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Figure 4.19: Example 4.6: Control signal u and process measurement ym used
for estimation of process model

parameter values (4.48). The re-tuning has clearly given an improvement
of the quickness of the control loop, and the stability of the control loop is
satisfactory.

[End of Example 4.6]

4.9 PID tuning when process dynamics varies

4.9.1 Introduction

A well tuned PID controller has parameters which are adapted to the
dynamic properties to the process, so that the control system becomes fast
and stable. If the process dynamic properties varies without re-tuning the
controller, the control system

• gets reduced stability or
• becomes more sluggish.

Problems with variable process dynamics can be solved as follows:

• The controller is tuned in the most critical operation point,
so that when the process operates in a different operation point, the
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Figure 4.20: Example 4.6: Response in process output for control system with
original and re-tuned PI controller parameters

stability of the control system is just better – at least the stability is
not reduced. However, if the stability is too good the tracking
quickness is reduced, giving more sluggish control.

• The controller parameters are varied in the “opposite”
direction of the variations of the process dynamics, so that
the performance of the control system is maintained, independent of
the operation point. Two ways to vary the controller parameters are:

— PID controller with gain scheduling. This is described in detail
in Section 4.9.2.

— Model-based adaptive controller. This is described briefly in
Section 4.9.4.

Commercial control equipment is available with options for gain scheduling
and/or adaptive control.

4.9.2 Gain scheduling PID controller

Figure 4.21 shows the structure of a control system for a process which
may have varying dynamic properties, for example a varying gain. The
Gain scheduling variable GS is some measured process variable which at
every instant of time expresses or represents the dynamic properties of the
process. As you will see in Example 4.7, GS may be the mass flow through
a liquid tank.
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Figure 4.21: Control system for a process having varying dynamic properties.
The GS variable expresses or represents the dynamic properties of the process.

Assume that proper values of the PID parameters Kp, Ti and Td are found
using for example Ziegler-Nichols’ closed loop method for a set of values of
the GS variable. These PID parameter values can be stored in a parameter
table — the gain schedule — as shown in Table 4.3. From this table proper
PID parameters are given as functions of the gain scheduling variable, GS.

GS Kp Ti Td
P1 Kp1 Ti1 Td1
P2 Kp2 Ti2 Td2
P3 Kp3 Ti3 Td3

Table 4.3: Gain schedule or parameter table of PID controller parameters.

There are several ways to express the PID parameters as functions of the
GS variable:

• Piecewise constant controller parameters: An interval is
defined around each GS value in the parameter table. The controller
parameters are kept constant as long as the GS value is within the
interval. This is a simple solution, but is seems nonetheless to be the
most common solution in commercial controllers.

When the GS variable changes from one interval to another, the
controller parameters are changed abruptly, see Figure 4.22 which
illustrates this for Kp, but the situation is the same for Ti and Td. In
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Figure 4.22 it is assumed that GS values toward the left are critical
with respect to the stability of the control system. In other words: It
is assumed that it is safe to keep Kp constant and equal to the Kp
value in the left part of the the interval.

GS1 GS2 GS3 GS

Kp1

Kp2

Kp3

Kp

Assumed range of P

Table values of Kp

Linear interpolation

Piecewise constant value 
(with hysteresis )

Figure 4.22: Two different ways to interpolate in a PID parameter table: Using
piecewise constant values and linear interpolation

Using this solution there will be a disturbance in the form of a step
in the control variable when the GS variable shifts from one interval
to a another, but this disturbance is probably of negligible practical
importance for the process output variable. Noise in the GS variable
may cause frequent changes of the PID parameters. This can be
prevented by using a hysteresis, as shown in Figure 4.22.

• Piecewise interpolation, which means that a linear function is
found relating the controller parameter (output variable) and the GS
variable (input variable) between to adjacent sets of data in the
table. The linear function is on the form

Kp = a ·GS + b (4.49)

where a and b are found from the two corresponding data sets:

Kp1 = a ·GS1 + b (4.50)

Kp2 = a ·GS2 + b (4.51)
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(Similar equations applies to the Ti parameter and the Td
parameter.) (4.50) and (4.51) constitute a set of two equations with
two unknown variables, a and b.8

• Other interpolations may be used, too, for example a polynomial
function fitted exactly to the data or fitted using the least squares
method.

Example 4.7 Gain schedule based PID temperature control at
variable mass flow

Figure 4.25 shows the front panel of a simulator for a temperature control
system for a liquid tank with variable mass flow, w, through the tank. The
control variable u controls the power to heating element. The temperature
T is measured by a sensor which is placed some distance away from the
heating element. There is a time delay from the control variable to
measurement due to imperfect blending in the tank.

The process dynamics We will initially, both in simulations and from
analytical expressions, that the dynamic properties of the process varies
with the mass flow w. The response in the temperature T is simulated for
the following two open loop cases (i.e., not feedback control):

• A step in u of amplitude 10% from 31.5% to 41.5% at mass flow
w = 12kg/min, which in this context is a relatively small value, see
Figure 4.23.

