
192 Finn Haugen: PID Control

7.2 Controller tuning from specified
characteristic polynomial

7.2.1 Introduction

The subsequent sections explain controller tuning based on specifications
of the characteristic polynomial of the control system. Using this method
you can shape the dynamic properties of the control system quite freely.
However, the method is in practice applicable only to processes of low order
due to the mathematical operations involved, and here only integrator
processes and first order (time constant) process will be considered.

If the process order is high, or if the process contains time delay, you
should consider using the Ziegler-Nichols’ tuning methods, cf. Chapter 4
(Ziegler-Nichols’ tuning methods actually can not be used for integrators
or first order processes since the parameters needed in the methods, as the
ultimate gain, can not be found or is infinitely large for these processes).

For all the processes that we soon will encounter (integrator and first order
system), Skogestad’s method, cf. Section 7.5, can be used. Although this
tuning method certainly works fine, the method is based on some model
approximations. In some cases it is useful to be able to perform an exact
controller design. One important example is the level controller design for
a liquid tank, cf. Example 7.2.

7.2.2 Tuning a controller for an integrator process

The process transfer function is

Hp(s) =
K

s
(7.9)

and the disturbance transfer function is

Hvm(s) =
Kvm
s

(7.10)

One example of such a process is a liquid tank where the level h is to be
controlled by controlling the outflow wout from the tank. The transfer
function from wout to level measurement hm is on the form (7.9). (This
example is described in detail in Example 7.1 (page 194).)

We will use a PI controller (the derivative term in the PID controller
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serves no purpose for this process), which has transfer function

Hc(s) = Kp
Tis+ 1

Tis
(7.11)

The controller parameters Kp and Ti will be calculated from a specified
bandwidth, which represents the speed of the control system. In addition
we must require that the control system has acceptable stability. We start
by finding the tracking transfer function T (s), which is given by (7.8)
where the loop transfer function is

L(s) = Hc(s)Hp(s) = Kp
Tis+ 1

Tis
· K
s

(7.12)

From (7.8) we get

T (s) =
L(s)

1 + L(s)
=

KpK
³
s+ 1

Ti

´
s2 +KpKs+

KpK

Ti| {z }
c(s)

(7.13)

where c(s) is the characteristic polynomial of the control system. We write
it as a standard second order polynomial:

c(s) = s2 +KpKs+
KpK

Ti
= s2 + 2ζω0s+ ω0

2 (7.14)

where ω0 is the undamped resonance frequency and ζ is the relative
damping factor [7]. Comparison of coefficients between the two
polynomials in (7.14) gives the following identities:

KpK ≡ 2ζω0 and KpK
Ti
≡ ω0

2 (7.15)

Solving for Kp and Ti gives the following formulas for the controller
parameters:

Kp =
2ζω0
K

(7.16)

Ti =
2ζ

ω0
(7.17)

Using (7.16) and (7.17), T (s) can be written as

T (s) =
KpK

³
s+ 1

Ti

´
s2 +KpKs+

KpK
Ti

=
2ζω0s+ ω0

2

s2 + 2ζω0s+ ω02
(7.18)
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ω0 can be interpreted as the bandwidth of the tracking function (7.18). A
rough estimate of the response time1 of the control system is

Tr ≈ 1

ω0
(7.19)

A reasonable choice of ζ is
ζ = 0.5 (7.20)

which gives step responses with well damped oscillations. If larger damping
of the time responses is desired, ζ can be given a larger value (closer to 1).

Example 7.1 PI control of an integrator process

Figure 7.3: Example 7.1: Simulated responses in the control system

Assume that K = 1 and Kvm = 1 in (7.9) and (7.10). We specify ω0 = 1
and ζ = 0.5. (7.16) and (7.17) gives

Kp = 1; Ti = 1 (7.21)

Figure 7.3 shows simulated responses in a control system with transfer
functions (7.9) and (7.10). There is a setpoint step and a disturbance step.
The simulations indicates that the stability of the control system is

1The response time can be regarded as an approximate time constant.
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acceptable. The response time is read off as Tr ≈ 0.9s which is quite
similar to the estimate Tr = 1/ω0 = 1/1 = 1s according to (7.19).

[End of Example 7.1]

Tuning the controller for sluggish control

The aim of controller tuning is not always fast control, but in stead
sluggish control! This is the case for a level controlled liquid tank in a
process line. The tank is an integrator, dynamically. The level control
system ensures the mass balance. In addition the control system behaves
like a lowpass filter between the (free) inflow win and the outflow wout. To
obtain enough attenuation of inflow variations through the system, the
level control system must be sluggish! Example 7.2 goes into the details.

Example 7.2 Level control of buffer tank

Figure 7.4 shows the front panel of a simulator for buffer tank with level
control system.2 (The simulated responses are explained later in this
example.)The control system has two aims:

• To keep the level on or close to a level setpoint.

• To attenuate variations in the outflow so that it becomes smoother
than the inflow.

