ ∞ ∞ ∞ ∞ 0 ∞ 0

U 6.5e4 6.5e4 6.5e4 6.5e4 6.5e4 6.5e4 6.5e4 6.5e4 0 6.5e4 6.5e4 6.5e4 6.5e4 6.5e4 6.5e4

Svfa 0.80 0.38 0.19 0.79 5.2 0.80 0.80 0.80 0.80 0.80 0.56 0.43 0.56 0.80 0.80

Fmeth 8.09 25.6 27.8 20.8 0 20.7 20.7 20.7 20.7 20.7 23.5 25.0 23.6 8.09 5.61

HRT 6.1 2.4 167 2.4 2.4 6.1 6.1 6.7 6.7 1.23 32.5 9.4 13.9 6.1 8.8

γmeth 4.96 6.1 6.62 4.96 0 4.94 4.94 4.94 4.94 4.94 5.60 5.96 5.61 4.96 4.94

Pmeth 29.4 93.0 101 75.6 0 75.3 75.3 75.3 75.3 75.3 85.5 91.0 85.5 29.4 20.4

Pheat 14.5 29.8 105.6 15.6 15.6 58.9 33.9 32.0 23.2 22.2 27.8 20.4 26.9 14.5 14.1

Pagit 0.57 1.46 1.46 1.46 1.46 1.46 1.46 1.46 1.46 1.46 1.46 1.46 1.46 0.57 0.39

Psupply 0.057 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.057 0.040

Psep 0.28 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.28 0.20

Pfeed 0.0038 0.010 0.040 0.010 0.010 0.013 0.013 0.014 0.014 0.0078 0.014 0.015 0.018 0.0038 0.0026

Psur 14.0 60.9 −7.0 57.3 −18 14.1 39.1 41.0 49.8 50.8 55.4 68.2 56.3 14.0 5.7

γP 0.23 1.02 −0.12 0.96 −0.3 0.24 0.65 0.68 0.83 0.85 0.92 1.14 0.94 0.23 0.095

Table 2: Steady-state operating point of the AD reactor used in simulations, as explained in
the text. Units are defined in Appendix Appendix C.

Variable Value
V 10
Treac 35
b 2.9
Svsin 30.2
Ffeed 1.13
Fmeth 6.00
Sbvs 3.42
Svfa 0.66
Xacid 2.03
Xmeth 0.39
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Figure 3: Fmeth and Svfa as function of Ffeed, Treac, b and V . Along the abscissa axes, green
colour represents safe operation, i.e. Svfa ≤ Smax

vfa . Red colour corresponds to Svfa > Smax
vfa ,

i.e. unsafe operation. The red vertical lines correspond to Svfa = Smax
vfa .
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PF2 :
max

b
Fmeth

Ffeed is fixed at Fmax
feed . Results are: The optimal b is 20, its upper limit. Fmeth

is 25.6/8.09 = 3.2 times larger than in the previous case. Psur is 60.9/14.0 = 4.4
times larger than in the previous case.

PF3 :
max
V

Fmeth (9)

Ffeed is set to Fmax
feed . The upper limit of V is set to 700 m3, a very large

value. Results are: The optimal V is 700 m3, its upper limit, corresponding
to HRT = 167 d, a very large value. This optimal V is probably impractical
to implement. Furthermore, Psur is negative, due to the large heat loss, seen
indirectly in the large Pheat.

PF4
:

max
b
Fmeth (10)

Treac is fixed at 25 oC, which is a temperature in the lower end of the
mesophilic range, but assumed a plausible temperature for AD reactor oper-
ation. This optimization problem is similar to PF2

, except Treac is there fixed
at 38 oC. Results are: The optimal b is 20, its upper limit, as in PF2

. Both
Fmeth and Psur are comparable with the respective values for PF2 . Hence, it is
demonstrated that it is beneficial to have a large b since it allows for a lower
reactor temperature.

PF5
:

This scenario is actually not an optimization problem as all parameters are
fixed. Its purpose is to demonstrate the importance of parameter b. The con-
ditions are as in PF4 , except b is now set as 2.9, which is the value estimated
for the real pilot reactor. Simulations show that reactor failure can be expected
since Svfa = 5.2 g/L, which is (much) larger than the critical limit Smax

vfa = 0.8
g/L. Simulations (not represented in Table 1) show that, also with Treac set
as 38 oC, and other parameters being the same, reactor failure can be expected.
Comparing with PF4 , where b = 20, these simulations demonstrate the impor-
tance of having a large b. This scenario also demonstrates that care must be
taken when selecting V for a given b and a fixed Ffeed, to prevent reactor failure.

Conclusions (maximization of Fmeth):

• In general, Treac should be set to Tmax
reac = 38 oC, and b should be as large

as possible.

• Furthermore, V should be set to its maximum value. However, large V
decreases Psur due to increased thermal loss. Of course, increasing V
also increases constructional and capital costs, but these factors are not
discussed in this paper.

• In most cases, increasing Ffeed gives increasing Fmeth. However, the limi-
tation Svfa ≤ Smax

vfa sets an upper limit of Ffeed. This upper limit of Ffeed

may be less than Fmax
feed , the (normal) animal waste production.
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• Assuming Ffeed = Fmax
feed . By selecting a sufficient large Treac, V and/or

b, Svfa ≤ Smax
vfa can be maintained. However, If Treac and b are fixed, the

optimal V may become very large.

• Maximization of Fmeth is a questionable optimization problem since there
it may have two unfortunate results: (1) Assuming limited Treac, V and/or
b, the Ffeed that maximizes Fmeth may become less than Fmax

feed implying
that only a part of the bioresource volume is utilized. (2) Assuming Ffeed =
Fmax

feed , the “optimal” V may become impractically large.

• Assuming specifically V = 10 m3 which is a plausible reactor size for
Norwegian farms: Assuming Ffeed = Fmax

feed = 4.2 m3/d, and Treac = 25
oC, it is necessary that b has a large value, here 20, for the reactor to
operate safely. With b = 20, the difference in Fmeth and Psur between
Treac = 25 oC and Treac = 38 oC is not large. However, if b = 2.9 as
estimated for the real pilot reactor, reactor failure may occur both with
Treac = 25 oC and Treac = 38 oC. Consequently, a large b is very important.

3.3. Minimization of V

Although constructional and capital costs are not included explicitly in the
optimization problems discussed in this paper, it is, beneficial to minimize the
reactor volume, V . Figure 3, plots 4a and b, show that, for a given Ffeed,
there is a lower limit of V while satisfying ineq. (6). In the present section, the
optimization problems aim at finding the minimum V under various conditions,
while satisfying ineq. (6). In each of the problems, Ffeed is set Fmax

feed . Note that
minimizing V assuming that Ffeed is constant, is equivalent to minimizing HRT,
cf. the definition of HRT, eq. (4). Neither Fmeth nor Psur are included in theses
optimization problems, but their values are presented, cf. Table 1.

Optimization problems:

PV1 :
min
V

V , without heat exchanger (11)

Here, heat exchanger is not used. Treac is fixed at Tmax
reac . Result: Psur = 14.1

MWh/y.
PV2

:
min
V

V , with heat exchanger (12)

Here, a heat exchanger is used. This problem is otherwise similar to PV1
,

and V is therefore the same. Result: Psur becomes 39.1 MWh/y, a considerable
increase comparing with PV1

. This indicates that using a heat exchanger is
beneficial.

PV3 :
min

V ,Treac

V , with heat exchanger (13)
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Treac is now an optimization variable (in addition to V ). The results in this
problem are to be compared with PV3 , see below.

PV4
:

min
V ,Treac

V , with heat exchanger and full insulation (14)

This problem is similar to PV3
, but with full thermal insulation of the reactor

walls, i.e. U = 0, which corresponds to G = 0 in eqs. (A.10) and (A.17).
Results: The optimal V becomes 28.3 m3, the same as in PV3

. The optimal
Treac is 35.9 oC, as in PV3

. However, Psur becomes larger, 49.8 vs. 41.0 MWh/y,
indicating that good insulation is beneficial.

PV5 :
min

V ,Treac

V , with heat exchanger and full insulation (15)

This problem is similar to PV3
, but now b is set to bmax = 20. Results:

The optimal Treac is 32.1 oC. The minimum V is 5.2 m3, which is considerably
smaller than in the other optimization problems. This indicates that it is (very)
beneficial to have a large b.

Conclusions (minimization of V ):

Assuming b = 2.9 as for the real pilot reactor, the following conditions
(PV4) is recommended for design: Assuming Ffeed = Fmax

feed , V = 28.3 m3 is
appropriate, corresponding to HRT = 6.7 d. Furthermore, the optimal Treac is
35.9 oC.

The larger b, the smaller the minimum V .

3.4. Maximization of Psur

The power surplus, Psur, is calculated with eq. (A.20). In optimization
problems PP1

, PP2
and PP3

, Ffeed is set to Fmax
feed .

Optimization problems:

PP1
:

max
V ,Treac

Psur

Results are: The optimal V is 137 m3, giving HRT = 32.5 d, a relatively large
value. The optimal Treac is 24.9 oC, a relatively small value.

