
Contents

1 Starting Simulink. The Simulink environment 6

2 How to construct block diagrams 8

2.1 Introduction . 8

2.2 Presenting the model on a proper form 9

2.3 Constructing the block diagram 10

2.4 Subsystems . 14

3 Running a simulation 17

3.1 How to start a simulation . 17

3.2 How to configure the simulation 18

3.2.1 Introduction . 18

3.2.2 Using the Configuration parameters dialog window 20

3.2.3 Guidelines for selecting solver method and time step . 22

3.2.4 Setting simulation parameters with the sim function . 24

3.3 How to save simulated data as Matlab variables 26

3.4 Running a sequence of simulations 29

4 Various model types in block diagrams 32

1

Finn Haugen, TechTeach: Master Simulink! 2

4.1 Linear models . 32

4.2 PID-controllers . 38

Preface

About Simulink

Simulink is a block diagram based program for simulation of dynamic
systems. Simulink must be used together with Matlab.1 The mathematical
model of the system to be simulated must be represented by blocks, which
can be standard blocks available from the Simulink block-libraries or
blocks created by the user. Some features of Simulink are:

• There is a large number of blocks for models of various types:
Continuous-time and discrete-time transfer functions and state-space
models, and models including nonlinearities. Furthermore, there are
blocks for signal generation, for data storage, and for plotting.

• You can simulate hybrid systems, that is, systems consisting of both
continuous-time and discrete-time (sub)systems, represented by
blocks. One example is simulation of a control system in which a
continuous-time process is controlled by a discrete-time controller.

• Compared to equation-based simulation programs, the graphical
representation (as block-diagrams) makes it is easy to change the
structure of the system since we can easily change the connections
between the blocks, and add new blocks to the diagram and connect
these to the existing diagram.

• The block diagram itself gives clear illustration of the structure of
the system (the model).

1Matlab and Simulink are produced by The MathWorks (http://mathworks.com).

3

Finn Haugen, TechTeach: Master Simulink! 4

For whom this text is written

The text is written for students, teachers, researchers, and engineers who
want to master Simulink in a few hours. Basic skills in using Matlab are
assumed.

To be able to use Simulink you must have basic knowledge about linear
dynamic systems, see e.g. [1].

Aims

The aims of this text is that you, after having carefully worked through all
of the text, will be able to:

• Create a Simulink block-diagram ready for simulation.

• Simulate a block-diagram from the Simulink menu.

• Simulate a block-diagram by executing proper commands from the
command-line or written in a script, that is, without using the menu.
(I suggest you offer the necessary time to master using scripts. It will
save you much time and effort may in the length (compared to just
simulating from the menues). Personally, I use scripts for almost any
Matlab and Simulink task.)

About this book

This book consists of descriptive text with figures, and frames of tasks that
you should accomplish.

All files described in this book are available at http://techteach.no. It is
of course up to you wether you create the files from scratch or if you
download the files.

This book gives an introduction to Simulink which is sufficient for most
simulation tasks. Several topics or featured are not covered, as:

Finn Haugen, TechTeach: Master Simulink! 5

• S-functions (system functions). An S-function is a computer
language description of a Simulink block. S-functions can be written
in Matlab, C, C++, Ada, or Fortran. S-functions allow you to create
your own Simulink blocks. Examples of applications are estimators,
advanced controllers, and signal processing functions.

• Linearization tools to automatically get a local linear model of an
original nonlinear Simulink model at some operating point. With a
linear model any linear analysis and design can be made, e.g. transfer
function calculation, frequency response analysis, stability analysis,
optimal controller design, pole placement controller design, etc.

• Stateflow which is an additional tool which can be purchased.
Stateflow is built upon Simulink. Stateflow contains tools to define
state diagram (state machine) control of models simulated by
Simulink.

• Real-Time Workshop is an additional tool with which you can
generate and execute stand-alone C code for developing and testing
algorithms modeled in Simulink. The C code can be used in
real-time (and non-real-time) applications, as simulation
acceleration, rapid prototyping, and hardware-in-the-loop testing.

Many other add-ons are listed on
http://www.mathworks.com/products/simulink/.

Finn Haugen

Skien, Norway, March 2007

Chapter 1

Starting Simulink. The
Simulink environment

You can start Simulink (from within Matlab) in several ways:

• Execute simulink at the Matlab command line.
• Menu selection Start (in the Matlab window) / Simulink /
Library Browser.

• Click the Simulink button in the Matlab toolbar.

Start Simulink using the method you prefer.

The Simulink Library Browser window is thereby opened, see Figure
1.1.