• A step in u of amplitude 10%, from 63.0 % to 73.0 % at
w = 24kg/min, which in this context is a relatively large value, see
Figure 4.24.

The simulations show that the following happens when the mass flow w is
reduced (from 24 to 12kg/min): The gain process K is larger, the time
constant Tt is larger, and the time delay τ is larger. (These terms assumes
that system is a first order system with time delay. The simulator is based
on such a model. The model is described below.)

Let us see if the way the process dynamics seems to depend on the mass
flow w as seen from the simulations, can be confirmed from a

8The solution is left to you.
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Figure 4.23: Response in temperature T after a step in u of amplitude 10%
from 31.5% to 41.5% at the small mass flow w = 12kg/min

Figure 4.24: Response in temperature T after a step in u of amplitude 10%
from 63.0% to 73.0% at the large mass flow w = 24kg/min

mathematical process model.9 Assuming perfect stirring in the tank to
have homogeneous conditions in the tank, we can set up the following
energy balance for the liquid in the tank:

cρV Ṫ1(t) = KPu(t) + cw [Tin(t)− Tt(t)] (4.52)

where T1 [K] is the liquid temperature in the tank, Tin [K] is the inlet
temperature, c [J/(kg K)] is the specific heat capacity, V [m3] is the liquid
volume, ρ [kg/m3] is the density, w [kg/s] is the mass flow (same out as
in), KP [W/%] is the gain of the power amplifier, u [%] is the control
variable, cρV T1 is (the temperature dependent) energy in the tank. It is
assumed that the tank is isolated, that is, there is no heat transfer through

9Well, it would be strange if not. After all, we will be analyzing the same model as
used in the simulator.
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the walls to the environment. To make the model a little more realistic, we
will include a time delay τ [s] to represent inhomogeneous conditions in the
tank. Let us for simplicity assume that the time delay is inversely
proportional to the mass flow. Thus, the temperature T at the sensor is

T (t) = T1(t− Kτ

w|{z}
τ

) (4.53)

where τ is the time delay and Kτ is a constant. Let us study the transfer
function from u to T . Taking the Laplace transform of (4.52) gives

cρV [sT1(s)− T10 ] = KPu(s) + cw [Tin(s)− Tt(s)] (4.54)

where T10 is the initial value of T . Rearranging (4.54) yields the following
model

T1(s) =
ρV
w

ρV
w s+ 1

T10 +
KP
cw

ρV
w s+ 1

u(s) +
1

ρV
w s+ 1

Tin(s) (4.55)

Taking the Laplace transform of (4.53) gives

T (s) = e−
Kτ
w
sT1(s) (4.56)

Substituting T1(s) in (4.56) by T1(s) from (4.55) yields the following
transfer function Hu(s) from u to T :

T (s) =

Kz}|{
KP
cw

ρV

w|{z}
Tt

s+ 1
e
−

τz}|{
Kτ

w
s
u(s) (4.57)

=
K

Tts+ 1
e−τs| {z }

Hu(s)

u(s) (4.58)

Thus,

K =
KP
cw

(4.59)

Tt =
ρV

w
(4.60)

τ =
Kτ

w
(4.61)

This confirms the observations in the simulations: Reduced mass flow w
implies larger process gain, larger time constant, and larger time delay.

Heat exchangers and blending tanks in a process line where the production
rate or mass flow varies, have similar dynamic properties as the tank in
this example.
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Figure 4.25: Example 4.7: Simulation of temperature control system with PID
controller with fixed parameters tuned at maximum mass flow, which is w =
24kg/min

Control without gain scheduling (with fixed parameters) Let us
look at temperature control of the tank. The mass flow w varies. In which
operating point should the controller be tuned if we want to be sure that
the stability of the control system is not reduced when w varies? In general
the stability of a control loop is reduced if the gain increases and/or if the
time delay of the loop increases. (4.59) and (4.61) show how the gain and
time delay depends on the mass flow w. According to (4.59) and (4.61) the
PID controller should be tuned at minimal w. If we do the opposite, that
is, tune the controller at the maximum w, the control system may actually
become unstable if w decreases.

Let us see if a simulation confirms the above analysis. Figure 4.25 shows a
temperature control system. The PID controller is in the example tuned
with the Ziegler-Nichols’ closed loop method for a the maximum w value,
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which here is assumed 24kg/min. The PID parameters are

Kp = 7.8; Ti = 3.8min; Td = 0.9min (4.62)

Figure 4.25 shows what happens at a stepwise reduction of w: The
stability becomes worse, and the control system becomes unstable at the
minimal w value, which is 12kg/min.

Instead of using the PID parameters tuned at maximum w value, we can
tune the PID controller at minimum w value, which is 12kg/min. The
parameters are then

Kp = 4.1; Ti = 7.0min; Td = 1.8min (4.63)

The control system will now be stable for all w values, but the system
behaves sluggish at large w values. (Responses for this case is however not
shown here.)