PP2
:

max
b,V ,Treac

Psur

Ffeed is set to Fmax
feed . Comparison is made with Problem PP3

, see below.
PP3

:
max

V ,Treac

Psur, without heat exchanger

This problem is the same as PP2
, but now without heat exchanger. Results

are: Comparing PP3
and PP2

shows that by using an heat exchanger, Psur is
increased by 21% and V is reduced by 32%.
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PP4 :
max

Ffeed,Treac

Psur, with heat exchanger

V is fixed at 10 m3, and b at 2.9. Thus, PP4 is the same as PP1 , except in
PP1

, Fmeth is to be maximized. Results are: Comparing PP4
and PP1

shows
that when an heat exchanger is installed, maximizing Psur or Fmeth gives the
same optimal solution. Only (1.63 m3/d)/(4.2 m3/d) = 39% of the available
feedstock is used, which may make this solution unacceptable.

PP5 :
max

Ffeed,Treac

Psur, without heat exchanger

This problem is the same as PP4
, but now without heat exchanger. Result:

Comparing PP5 and PP4 shows that using an heat exchanger increases Psur.
Only (1.14 m3/d)/(4.2 m3/d) = 27% of the available feedstock is used, which
may be unacceptable.

Conclusions (maximization of Psur)

Psur increases considerably if b is increased and if a heat exchanger is used.
Assuming b = 2.9 as for the present pilot reactor and Ffeed fixed at Fmax

feed , a
maximum Psur is obtained with V = 137 m3, corresponding to HRT = 32.5 d.
However, this large value of V may be impractical to realize.

With V fixed at 10 m3, assumed a plausible reactor size, and b assumed 2.9,
as for the pilot reactor, Psur is maximized by Ffeed equal to only 39% of Fmax

feed .
Hence, only a small part of biological resources is utilized.

The maximum Psur is 68.2 MWh/y is obtained in PP2
, corresponding to

power surplus productivity γP = 1.14 (MWh/y)/LU. This is also the maximum
over all of the optimization problems reported in Table 1.

3.5. Summary of results

Below is a summary of the results of the three optimization problems dis-
cussed in Sections 3.2-3.4.

Maximization of Fmeth:

Treac and b should have values as close as possible to their assumed upper
limits, 38 oC and 20, respectively.

If Ffeed is fixed at Fmax
feed , the maximum Fmeth is obtained with a very large

V , which may be impractical to implement.
In most cases, increasing Ffeed gives increasing Fmeth. However, the limita-

tion Svfa ≤ Smax
vfa sets an upper limit of Ffeed. This upper limit of Ffeed may be

less than Fmax
feed , the (normal) animal waste production.

The two conclusions above imply that maximization of Fmeth is a question-
able optimization problem.

Assuming specifically V = 10 m3 which is a plausible reactor size for Nor-
wegian farms: Assuming Ffeed = Fmax

feed = 4.2 m3/d, and Treac = 25 oC, it is
necessary that b has a large value, e.g. 20, for the reactor to operate safely.
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With b = 20, the difference in Fmeth and Psur between Treac = 25 oC and
Treac = 38 oC is not large. However, if b = 2.9 as estimated for the real pilot
reactor, reactor failure may occur both with Treac = 25 oC and Treac = 38 oC.

Minimization of V :

The minimization assumes the following equality constraints: Svfa = Smax
vfa ,

and Ffeed = Fmax
feed . Assuming b = 2.9 as for the real pilot reactor, the minimum

V is 28.3 m3, corresponding to HRT = 6.7 d. Furthermore, the optimal Treac is
35.9 oC.

With a larger b, the minimum V is reduced.

Maximization of Psur:

Psur increases considerably if b is increased and if a heat exchanger is used.
Assuming b = 2.9 as for the present pilot reactor and Ffeed fixed at Fmax

feed , a
maximum Psur is obtained with V = 137 m3, corresponding to HRT = 32.5 d.
However, this large value of V may be impractical to realize.

With V fixed at 10 m3, assumed a plausible reactor size, and b assumed 2.9,
as for the pilot reactor, Psur is maximized with Ffeed equal to only 39% of Fmax

feed ,
which may be an unacceptable solution as not all of the biological resources is
utilized.

4. Discussion

The optimization results in this paper are based on three mathematical
models – the AD process model, the model of the reactor temperature, and
model of the heat exchanger temperatures. The first two models have been
adapted quite successfully to the real pilot reactor (Haugen et al., 2013a). The
latter has not been adapted to a physical heat exchanger, and therefore its
accuracy can not be stated. However, the underlying modeling principles are
assumed reasonable. Thus, although it can not be claimed that the optimization
results found are accurate, it can be expected that the results provide useful
knowledge about optimal reactor design and operation.

The modified Hill model, presented in Appendix Appendix A.1, is a relatively
simple AD process model. In this model, Svfa is the only variable which can
be used to define the conditions for safe reactor operation, and Smax

vfa = 0.8
g/L has been used as a constraint in the optimization problems discussed in
this paper. In other applications, e.g. AD reactors fed with swine waste, it
may be important to take other constraints taken into account, e.g. maximum
ammonia concentration, minimum pH, maximum propionic to acetic acid ratio,
and maximum ratio of intermediate alkalinity over total alkalinity. To these
ends, more comprehensive AD models are needed. Overviews of various AD
models are given by e.g. Gavala et al. (2003), Lyberatos and Skiadas (1999),
and Strömberg (2010). A short discussion of relevant models are also given
by (Haugen et al., 2013a). Although the model used in the present paper is
relatively simple, we think that the approach to optimization used is applicable
to alternative AD models.
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The present study does not address economical optimization, which, in gen-
eral, involves constructional, capital, and operational cost. The models and
results of the present paper may, however, constitute a part of the total model
used in economical optimization.

5. Conclusions

Optimal design and operation of a planned full-scale UASB reactor at a dairy
farm have been determined using optimization algorithms based on steady state
simulations of a dynamic AD process model combined with models of the reactor
temperature and the heat exchanger temperatures based on energy balances.
Available feedstock is 6 m3/d dairy waste.

The optimization solutions have been found using the straightforward “brute
force” (BF) method which is based on a scan for the global optimal solution over
a grid of the optimization variables. The grid resolution is typically selected as
1/100 of the range of the pertinent variable, giving a sufficient precision of the
optimal solution.

For the given AD reactor and its mathematical model, alternative opti-
mization objectives are maximizing Fmeth, minimizing V , and maximizing Psur.
Optimization variables candidates are Ffeed, Treac, b, V , ghx, and U . The opti-
mization algorithm takes into account the following constraints: Svfa ≤ Smax

vfa ,
and Ffeed ≤ Fmax

feed .
The results indicate that any optimal solution is improved, for example, the

maximum Psur is increased, if b is increased, if energy is recovered with a heat
exchanger, and if the reactor is well insulated.

Evaluated over all of the optimization problems studied, the maximum
Psur is 68.2 MWh/y, corresponding to power surplus productivity γP = 1.14
(MWh/y)/LU.
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Appendix A. Mathematical models

Values of model parameters having constant values are given in Appendix
Appendix C.
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Appendix A.1. Model of the AD process

The mathematical model of the AD processes in the reactor is a modifica-
tion of the model in (Hill, 1983b), adapted to the pilot reactor (Haugen et al.,
2013a). The model is based on material balances of biodegradable volatile solids,
volatile fatty acids, acidogens and methanogens, and a calculation of the pro-
duced methane gas flow. The model is summarized below.

Material balances:

Ṡbvs = (B0Svsin − Sbvs)
Ffeed

V
− µk1Xacid (A.1)

Ṡvfa = (AfB0Svsin − Svfa)
Ffeed

V
+ µk2Xacid − µck3Xmeth (A.2)

Ẋacid =

(
µ−Kd −

Ffeed/b

V

)
Xacid (A.3)

Ẋmeth =

(
µc −Kdc −

Ffeed/b

V

)
Xmeth (A.4)

Methane gas production:

Fmeth = V µck5Xmeth (A.5)

Reaction rates:

µ = µm
Sbvs

Ks + Sbvs
(A.6)

µc = µmc
Svfa

Ksc + Svfa
(A.7)

µm = µmc = 0.013Treac − 0.129 (20◦C < Treac < 60◦C) (A.8)

Appendix A.2. Model of reactor temperature

The mathematical model able to predict Treac is based on energy balance
model of the pilot reactor (Haugen et al., 2013a). For easy reference in the
present paper, the model is reviewed here:

Ṫreac =
1

cρV
[Pheat + cρFfeed (Tinfl − Treac) +G (Tamb − Treac)] (A.9)

The corresponding steady-state version of this model is

Pheat = cρFfeed (Treac − Tinfl) +G (Treac − Tamb) (A.10)

which is combined with the heat exchanger model as described below.
In eq. (A.10), G is calculated assuming that the reactor is a vertical cylinder

of diameter d and height h. Their ratio is khd = h/d, which can be regarded as
an optimization variable. In the context of selected optimization problems de-
scribed in previous sections, it was found that khd = 1 is optimal, and therefore
khd = 1 is used throughout this paper.

For simplicity, it is assumed that the heat conduction takes place at all sides
of the cylinder. The area-specific heat transfer conductivity, U , is assumed equal
to that of the pilot reactor (Haugen et al., 2013a).
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Appendix A.3. Model of heat exchanger temperatures

The mathematical modelling of the heat exchanger shown in Figure 1 as-
sumes that the liquid flows are equal to the feed flow, Ffeed, in all pipelines.