Comments to the Simulink Library Browser window:

• Block libraries: The block libraries are listed to the left. Clicking on
a library opens the blocks in that library. For example, in Figure 1.1
the Continuous library is opened.

Note: If you install addition toolkits to Matlab and/or Simulink, new
libraries are intalled, and they appear at the lower part of the library
list. In Figure 1.1 the Control Design Toolkit and Stateflow libraries
are examples of such additional libraries.

• Search for blocks: You can search for a specific block using the search
area at the top of the Simulink Library Browser window.

6

Finn Haugen, TechTeach: Master Simulink! 7

Figure 1.1: Simulink Library Browser

• Opening a block diagram: Using the Open button in the toolbar you
can open an existing Simulink model file. Using the New button
opens a new, blank block diagram.

Open each of the libraries in turn, and take a brief look at the contents.

Search for a block, e.g. an integrator.

Open a new block diagram, and then close it.

Chapter 2

How to construct block
diagrams

2.1 Introduction

As an example, we consider the following first order differential equation:

T
dx(t)

dt
+ x(t) = Ku(t− τ) (2.1)

where T = 0.5s (time constant), K = 2 (gain) og τ = 0.5s (time delay).
The input variable (the independent variable) u is a step from 0 to 2 at
time 5s. The output variable (the dependent variable) is x, which is also
the state variable of the system. The initial state is x(0) = 4. We will
simulate the response in x(t) from 0s to 10s. u(t) and x(t) will be plotted
in the same figure.

The differential equation (2.1) can be represented in many ways in
Simulink:

• Detailed block diagram representing the individual terms of the
differential equation

• Transfer function (since the model is linear)
• State space (since the model is linear)
• LTI-model (Linear Time Invariant), which is a special model type
supported by the Control System Toolbox

8

Finn Haugen, TechTeach: Master Simulink! 9

To get most out of this introductory example, we will use the first
representation here, i.e. a detailed block diagram. (Transfer functions,
state-space models, and LTI models are described in Ch. 4.)

2.2 Presenting the model on a proper form

The model (2.1) is differential equation including the time derivative ẋ(t).
The simulator will be used to calculate x(t) which is the time integral of
ẋ(t). Let us start by writing the differential equation on state-space form1:

ẋ(t) =
1

T
[−x(t) +Ku(t− τ)] (2.2)

x(t) is found by integrating ẋ from time 0 to t:

x(t) = x(0) +

Z t

0

½
1

T
[−x(θ) +Ku(θ − τ)]

¾
| {z }
Right-hand side of diff. eq., i.e. ẋ(t)

dθ (2.3)

This integral equation can be represented with the block diagram shown in
Figure 2.1. (In this block diagram I have intentionally used block symbols
which are a little different from those used in Simulink, just to
demonstrate that a block diagram may be drawn in many ways.)

K
u

Gain

x

Integrator

x(0)

1/T
Sum

Gain

Input
variable

Output
variable

Initial state

(t-τ)

Time delay

x.

Figure 2.1: Block diagram of (2.3)

Actually, it is not necessary to explicitly develop the integral equation
before drawing the block diagram, and experienced users don’t. We can
simply add one integrator for each of the time derivatives of the model.
The output of the integrator is assumed to be the state variable, say x,
and hence the input to the integrator is ẋ, and this input is constructed
according to the right-side of the differential equation.

1A state-space model is a differential equation having only first order time-derivatives
on its left-hand side.

Finn Haugen, TechTeach: Master Simulink! 10

2.3 Constructing the block diagram

Figure 2.2 shows the block diagram which we will now construct in
Simulink.

Figure 2.2: Block diagram model sys1.mdl

Select File / New / Model (or click the Create a new model button
in the toolbar) in the Simulink window.

Typically, block diagram construction consists of the following basic steps:

1. Proper blocks are copied from the block libraries into the block
diagram.

2. Then, the blocks are connected according to the hand-drawn block
diagram.

3. Finally, the blocks are configured or parameterized, that is, values for
the parameters of the blocks are entered into the blocks via the
dialog box of each block.

In the following these three steps are explained in detail.

Finn Haugen, TechTeach: Master Simulink! 11

1. Copy the blocks into the block diagram

Do as follows:

1. Open the Continuous library. Click on the Integrator block with
the right mouse button. While this button is held down, drag a copy
of the block over to the block diagram.

