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Chapter 4

The Laplace transform

4.1 Introduction

The Laplace transform is a mathematical tool which is useful in systems
theory. It is the foundation of transfer functions which is a standard model
form of dynamic systems. Transfer functions are described in Chapter 5.
Furthermore, with the Laplace transform you relatively easily calculate
responses in dynamic systems by hand.1

In this chapter I present the Laplace transform at a minimum level. You
can find much more information in a mathematics text-book.

4.2 Definition of the Laplace transform

Given a time-evaluated function f(t) — that is, f(t) is a function of time t.
It can be a sinusoid, a ramp, an impulse, a step, a sum of such functions,
or any other function of time. The Laplace transform of f(t) can be
denoted F (s), and is given by the following integral:

F (s) = L{f(t)} =

�
∞

0
e−stf(t) dt (4.1)

1 It turns out that we rarely need to perform manual calculations of the responses.
When we need to know the responses, it is in most situations more conventient to obtain
them by simulating the system. With the Laplace transform you can calculate responses
only for linear systems, that is, systems having a model which can be expressed as a linear
differential equation.
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Expressed with words, f(t) is multiplied by the weight function e−st, and
the resulting product e−stf(t) is integrated from start time t = 0 to end
time t =∞. The Laplace transform does not care about any value that
f(t) might have at negative values of time t. In other words, you can think
of f(t) as being “switched on” at t = 0. (The so-called two-sided Laplace
transform is defined also for negative time, but it is not relevant for our
applications.)

s is the Laplace variable.2 F (s) is a function of s. The time t is not a
variable in F (s) — it disappeared through the time integration. F (s) will
look completely different from f(t), cf. the following example.

Example 4.1 Laplace transform of a step

Given the function

f(t) = 1 (for t ≥ 0) (4.2)

which is a step of amplitude 1 at time t = 0. Using (4.1), its Laplace
transform becomes

F (s) =

�
∞

0
e−st · 1 · dt =

	
−
1

s
e−st


t=∞

t=0

=
1

s
(4.3)

[End of Example 4.1]

Calculating the time function f(t) from its Laplace transform F (s) — in
other words: going from s to t — is denoted inverse Laplace transform.
This can be expressed as

f(t) = L−1 {F (s)} (4.4)

The inverse Laplace transform is actually defined by a complicated
complex integral.3 If you really want to calculate this integral, you should
use the Residue Theorem in mathematics. However, I suggest you in stead
try the simplest method, namely to find f(t) from the precalculated
Laplace transform pairs, cf. Section 4.3, possibly combined with one or
more of the Laplace transform properties, cf. Section 4.4.

2You may wonder what is the physical meaning of s. It can be interpreted as a complex
frequency, but I think the best answer is that there is no meaningful physical meaning.

3f(t) = 1

2πj

� σ+j∞
σ−j∞

F (s)estds
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4.3 Laplace transform pairs

F (s) and f(t) in Example 4.1 can be denoted a Laplace transform pair :

F (s) =
1

s
⇐⇒ f(t) = 1 (step of amplitude 1) (4.5)

Below are some additional Laplace transform pairs. Each time function,
f(t), is defined for t ≥ 0. F (s) can be derived from (4.1). In the expressions
below, k is some constant. For example, (4.5) is (4.7) with k = 1.

Laplace transform pairs:

F (s) = k ⇐⇒ f(t) = kδ(t) (impulse of strength or area k) (4.6)

k

s
⇐⇒ k (step of amplitude k) (4.7)

k

s2
⇐⇒ kt (ramp of slope k) (4.8)

k
n!

sn+1
⇐⇒ ktn (4.9)

k

Ts+ 1
⇐⇒

ke−t/T

T
(4.10)

k

(Ts+ 1)s
⇐⇒ k

�
1− e−t/T


(4.11)

k

(T1s+ 1)(T2s+ 1)
⇐⇒

k

T1 − T2

�
e−t/T1 − e−t/T2


(4.12)

k

(T1s+ 1)(T2s+ 1)s
⇐⇒ k

	
1 +

1

T2 − T1

�
T1e

−t/T1 − T2e
−t/T2




(4.13)
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4.4 Laplace transform properties

In calculations with the Laplace transform you will probably need one or
more of the Laplace transform properties presented below.4 We will
definitely use some of them for deriving transfer functions, cf. Chapter 5.
Each of these properties can be derived from the Laplace transform
definition (4.1).

