
Article:

Discretization of simulator, filter, and PID
controller

Finn Haugen
TechTeach

10. May 2010

Preface

This article describes how to develop discrete-time algorithms for

• simulators of dynamic systems,

• lowpass filter,

• PID controller.

The algorithms are ready for implementation in a computer program using
e.g. C-code.

1 Simple discretization methods

Often the simulator model, the filter, or the controller, is originally given
as a continuous-time model in the form of a differential equation or a
Laplace transfer function. The obtain a corresponding differential equation
(ready for implementation in a computer program), you have to discretize
the continuous-time model. This approximation can be made in many
ways. My experience is that in most applications it is sufficient to apply
one of the following (simple) methods, which are based on approximations
of the time derivatives of the differential equation:

• (Euler’s) Forward differentiation method, which is commonly
used in developing simple simulators.

• (Euler’s) Backward differentiation method, which is commonly
used in discretizing simple signal filters and industrial controllers.

1

The Forward differentiation method and the Backward differentiation
method will be explained in detail below. But you should at least have
heard about some other methods as well, see below [?]:

• Zero Order Hold (ZOH) method : It is assumed that the system has a
zero order hold element on the input side of the system. This is the
case when the physical system is controlled by a computer via a DA
converter (digital to analog). Zero order hold means that the
physical input signal to the system is held fixed between the discrete
points of time. The discretization method is relatively complicated to
apply, and in practice you will probably use a computer tool (e.g.
MATLAB or LabVIEW) to do the job.

• Tustin’s method : This method is based on an integral approximation
where the integral is interpreted as the area between the integrand
and the time axis, and this area is approximated with trapezoids.
(The Euler’s methods approximates this area with a rectangle.)

• Tustin’s method with frequency prewarping, or Bilinear
transformation: This is the Tustin’s method but with a modification
so that the frequency response of the original continuous-time system
and the resulting discrete-time system have exactly the same
frequency response at one or more specified frequencies.

Some times you want to go the opposite way — transform a discrete-time
model into an equivalent continuous-time model. Such methods will
however not be described in this document.

The Forward differentiation method is somewhat less accurate than the
Backward differentiation method, but it is simpler to use. Particularly,
with nonlinear models the Backward differentiation method may give
problems since it results in an implicit equation for the output variable,
while the Forward differentiation method always gives an explicit equation
(the nonlinear case will be demonstrated in an example).

Figure 1 illustrates both the Forward and the Backward differentiation
methods. The Forward differentiation method can be seen as the following
approximation of the time derivative of a time-valued function which here
is denoted x:

Forward differentiation method: ẋ(tk) ≈
x(tk+1)− x(tk)

Ts
(1)

Ts is the time step, i.e. the time interval between two subsequent points of
time. The name “Forward differentiation method” stems from the x(tk+1)
term in (1).

2

x

t

Ts

tk-1 tk

Slope with
Forward
Differensiation
method

x(tk)

x(tk-1)

tk+1

x(tk+1)
x(tk)

Exact
slope,

Slope with
Backward
Differensiation
method

x(tk)

Ts

Figure 1: The Forward differentiation method and the Backward differentiation
method

The Backward differentiation method is based on the following
approximation of the time derivative:

Backward differentiation method: ẋ(tk) ≈
x(tk)− x(tk−1)

Ts
(2)

The name “Backward differentiation method” stems from the x(tk−1) term
in (2), see Figure 1.

The examples in the subsequent sections demonstrate the application of the
Forward differentiation method and the Backward differentiation method.
It is also demonstrated how to get an equivalent differential equation from
an original transfer function model or an integral equation (the time
derivatives of the differential equation is then approximated with the
Forward differentiation method or the Backward differentiation method).

2 Discretization of a process model to create a
simulator

A simulator of a dynamic system, e.g. a motor, liquid tank, a ship etc.,
must of course be based on the mathematical model of the system.

3

Typically, the model is in the form of a nonlinear differential equation
model. The Forward differentiation method may be used to discretize such
nonlinear models.

As an example, let us discretize the following nonlinear model:

ẋ(t) = −K1
√
x(t) +K2u(t) (3)

where u is the input, x is the output, and K1 and K2 are parameters.1 We
will now derive a simulator algorithm or formula for x(tk). Let us first try
applying the Backward differentiation method with time step h to the time
derivative in (3):

x(tk)− x(tk−1)

Ts
= −K1

√
x(tk) +K2u(tk) (4)

x(tk) appears on both sides of (4). We say that x(tk) is given implicitly —
not explicitly — by (4). Solving for for x(tk) in this implicit equation is
possible, but a little difficult because of the nonlinear function (the square
root). (If the difference equation was linear, it would be much easier to
solve for x(tk).) In other cases, nonlinear functions may cause big
problems in solving for the output variable, here x(tk).