It is assumed that the heat exchanger consists of two homogeneous volumes:
the product volume and the heating medium volume, respectively. The energy
balances are:

cρVpṪinfl = cρFfeed (Tfeed − Tinfl) +Ghx (Thxout − Tinfl) (A.11)

cρVhṪhxout
= cρFfeed (Treac − Thxout

) +Ghx (Tinfl − Thxout
) (A.12)

In this paper, the steady-state version of this model is used in the analysis,
i.e. the time-derivatives are set to zero. Eliminating Thxout from the resulting
steady-state equations yields

Tinfl =
1 + ghx

1 + 2ghx
Tfeed +

ghx

1 + 2ghx
Treac (A.13)

where

ghx =
Ghx

cρFfeed
(A.14)

Some special cases of eq. (A.13) are:

• ghx = 0, i.e. no heat exchange:

Tinfl = Tfeed (A.15)

• ghx =∞, i.e. an extremely high, or ideal, heat exchange:

Tinfl =
1

2
(Tfeed + Treac) (A.16)

Combining eq. (A.13) with eq. (A.10) gives

Pheat =
1 + ghx

1 + 2ghx
cρFfeed (Treac − Tfeed) +G (Treac − Tamb) (A.17)

where Pheat is in J/d.

Power savings due to using preheating with heat exchanger

The saving in Pheat due to using an heat exchanger can be calculated as the
difference in Pheat given by eq. (A.17) with ghx = 0 and with the assumed value
of ghx. Assuming Treac is the same in both cases, the saving is

∆Pheat =
ghx

1 + 2ghx
cρFfeed (Treac − Tfeed) (A.18)

Considering the special case of G = 0 (perfect reactor insulation) and ghx =∞
(perfect heat exchange),

∆Pheat =
1

2
cρFfeed (Treac − Tfeed) (A.19)
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Compared with eq. (A.17), the savings is half of the power demand without
preheating. In other words, for a perfectly insulated reactor, preheating with a
perfect heat exchanger halves the external power needed to retain the reactor
at a given Treac.

Appendix A.4. Power calculations

The power surplus is calculated as

Psur = Pmeth − Pheat − Pagit − Psupply − Psep − Pfeed (A.20)

where Psur is in MWh/y. The individual terms in eq. (A.20) are:

Pmeth = EmethFmeth[kWh/y] (A.21)

Psupply = ksupplyFfeedraw [kWh/y] (A.22)

Psep = ksepFfeedraw
[kWh/y] (A.23)

Pfeed = ρghFfeed [J/d] (A.24)

where
Ffeed = ksFfeedraw

(A.25)

Pagit = kagitFfeedraw [kWh/y] (A.26)

Appendix B. Abbreviations

AD = Anaerobic digestion.

BVS = Biodegradable volatile solids.

CSTR = Continuous stirred tank reactor.

HRT = Hydraulic retention time.

LU = Livestock unit (head or cow).

NLP = Nonlinear programming.

SRT = Solids retention time.

STP = Standard temperature and pressure; 0 oC, 1 bar.

UASB = Upflow anaerobic sludge blanket.

VFA = Volatile fatty acids.

VS = Volatile solids.
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Appendix C. Nomenclature and values of constants

The nomenclature is in alphabetical order.

Af = 0.25 (g VFA/L)/(g BVS/L) is acidity constant.

b = SRT/HRT [d/d] is retention time ratio.

B0 = 0.69 (g BVS/L)/(g VS/L) is biodegradability constant.

c = 1000 J/(kg K) is specific heating capacity of reactor liquid.

Emeth = 9.95 kWh/m3 is specific energy contents of methane gas at STP
conditions (calculated from the ideal gas law).

Ffeed [m3/d] is influent or feed flow or load rate, assumed equal to effluent flow
(constant volume).

Ffeedraw [m3/d] is raw diluted dairy waste fed to the separator.

Fmeth [L CH4/d] is methane gas flow.

g = 9.81 kgm/s2 is gravity constant.

ghx [1] is defined as the heat transfer conductivity coefficient of the heat ex-
changer.

G [(J/d)/K] is thermal conductivity of the reactor.

Ghx [(J/d)/K)] is thermal conductivity between the heating medium side and
the product side of the heat exchanger.

γmeth [m3 CH4/d)/(m3/d)] is gas productivity.

γP [(MWh/y)/LU] is power surplus productivity.

h [m] is lift height of reactor influent.

HRT = Ffeed/V [d] is hydraulic retention time.

kagit = 243.3 (kWh/y)/(m3/d) is power coefficient of agitator.

khd [m/m] is ratio of reactor height to reactor diameter.

kf [1] is wet fraction of raw (non-separated) feed passing through the separator
and being fed to the reactor.

kw [MWh/y] is energy conversion constant.

ks = 0.70 (m3/d)/(m3/d) is separation constant.

ksupply = 24.33 (kWh/y)/(m3/d) is power coefficient of supply pump.

ksep = 121.7 (kWh/y)/(m3/d) is power coefficient of separator.
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k1 = 3.89 g BVS/(g acidogens/L) is a yield constant.

k2 = 1.76 g VFA/(g acidogens/L) is a yield constant.

k3 = 31.7 g VFA/(g methanogens/L) is a yield constant.

k5 = 26.3 L/g methanogens is a yield constant.

Ks = 15.5 g BVS/L is Monod half-velocity constant for acidogens.

Ksc = 3.0 g VFA/L is Monod half-velocity constant for methanogens.

Kd = 0.02 d−1 is specific death rate of acidogens.

Kdc = 0.02 d−1 is specific death rate of methanogens.

L CH4 is litres of methane gas at STP (standard temperature and pressure),
i.e. temperature 0 oC and pressure 1 bar.

L is litres of liquid.

µ [d−1] is reaction (growth) rate of acidogens.

µc [d−1] is reaction (growth) rate of methanogens.

µm [d−1] is the maximum reaction rate for acidogens.

µmc [d−1] is the maximum reaction rate for methanogens.

NLU is number of lifestock units (LU).

Nxi
[1] is number of grid intervals, or subintervals, for optimization variable
xi.

Pagit [kWh/y] is power consumption of the agitator.

Pheat [kWh/y] is power consumption of the electrical heater, i.e. power supplied
to the reactor by the electrical heater.

Pmeth [kWh/y] is usable power of the methane gas.

Pfeed [kWh/y] is power consumption of the feed pump related to lifting the
feed up to the reactor inlet, typically provided by a displacement pump.

Psupply [kWh/y] is power consumption of the supply pump, which is typically
a monopump.

Psep [kWh/y] is power consumption of the feed separator.

Psur [MWh/y] is power surplus.

ρ [kg/m3] is density of reactor liquid.

Svfa [g VFA/L] is concentration of VFA acids in reactor.
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Tamb [◦C] is ambient (air) temperature.

Tfeed [◦C] is temperature of reactor feed.

Th [◦C] is “hot” side temperature of the heat exchanger.

Tinfl [◦C] is temperature of reactor feed.

Tp [◦C] is “cold” side temperature of the heat exchanger.

Treac [◦C] is reactor temperature.

U = 6.50 · 104 ((J/d)/K)/m2 is specific thermal conductivity of the reactor,
assumed equal to that of the pilot reactor. In Haugen et al. (2013b), U is
denoted Gs.

V [m3] is effective volume of reactor liquid.

y is year.
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Strömberg, S., 2010. Development and Evaluation of Numerical Models for
Anaerobic Digestion. M.Sc. thesis. Lund Univ., Sweden.

Tchobanoglous, G., Burton, F. G., Stensel, H. D., 2003. Wastewater Engineer-
ing: Treatment and Reuse. Metcalf and Eddy, McGraw Hill.

23



Article 6 — Relaxed

Ziegler-Nichols Closed Loop

Tuning of PI Controllers

Published in Modeling, Identification and Control, 34 (2), 2013.

Authors: Finn Haugen and Bernt Lie.

Authors’ roles in the article: Finn Haugen: Main ideas, implementation,

and writing. Bernt Lie (main supervisor): Discussions, comments, and

proof readings.

Background and methods of the article

Background

During the tuning of both the reactor temperature PI controller in Article

no. 2 and the methane gas flow PI controller control loop in Article no. 3,

it was found that the standard Ziegler-Nichols closed loop PI settings,

Ziegler & Nichols (1942), gave poor control system stability. This was

observed both on the real reactor and on the simulated reactor. Also, the

gain margin and the phase margin as calculated from the frequency

response showed small values. The Tyreus-Luyben modification of the

Ziegler-Nichols PI settings, Tyreus & Luyben (1992), improved the

stability, but with unnecessarily slow disturbance compensations.

Improved PI settings were then derived by combining the Ziegler-Nichols

closed loop method with the successful Skogestad method, Skogestad

(2004), for open loop PI tuning of “integrator with time delay” processes.
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Method

The proposed PI settings are tested on various simulated processes and on

a real laboratory scale air heater, Haugen (2013). To analyze the control

systems in simulation applications, both performance and stability

robustness measures are calculated. As performance measures, the IAE

index is calculated for setpoint changes and for disturbance changes. As

stability robustness measures, the GM and the PM are calculated. In the

simulated cases, they are calculated from the open loop frequency

response. In the practical case with the air heater, the GM and PM are

calculated from experiments, as explained in the article.
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Abstract

A modification of the PI setting of the Ziegler-Nichols closed loop tuning method is proposed. The modifi-
cation is based on a combination of the Skogestad SIMC tuning formulas for “integrator plus time-delay”
processes with the Ziegler-Nichols tuning formulas assuming that the process is modeled as an “inte-
grator plus time-delay” process. The resulting PI settings provide improved stability margins compared
with those obtained with the original Ziegler-Nichols PI settings. Compared with the well-known Tyreus-
Luyben PI settings, the proposed PI settings give improved disturbance compensation. For processes with
zero or a negligible time-delay, but with some lags in the form of time-constants, tuning based on ultimate
gain and ultimate period may give poor results. Successful PI settings for such processes are proposed.

