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Figure 7.13 shows the simulated responses for the two control systems due
to a setpoint step and a disturbance step. The dead-time compensator
gives better setpoint tracking and better disturbance compensation than
ordinary feedback control does.

Figure 7.13: Example 7.6: Simulated responses for the two control systems due
to a setpoint step and a disturbance step

[End of Example 7.6]

The dead-time compensator is model-based since the controller includes a
model of the process. Consequently, the stability and performance
robustness of the control system depend on the accuracy of the model.
Running a sequence of simulations with a varied process model (changed
model parameters) in each run is one way to investigate the robustness.

7.5 Skogestad’s method

7.5.1 Introduction

[17] describes controller tuning for several types of transfer function
processes — with and without time delay (dead-time). It is assumed that



212 Finn Haugen: PID Control

the block diagram of the control system is as shown in Figure 7.2. The
method, which can be denoted Skogestad’s method after the originator8, is
based on the direct method described in Section 7.3: The control system
tracking function T (s) is specified as a first order transfer function with
time delay:

T (s) =
ym(s)

ymSP (s)
=

1

TCs+ 1
e−τs (7.87)

where TC is the time constant of the control system which the user must
specify, and τ is the process time delay which is given by the process
model (the method can however be used for processes without time delay,
too). Figure 7.14 shows the step response for (7.87).

Figure 7.14: Step response of the specified tracking transfer function (7.87) in
Skogestad’s PID tuning method

The method is based on initially calculating the controller transfer
function, Hc(s), by (7.68) which is repeated here:

Hc(s) =
1

Hp(s)
· T (s)

1− T (s) (7.88)

The process transfer function Hp(s) may be of higher order than T (s).
Therefore, the specification (7.87) implies pole-zero cancellations in the
control system loop transfer function, L(s) = Hc(s)Hp(s). It is assumed

8Prof. Sigurd Skogestad
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that the process Hp(s) contains a time delay, e−τs. The controller Hc(s)
according to (7.88) will contain the term e−τs. This term is in Hc(s)
approximated by a first order Taylor series expansion which is 1− τs, and
it turns out that the controller is a PI controller or a PID controller
(depending on the process to be controlled).

Skogestad’s method is in principle the same as dead-time compensation,
which is described in Section 7.4, but in the latter there is no
approximation of the time delay term. As with dead-time compensation
Skogestad’s method gives good setpoint tracking. The method gives
formulas for the integral time, Ti, which are supposed to avoid slow
disturbance compensation. In other controller design methods based on
pole-zero cancellations there is a danger of slow disturbance compensation
if the cancelled pole is close to zero (corresponding to cancellation of a
large process time constant using a large Ti). This problem was
demonstrated in Section 7.2.3.

The PID controller is assumed to be on serial form:

Hc(s) = Kp
(Tis+ 1)(Tds+ 1)

Tis(Tfs+ 1)
(7.89)

If the PID controller you are going to apply is actually on parallel form,

Hc(s) = Kp +
Kp
Tis

+
KpTds

Tfs+ 1
(7.90)

you should consider transforming the PID parameters from serial form to
parallel form to be sure that your parallel controller behaves like a serial
controller. The transformation formulas are (2.51) — (2.53). (If the
controller is a P or a PI controller, the transformation formulas need not
be applied since in that case the serial and the parallel form are identical.)

7.5.2 Skogestad’s tuning formulas

Skogestad’s tuning formulas for several processes are shown in Table 7.1.9

According to [17] the factor k1 in Table 7.1 is 4, but there may be reasons
to give it a different value, as argued on page 216. For the second order the
process in Table 7.1 T1 is the largest and T2 is the smallest time constant.10

9 [17] describes controller tuning for one additional process, namely a pure time delay,
and the resulting controller is an I controller (Integral controller). However, a pure time
delay can be approximated by a first order system with a small time constant (compared
to the time delay), and this process is one of the processes in Table 7.1.
10 [17] also describes methods for model reduction so that more complicated models can

be approximated with one of the models shown in Table 7.1.
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Hp(s) (process) Kp Ti Td
K
s e
−τs 1