Linear combination:

k1F1(s) + k2F2(s)⇐⇒ k1f1(t) + k2f2(t) (4.14)

Special case: Multiplication by a constant:

kF (s)↔ kf(t) (4.15)

Time delay:

F (s)e−τs ⇐⇒ f(t− τ) (4.16)

Time derivative:

snF (s)− sn−1f(0)− sn−2ḟ(0)− . . .−
(n−1)

f (0) ⇐⇒
(n)

f(t) (4.17)

Special case: Time derivative with zero initial conditions:

snF (s) ⇐⇒
(n)

f (t) (4.18)

Special case: Time derivative with non-zero initial condition:

sF (s)− f0 ⇐⇒ ḟ(t) (4.19)

Special case: First order time derivative with zero initial condition:

sF (s) ⇐⇒ ḟ(t) (4.20)

(So, differentiation corresponds to multiplication by s.)
4Additional properties could have been given here, too, but the ones presented are the

most useful.
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Integration:

1

s
F (s) ⇐⇒

� t

0
f(τ)dτ (4.21)

(So, integration corresponds to division by s.)

Final Value Theorem:

lim
s→0

sF (s) ⇐⇒ lim
t→∞

f(t) (4.22)

Example 4.2 Calculation of time response (inverse Laplace
transform)

Given the following differential equation:

ẏ(t) = −2y(t) (4.23)

with initial value y(0) = 4. Calculate y(t) using the Laplace transform.

To calculate y(t) we start by taking the Laplace transform of both sides of
the differential equation (4.23):

L{ẏ(t)} = L{−2y(t)} (4.24)

Here, we apply the time derivative property (4.19) at the left side, and the
linear combination property (4.15) to the right side, to get

sY (s)− 4 = −2Y (s) (4.25)

Solving for Y (s) gives

Y (s) =
4

s+ 2
(4.26)

To get the corresponding y(t) from this Y (s) we look for a proper Laplace
transform pair. (4.10) fits. We have to write our Y (s) on the form of
(4.10). Dividing both the numerator and the denominator by 2 gives

Y (s) =
4

s+ 2
=

2

0.5s+ 1
=

k

Ts+ 1
(4.27)

Hence, k = 2 and T = 0.5. Finally, according to (4.10) y(t) becomes

y(t) =
ke−t/T

T
=
2e−t/0.5

0.5
= 4e−2t (4.28)

[End of Example 4.2]
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Example 4.3 Calculation of steady-state value using the Final
Value Theorem

See Example 4.2. The steady-state value of y in (4.28) is

ys = lim
t→∞

y(t) = lim
t→∞

4e−2t = 0 (4.29)

Uing the Final Value Theorem we get

ys = lim
s→0

sY (s) = lim
s→0

s
4

s+ 2
= 0 (4.30)

So, the results are the same.

[End of Example 4.3]



Chapter 5

Transfer functions

5.1 Introduction

Transfer functions is a model form based on the Laplace transform, cf.
Chapter 4. Transfer functions are very useful in analysis and design of
linear dynamic systems, in particular controller functions and signal filters.
The main reasons why transfer functions are useful are as follows:

• Compact model form: If the original model is a higher order
differential equation, or a set of first order differential equations, the
relation between the input variable and the output variable can be
described by one transfer function, which is a rational function of the
Laplace variable s, without any time-derivatives.

• Representation of standard models: Transfer functions are often
used to represent standard models of controllers and signal filters.

• Simple to combine systems: For example, the transfer function
for a combined system which consists of two systems in a series
combination, is just the product of the transfer functions of each
system.

• Simple to calculate time responses: The calculations will be
made using the Laplace transform, and the necessary mathematical
operations are usually much simpler than solving differential
equations. Calculation of time-responses for transfer function models
is described in Chapter 5.5.