2. Add two Gain blocks and one Sum block from the Math
Operations library.

3. Add a Step block (it will be used to generate the input step) from
the Source library.

4. Add a Transport Delay block from the Continuous library.

5. Add a Mux (multiplexer) block from the Signal Routing library.

6. Add a Scope block from the Sinks library. (This block will be used
to plot responses.)

As you construct the block diagram you can manipulate the blocks as
follows:

• Move a block: Select the the block, and move it.
• Resize a block: Select the block, and drag one of the handles of the
block (a handle appears as a small square at the corner of the block).

• Rotate a block: Right-click on the block, and select Format /
Rotate in the menu that appears.

• Reverse a block: Right-click on the block, and select Format / Flip.
• Change the block name: Click the block name under the block, and
type the new name.

• Hide the block name: Right-click on the block, and select Format /
Hide.

• Copy, cut, paste a block: This can be done in the usual Windows
way, e.g. Ctrl + c (copy), Ctrl + x (cut), Ctrl + v (paste).

• Manipulate several block simultaneously: Start by selecting the
blocks. Then perform the manipulation by right-clicking one of the
selected block and select the proper action.

Finn Haugen, TechTeach: Master Simulink! 12

Manipulate the blocks as you wish.

You can add annotations (free text) anywhere in the block diagram by
double-clicking and typing.

Add an annotation to the block diagram, cf. Figure 2.2.

It is wise to save the block diagram frequently!

Save the block diagram with name sys1 (in any folder you prefer) using
the File / Save As menu. (The file name becomes sys1.mdl.)

2. Connect the blocks

You can connect two blocks by drawing a line from the output terminal of
the first block to the input terminal of the second block. (Alternatively,
you can do in the reversed order, i.e. draw a line from the input to the
output.)

Connect the blocks as shown in Figure 2.2.

A connection line can be manipulated in several ways:

• Move the line: Click the line, and move it.
• Delete a line: Select the line, and press the Delete button on the
keyboard.

• Give a name to the line: Right-click the line, and select Signal
properties in the menu that is opened, etc.

Manipulate the connection lines in the block diagram as you wish.

3. Configuring the blocks

We will now assign values to the parameters of the blocks. This can be
done either by typing numerical values directly or by typing parameter
names into the parameter fields of each block. One benefit of using
parameter names is that it is time-saving in the long run since we avoid
opening a block each time we need to change the value of a parameter, and
it is less prone to typing errors. How does Simulink know the value of a
parameter? It looks for the value in the Matlab workspace. The parameter

Finn Haugen, TechTeach: Master Simulink! 13

values may be defined at the Matlab command line, or by defining the
values in a Matlab script and running the script. The latter is (in my
opinion) the best way, so we will do that in the following.

Configure the blocks of sys1.mdl as described below.

• Open the parameter settings window of the Step block by
double-clicking the block, cf. Figure 2.3. Enter the parameters as

Figure 2.3: Parameter settings window of the Step block

shown in the figure. The parameter fields are fairly self-explanatory.
If you need help, click the Help button in the window. Finally, close
the window.

• Transport Delay block: Set parameter Time delay to tau. Keep
the default settings in the other fields.

• Gain1 block: Parameter Gain is set to K.
• Sum block: Select Round in the Icon shape pulldown list.
The sign of each of the input terminals on the Sum block is defined
with a plus or minus sign in the List of signs field. Empty terminals

Finn Haugen, TechTeach: Master Simulink! 14

(non-nonnected) terminals are defined using the | symbol (vertical
bar). For the present block in our block diagram, set the list of signs
to |+-.

• Gain1 block: Parameter Gain is set to 1/T.
• Integrator block: Set Initial condition source to External
(which means that the initial value of the integrator output must be
defined externally, at an input to the block — see below).

• Constant block: Set Constant value to x0.
• Mux block (multiplexer): This block is used to collect or bundle a
number of signals into one vectorized (or multivariable) signal. Set
Number of inputs to 2. Set Display option to Bar.

2.4 Subsystems

You can group a number of selected blocks into a subsystem which is
represented by one single block with inputs and outputs. Here are some
benefits of using subsystems:

• Complicated block diagrams can be given a more compact and
informative representation, since the block diagrams on a higher level
will look simpler (i.e. they have fewer blocks).

• A subsystem may represent a specific system which may be re-used,
e.g. included in other block diagrams. Hence, with subsystems you
can create modular models.

Figure 2.4 shows one example. There is a main system, sys1sub, and a
subsystem created from the system sys1 shown in Figure 2.2.

It is simple to create a subsystem:

1. First, select the part of the block diagram which will make up the
subsystem.

2. Second, select the menu Edit / Create subsystem.

To open an existing subsystem, double-click the block of the subsystem.

Finn Haugen, TechTeach: Master Simulink! 15

Figure 2.4: A main system and a subsystem. sys1syb.mdl.