K(TC+τ)
k1 (TC + τ) 0

K
Ts+1e

−τs T
K(TC+τ)

min [T , k1 (TC + τ)] 0
K

(Ts+1)se
−τs 1

K(TC+τ)
k1 (TC + τ) T

K
(T1s+1)(T2s+1)

e−τs T1
K(TC+τ)

min [T1, k1 (TC + τ)] T2
K
s2
e−τs 1

4K(TC+τ)
2 4 (TC + τ) 4 (TC + τ)

Table 7.1: Skogestad’s formulas for PI(D) tuning. Standard value of k1 is 4,
but a smaller value, e.g. k1 = 1.44 can give faster disturbance compensation.
For the second order the process T1 is the largest and and T2 is the smallest
time constant. (min means the minimum value.)

Unless you have reasons for a different specification, [17] suggests

TC = τ (7.91)

to be used for TC in Table 7.1.

The Ziegler-Nichols’ closed loop method may be applied to most of the
processes in Table 7.1 (since the processes have time delay). Generally,
Skogestad’s method results in better tracking property of the control
system (without the quite large overshoot in the response after a step in
the setpoint which is typical with Ziegler-Nichols’ method), but the
disturbance compensation may for some processes become more sluggish
than with the Ziegler-Nichols’ method. This sluggish compensation can
however be speeded up by selecting a smaller value of k1, cf. the discussion
on page 216. It is here assumed that the disturbance is an input
disturbance as explained on page 190.

Example 7.7 Control of first order system with time delay

Let us try Skogestad’s method and Ziegler-Nichols’ closed loop method for
tuning a PI controller for the process

Hp(s) =
K

Ts+ 1
e−τs (7.92)

where
K = 1; T = 0.5; τ = 1 (7.93)

(The time delay is relatively large compared to the time constant.) The
controller parameters are as follows:
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• Skogestad’s method, cf. Table 7.1 with (7.91) and k = 4:
Kp = 0.25; Ti = 0.5 (7.94)

• Ziegler-Nichols’ closed loop method:
Kp = 0.68; Ti = 2.43 (7.95)

Figure 7.15 shows control system responses for the two controller tunings.
Skogestad’s method works clearly better than Ziegler-Nichols’ method,
both with respect to setpoint tracking and disturbance compensation.

Figure 7.15: Example 7.7: Simulated responses in the control system for two
different controller tunings

[End of Example 7.7]
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7.5.3 Skogestad’s method with faster disturbance
compensation

According to [17], k1 is 4 in Table 7.1. However, through simulations I
have observed that k1 = 4 in several cases gives quite sluggish disturbance
compensation, although the parameter formulas in Table 7.1 are developed
to avoid unnecessary sluggish compensation. A reduced k1 value, as
k1 = 1.44, can give considerably faster disturbance compensation (since the
integral time Ti is reduced).11 A drawback of this modification of
Skogestad’s method is that there will be somewhat larger overshoot in the
response after setpoint step, but in most cases such an increased overshoot
is acceptable (if the setpoint is constant, which is typical, there is no
overshoot, of course). Another drawback of the modification is that the
stability robustness of the loop is somewhat reduced because of the
reduced Ti.

Example 7.8 PI control of integrator with time delay

The process

Hp(s) =
K

s
e−τs (7.96)

where
K = 1; τ = 0.5 (7.97)

will be controlled by a PI controller. (The wood-chip tank described in
Example 2.3 has such a transfer function model.) Below are the PI
parameters according to various tuning methods:

• Skogestad’s method, cf. Table 7.1, with (7.91) and k1 = 4:
Kp = 1; Ti = 4 (7.98)

• Skogestad’s method, cf. Table 7.1, with (7.91) and k1 = 1.44:
Kp = 1; Ti = 1.44 (7.99)