Keywords: PI controller, tuning, open loop, closed loop, Ziegler-Nichols, Tyreus-Luyben, Skogestad,
relay-tuning, performance, stability, robustness.

1. Introduction

The PI (proportional plus integral) controller is prob-
ably the most frequently used controller function in
practical applications. The PI controller stems from
a PID controller with the D-term (derivative) deac-
tived to reduce the propagation of amplified random
measurement noise via the controller, thereby limiting
variations in the control signal due to noise.

Ziegler and Nichols (1942) presented two, now fa-
mous, methods for tuning P, PI, and PID controllers:
The closed loop, or ultimate gain, method, and the
open loop, or process reaction curve, method. In the
present paper, focus is on closed loop tuning of PI con-
trollers.

The PI settings with the Ziegler and Nichols closed
loop method are:

Kc = 0.45Kcu (1)

Ti =
Pu
1.2

(2)

where Kcu is the ultimate gain, and Pu is the ultimate
period to be found by the user. A practical, experimen-
tal way to find Kcu and Pu is using relay oscillations,
Åstrøm and Hägglund (1995), cf. Appendix A.

It is well-known that Ziegler and Nichols closed loop
PI tuning in many cases give relatively fast process
disturbance compensation, but unfortunately poor sta-
bility margins, seen as poorly damped oscillatory re-
sponses. This is demonstrated in several examples in
Section 3. Tyreus and Luyben (1992) proposed a now
well-known modification of the Ziegler-Nichols PI set-
tings which typically give improved control system sta-
bility:

Kc = 0.31Kcu (3)

Ti = 2.2Pu (4)

In the present paper, another modification of the
Ziegler-Nichols PI settings is proposed to provide ac-
ceptable stability margins and improved disturbance
compensation compared to the Tyreus and Luyben set-
tings. The proposed tuning rules, here denoted the
Relaxed Ziegler-Nichols (R-ZN) PI settings, are based

doi:10.4173/mic.2013.2.4 c© 2013 Norwegian Society of Automatic Control
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on the open loop tuning rules in the SIMC method
(Simple Internal Model Control) by Skogestad (2004)
applied to an “integrator plus time-delay” process esti-
mated from the ultimate gain and the ultimate period,
Yu (1999).

The outline of this paper is as follows: In Section
2, the R-ZN PI settings are derived. In Section 3, the
original Ziegler-Nichols (ZN) PI settings, the Relaxed
Ziegler-Nichols PI settings, and the Tyreus-Luyben
(TL) PI settings are applied to two simulation cases
and to a practical temperature control system of an
air heater. In Section 4 an adjustable parameter of the
R-ZN method is used to tune processes without time-
delay, but with lags. Section 5 contains a discussion,
and conclusions are given in Section 6.

Appendix A reviews the relay experiment of find-
ing the ultimate gain and the ultimate period from
both sinusoidal and triangular oscillations. Appendix
B presents a modification of the Skogestad PI settings
for improved disturbance compensation, used in the
derivation of the proposed PI controller setting. Ap-
pendix C shows abbreviations and nomenclature.

In this paper, the same symbol (letter) will be used
for variables in time-domain as in the Laplace domain.
This simplifies the notation. It is assumed that the
meaning of the symbol is clear from the context.

MATLAB and SIMULINK (MathWorks, Inc.) are
used for numerical computations and simulations. Lab-
VIEW (National Instruments, Inc.) is used to imple-
ment the temperature control system for the real air
heater.

2. Relaxed Ziegler-Nichols PI
tuning

2.1. Derivation of the tuning formulas

The following PI controller function is assumed:

u (t) = uman +Kce (t) +
Kc

Ti

∫ t

0

e (τ) dτ (5)

Skogestad (2004) has provided PI settings for a num-
ber of different types of process dynamics, among
which are “integrator plus time-delay” and “time-
constant plus time-delay”. Assuming that Skogestad’s
rule-of-thumb about setting the user-specified closed
loop time-constant, Tc, equal to the process time-delay,
τ , his PI settings for these two process types are actu-
ally identical as long as the relation between the time-
constant of the “time-constant plus time-delay” pro-
cess and the time-delay satisfies

T ≥ 8τ (6)

In the following, it is assumed that eq. (6) is satisfied
for the process to be controlled. Thus, an “integrator
plus time-delay” process is assumed, with the following
transfer function:

∆y(s)

∆u(s)
= Hp(s) =

Kip

s
e−τs (7)

The Skogestad PI settings for this process are:

Kc =
1

Kip (Tc + τ)
(8)

Ti = cs (Tc + τ) (9)

The parameter cs is introduced here. The original PI
settings in Skogestad (2004) correspond to cs = 4 in
eq. (9). For “integrator plus time-delay” processes
with an “input” process disturbance, the disturbance
compensation appears as unnecessarily slow with cs =
4. To obtain a faster disturbance compensation while
retaining acceptable stability margins, a value of cs
smaller than 4 can be used. It is found that values
around 2 are proper values. Thus, cs = 2 is proposed.
The implications of various values of cs are investigated
in Appendix B.

The user must select a proper value of Tc in eqs.
(8) and (9). Skogestad provides the following rule-of-
thumb:

Tc = τ (10)

With cs = 2 and the rule-of-thumb eq. (10), eqs. (8)
and (9) become

Kc =
1

2Kipτ
(11)

Ti = 4τ (12)

which may be denoted the modified Skogestad PI set-
tings for “integrator plus time-delay” processes.

The Skogestad PI settings, also with cs = 2, typically
yield acceptable stability of the control system, while
Ziegler and Nichols PI settings often give poor stability,
with oscillatory responses (as demonstrated in several
applications in Section 3). The PI settings, eqs. (11)
and (12), will now be exploited to relax the original ZN
PI settings, eqs. (1)-(2).

For an “integrator plus time-delay” process, Kip and
τ can be estimated from Kcu and Pu as follows, Yu
(1999), DiRuscio (2010):

Kip =
2π

KcuPu
(13)

τ =
Pu
4

(14)

As pointed out in Seborg et al. (2004), process param-
eters Kip and τ can be used in any model-based con-
troller tuning method. Here, the (modified) Skogestad
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PI settings, eqs. (11) and (12), are used. Inserting eqs.
(13) and (14) into eqs. (11) and (12) gives

Kc =
Kcu

π
= 0.32Kcu (15)

Ti = Pu (16)

which will be referred to as the (default) Relaxed
Ziegler-Nichols (R-ZN) PI settings.

Comparing with ZN and TL

Compared with the (original) ZN PI settings, eqs. (1)-
(2), the gain is smaller and the integral time is some-
what larger in the R-ZN PI settings, indicating im-
proved stability.

Compared with the TL PI settings, eqs. (3)-(4), the
R-ZN gain is almost the same, while the R-ZN integral
time is smaller, indicating faster integral action, i.e.
the control error is brought faster to zero, however,
somewhat reduced stability can be expected.

Enhanced relaxation

Above, the closed loop time-constant is set equal to
the (estimated) process time-delay, cf. eq. (10). Par-
ticularly in applications where the process has zero or
negligible time-delay but some lag, the default R-ZN
PI settings may result in poor stability (and the ZN
settings may even give instability). Acceptable stabil-
ity can be obtained with enhanced relaxation of the PI
settings. To this end, we propose

Tc = krτ (17)

where kr ≥ 1 is a relaxation parameter to be set by
the user. The default PI settings, eqs. (6) and (6), are
obtained with kr = 1. Enchanced relaxation of the PI
settings is obtained with kr > 1. Using eq. (17) in eqs.
(8) and (9), and setting cs = 2 in (9), give

Kc =
2

π (kr + 1)
Kcu (18)

and

Ti =
kr + 1

2
Pu (19)

The usefulness of enhanced R-ZN tuning is demon-
strated in Section 4.

One question may arise: Why not just apply origi-
nal ZN settings and adjust Kc and Ti directly? While
this is of course an option, we think that it better to
use a meaningful single parameter, kr, to obtain the PI
settings. The benefit of reducing the number of con-
troller parameters to adjust from two to one is actually
substantial. Skogestad’s tuning method is an excellent

example of this: From the user’s perspective, adjusting
Tc, which has a meaningful interpretation, to obtain
the PI settings is a much simpler task than adjusting
Kc and Ti directly.

2.2. Some derived results

Estimation of control system response-time

The control system response-time, Tr, can be estimated
from the ultimate period, Pu, as explained in the fol-
lowing. The typical setting of kr = 1 is here assumed.
Then the PI settings are eqs. (6) and (6). Assume that
the setpoint is changed as a step. Then the response
in the process output reaches 63% of its final value at
time (approximately)

Tr ≈ τ + Tc =
Pu
4

+
Pu
4

=
Pu
2

(20)

Tr is here the 63% rise-time, or response-time, of the
control system. As an example of eq. (20), see Figure
9 where the response in air heater temperature due to
a setpoint step is plotted. In that example, Pu = 15 s,
giving Tr ≈ Pu/2 = 7.5 s, which is in good accordance
with the plotted response in Figure 9.

