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Preface

This article gives an introduction to second order dynamic systems, and it
can be downloaded for free from http://techteach.no. It can be used as
supplementary material to the book Dynamics and Control, which can be
purchased from http://techteach.no.

1 Transfer function model

A standard second order transfer function model (with u as input variable
and y as output variable) is

y(s) =
Kω0

2

s2 + 2ζω0s+ ω02
u(s) ≡ K

( sω0 )
2 + 2ζ s

ω0
+ 1

u(s) (1)

where K is the gain, ζ (zeta) [dimension 1] is the relative damping factor,
and ω0 [rad/s] is the undamped resonance frequency.

Eksempel 1 Second order system: Mass-spring-damper

Figure 1 shows a mass-spring-damper-system. (One concrete example is
the wheel suspension system on a car.) We will assume that the spring
force is zero when y is zero. Force balance yields

mÿ(t) = F (t)− Fd(t)− Ff (t)
= F (t)−Dẏ(t)−Kfy(t) (2)

Taking the Laplace transform (while assuming that the initial values of the
y and ẏ are zero) yields

ms2y(s) = F (s)−Dsy(s)−Kfy(s) (3)
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Figure 1: Mass-spring-damper

Solving for y(s):

y(s) =
1

ms2 +Ds+Kf︸ ︷︷ ︸
H(s)

F (s) (4)

So, the transfer function from force F to position y is

H(s) =
1

ms2 +Ds+Kf
(5)

To find the standard parameters of this second order transfer function, we
must transform the transfer function to one of the equivalent standard
forms given by (1). Let us here choose the first one:

H(s) =

Kω02︷︸︸︷
1

m

s2 +
D

m
s+

Kf
m︸ ︷︷ ︸

s2+2ζω0s+ω02

(6)

By equating the coefficients and using the following parameters values:
m = 20 kg, D = 4 N/(m/s) and Kf = 2 N/m, we get

K =
1

Kf
= 0.5 [m/N] (7)

ω0 =

√
Kf
m
=
√
0, 1 = 0.32 [rad/s] (8)

ζ =
D

2
√
mKf

= 0.32 (9)

[End of Example 1]
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2 Classification of second order systems

2.1 Overview

We will classify second order systems from the shape of the step response.
We assume that the input variable u(t) is a step of amplitude U , which
Laplace transformed is u(s) = U/s. Then the Laplace transformed
time-response becomes

y(s) = H(s)u(s) =
Kω0

2

s2 + 2ζω0s+ ω02
U

s
(10)

The shape of the time-response y(t), which is calculated as the inverse
Laplace transform of y(s), depends on the poles. The poles are the roots of
the characteristic equation a(s):

a(s) = s2 + 2ζω0s+ ω0
2 = 0 (11)

The poles p1 and p2 are the roots of a(s) and becomes

p1, p2 = −ζω0 ±
√
ζ2 − 1 ω0 (12)

The value of ζ determines whether the poles are real or complex conjugate:

• If ζ � 1, the poles are real and given by (12).

• If 0 ≤ ζ < 1, the poles are complex conjugate:

p1, p2 = −ζω0︸ ︷︷ ︸
Re

± j
√
1− ζ2 ω0

︸ ︷︷ ︸
Im

(13)

Figure 2 shows the pole placement when the poles are complex
conjugate.

Figure 3 classifies second order systems by the value of ζ. (This is a
common way to do the classification.) The step responses referenced in the
figure can be calculated by taking the inverse Laplace transform of (10),
but the detailed calculations are not shown here.

In the following are given simulated step responses and pole plots for
representative examples of overdamped, underdamped, and undamped
systems. The parameter values are shown on the front panels of the
simulators in the respective figures.

In all cases the steady-state value of the step response is

ys = KU (14)

because the static transfer function is K.
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Figure 2: Pole placement for second order systems when the poles are complex
conjugate. The poles are given by (13).

2.1.1 Overdamped systems

Figure 4 shows the step response and the poles for an example of an
overdamped system.

Comments:

• The step response has no overshoot.

• The poles p1 and p2 are real and distinct:

p1, p2 = −ζω0 ±
√
ζ2 − 1 ω0 (15)

The transfer function can therefore be written on the form

H(s) =
Kp1p2

(s− p1)(s− p2)
=

K

(T1s+ 1)(T2s+ 1)
(16)

This implies that the second order system can be split into two first
order subsystems having time-constants T1 and T2, respectively. The
largest of these time-constants can be denoted the dominating
time-constant.

2.1.2 Underdamped system

Figure 5 shows the step response and the poles for an example of an
underdamped system.
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Figure 3: Classification of second order systems by the value of ζ

Comments:

• The poles are complex conjugate:

p1, p2 = −ζω0 ± j
√
1− ζ2 ω0 (17)

• The less ζ, the less damping in the step response. It can be shown
that the less ζ, the more dominating imaginary part over the real
part of the poles. This is a general property of poles: The larger
imaginary part relative to the real part, the less damping in the
time-response. Figure 6 shows the step-response for various values of
ζ.