11According to [17] the standard value k1 = 4 gives a transfer function from disturbance
v to process measurement ym in the control system with characteristic polynomial as of
a critically damped second order system, i.e. the relative damping factor is ζ = 1. This
is quite a conservative choice. Faster but less damped dynamics is obtained with ζ < 1.
Simulations shows that ζ = 0.6 is a reasonable value. It gives almost 3 times smaller Ti
and therefore faster disturbance compensation. ζ = 0.6 is obtained with k1 = 1.44. It
can be shown that the phase margin, PM , of a loop having second order characteristic
polynomial is approximately equal to 100◦ · ζ. With ζ = 0.6 this equals 60◦ — a reasonable
value in most cases.
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• Ziegler-Nichols’ closed loop method:
Kp = 1.3; Ti = 1.78 (7.100)

Figure 7.16 shows simulated responses in the control system for the three
different sets of PI parameter values. Skogestad’s method with k1 = 4
seems to give the best set point tracking, but there are no oscillations,
indicating good (too good?) stability. The disturbance compensation with
Skogestad’s method with k1 = 4 is clearly the slowest of the three
alternatives.

Figure 7.16: Example 7.8: Simulated responses in the control system for various
PI tunings

[End of Example 7.8]

Example 7.7 demonstrated that it may be beneficial to set k1 = 1.44 in
stead of the standard value k1 = 4 because faster disturbance is then
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obtained. Let us review Example 7.7 which demonstrated that k1 = 4 gave
fast and properly damped disturbance compensation. Since k1 = 4 worked
well in that example, will the disturbance compensation in that example
be worse with k1 = 1.44 than with k1 = 4? The answer is no, because: Kp
is in any case independent of k1, so it has value 0.25. However, Ti is
dependent of k1. According to Table 7.1,
Ti = min [T , k1 (TC + τ)] = min [T , 2k1τ ], but this minimum value is 0.5
no matter if k1 is 4 or 1.44. So, this example has indicated that even if
k1 = 4 works fine, the suggestion k1 = 1.44 makes no harm in this case.

7.5.4 Skogestad’s method for processes without time delay

Each of the processes in Table 7.1 has time delay (τ > 0). Can Skogestad’s
method be applied to processes without time delay? Yes, but in such cases
we can not specify TC according to (7.91) since τ is zero. We must specify
TC larger than zero. The controller parameter formulas are as shown in
Table 7.2 (which is equal to Table 7.1 with τ = 0).

Hp(s) (process) Kp Ti Td
K
s

1
KTC

k1TC 0
K

Ts+1
T

KTC
min [T , k1TC ] 0

K
(Ts+1)s

1
KTC

k1TC T
K

(T1s+1)(T2s+1)
T1
KTC

min [T1, k1TC ] T2
K
s2

1
4K(TC)

2 4TC 4TC

Table 7.2: Skogestad’s formulas for PID tuning for processes without time delay.
Standard value of k1 is 4, but a smaller value, e.g. k1 = 1.44 can give faster
disturbance compensation. For the second order the process T1 is the largest
and and T2 is the smallest time constant. (min means the minimum value.)

Example 7.9 PI control of first order system without time delay

Given the following process:

Hp(s) =
K

Ts+ 1
(7.101)

where
K = 1; T = 5 (7.102)

Let us specify TC = 1. We try both k1 = 4 (the standard value) and
k1 = 1.44 (which may give faster disturbance compensation). According to
Table 7.2 the controller parameters (of a PI controller) are as follows:
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• Skogestad’s method, cf. Table 7.2, with TC = 1 and k1 = 4:
Kp = 5; Ti = 4 (7.103)

• Skogestad’s method, cf. Table 7.2, with TC = 1 and k1 = 1.44:
Kp = 1; Ti = 1.44 (7.104)

Figure 7.17 shows simulated responses in the control system with the PI
parameters values given above. We see that k1 = 1.44 gives somewhat
faster setpoint tracking, but with some overshoot, and in addition better
disturbance compensation than with k1 = 4.

Figure 7.17: Example 7.9: Simulated responses in the control system for two
different PI tunings

[End of Example 7.9]