Since we got some problems with the Backward differentiation method in
this case, let us in stead apply the Forward differentiation method to the
time derivative of (3):

x(tk+1)− x(tk)

Ts
= −K1

√
x(tk) +K2u(tk) (5)

Solving for x(tk+1) is easy:

x(tk+1) = x(tk) + Ts
[
−K1

√
x(tk) +K2u(tk)

]
(6)

Reducing each time index by one and using the simplifying notation
x(tk) = x(k) etc. finally gives the simulation algorithm:

x(k) = x(k − 1) + Ts
[
−K1

√
x(k − 1) +K2u(k − 1)

]
(7)

In general it is important that the time-step Ts of the discrete-time
function is relatively small, so that the discrete-time function behaves
approximately similar to the original continuous-time system. For the
Forward differentiation method a (too) large time-step may even result in

1This can be the model of a liquid tank with pump inflow and valve outflow. x is the
level. u is the pump control signal. The square root stems from the valve.

4

an unstable discrete-time system! For simulators the time-step Ts should
be selected according to

Ts ≤
0.1

|λ|max
(8)

Here |λ|max is the largest of the absolute values of the eigenvalues of the
model, which is the eigenvalues of the system matrix A in the state-space
model ẋ = Ax+Bu. For transfer function models you can consider the
poles in stead of the eigenvalues (the poles and the eigenvalues are equal
for most systems not having pol-zero cancellations). If the model is
nonlinear, it must be linearized before calculating eigenvalues or poles.

In stead of, or as a supplementary using However, you may also use a
trial-and-error method for choosing Ts (or fs): Reduce h until there is a
negligible change of the response of the system if Ts is further reduced. If
possible, you should use a simulator of your system to test the importance
of the value of Ts before implementation.

3 Discretization of a signal filter

A lowpass filter is used to smooth out high frequent or random noise in a
measurement signal. A very common lowpass filter in computer-based
control systems is the discretized first order filter — or time-constant filter.
You can derive such a filter by discretizing the Laplace transfer function of
the filter. A common discretization method in control applications is the
Backward differentiation method. We will now derive a discrete-time filter
using this method.

The Laplace transform transfer function — also denoted the
continuous-time transfer function — of a first order lowpass filter is

H(s) =
y(s)

u(s)
=

1

Tfs+ 1
=

1
s
ωb
+ 1

=
1

s
2πfb

+ 1
(9)

Here, u is the filter input, and y is the filter output. Tf [s] is the
time-constant. ωb is the filter bandwidth in rad/s, and fb is the filter
bandwidth in Hz. (In the following, the time-constant will be used as the
filter parameter since this is the parameter typically used in filter
implementations for control systems.)

Cross-multiplying in (9) gives

(Tfs+ 1) y(s) = u(s) (10)

5

Resolving the parenthesis gives

Tfsy(s) + y(s) = u(s) (11)

Taking the inverse Laplace transform of both sides of this equation gives
the following differential equation (because multiplying by s means
time-differentiation in the time-domain):

Tf ẏ(t) + y(t) = u(t) (12)

Let us use tk to represent the present point of time — or discrete time:

Tf ẏ(tk) + y(tk) = u(tk) (13)

Substituting the time derivative by the Backward differentiation
approximation gives

Tf
y(tk)− y(tk−1)

Ts
+ y(tk) = u(tk) (14)

Solving for y(tk) gives

y(tk) =
Tf

Tf + Ts
y(tk−1) +

Ts

Tf + Ts
u(tk) (15)

which is commonly written as

y(tk) = (1− a) y(tk−1) + au(tk) (16)

with filter parameter

a =
Ts

Tf + Ts
(17)

which has a given value once you have specified the filter time-constant Tf
and the time-step Ts is given. (16) is the formula for the filter output. It is
ready for being programmed. This filter is denoted the exponentially
weighted moving average (EWMA) filter, but we can simply denote it a
first order lowpass filter.

It is important that the filter time-step Ts is considerably smaller than the
filter time-constant Tf , otherwise the filter may behave quite differently
from the original continuous-time filter (9) from which it is derived. A rule
of thumb for the upper limit of Ts is

Ts ≤
Tf

5
(18)

6

4 Discretization of a PID controller

4.1 Computer based control loop

Figure 2 shows a control loop where controller is implemented in a
computer. The computer registers the process measurement signal via an
AD converter (from analog to digital). The AD converter produces a
numerical value which represents the measurement. As indicated in the
block diagram this value may also be scaled, for example from volts to
percent. The resulting digital signal, y(tk), is used in the control function,
which is in the form of a computer algorithm or program calculating the
value of the control signal, u(tk).

Process

Sensor with
measurement

filter

v

yu(t)Discrete-time
PID controller

Scaling and
DA-converter

with signal holding

AD-converter
and scaling

SamplingTs

u(tk)e(tk)r(tk)

y(tk)

tk=kTs

Ts

r(tk)

tk

e(tk)

tk

u(tk) u(t)

t t

y(t)

tk

y(tk)

t

Measured
y(t)

Figure 2: Control loop where the controller function is implemented in a com-
puter

The control signal is scaled, for example from percent to milliamperes, and
sent to the DA converter (from digital to analog) where it is held constant
during the present time step. Consequently the control signal becomes a
staircase signal. The time step or the sampling interval, Ts [s], is usually
small compared to the time constant of the actuator (e.g. a valve) so the
actuator does not feel the staircase form of the control signal. A typical
value of Ts in commercial controllers is 0.1 s.