Control with gain scheduling Let us see if gain scheduling maintains
the stability for varying mass flow w. The PID parameters will be adjusted
as a function of a measurement of w since the process dynamics varies with
w. Thus, w is the gain scheduling variable, GS:

GS = w (4.64)

A gain schedule consisting of three PID parameter value sets will be used.
Each set is tuned using the Ziegler-Nichols’ closed loop method at the
following GS or w values: 12, 16 and 20kg/min. These three PID
parameter sets are shown down to the left in Figure 4.25. The PID
parameters are held piecewise constant in the GS intervals. In each
interval, the PID parameters are held fixed for an increasing GS = w
value, cf. Figure 4.22.10 Figure 4.26 shows the response in the temperature
for decreasing values of w. The simulation shows that the stability of the
control system is maintained even if w decreases.

[End of Example 4.7]

4.9.3 Adjusting PID parameters from process model

In Section 4.9.2 the adjustment of the PID parameters was based on
interpolating between PID parameter values in a parameter table.
However, a table with interpolation is not the only way the adjustment can
10The simulator uses the inbuilt gain schedule in LabVIEW’s PID Control Toolkit.
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Figure 4.26: Example 4.7: Simulation of temperature control system with a
gain schedule based PID controller

be implemented. By studying the process model we may find a function for
parameter adjustment without having to make tuning in a number of
operating points. Assume as an example that the process gain K is a
function of a process variable P :

K = fK (P ) (4.65)

In many control loops the stability of the loop is maintained if the loop
gain KL, which is the product of the gain of each subsystems in the loop,
is constant, say KL0 . In other words, the stability is maintained if

KL = KpKKs = KpfK (P )Ks = KL0 (4.66)

where Kp is the controller gain (of a P or PI or PID controller) and Km is
the measurement gain (including a scaling function). For a given P value,
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say P1,
Kp1fK (P1)Ks = KL0 (4.67)

where Kp1 is assumes to be a proper Kp value (found using some tuning
method) when P = P1. By dividing (4.66) by (4.67) we get

KpfK (P )Ks
Kp1fK (P1)Ks

=
KL0
KL0

= 1 (4.68)

from which we get the following formula for adjusting the controller gain
Kp:

Kp = Kp1
fK (P1)

fK (P )
(4.69)

Adjusting Kp according to (4.69) ensures that the stability of the control
loop is maintained for any P value.

Example 4.8 Model based adjustment of level controller

Figure 4.27 shows a level control system for a cylindrical tank. You will
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Figure 4.27: Example 4.8: Level control of a cylindric tank. The cross sectional
area is a function of the level.

now see that the process gain K varies with the level. This implies that
the controller gain Kp should vary. Mass balance for the liquid of the tank
(we assume homogeneous conditions) is

dm

dt
= ρ

dV

dt
= ρA

dh

dt
= win − wout = win −Kuu (4.70)
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It can be shown that the cross sectional area A is a function of the level h
as follows:

A(h) = 2L
p
R2 − (R− h)2 (4.71)

From (4.70) we find that the transfer function from a deviation ∆u in the
control signal to the corresponding deviation ∆h in the level is11

∆h(s)

∆u(s)
= H(s) = − Ku

ρA(h)s
(4.72)

giving the following process gain

K = − Ku
ρA(h)

= − Ku

2ρL
p
R2 − (R− h)2 = fK(h) (4.73)

The controller gain should be adjusted according to (4.69), which in this
case gives

Kp = Kp1
fK (h1)

fK (h)
= Kp1

h
− Ku

ρA(h1)

i
h
− Ku

ρA(h)

i = Kp1 A(h)A(h1)
(4.74)

where fK is given by (4.73) and A(h) is given by (4.71). Kp1 is a Kp value
of a P or PI controller (the PID controller is not a good choice for this
level control system since the process has pure integrator dynamics) tuned
at some level h1. (For example, h1 may correspond to half of the maximum
level.) Kp can be found by trial and error, or better: from transfer
function based controller tuning, cf. Chapter 7. For example, (4.74) says
that if the cross sectional area is halved (which gives doubled process
gain), Kp should be halved. The integral time Ti in a PI controller can be
unchanged in this case.

[End of Example 4.8]

4.9.4 Adaptive controller

In an adaptive control system, see Figure 4.28, a mathematical model of
the process to be controlled is continuously estimated from samples of the
control signal (u) and the process measurement (ym). The model is
typically a transfer function model. Typically, the structure of the model is
fixed. The model parameters are estimated continuously using e.g. the
least squares method. From the estimated process model the parameters of
a PID controller (or of some other control function) are continuously
11The transfer function is here actually relating the deviation variables about an oper-

ating point since the process model is nonlinear.
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Figure 4.28: Adaptive control system

calculated so that the control system achieves specified performance in
form of for example stability margins, poles, bandwidth, or minimum
variance of the process output variable[22]. Adaptive controllers are
commercially available, for example the ECA60 controller (ABB).