Note: You can redo the creation of a subsystem using the ordinary Undo
button in the toolbar. However, there is no function for unpacking a
subsystem.

Save a copy of sys1 with name e.g. sys1sub. Then, create a subsystem as
shown in Figure 2.4. (We will not use this subsystem later in this book.)

Finn Haugen, TechTeach: Master Simulink! 16

Figure 2.5: Coffee time!

Chapter 3

Running a simulation

3.1 How to start a simulation

You can start a simulation in several ways:

• Using the sim command, e.g. sim(‘sys1’) (assuming that the
system or model has name sys1.mdl).

• Using the Start simulation button in the Simulink window.
• Using the Simulation / Start menu.

Probably, you will run a simulation over and over again, with some
modifications between the different runs. It may be cumbersome to start
repeated simulations from the Simulation menu. I suggest that you in
stead run the simulations from a (user-written) MATLAB-script! In this
case, to re-run a simulation, you simply re-run the (modified) script. And
you may even use a for-loop in the script to run a sequence of simulations
(more about this a litle later).1

Note that it is the block diagram shown on the screen that is simulated.
(Strictly, it is not necessary to save the modified block diagram before you
simulate it.)

You must set several simulation parameters before you run the simulation.
Section 3.2 describes the simulation parameter setting in detail. Now, we

1Personally, I use scripts for almost every simulation. This is the first option in the list
above.

17

Finn Haugen, TechTeach: Master Simulink! 18

will just run a simulation of sys1.mdl with default simulation settings.
Figure 2.2 shows the block diagram to be simulated.

The Matlab script scriptsim.m shown below defines the model
parameters, and runs the simulation with the sim command.

Create scriptsim.m given below (in the Matlab editor).

scriptsim.m:

%Defining model parameters:
tu=5; %Time of step in u
u0=0; %Value of u before the step
u1=2; %Value of u after the step
T=0.5; %Time constant
K=2; %Gain
tau=0.5; %Time delay
x0=4; %Initial value of x

sim(’sys1’) %Simulates model sys1.mdl

Simulate sys1 by running the script scriptsim.m. Then double-click the
Scope block in the block diagram to see the responses (click the binocular
button in the Scope window to scale the axes automatically).

The simulated response should be as shown in Figure 3.1.

3.2 How to configure the simulation

3.2.1 Introduction

You must set several simulation parameters before you run the simulation.
The most important parameters are the following:

• Start time and stop time
• Time step (or step size). The time step is the resolution along the
simulation time axis. In other words, the time step is the time
interval between the discrete points of time for which Simulink
calculates the response. Figure 3.2 illustrates the time step, which is
h in the figure. The time step, and start time and stop time, are just
numbers. The time unit is the same as the one you have used in the

Finn Haugen, TechTeach: Master Simulink! 19

Figure 3.1: Simulated response shown in the Scope in sys1.mdl

blocks in the block diagram containing time as unit, e.g. seconds,
minutes or hours.2

Note that Simulink may use a fraction of a second to run through a
simulation covering hours. Thus, Simulink does not run simulations
in real time.

• Simulation algorithm (or method)

The configuration can be made in two ways, and both ways are described
in detail in the following sections:

• In the Simulation parameters dialog window, which is opened
with the menu selection Simulation / Configuration
Parameters.

2 I almost always use second as time unit.

Finn Haugen, TechTeach: Master Simulink! 20

0 1 2 3 4 5 6

y(tk) = y(k)

0,0

0,5

1,0

1,5

2,0

k

h=0.2

0.0 0.2 0.4 0.6 0.8 1.21.0 tk [s]

Figure 3.2: Time step is h.

• Using arguments in the sim function which can be used in a Matlab
script.

Both ways are described in detail in the following sections.

A simulation parameter setting using the sim function overrides the
setting in the dialog window.

3.2.2 Using the Configuration parameters dialog window

Note: The parameter settings are automatically saved together with the
model.

Open the Configuration Parameters dialog window with menu Simu-
lation / Configuration Parameters in the Simulink window.

Figure 3.3 shows the Configuration parameters dialog window with
default settings.

Here is a description of the most relevant parameters:

Finn Haugen, TechTeach: Master Simulink! 21

Figure 3.3: The Configuration parameters dialog window. Type is Variable
step.

• Simulation time: Start time is usually set to 0. Stop time is the
final time of the simulation.