7

4.2 Development of discrete-time PID controller

The starting point of deriving the discrete-time PID controller is the
continuous-time PID (proportional + integral + derivate) controller:

u(t) = u0 +Kpe(t) +
Kp

Ti

∫ t

0
e dτ +KpTdė(t) (19)

where u0 is the control bias or manual control value (to be adjusted by the
operator when the controller is in manual mode), u is the controller output
(the control variable), e is the control error:

e(t) = r(t)− y(t) (20)

where r is the reference or setpoint, and y is the process measurement.

We will now derive a discrete-time formula for u(tk), the value of the
control signal for the present time step. The discretization can be
performed in a number of ways. Probably the simplest way is as follows:
Differentiating both sides of (19) gives2

u̇(t) = u̇0 +Kpė(t) +
Kp

Ti
e(t) +KpTdë(t) (21)

Applying the Backward differentiation method (2) to u̇, ė, and ë gives

u(tk)− u(tk−1)

Ts
=

u0(tk)− u0(tk−1)

Ts
(22)

+Kp
e(tk)− e(tk−1)

Ts
(23)

+
Kp

Ti
e(tk) (24)

+KpTd
ė(tk)− ė(tk−1)

Ts
(25)

Applying the Backward differentiation method on ėf (tk) and ėf (tk−1) in
(22) gives

u(tk)− u(tk−1)

Ts
=

u0(tk)− u0(tk−1)

Ts
(26)

+Kp
e(tk)− e(tk−1)

Ts
(27)

+
Kp

Ti
e(tk) (28)

+KpTd

e(tk)−e(tk−1)
Ts

−
e(tk−1)−e(tk−2)

Ts

Ts
(29)

2The time derivative of an integral is the integrand.

8

Solving for u(tk) finally gives the discrete-time PID controller:

u(tk) = u(tk−1) + [u0(tk)− u0(tk−1)] (30)

+Kp [e(tk)− e(tk−1)] (31)

+
KpTs

Ti
e(tk) (32)

+
KpTd

Ts
[e(tk)− 2e(tk−1) + e(tk−2)] (33)

The discrete-time PID controller algorithm (30) is denoted the absolute or
positional algorithm. Automation devices typically implements the
incremental or velocity algorithm. because it has some benefits. The
incremental algorithm is based on splitting the calculation of the control
value into two steps:

1. First the incremental control value ∆u(tk) is calculated:

∆u(tk) = [u0(tk)− u0(tk−1)] (34)

+Kp [e(tk)− e(tk−1)] (35)

+
KpTs

Ti
e(tk) (36)

+
KpTd

Ts
[e(tk)− 2e(tk−1) + e(tk−2)] (37)

2. Then the total or absolute control value is calculated with

u(tk) = u(tk−1) +∆u(tk) (38)

The summation (38) implements the (numerical) integral action of the PID
controller.

The incremental PID control function is particularly useful if the actuator
is controlled by an incremental signal. A step-motor is such an actuator.
The motor itself implements the numerical integration (38). It is (only)
∆u(tk) that is sent to the motor.

4.3 Implementing integrator anti windup

Large excitations of the control system, typically large disturbances or
large setpoint changes, may cause the control signal to reach its maximum
or minimum limits with the control error being different from zero. The

9

summation in (38), which is actually a numerical integration, will then
cause u to increase (or descrease) steadily — this is denoted integral windup
— so that u may get a very high (or low) value. When the excitations are
back to normal values, it may take a very long time before the large value
of u is integrated back to a normal value (i.e. within 0 — 100%), causing
the process output to deviate largely from the setpoint.

Preventing the windup is (not surprisingly) denoted anti windup, and it
can realized as follows:

1. Calculate an intermediate value of the control variable u(tk)
according to (38), but do not send this value to the DA
(Digital-to-Analog) converter.

2. Check if this intermediate value is greater than the maximum value
umax (typically 100%) or less than the minimum value umin (typically
0%). If it exceeds one of these limits, set ∆u(tk) in (38) to zero.

3. Write u(tk) to the DA converter.

4.4 Implementing bumpless transfer between auto/manual
modes

Suppose the controller is switched from automatic to manual mode, or
from manual to automatic mode (this will happen during maintenance, for
example). The transfer between modes should be bumpless, ideally.
Bumpless transfer can be realized as follows:

• Bumpless transfer from automatic to manual mode: In
manual mode it is only the manual (or nominal) control signal u0 —
adjusted by the operator — that controls the process. Manual mode is
equivalent to setting the controller gain to zero (or multiplying the
gain by zero). We assume here that the control signal u(tk) in (38)
has a proper value, say ugood, so that the control error is small,
immediately before the switch to manual mode. To implement
bumpless transfer, set u(tk−1) in (38) equal to ugood immediately
after the switching moment.

• Bumpless transfer from manual to automatic mode: Nothing
special has to be done during the switching except activting all term
in (34) — (37).

10