Retuning the PI controller

Equations (18) and (19) can be used to retune a PI
controller safely. Note that the factor (kr + 1) appears
in the denominator of eq. (18) and in the numerator
of eq. (19). For example, assume that it is desired to
decrease the present value of Kc by a factor of 2 (to
obtain a smoother control signal). This gain reduction
should be acccompanied by an increase of Ti by a factor
2. (This inversely proportional adjustment also follows
directly from Skogestad’s formulas, eqs. (8) and (9).)

3. Applications

3.1. Overview

In the following subsections, PI settings with the (orig-
inal) Ziegler-Nichols closed loop method, the R-ZN
closed loop method, and the TL method are applied
to the following three cases:

• A simulated control system for an “integrator with
time-delay” process (Section 3.3).

• A simulated control system for a “time-constant
with time-delay” process (Section 3.4).

• A practical temperature control system for a lab-
oratory air heater (Section 3.5). The process
dynamics is roughly “time-constant with time-
delay”.
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The PI settings will be compared using quantitive
measures of performance and robustness defined in Sec-
tion 3.2.

For easy reference, the various PI settings formulas
are summarized in Table 1. In the examples, Kcu and
Pu are found from the method of relay oscillations de-
scribed in Appendix A.

Table 1: PI settings formulas.

ZN R-ZN TL
Kc 0.45Kcu 0.32Kcu 0.31Kcu

Ti
Pu

1.2 Pu 2.2Pu

3.2. Measures of performance and
robustness

The measures used in this paper for comparing the
various methods of PI controller tuning can be grouped
into performance and robustness measures described in
the detail in the following.

3.2.1. Performance

IAE at setpoint change

In the tests the setpoint is changed as a step. The
setpoint tracking is measured with the IAE (Integral
of Absolute Error) index calculated over a proper time
interval as

IAEs =

∫ tf

ti

|e| dt (21)

where e is the control error, ti is the initial time, se-
lected as the time of the step change, and tf is a proper
final time. A reduced IAEs value indicates improved
setpoint tracking.

IAE at process disturbance change

In the tests a process disturbance is changed as a step.
The disturbance compensation is measured with

IAEd =

∫ tf

ti

|e| dt (22)

A reduced IAEd value indicates improved disturbance
compensation.

Response time

The response time, Tr [s], is here defined as the inverse
of the bandwidth defined as the amplitude crossover
frequency, ωc [rad/s]:

Tr =
1

ωc
(23)

Tr indicates the speed of the response of the control
system due to a setpoint step change. Tr is approxi-
mately the time-constant of the control system. ωc is
equal to the phase crossover frequency, ω180d

, of the
loop brought to marginal stability by a reduction of
the phase of the loop while the amplitude is retained,
as by an increase of the loop time-delay:

Tr =
1

ω180d

=
Pu
2π

(24)

where Pu [s] is the (ultimate) period of the oscillations
at marginal stability.

Setpoint tracking versus disturbance compensation

For systems where the setpoint is constant, which is
the case in many practical process control systems, it
can be claimed that good disturbance compensation is
more important than good setpoint tracking. In the ex-
amples presented in the following sections, disturbance
compensation is emphasized.

3.2.2. Stability robustness (stability margins)

Gain margin, GM

For the cases based on simulations GM is calculated
from the loop transfer function, HL(s), using the mar-
gin function in MATLAB. HL(s) is

HL(s) = Hc(s)Hp(s) (25)

where Hc(s) is the controller transfer function, and
Hp(s) is the process transfer function.

For the practical case (air heater) an adjustable gain,
∆K, is inserted into the loop (between the controller
and the process), see Figure 1. Initially, ∆K = 1. The

Process

w/actuator

and sensor 

and filter

ySP Cont-

roller

d

ymfu
DK (t-Dt)

Adjustable 

gain

Adjustable

time-delay

Disturbance

Process 

measurementSetpoint

Figure 1: An adjustable gain and time-delay are in-
serted into the loop to find the stability
margins (gain margin and phase margin)
experimentally.

(ultimate) value ∆Ku that brings the control system to
the stability limit so that the responses are sustained
oscillations, is found experimentally (by trials). The
gain margin is then

GM = ∆Ku (26)
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Phase margin, PM

For the cases based on simulations PM is calculated
from the loop transfer function using the margin func-
tion in MATLAB.

For the practical case (air heater) an adjustable time-
delay, ∆τ [s], is inserted into the loop (between the
controller and the process), see Figure 1. Initially,
∆τ = 0. For each of the tuning methods, the value ∆τu
that brings the control system to the stability limit, i.e.
causing sustained oscillations, is found experimentally.
The period, Pu [s], of the oscillations is measured. The
corresponding phase margin is

PM [deg] = 360
∆τu
Pu

(27)

Equation (27) is derived in Haugen (2012) (Ap-
pendix 1).

Proper values of GM and PM

Seborg et al. (2004) propose the following ranges for
proper values of the stability margins:

1.7 = 4.6 dB ≤ GM ≤ 4.0 = 12.0 dB (28)

and
30o ≤ PM ≤ 45o (29)

Since poor control system stability must be avoided,
the lower limits of GM and PM can be regarded as
critical, while the upper limits are not.

3.3. Application: Simulated “integrator
plus time-delay” process

3.3.1. Process description

The process to be controlled is an “integrator plus
time-delay” process:

ẏ(t) = Kipu(t− τ) +Kdd(t) (30)

which has transfer function as in eq. (7). The process
parameter values are: Kip = 1 s−1, Kd = 1, τ = 1 s.

3.3.2. PI controller tuning from relay oscillations

Kcu and Pu are found from relay oscillations. Figure 2
shows plots of the sustained oscillations during the re-
lay tuning, cf. Appendix A. From the plots,Atri = 1.0.
The square wave in the control signal has amplitude
Asq = 1.

Equation (47) in Appendix A gives

Kcu =
πAsq
2Atri

=
π · 1
2 · 1

= 1.57 (31)
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Figure 2: Responses during relay tuning

It is interesting that the ultimate gain using a P con-
troller also gives Kcu = 1.57. Hence, the Fourier-series
approximations used to derive eq. (47) give a very pre-
cise result in this case.

Furthermore, from the plots,

Pu = 4.0 s (32)

Various PI settings are calculated from the above
values of Kcu and Pu using the formulas in Table 1.
The PI settings are shown in Table 2.

3.3.3. Performance and stability robustness of the
control system

Figure 3 shows responses in the process output variable
(y) and the controller output (u) with a step change
of the temperature setpoint (ysp) and a step change of
the disturbance (d) for the three different PI settings
shown in Table 2.

GM, PM and Tr are calculated from the model.
IAEs is calculated time-series over the interval t =
[2 s, 40 s]. IAEd is calculated over t = [40 s, 80 s].
Table 2 summarizes the performance and robustness
measures.

Below are a number of observations made in Table 2
(the abbreviations are as in Table 2):

• Setpoint tracking :

IAEs: ZN and TL are the best, and almost equal,
but ZN suffers from large overshoot.
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Figure 3: Responses with various PI settings.

Table 2: Controller settings and performance and ro-
bustness measures for simulated control sys-
tem for ”integrator plus time-delay” process
with different PI settings.

ZN R-ZN TL
Kc 0.71 0.50 0.49
Ti [s] 3.3 4.0 8.8
IAEs 7.9 8.1 8.0
IAEd 2.8 4.5 9.0
GM 1.9 2.7 3.1

GM [dB] 5.4 8.8 9.7
PM [deg] 24.9 34.1 48.6
Tr [s] 1.3 s 1.8 2.0

Tr: ZN is the best, while R-ZN and TL do not
differ much.

• Disturbance compensation:

IAEd: ZN is clearly best. R-ZN is in turn clearly
better than TL as the R-ZN has a value which is
50% of the value of TL.

• Stability robustness (margins):

GM: ZN is poor, and actually below the lower limit
in ineq. (28). R-ZN and TL do not differ much
and have acceptable values.

PM: Again ZN is poor, and below the lower limit
in ineq. (29). R-ZN gives a somewhat small, but
acceptable, value. TL gives large value, possibly

unnecessarily large as it is larger than the higher
limit in ineq. (29).

The low stability margins with ZN are apparent
in the oscillatory responses with the ZN settings,
see Figure 3.

Comments and conclusions

The Ziegler-Nichols PI settings give poor control loop
stability margins. The TL and the R-ZN settings give
acceptable stability margins. With emphasis on dis-
turbance compensation rather than setpoint tracking,
the R-ZN settings are better than the TL settings.

3.4. Application: Simulated
“time-constant plus time-delay”
process

3.4.1. Process description

The process to be controlled is a “time-constant plus
time-delay” process (assuming the time-delay is at the
input-side):

T ẏ(t) = −y(t) +Ku(t− τ) +Kdd(t) (33)

The process parameter values are: K = 8, Kd = 8, τ =
1 s.

The time-constant being 8 times the time-delay
makes the Skogestad PI settings for a “time-constant
plus time-delay” process become identical with the
settings for an “integrator plus time-delay” process.
Therefore, the condition for using Skogestad tuning
for “integrator plus time-delay” processes, ineq. (6),
is satisfied.