We need a mathematical process model: Mass balance is

ρAḣ = win −wout|{z}
Kuu

(7.22)

Laplace transformation of (7.22) is

ρAh(s) = win(s)−Kuu(s) (7.23)

Solving for h(s) gives the following transfer function model:

h(s) =
1

ρAs
win(s)− Ku

ρAs
u(s) (7.24)

2The system may be in e.g. a production line in a factory.
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Figure 7.4: Example 7.2: Front panel of simulator for level control system

The transfer function from level h to level measurement hm is

hm(s) = Kmh(s) (7.25)

Combining (7.24) and (7.25) gives the following model:

hm(s) =
Km
ρAs

win(s)− KmKu
ρAs

u(s) (7.26)

The transfer function from u to hm is

Hp(s) =
hm(s)

u(s)
= − Ku

ρAs
= −K

s
(7.27)

where

K =
KuKm
ρA

(7.28)
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is the process gain. Figure 7.5 shows a block diagram of the level control
system.

-Hc(s)

Km

u h

hm

hSP

Controller
win

KuKm

hmSP wout

ρAs
1

Figure 7.5: Example 7.2: Block diagram of the level control system

The level controller is a PI controller. The integral term ensures zero static
control error. The transfer function of the PI controller is

Hc(s) = Kp
Tis+ 1

Tis
(7.29)

What is the reason for the negative sign ahead of the controller transfer
function Hc(s) in the block diagram in Figure (7.5)? The negative sign
means that the controller in effect has negative gain. Negative controller
gain is here necessary since the process gain is negative, cf. Section 2.6.8.

The tracking transfer function of the control system is given by (7.18),
which is repeated here:

hm(s)

hmSP (s)
= T (s) (7.30)

=
L(s)

1 + L(s)
(7.31)

=
Hc(s)Hp(s)

1 +Hc(s)Hp(s)
(7.32)

=
KpK

³
s+ 1

Ti

´
s2 +KpKs+

KpK
Ti

(7.33)

=
2ζω0s+ ω0

2

s2 + 2ζω0s+ ω02
(7.34)

Once ζ and ω0 is specified, the controller parameters are given by (7.16)
and (7.17). Below we will specify ζ and ω0 from a specification to the
attenuation of the mass flow through the tank.
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The relation between the inflow win and the outflow wut can be expressed
by the transfer function from win to wout. From the block diagram in
Figure 7.5 we see that the relation between win and wout is identical to the
relation between the level setpoint hSP and the level h, which implies that
the transfer function from win to wout is the same as the tracking transfer
function! Thus,

wout(s)

win(s)
=

h(s)

hm(s)
= T (s) (7.35)

=
KpK

³
s+ 1

Ti

´
s2 +KpKs+

KpK
Ti

(7.36)

=
2ζω0s+ ω0

2

s2 + 2ζω0s+ ω02
(7.37)

By giving values to ζ and ω0 we determine the dynamic properties of the
controlled tank. Let us set

ζ = 0.5 (7.38)

What about ω0? It can roughly be regarded as the bandwidth of the
lowpass filter (7.35). A Bode plot of the amplitude function |T (jω)| gives a
good picture of the filtering properties, see Figure 7.6 which shows |T (jω)|
with controller parameters as calculated later in this example. In the figure
the frequency unit is Hz. The relation between a frequency f1 in Hz and
the corresponding frequency ω1 in rad/s is

2πf1 = ω1 (7.39)

Let us specify that a frequency component in win of frequency
fin = 0.05Hz is attenuated by a factor of 5 — or in other words: amplified
by factor 0.2 which is approximately −14dB. This means that the
amplitude gain of T at this frequency must be

|T (s)|s=j2πfin (7.40)

= |T (j2πfin)| (7.41)

=

¯̄̄̄
¯ 2ζω0s+ ω0

2

s2 + 2ζω0s+ ω02

¯̄̄̄
s=j2πfin=j2π·0.05

¯̄̄̄
¯ = 0.2 = −14dB (7.42)

Here we use (7.38). In principle we can now solve (7.42) for ω0 (to be used
in (7.16) and (7.17) for calculating the PI parameters). Although it is
possible to solve (7.42) for ω0, it is a bit difficult operation. If we have a
computer tool for plotting Bode diagrams, it is easier to iterate on plotting
|T | for varying ω0 until |T | = 0.2. The result is

ω0 = 0.06rad/s
ˆ
= 0.0095Hz (7.43)
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Using (7.38) and (7.43) in (7.16) and (7.17) gives

Kp = 0.60; Ti = 16.7s (7.44)

Figure 7.6 shows a Bode plot of |T (jω)| with the controller parameters
(7.44). We read off |T | = −14.0dB = 0.20.

Figure 7.6: Example 7.2: Bode plot of |T (ω)| with the calculated PI parameters

Figure 7.4 shows simulated responses in the control system with parameter
values defined above. An accurate reading from the simulations shows that
the amplitude of wout is 4.0kg/s (in steady-state). The amplitude of win is
20kg/s. Thus, the amplitude ratio is 4.0/20 = 0.20 = −14.0dB, which is in
accordance with the Bode plot, see Figure 7.6.

[End of Example 7.2]