• Solver options: Type can be either Variable step (default) or
Fixed step. For each of these selection, you can select among
different simulation algorithms or methods in the field to the right of
the Type field, see Figure 3.3:

— If you have selected Variable step: Simulink calculates a
proper step size as the simulation proceeds. The step size will
be time-varying, dependent of the variation of the simulated
response. The larger variation, the less step size. Simulink tries
different step sizes until a certain tolerance of accuracy is
obtained. You can set the tolerance together with the maximum
and minimum step size, in the dialog window.
Solver (i.e. method used to solve the underlying differential
and/or difference equations making up the model) can in most
cases be set to ode45 (Dormand-Prince).3

If the system is stiff, that is, parts of the system has much faster
dynamics (e.g. shorter time constant) than other parts, you
should select a method which is developed particularly for stiff

3 ode means ordinary differential equation.

Finn Haugen, TechTeach: Master Simulink! 22

systems. Available methods are indicated by stiff in the Solver
list.

— If you have selected Fixed step: Figure 3.4 shows the dialog
window according to this selection. In this case Simulink uses a

Figure 3.4: The Configuration parameters dialog window. Type is Fixed
step.

fixed step size during the entire simulation.
If the step size is too large the simulation will become
inaccurate, i.e. there will be a substantial difference between the
simulated response and the true response. You can even get an
unstable simulation! This will soon be demonstrated.

3.2.3 Guidelines for selecting solver method and time step

My general advice is that you use fixed step size in stead of variable step
size. Among the various fixed step methods, the ode 5
(Dormand-Prince) method can be used as the default method. Using a
fixed step size simplifies postprocessing the data, e.g. signal filtering, signal
analysis, and data presentation.

How do you select a proper fixed time step size? Either you can let
Simulink select a proper step size, or you can set it manually, cf. Figure
3.4. If you do it manually you can proceed as follows: Set the step size
equal to 1/1000 of the simulation time range, which is the time from the

Finn Haugen, TechTeach: Master Simulink! 23

start time to the stop time. Then simulate. If you have any reason to
increase the time step size, increase it by a factor of 5. (One reason may be
that the amount of data becomes too large.) If the response depends on
the step size, reduce it. If you do not have any reason to increase the step
size, decrease it by a factor of 5, and simulate. If the response does not
depend on the step size, keep the previous step size.

As an alternative to just trying a time step equal to 1/1000 of the
simulation time range, you can try setting it equal to a fraction of the
smallest of the time constants and the time delays of the system. This
fraction may be 1/10. (If your model is a state space model, you can
calculate the smallest time constant as the absolute value of the inverse of
the largest eigenvalue of the system.)

Now, let us play a little with the solver method and the time step!

Let us apply a fixed step size:

Set Type to Fixed step. Set Fixed-step size to 0.01. Set Solver to ode
5. Then simulate sys1 (by running scriptsim.m).

You should observe a simulated response as shown in Figure 3.5. By
comparing with the simulation shown in Figure 3.1 where a variable step
method was used, you can see that the simulation with the fixed step size
of 0.01s is somewhat more accurate. A conclusion is that a variable step
size method with default settings may not simulate as accurately as a
fixed-step method having a sufficiently small step size.

Let us increase the step size:

Set Type to Fixed step. Set Fixed-step size to 1. Set Solver to ode 5.
Then simulate sys1 (by running scriptsim.m).

You should observe a simulated response as shown in Figure 3.6. The
simulated response now differs clearly from the more accurate simulation
shown in Figure 3.5. The difference is due to the relatively large step size.
A conclusion is that it is important to select a small step size, otherwise
the simulatioin may be inaccurate.

Finally, let us change to a (simpler) solver method :

Set Type to Fixed step. Set Fixed-step size to 1. Set Solver to Euler
(which is the simplest and most innaccurate simulation method). Then
simulate sys1 (by running scriptsim.m).

You should observe a simulated response as shown in Figure 3.7. The

Finn Haugen, TechTeach: Master Simulink! 24

Figure 3.5: Simulation of sys1.mdl with fixed step size of 0.01s and solver
ode5.

simulation is now unstable! A conclusion is that a simulation can become
unstable if the step size is too large or if an improper solver method is used.

3.2.4 Setting simulation parameters with the sim function

As an alternative to setting simulation parameters in the Configuration
parameters dialog window, cf. Figure 3.3, you can set the parameters by
defining them as arguments to the sim function which you use in a Matlab
script. Such parameter settings overrides settings in the dialog window.

There are many parameters that can be used in the sim function. These
parameters can be collected as one argument using the simset function,
and then you use this one argument as an argument to the sim function.4

We will now simulate sys1.mdl using the sim function.

Create scriptsimparam.m given below (in the Matlab editor).
4help sim and help simset provides help.