3.4.2. PI controller tuning from relay oscillations

The ultimate gain and the ultimate period are found
from relay oscillations. Figure 4 shows plots of the
sustained oscillations during the relay tuning. The re-
sponse in y are approximately triangular, so eq. (47)
is used to calculate Kcu . From Figure 4,Atri = 0.94,
Asq = 1. Equation (47) gives

Kcu =
πAsq

2Atri
=
π · 0.94

2 · 1
= 1.48 (34)

The ultimate gain using a P controller gives Kcu = 1.65
which differs somewhat from 1.48. Still, Kcu = 1.48 is
used to stick to relay tuning, and using 1.48 rather
than 1.65 is safe (conservative) regarding control loop
stability.

Furthermore, from Figure 4,

Pu = 3.78 s (35)
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Figure 4: Responses during relay tuning

Various PI settings are calculated from the above
values of Kcu and Pu using the formulas in Table 1.
The PI settings are shown in Table 2.

3.4.3. Performance and stability robustness of the
control system

Figure 5 shows responses in the process output variable
(y) and the controller output (u) with a step change
of the temperature setpoint (ysp) and a step change of
the disturbance (d) for the three different PI settings
shown in Table 3.

GM, PM and Tr are calculated from the model. IAEs
is calculated over the interval t = [2 s, 40 s]. IAEd is
calculated over t = [40 s, 80 s]. Table 3 summarizes
the performance and robustness measures.

Table 3: Controller settings and performance and ro-
bustness measures for simulated control sys-
tem for ”time-constant plus time-delay” pro-
cess with different PI settings.

ZN R-ZN TL
Kc 0.75 0.53 0.52
Ti [s] 3.2 3.8 8.3
IAEs 6.1 5.8 4.3
IAEd 2.1 3.6 7.9
GM 1.7 2.6 3.0

GM [dB] 4.8 8.1 9.7
PM [deg] 22.3 32.2 60.1
Tr [s] 1.2 1.7 1.9
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Figure 5: Responses with various PI settings.

Below are a number of observations made in Table 2
(the abbreviations are as in Table 2):

• Setpoint tracking :

IAEs: TL is best.

Tr: ZN is best, while R-ZN and TL do not differ
much.

• Disturbance compensation:

IAEd: ZN is clearly best. R-ZN is in turn clearly
better than TL. R-ZN has a value which is 45 %
of the value of TL.

• Stability robustness (margins):

GM: Strictly, all settings give acceptable values,
but ZN is on the lower limit.

PM: ZN is poor, and below the lower limit in ineq.
(29). R-ZN gives a somewhat small, but accept-
able, value. TL gives a large value, possibly unnec-
essarily large as it is larger than the higher limit
in ineq. (29).

Comments and conclusions

The Ziegler-Nichols PI settings give poor control loop
stability as the PM is too small. The rest of the com-
ments are identical with those for the “integrator plus
time-delay” case in Section 3.3: The TL and the R-ZN
settings give acceptable stability margins. With em-
phasis on disturbance compensation rather than set-
point tracking, the R-ZN settings are better than the
TL settings.

89



Modeling, Identification and Control

3.5. Application: Practical temperature
control system

3.5.1. Process description

Figure 6 shows an air heater laboratory station. The

Figure 6: Temperature control system for an air heater
(laboratory rig)

temperature of the air outlet is controlled by adjusting
the control signal (voltage) to the heater. The temper-
ature is measured with a Pt100 element. A measure-
ment filter with time-constant 0.5 s is used to attenuate
measurement noise. The National Instruments USB-
6008 is used as analog I/O device. The control system
is implemented in LabVIEW (National Instruments)
running on a PC. The fan rotational speed, and the air
flow, can be adjusted manually with a potentiometer.
Changes of the air flow comprises a process disturbance
giving an impact on the temperature. The measured
voltage drop across the potensiometer is represented
by the variable F in percent. Thus, F represents the
air flow disturbance.1

The nominal operating point of the system is tem-
perature at 35 oC and air flow F = 50 %.

Figure 7 shows the open loop, or process, step re-
sponse in the filtered temperature, ymf , due to a step
in the heater control signal, u. The response indicates
that the process dynamics is roughly “time-constant
with time-delay”, with time-constant ≈ 37 s and time-
delay ≈ 3 s which is about 8% of the time-constant.

1 Additional information about the air heater is available at
Haugen (2013).
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Figure 7: Open loop step response in filtered tempera-
ture, ymf , due to a step in the heater control
signal, u.

3.5.2. PI controller tuning from relay oscillations

Kcu and Pu are found from relay oscillations. Figure
8 shows plots of the sustained oscillations during the
relay tuning. The oscillations in temperature (process
measurement) looks more sinusoidal than triangular.
Therefore, Kcu is calculated using eq. (45).

From Figure 8, Asin = 0.75 oC and Asq = 2.5 V.
Equation (45) gives

Kcu =
4Asq

πAsin
=

4 · 2.5 V

π · 0.75 oC
= 4.24

V
oC

(36)

From Figure 8,

Pu = 15.0 s (37)

Various PI settings are calculated from the above
values of Kcu and Pu using the formulas in Table 1.
The PI settings are shown in Table 4. Both standard R-
ZN and enhanced R-ZN tuning are applied, with kr = 1
and kr = 2, respectively.

3.5.3. Performance and stability robustness of the
control system

Figures 9, 10, 11, and 12 show responses in the air
temperature (ymf ) and the controller output (u) due
to a step change of the temperature setpoint (ysp) and a
step change of the disturbance (d) for the four different
PI settings shown in Table 4.
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Figure 8: Responses during relay tuning

Performance and stability robustness measures are
calculated from the time-series as explained in Sec-
tion 3.2. IAEs is calculated over the interval
t = [100 s, 180 s]. IAEd is calculated over t =
[200 s, 280 s]. Table 4 summarizes the performance
and robustness measures.

Table 4: Controller settings and performance and ro-
bustness measures for practical temperature
control system for different PI settings.

ZN
R-ZN
kr = 1

R-ZN
kr = 2

TL

Kc 1.91 1.35 0.90 1.32
Ti [s] 12.5 15.0 22.5 33.0
IAEs 16.2 12.3 10.6 10.3
IAEd 4.3 4.9 7.5 11.8
GM 1.5 1.8 2.8 2.6

GM [dB] 3.5 5.1 8.9 8.3
∆τu [s] 1.6 2.6 7.7 5.7
Pu [s] 24.0 31.0 50.0 39.0

PM [deg] 24.0 30.2 55.4 52.6
Tr [s] 3.8 4.9 8.0 6.2

Below are a number of observations made in Table 4
(the abbreviations are as in Table 4):

• Setpoint tracking :

IAEs: TL and R-ZN with kr = 1 and with kr = 2
do not differ much and are clearly better than ZN
which is due to the large overshoot and oscillatory
response with ZN.
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Figure 9: Responses with Ziegler-Nichols PI settings

Tr: ZN is clearly best. It gives fast control. R-ZN
with kr = 1 is also relatively fast.

• Disturbance compensation:

IAEd: ZN and R-ZN with kr = 1 are much better
than both R-ZN with kr = 2 and TL. R-ZN with
kr = 1 give only 36% of that of TL. Relaxed ZN
with kr = 2 is also clearly better than TL.

• Stability robustness (margins):

GM: ZN is poor, and actually below the lower limit
in ineq. (28). R-ZN with kr = 1 is small, but just
within the limits.

PM: Again ZN is poor, and below the lower limit
in ineq. (29). R-ZN with kr = 1 is small, but
just within the limits. TL has a large value, pos-
sibly unnecessarily large since it is larger than the
higher limit in ineq. (29). R-ZN with kr = 2 has
a very large value.

The low stability margins with ZN are apparent in
the oscillatory responses with the ZN settings. R-
ZN with kr = 1 seems to give acceptable stability
as seen from time-series. R-ZN with kr = 2 and
TL both give smooth, but slow, responses.

Comments and conclusions

The Ziegler-Nichols PI settings give poor control loop
stability. The TL and the R-ZN settings both with
kr = 1 and kr = 2 give acceptable stability margins,
though R-ZN with kr = 1 gives small margins. R-ZN
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Figure 10: Responses with R-ZN PI settings with kr =
1.

with kr = 1 give clearly the best disturbance compen-
sation, and since the stability margins are within the
acceptable limits, it gives the prefered PI settings in
this application.

If it is important with smooth responses, both TL
and R-ZN with kr = 2 can be used. Among these two,
we prefer the latter because it gives best disturbance
compensation, and because the R-ZN settings are ad-
justable, while the TL settings are fixed.

4. Relaxed tuning for processes
with no time-delay but with lags

Closed loop PI tuning with the standard Ziegler-
Nichols method, the TL method, or even the R-ZN
tuning method with the default setting kr = 1 may
not work well if the process has no, or negligible time-
delay, however, some lag is assumed. The resulting
stability may be very poor. Such cases may occur in
e.g. temperature control, Haugen et al. (2013) and bio-
gas flow control of bioreactors, Haugen and Lie (2013).
However, enhanced R-ZN tuning with a proper kr > 1
seems to work well. An explanation of the resulting
poor stability is that, due to the lack of a time-delay,
the phase characteristic is relatively flat around the
critical frequencies, making the phase margin small.