5



Figure 4: Step response and the poles for an example of an overdamped system

• The overshoot factor δ of the step response is defined as

δ =
ymax − ys

ys
(18)

where ys is the steady-state value of the step-response. It can be
shown that δ is a function of the relative damping factor ζ, as follows:

δ = e−ζπ/
√
1−ζ2 (19)

δ is plotted as a function of ζ in Figure 7.

The inverse function of (19) is

ζ =
|ln δ|

√
π2 + (ln δ)2

(20)

A few examples: Overshoot δ = 0.1, that is, 10% overshoot,
corresponds to ζ = 0.6. Overshoot δ = 0 (zero overshoot)
corresponds to ζ = 1 (critically damped system).
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Figure 5: Step response and poles for an example of an underdamped system

• Simulations shows that the 63% response-time of the step response is
approximately

Tr ≈
1.5

ω0
(21)

ω0 expresses in a way how quick the system is. ω0 is the distance
from origin to the poles, see Figure 2. This is a general property of
poles: The longer distance from origin, the faster the dynamics of the
system.

• It can be shown that the frequency in the oscillations are

β =

√
1− ζ2 ω0 [rad/s] (22)
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Figure 6: Step-response for various values of ζ for second order systems

2.1.3 Undamped system

Figure 8 shows the step response and the poles for an example of an
undamped system.

Comments:

• The step response is undamped, steady-state oscillations:

y(t) = KU (1− cosω0t) (23)

The frequency of the oscillations in rad/s is ω0 – therefore the name
undamped resonance frequency.

• The poles are purely imaginary:

p1, p2 = ±jω0 (24)

The real part is zero, which is an explanation of why the step
response is undamped. In general, damping is due non-zero real part
of poles.

Eksempel 2 Control system
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Figure 7: Overshoot factor δ plotted as a function of the relative damping
factor ζ, cf. (19)

Figure 9 shows a control system for the angular position of an
electro-motor. Figure 10 shows a transfer function based block diagram for
the control system. We assume that the individual transfer functions with
parameter values are as follows:

Hu(s) =
Ku

(Ts+ 1) s
=

1

(s+ 1) s
(25)

Hd(s) =
Kd

(Ts+ 1) s
=

−1
(s+ 1) s

(26)

Hc(s) = Kp (proportional controller) (27)

Hs(s) = Km = 1 (28)

Hsm(s) = Ksm = 1 (29)

(Some information about the background of Hu(s): The transfer function
from the manipulating or controlling variable u to the speed v is
K1/(Ts+ 1), and the transfer function from v to position y is 1/s which is
an integrator. The process to be controlled is thus a “first order system in
series with an integrator”.)

Let us calculate the controller gain Kp from specifications for the transfer
function Hyr ,y(s) from the position reference yr to the position y (the
specifications are presented soon). First, we must find Hyr,y(s). From the
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Figure 8: Step response and the poles for an example of an undamped system

block diagram in Figure 10 we will find

Hyr ,y(s) =
Hsm(s)Hc(s)Hu(s)

1 +Hs(s)Hc(s)Hu(s)
(30)

=
KsmKp

Ku

(Ts+1)s

1 +KsKp
Ku

(Ts+1)s

=
Kp

1
(s+1)s

1 +Kp
1

(s+1)s

(31)

=
Kp

s2 + s+Kp
(32)

=
Kω20

s2 + 2ζω0s+ ω20
(33)

By equating coefficients between (32) and (33) we get:

K = 1 (34)

ω0 =
√
Kp (35)
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Figure 9: Feedback control system for the angular position of an electro-motor
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Figure 10: Transfer function based block diagram for the positional control
system shown in Figure 9

ζ =
1

2
√
Kp

(36)

From (35) and (36) we can calculate Kp either from a specified ω0, which
expresses the quickness of the system since the 63% response-time is
Tr ≈ 1.5/ω0, cf. (21), or from a specified ζ, which expresses the damping of
the system. Good stability is the most important property of a control
system, so we use (36) as the basis for calculation of Kp. Let us say that
ζ = 0.6 is a reasonable value. ζ = 0.6 gives 10% overshoot (δ = 0.1) in the
step response, cf. (20). From (36) we get

Kp =
1

4ζ2
=

1

4 · 0.62 = 0.69 (37)
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The response-time of the control system then becomes

Tr ≈
1.5

ω0
=

1.5
√
Kp

=
1.5√
0.69

= 1.8 sec (38)

Figure 11 shows simulated step responses in the position y (it is a step of

Figure 11: Simulated step responses in the angular position y (it is a step of
amplitude 1 in the reference r) for several Kp-values

amplitude 1 in the reference r) for the calculated Kp = 0.69 and for several
other Kp-values. We see that the step response is quicker and less damped
the larger the Kp-value. (This is a typical consequence of increasing the
controller gain in control systems.)

From Figure 11 we read off a response-time of Tr = 1.9 (for Kp = 0.69), so
(38) is quite accurate.

[End of Example 2]
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