Finn Haugen, TechTeach: Master Simulink! 25

Figure 3.6: Simulation of sys1.mdl with fixed step size of 1s and solver ode5.

scriptsimparam.m

%Defining model parameters:
tu=5; %Time of step in u
u0=0; %Value of u before the step
u1=2; %Value of u after the step
T=0.5; %Time constant
K=2; %Gain
tau=0.5; %Time delay
x0=4; %Initial value of x

%Setting simulation parameters:
timestep=0.01;
options=simset(’solver’,’ode5’,’fixedstep’,timestep);
tstop=10;

%Simulates sys1.mdl:
sim(’sys1’,tstop,options)

A few comments to the script: In the simset function the string ‘solver’

Finn Haugen, TechTeach: Master Simulink! 26

Figure 3.7: Simulation of sys1.mdl with fixed step size of 1s and solver Euler.

represents a property, and ‘ode5’ is the corresponding property value.
Furthermore, ‘fixedstep’ is a property having value timestep which is
given a numerical value in the script.

Run scriptsimparam.m.

The response is identical to the response shown in Figure 3.5.

3.3 How to save simulated data as Matlab
variables

Sometimes it is useful to save simulated data (responses) as variables in
the Matlab workspace. The purpose may be plotting using the plot
function, some kind of signal analysis, or saving data to a file. Saving data
as Matlab variables can be done in several ways:

• Using To Workspace blocks in the block diagram

Finn Haugen, TechTeach: Master Simulink! 27

• Via the Data import/export menu option in the Configuration
parameters dialog window, cf. Figure 3.3

• Via the Parameters button in a Scope block in the block diagram

I prefer using To Workspace blocks because then the block diagram
shows (explicitly) which signals are saved as Matlab variables.

Let us try:

Modify sys1.mdl as described below, and save it as sys1workspace.mdl.

• Include a Clock block (from the Source library) to generate the
simulation time, t.

• Add three To Workspace blocks, and connect them to the t, u, and
x signals.

• In the parameter dialog window of each of the To Workspace
blocks: Type t, u, and x, respectively, as Variable name.

• In the same parameter dialog window, set Save format to Array.

The resulting block diagram should be similar to sys1workspace.mdl
shown in Figure 3.8.

Create the script scriptsimworkspace.m shown below. (It can be gener-
ated by modifying scriptsimparam.m.)

The script simulates the system sys1workspace.mdl. The script
demonstrates using simulated responses saved as Matlab variables after the
simulation has finished. In this script responses are plotted using the plot
function.

scriptsimworkspace.m

%Defining model parameters:
tu=5; %Time of step in u
u0=0; %Value of u before the step
u1=2; %Value of u after the step
T=0.5; %Time constant
K=2; %Gain
tau=0.5; %Time delay
x0=4; %Initial value of x

Finn Haugen, TechTeach: Master Simulink! 28

Figure 3.8: sys1workspace.mdl containing To Workspace blocks

%Setting simulation parameters:
timestep=0.01;
options=simset(’solver’,’ode5’,’fixedstep’,timestep);
tstop=10;

%Simulates sys1workspace.mdl:
sim(’sys1workspace’,tstop,options)

%Postprocessing simulated responses
%(here only plotting):
figure(1)
plot(t,u,’--’,t,x,’--’)
ylabel(’u (dashed) and x’)
xlabel(’t [sec]’)

Run the simulation by running scriptsimworkspace.m.

After the script has been run (i.e. the simulation has been finished) u and
x are plotted as functions of time t as shown in Figure 3.9.

Finn Haugen, TechTeach: Master Simulink! 29

Figure 3.9: Plot generated by the plot function in simscriptworkspace.m

3.4 Running a sequence of simulations

May be you want to run a sequence of simulations with some parameter
adjustment before each simulation? Such a sequence can be realized using
a for loop in a Matlab script. As an example we will simulate our system
for four different values of the time constant T: 0.25, 0.5, 1, and 2.

Create the script shown below, and save it as scriptsimsequence.m.

scriptsimsequence.m

%Defining model parameters:
tu=5; %Time of step in u
u0=0; %Value of u before the step
u1=2; %Value of u after the step
T=0.5; %Time constant
K=2; %Gain

Finn Haugen, TechTeach: Master Simulink! 30

tau=0.5; %Time delay
x0=4; %Initial value of x

T_array=[0.25 0.5 1 2]; %Four T values.