Now, an extreme case is assumed, and enhanced R-
ZN PI tuning is used. The value of kr that is found
useful in this case may be used in other less extreme
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Figure 11: Responses with R-ZN PI settings with kr =
2.

cases to obtain proper stability. Note that for processes
with a noteable time-delay the R-ZN PI settings with
the default value kr = 1, i.e. eqs. (6)-(6), should be
used.

Assume that the process is an integrator without
any time-delay but with two lags in the form of time-
constant terms where one of the time-constants is one
tenth of the other. Specifically, the following process
transfer function model is assumed:

y(s) =
1

s(T1s+ 1)(T2s+ 1)

[
Kipu(s) +Kdd(s)

]
(38)

where u is control variable and d is disturbance. Time-
constant T1 may represent a process lag due to e.g.
dynamics of a heating element or a valve or a pump or
represent inhomogeneous conditions in a tank, while
T2 may represent the time-constant of a measurement
filter. The integrator, 1/s, may represent e.g. energy
or material balance. The following parameter values
are assumed: Kip = 1 s−1 Kd = 1, T1 = 1 s, and
T2 = 0.1 s. In less extreme cases the difference between
the two time-constants are less, and there may also be
a non-zero time-delay.

The relay method is used, giving Kcu = 10.24 and
Pu = 2.02 s. The three PI tuning methods mentioned
in the beginning of the present section are tested. Fig-
ure 13 shows their responses. With TL tuning and
R-ZN tuning with kr = 1 the control system is stable,
but the stability is poor. With Ziegler-Nichols tuning,
the system is unstable!
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Figure 12: Responses with TL PI settings
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Figure 13: Responses with various PI settings.

By trial-and-error it is found that R-ZN tuning with
kr = 4 works well. Hence, with kr = 4 in (18) and (19)
the PI settings become

Kc = 0.13Kcu (39)

and
Ti = 2.5Pu (40)

Figure 14 shows simulated responses. Table 5 shows
PI settings and stability margins.

Comments and conclusion:

• GM is large, but is accepted here.

• PM is small and just outside the acceptable range
where 30.0o is the critical limit, cf. ineq. (29).
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Figure 14: Responses with PI controller tuned with the
R-ZN method with kr = 4.

Table 5: Controller settings and performance and ro-
bustness measures for simulated PI control
system for an ”integrator with two lags” pro-
cess with R-ZN tuning with kr = 4.

Kc 1.3
Ti [s] 5.2
GM 6.7

GM [dB] 16.5
PM [deg] 29.4

However, the value of 29.4o is here regarded as
acceptable since it is for an assumed extreme case.
With kr = 5 PM = 34.3o which is within the range
given by ineq. (29), but simulations indicate that
the control system becomes unnecessarily sluggish
with kr = 5 applied for less extreme cases.

• How can one know that a process has one or more
lags and no or negligible time-delay, so that the
enhanced relaxed tuning should be applied? Phys-
ical insight may be useful: If the sensor or actuator
is located close to the main process (which can be
e.g. a reactor vessel), the time-delay may be neg-
ligible compared to time-constant lags. A process
step response test is also an option, but then an
open loop controller tuning method, as the Skoges-
tad method (2003, 2004), may be applied directly.
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5. Discussion

The proposed new set of PI settings are based on tun-
ing rules derived by Ziegler and Nichols (1942), tuning
rules derived by Skogestad (2004), and the modeling
of the process as an “integrator plus time-delay” ac-
cording to Yu (1999). The validity and applicability
of the proposed PI settings rely on assumptions made
by these authors. The sensitivity of the present results
with respect to such assumptions has not been inves-
tigated here. However, two simulation tests and one
practical test indicate that the proposed tuning works
as assumed.

In the simulations it is assumed that the process
disturbance is an input disturbance as it acts on the
process at the same place, dynamically, as the control
signal does. In most practical processes the main dis-
turbances are actually input disturbances. We have not
investigated the consequences for our results of moving
the disturbance to the process output.

It is found that for processes with no, or a negligible
time-delay, but with some lags in the form of time-
constants, R-ZN tuning with kr = 1 may give poor
stability (This applies to ordinary ZN and TL tuning,
too). However, proper stability may be obtained with
enhanced relaxation of the tuning, and kr = 4 seems to
be a proper value at least for processes without time-
delay but with two lags with one being one tenth of the
other. The conditions that make the selection kr = 4
unsuccessful have not been investigated, but for pro-
cesses where the time-constants are closer, the PI set-
tings with kr = 4 will certainly be safe (conservative).

6. Conclusions

The main result of this paper is a proposed new set of
PI settings which uses the same information as in the
Ziegler-Nichols closed loop method, namely knowledge
about the ultimate gain, Kcu , and the ultimate period,
Pu: The proposed settings are:

Kc = 0.32Kcu

Ti = Pu

These settings are modifications, or relaxations, of the
original Ziegler-Nichols PI settings, and they give im-
proved control system stability. In this paper, the pro-
posed setting have been successfully applied to two sim-
ulated control systems and to a practical temperature
control system of an air heater.

Comparing with the TL PI settings, which also are
based on knowledge of the ultimate gain and the ul-
timate period, the proposed PI settings give clearly
better disturbance compensation.

The proposed PI settings have an adjustable param-
eter which can be used to obtain enhanced relaxation
which is useful for processes with zero or negligible
time-delay but some lags (time-constants).
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A. Finding the ultimate gain and
period from relay oscillations

In the original Ziegler-Nichols closed loop method the
user must find, typically by trial-and-error, the ulti-
mate controller gain value, Kcu , of a P controller which
makes the responses in the control system become sus-
tained oscillations. The user must also read off the
ultimate period, Pu, of the oscillations. Kcu and Pu
are then used to calculate the PI settings with the fol-
lowing formulas:

Kc = 0.45Kcu (41)

Ti =
Pu
1.2

(42)

Åstrøm and Hägglund (1995) introduced a relay,
or on-off, controller to replace the P controller in
the tuning phase, thereby avoiding the possibly time-
consuming trial-and-error procedure as the oscillations
come automatically. During the relay tuning the con-
trol signal is a square wave.
Kcu can be estimated from the relay oscillations as

follows. Assume that the amplitude of the square wave
is

Asq =
uon − uoff

2
(43)

where uon and uoff are the values of the controller out-
put when the relay is in the on- and off-state, respec-
tively. The square wave is approximated by its funda-
mental sinusoidal component of its Fourier series. The
fundamental sinusoid is known to have amplitude

Asq,F =
4Asq

π
(44)

Sinusoidal oscillations

With relay-based oscillations, for many practical pro-
cesses the filtered process measurement is approxi-
mately sinusoidal. Assume that the measurement has
amplitude Asin. The control error, which is the input
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to the relay, then also has amplitude Asin. The equiv-
alent gain of the relay function, which is used as the
ultimate gain in eq. (41), is

Kcu =
Asq,F

Asin
=

4Asq

πAsin
= 1.27

Asq

Asin
(45)

The ultimate period, Pu, needed in eq. (42) is the
period of the oscillations.

Triangular oscillations

If the process dynamics is pure “integrator plus time-
delay” the relay-based oscillations in the process mea-
surement are not sinusoidal, but triangular. Let Atri

be the amplitude of these triangular oscillations. The
fundamental sinusoidal component of the triangular os-
cillation is known to have amplitude

Atri,F =
8Atri

π2
(46)

The equivalent gain of the relay function, which is used
as the ultimate gain in eq. (41), is

Kcu =
Asq,F

Atri,F
=
πAsq

2Atri
= 1.57

Asq

Atri
(47)

The ultimate period, Pu, in eq. (42) is the period of
the oscillations.

If the process dynamics is “time-constant plus time-
delay” with the time-constant being much larger than
the time-delay, and without other process dynamics
(lags), the relay-based oscillations appear more trian-
gular than sinusoidal. In these cases, eq. (47) can be
used.

B. Impact of the proposed
parameter cs in the modified
Skogestad PI settings

Simulations are used to investigate the implications of
using various values of parameter cs in eq. (9).

The process to be controlled is an “integrator with
time-delay” process given by eqs. (30) with Kip = 1
s−1, Kd = 1 and τ = 1 s. The PI controller is tuned
with the (modified) Skogestad tuning formulas, eqs.
(8) and (9).

Figure 15 shows simulations for the following values
of cs:

• cs = 1.5 which is the the value corresponding to
the IMC settings for an “integrator with time-
delay” process by Chien and Fruehauf (1990).

• cs = 2 which is the value used in the present paper.
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Figure 15: Simulations of control systems for an “in-
tegrator with time-delay” process with Sko-
gestad controller tuning with cs = 1.5, cs =
2, and cs = 4.

• cs = 4 which is Skogestad’s original value.

Table 6 shows a number of characteristics of the sim-
ulated control system for the three values of cs. GM,
PM and Tr are calculated from the model, cf. Sec-
tion 3.2. IAEs is calculated time-series as explained in
Section 3.2 over the interval t = [2 s, 40 s]. IAEd is
calculated over t = [40 s, 80 s].