%Setting simulation parameters:
timestep=0.01;
options=simset(’solver’,’ode5’,’fixedstep’,timestep);
tstop=10;

%Running a sequence of simulations:
for k=1:length(T_array)
T=T_array(k); %A new T value is fetched from the array.
sim(’sys1workspace’,tstop,options)
%Saves responses in x as columns in x_matrix:
x_matrix(:,k)=x;
end %for

%Plots x_matrix and u as functions of t:
figure(1);
plot(t,x_matrix,t,u)
title(’u (dashed) and x for T=0.25, 0.5, 1 og 2.’)
xlabel(’t [sec]’)

Run scriptsimsequence.m.

The set of simulated responses are plotted in one plot, see Figure 3.10.

Finn Haugen, TechTeach: Master Simulink! 31

Figure 3.10: A set of responses generated by scriptsimsequence.m

Figure 3.11: A break?

Chapter 4

Various model types in block
diagrams

4.1 Linear models

You can use various types of linear mathematical models in Simulink:
Transfer functions – both s-transfer functions (continuous-time) and
z-transfer functions (diskcrete-time), and state-space models – which are
differential equations for continuous-time systems and difference equations
for discrete-time systems. If you have installed the Control System
Toolbox, you can use LTI models (Linear Time Invariant) defined using
functions in the Control System Toolbox.

A block diagram can contain models of different types, that is, Simulink
supports hybrid models.

Let us look at one compound example which demonstrates how to use the
following model types:

• s-transfer function

• z-transfer function

• Continuous-time state-space model
• Discrete-time state-space model
• LTI-model, here an s-transfer function

The models are as follows:

32

Finn Haugen, TechTeach: Master Simulink! 33

• s-transfer function:

Hc(s) =
0.5s

1s2 + 2s+ 4
=

b1s+ b0s
0

a2s2 + a1s1 + a0s0
(4.1)

Thus,
b1 = 0.5; b0 = 0; a2 = 1; a1 = 2; a0 = 4; (4.2)

• z-transfer function:

Hd(z) =
1z

5z2 + 3z + 1
=

d1z + d0z
0

c2z2 + c1z1 + c0z0
(4.3)

Thus,
d1 = 1; d0 = 0; c2 = 5; c1 = 3; c0 = 1; (4.4)

The sampling time of this model is assumed to be

h1 = 0.1s (4.5)

• Continuous-time state-space model:
ẋc = Acxc +Bcuc (4.6)

yc = Ccxc +Dcuc (4.7)

where

Ac =

·
0 1
−2 −3

¸
(4.8)

Bc =

·
0
4

¸
(4.9)

Cc =
£
1 0

¤
(4.10)

Dc = [0] (4.11)

• Discrete-time state-space model:
xd(n+ 1) = Adxd(n) +Bdud(t) (4.12)

yd(n) = Cdxd(n) +Ddud(n) (4.13)

where

Ad =

·
1 0.2
−0.3 −0.8

¸
(4.14)

Bd =

·
0
0.5

¸
(4.15)

Cd =
£
1 0

¤
(4.16)

Dd = [0] (4.17)

The sampling time of this model is assumed to be

h2 = 0.2s (4.18)

Finn Haugen, TechTeach: Master Simulink! 34

• LTI-model: It is the same as Hc given by (4.1).

The input to each of these models will be a unit step (from 0 til 1) at time
t = 0. The responses are plotted using Scope blocks.

Create the Matlab-script scriptsimsys2.m shown below which defines the
models to be simulated, and also runs the simulation.

scriptsimsys2.m

%Defining model parameters:
tu=0; %Time of step in u
u0=0; %Value of u before the step
u1=1; %Value of u after the step

%s-transfer function, Hc:
a2=1; a1=2; a0=4; b1=0.5; b0=0;
num_Hc=[b1,b0];
den_Hc=[a2,a1,a0];

%z-transfer function, Hd:
c2=5; c1=3; c0=1; d1=1; d0=0;
num_Hd=[d1,d0];
den_Hd=[c2,c1,c0];
h1=0.1; %Sampling time

%Continuous-time state-space model
Ac=[0,1;-2,-3]; Bc=[0;4]; Cc=[1,0]; Dc=[0];
xc0=[1,2]; %Initial state

%Discrete-time state-space model
Ad=[1,0.2;-0.3,-0.8]; Bd=[0;0.5]; Cd=[1,0]; Dd=[0];
xd0=[3,4]; %Initial state
h2=0.2; %Sampling time

%LTI model (same as Hc defined above):
Hc=tf(num_Hc,den_Hc);

%Setting simulation parameters:
timestep=0.01;
options=simset(’solver’,’ode5’,’fixedstep’,timestep);
tstop=10;

%Simulates sys2.mdl:
sim(’sys2’,tstop,options)

Finn Haugen, TechTeach: Master Simulink! 35

Figure 4.1 shows the Simulink block diagram containing the models, and
the subsequent figures shows the parameter dialog windows for each of the
model blocks. Continuous-time model blocks (for transfer functions and
state-space models) are available in the Continuous library of Simulink,
and discrete-time model blocks are in the Discrete library.

Create the block diagram sys2.m shown in Figure 4.1. The parameter
windows of each of the model blocks are shown in the subsequent figures.
The Step block should be configured with tu as Step time, u0 as Initial
value, and u1 as Final value.

Figure 4.1: The block diagram sys2.mdl containing different types of models

Note: The LTI block will cause the error message shown in Figure 4.2 until
the LTI model has been defined (e.g. by running the script).

Here are comments to the script and the block diagram:

Finn Haugen, TechTeach: Master Simulink! 36

Figure 4.2: The LTI block will cause this error message until the LTI model has
been defined.

Figure 4.3: Parameter dialog window of the s-transfer function block (Transfer
Fcn)

• Transfer functions are represented using two Matlab arrays
representing the coefficients of the numerator and the denominator
polynomial of s for continuous-time transfer functions (or z for
discrete-time transfer functions). The order of the coeffients (from
left to right in the array) corresponds to a descending order of the
exponentials of s or z.

In the script the s-transfer function is defined with the two arrays
num_Hc and den_Hc, and these arrays are used in the
corresponding Transfer fcn block, see Figure 4.3.

The z-transfer function is defined with the two arrays num_Hd and
den_Hd, and these arrays are used in the corresponding Discrete
Transfer fcn block, see Figure 4.4. Note that the sampling time is

Finn Haugen, TechTeach: Master Simulink! 37

Figure 4.4: Parameter dialog window of the z-transfer function block (Discrete
Transfer Fcn)

defined with h1. The sampling time need is generally not the same
as the time step of the simulator!

A Rate Transition block is used to define a transition of the
sampling interval between the Step block, which runs with a
sampling interval equal to the simulation time step which is
timestep = 0.01s in this example, and the sampling interval of the
Discrete Transfer fcn block which runs with sampling interval h1.

• State-space models are represented with their system matrices.

In the script the continuous-time state space model is defined with
the matrices Ac, Bc, Cc, and Dc, which are used in the State
Space block, see Figure 4.5.

The discrete-time state space model is defined with the matrices Ad,
Bd, Cd, and Dd, which are used in the Discrete State-space
block, see Figure 4.6. The sampling time is defined with h1.

A Rate Transition block is used to define a transition of the
sampling interval between the Step block and the Discrete
State-space block.

• The LTI model, Hc, is created using the tf function in Control
System Toolbox. Hc is used in the LTI block, see Figure 4.7.

Finn Haugen, TechTeach: Master Simulink! 38

Figure 4.5: Parameter dialog window of the continuous-time state-space model
block (State-Space)

4.2 PID-controllers

The SIMULINK Extras / Additional Linear library contains two
PID-controllers:

• PID Controller, which is an ideal PID-controller which should not
be used alone, but in series with a low-pass filter (a first order
transfer function). The reason for this is explained in most control
engineering text-books.

• PID Controller with Approximative Derivative, which may be
used in most cases because it contains a necessary lowpass filter in
the D-term. Figure 4.9 shows this PID block and its parameter
dialog window.

Be aware of the parameterization of the PID-controllers! Assume the PID
controller transfer function is written as

H(s) =
u(s)

e(s)
= K +

Kp

Tis
+

KpTds

Tfs+ 1
(4.19)

where Kp is the gain, Ti is the integral time, Td is the derivative time, and
Tf is the filter time constant. Then the parameters used in the dialog
window shown in Figure 4.9 are as follows:

P = Kp (4.20)

Finn Haugen, TechTeach: Master Simulink! 39

Figure 4.6: Parameter dialog window of the discrete-time state-space model
block (Discrete State-Space)

I =
Kp

Ti
(4.21)

D = KpTd (4.22)

N =
1

Tf
(4.23)

Finn Haugen, TechTeach: Master Simulink! 40

Figure 4.7: Parameter dialog window of the LTI block

Figure 4.8: Parameter dialog window of the Rate Transition block

Finn Haugen, TechTeach: Master Simulink! 41

Figure 4.9: The PID Controller with Approximative Derivative block and
its parameter dialog window

Figure 4.10: You deserve this!

Bibliography

[1] F. Haugen: Dynamic Systems — modeling, analysis, and
simulation. ISBN 82-519-1926-6. Tapir Academic Publisher, Norway.
2004.

42