Table 6: Results with c = 1.5, c = 2, and c = 4 in the
(modified) Skogestad PI tuning formulas for
an “integrator with time-delay” process.

cs = 1.5 cs = 2 cs = 4
Kc 0.5 0.5 0.5
Ti[s] 3 4 8
IAEs 9.6 8.1 7.8
IAEd 4.5 4.5 8.0
GM 2.6 2.7 3.0

PM [deg] 26.9 34.1 46.9
Tr [s] 1.7 1.8 1.9

Comments and conclusions

In Table 6, PM = 26.9 for cs = 1.5 which is regarded
as a poor value since it is lower than the lower limit in
ineq. (29).
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With cs = 2 and cs = 4 the stability margins are
acceptable.

IAEd with cs = 2 is 56% of IAEd with cs = 4, in-
dicating a considerable improved disturbance compen-
sation with cs = 2. This is also clearly seen in the
simulations.

We prefer cs = 2 over cs = 4 in the Skogestad PI
settings formulas for “integrator plus time-delay” pro-
cesses since the disturbance compensation is improved.

C. Abbreviations and nomenclature

C.1. Abbreviations

GM: Gain margin.

IAE: Integral of absolute error.

PI: Proportional plus integral (control).

PM: Phase margin.

R-ZN: Relaxed Ziegler-Nichols.

ZN: Ziegler-Nichols (original method).

TL: Tyreus-Luyben.

SIMC: Simple Internal Model Control.

C.2. Nomenclature

Asin: Amplitude of sinusoidal wave in control error or
in process (output) measurement.

Asq: Amplitude of square wave in control signal.

Atri: Amplitude of triangular wave in control error or
in process (output) measurement.

Au: Amplitude of the on-off control signal.

cs: Parameter introduced in the integral time settings
in the Skogestad method.

d is process disturbance.

∆: Deviation from operating point.

e: Control error. e = ysp − y.

kr: The relaxation parameter in the Relaxed Ziegler-
Nichols method.

K is process gain.

Kc [s]: Controller proportional gain.

Kd is disturbance gain.

Kip [s]: Process integrator gain.

Pu [s]: Period of sustained oscillations.

T [s]: Process time-constant.

Tc [s]: Closed loop time-constant.

Ti [s]: Controller integral time.

Tr [s]: Response-time, or 63% rise time of step re-
sponse.

τ [s]: Process time-delay.

u: Control signal (controller output).

uman: Manual control signal (control bias).

y: Process output measurement.

ysp: Setpoint
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Åstrøm, K. J. and Hägglund, T. PID Controllers: The-
ory, Design and Tuning. ISA, 1995.

Chien, I. L. and Fruehauf, P. S. Consider IMC Tun-
ing to Improve Controller Performance. Chem. Eng.
Progress, 1990. Oct:33–41.

DiRuscio, D. On Tuning PI Controllers for In-
tegrating Plus Time Delay Systems. Modeling,
Identification and Control, 2010. 31(4):145–164.
doi:10.4173/mic.2010.4.3.

Haugen, F. The good gain method for simple ex-
perimental tuning of pi controllers. Modeling,
Identification and Control, 2012. 33(4):141–152.
doi:10.4173/mic.2012.4.3.

Haugen, F. Air heater. http://home.hit.no/~finnh/
air_heater, 2013.

Haugen, F., Bakke, R., and Lie, B. Temperature con-
trol of a pilot anaerobic digestion reactor. Submitted
to Modeling, Identification and Control, 2013.

Haugen, F. and Lie, B. On-off and pid control of
methane gas production of a pilot anaerobic diges-
tion reactor. Submitted to Modeling, Identification
and Control, 2013.

Seborg, D. E., Edgar, T. F., and Mellichamp, D. A.
Process Dynamics and Control. John Wiley and
Sons, 2004.

96

http://dx.doi.org/10.4173/mic.2010.4.3
http://dx.doi.org/10.4173/mic.2012.4.3
http://home.hit.no/~finnh/air_heater
http://home.hit.no/~finnh/air_heater


F. Haugen and B. Lie “Relaxed Ziegler-Nichols Closed Loop Tuning of PI Controllers”

Skogestad, S. Simple analytic rules for model re-
duction and pid controller tuning. Modeling,
Identification and Control, 2004. 25(2):85–120.
doi:10.4173/mic.2004.2.2.

Tyreus, B. D. and Luyben, W. L. Tuning PI Con-
trollers for Integrator/Dead Time Processes. Ind.
Eng. Chem, 1992. 31(31).

Yu, C. C. Autotuning of PID Controllers. Springer
Verlag, 1999.

Ziegler, J. and Nichols, N. Optimum settings for au-
tomatic controllers. Trans. ASME, 1942. 64(3):759–
768. doi:10.1115/1.2899060.

97

http://dx.doi.org/10.4173/mic.2004.2.2
http://dx.doi.org/10.1115/1.2899060
http://creativecommons.org/licenses/by/3.0



	Article_1_20_Adapting Dynamic Mathematical.pdf
	Introduction
	Anaerobic digestion of animal wastes
	Possible applications of mathematical models
	Outline of this paper

	The AD reactor
	Overview
	Instrumentation
	Available data

	Adaptation of a mathematical model to the AD reactor
	Selection of dynamic model
	Model selection criteria
	Model candidates
	Selection of the ultimate model

	Hill's AD model
	The original Hill's model
	Modified Hill's model

	Adaptation of modified Hill's model to the AD reactor
	Known parameters in modified Hill's model
	Parameters in modified Hill's model calculated from laboratory test
	Estimation of unknown parameters and variables in modified Hill's model using real data
	Temperature dependency


	Reactor temperature model
	Discussion
	Conclusions
	Nomenclature
	Abbreviations
	Nomenclature of model of AD processes
	Nomenclature of model of reactor temperature

	Laboratory analysis methods
	Summary of modified Hill's model

	Article_2_19_Temperature_control.pdf
	Introduction
	Process description
	Rationales of bioreactor temperature control
	Temperature dependency of methane production
	Disturbance compensation

	On-off control
	PID control
	Controller function
	Summary of results with various tuning methods
	Simulated temperature control system
	Real temperature control system

	Open-loop controller tuning
	Introduction
	The Skogestad method (SIMC method)

	Closed loop controller tuning
	Introduction
	The ZN closed loop method based on relay tuning 
	Relaxed ZN PI tuning

	Control system robustness against process parameter changes
	Introduction
	Changes in feed flow
	Changes in lag or time-delay


	Feedforward control
	Introduction
	Model-based feedforward control
	Model-free feedforward control

	Temperature control of a full-scale reactor
	Discussion
	Conclusions
	Mathematical models
	Phenomenological reactor model
	Transfer functions model of the temperature control system

	Abbreviations and nomenclature
	Abbreviations
	Nomenclature


	Article_3_18_Onoff_PI_methane_control.pdf
	Introduction
	The proposed methane flow control system
	Control system objective
	Selection of control variable
	Implementation of the control system
	Control functions
	Safe reactor operation and attainable operating points
	Comparing feedback control with open loop control

	On-off control
	PID control
	Controller function
	Selection of controller tuning methods
	Summary of results
	Applications of controller tunings
	Skogestad tuning
	Ziegler-Nichols PI tuning based on relay oscillations
	Relaxed Ziegler-Nichols PI tuning
	Optimal PI tuning based on the modified Hill model
	PI tuning using estimated transfer function
	Conclusions about PI tuning method

	Control system robustness against process parameter changes
	Introduction
	Dependency on Treac
	Dependency on Ffeed
	Detecting critical operating point for controller tuning


	Discussion
	Conclusions
	Mathematical models
	The modified Hill model
	Linearized model
	Transfer function model

	Abbreviations and nomenclature
	Abbreviations
	Nomenclature


	Article_3_18_Onoff_PI_methane_control.pdf
	Introduction
	The proposed methane flow control system
	Control system objective
	Selection of control variable
	Implementation of the control system
	Control functions
	Safe reactor operation and attainable operating points
	Comparing feedback control with open loop control

	On-off control
	PID control
	Controller function
	Selection of controller tuning methods
	Summary of results
	Applications of controller tunings
	Skogestad tuning
	Ziegler-Nichols PI tuning based on relay oscillations
	Relaxed Ziegler-Nichols PI tuning
	Optimal PI tuning based on the modified Hill model
	PI tuning using estimated transfer function
	Conclusions about PI tuning method

	Control system robustness against process parameter changes
	Introduction
	Dependency on Treac
	Dependency on Ffeed
	Detecting critical operating point for controller tuning


	Discussion
	Conclusions
	Mathematical models
	The modified Hill model
	Linearized model
	Transfer function model

	Abbreviations and nomenclature
	Abbreviations
	Nomenclature


	Article_6_15_Relaxed_ZN_Tuning.pdf
	Introduction
	Relaxed Ziegler-Nichols PI tuning
	Derivation of the tuning formulas
	Some derived results

	Applications
	Overview
	Measures of performance and robustness
	Performance
	Stability robustness (stability margins)

	Application: Simulated “integrator plus time-delay” process
	Process description
	PI controller tuning from relay oscillations
	Performance and stability robustness of the control system

	Application: Simulated “time-constant plus time-delay” process
	Process description
	PI controller tuning from relay oscillations
	Performance and stability robustness of the control system

	Application: Practical temperature control system
	Process description
	PI controller tuning from relay oscillations
	Performance and stability robustness of the control system


	Relaxed tuning for processes with no time-delay but with lags 
	Discussion
	Conclusions
	Finding the ultimate gain and period from relay oscillations
	Impact of the proposed parameter cs in the modified Skogestad PI settings
	Abbreviations and nomenclature
	Abbreviations
	Nomenclature