• Simple to find the frequency response: The frequency response
is a function which expresses how sinusoid signals are transfered
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through a dynamic system. Frequency response is an important tool
in analysis and design of signal filters and control systems. The
frequency response can be found from the transfer function of the
system. However, frequency response theory is not a part of this
book (a reference is [2]).

Before we start, I must say something about the mathematical notation:
In the following sections, and in the reminder of the book, I use the same
symbol (letter) for the time function, say y(t), as for the Laplace transform
of y(t), here y(s) — although it is mathematically incorrect to do it. The
reason is to simplify the presentation. Now, only one variable name
(symbol) is needed for both the Laplace domain and the time domain. For
example, assume that y(t) is the time function of the level y in a water
tank. Then I write y(s), although I formally should have written Y (s) or
y∗(s) or y(s) (or something else that is different from y(s)) for L{y(t)}. It
is my experience (from many years together with transfer functions) that
this simplifying notation causes no problems.

5.2 Definition of the transfer function

The first step in deriving the transfer function of a system is taking the
Laplace transform of the differential equation (which must be linear). Let
us go on with an example, but the results are general. Given the following
mathematical model having two input variables u1 and u2 and one output
variable y. (I think you will understand from this example how to find the
transfer function for systems with different number of inputs and outputs.)

ẏ(t) = ay(t) + b1u1(t) + b2u2(t) (5.1)

a, b1 and b2 are model parameters (coefficients). Let the initial state (at
time t = 0) be y0. We start by taking the Laplace transform of both sides
of the differential equation:

L{ẏ(t)} = L{ay(t) + b1u1(t) + b2u2(t)} (5.2)

By using the linearity property of the Laplace transform, cf. (4.14), the
right side of (5.2) can be written as

L{ay(t)}+ L{b1u1(t)}+ L{b2u2(t)} (5.3)

= aL{y(t)}+ b1L{u1(t)}+ b2L{u2(t)} (5.4)

= ay(s) + b1u1(s) + b2u2(s) (5.5)
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The left side of (5.2) will be Laplace transformed using the differentiation
rule, cf. (4.17), on L{ẏ(t)}:

L{ẏ(t)} = sy(s)− y0 (5.6)

Thus, we have found that the Laplace transformed (5.2) is

sy(s)− y0 = ay(s) + b1u1(s) + b2u2(s) (5.7)

Solving for the output variable y(s) gives

y(s) =

yin it (s)� �� �
1

s− a
y0 +

y1(s)� �� �
b1

s− a� �� �
H1(s)

u1(s) +

y2(s)� �� �
b2

s− a� �� �
H2(s)

u2(s) (5.8)

In (5.8),

• y1 is the contribution from input u1 to the total response y,

• y2 is the contribution from input u2 to the total response y,

• yinit is the contribution from the initial state y0 to the total response
y.

Of course, these contributions to the total response are in the Laplace
domain. The corresponding responses in the time domain are found by
calculating the inverse Laplace transforms.

Now we have the following two transfer functions for our system:

• The transfer function from u1 to y is

H1(s) =
b1

s− a
(5.9)

• The transfer function from u2 to y is

H2(s) =
b2

s− a
(5.10)

Thus, the transfer function from a given input variable to a given output
variable is the s-valued function with which the Laplace transformed input
variable is multiplied to get its contribution to the response in the output
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H1(s)
u1(s)

y(s) = y1(s) + y2(s)

H2(s)

y1(s) = H1(s)u1(s)

y2(s) = H2(s)u2(s)

u
2
(s)

Figure 5.1: Block diagram representing the transfer functions H1(s) and H2(s)
in (5.8)

variable. In other words: The transfer function expresses how the input
variable is transferred through the system.

The transfer functions derived above can be illustrated with the block
diagram shown in Figure 5.1.

One alternative way to express the definition of transfer function

From (5.8) we have

H1(s) =
b1

s− a
=

y1(s)

u1(s)
(5.11)

So, we can define the transfer functions as the ratio between the Laplace
transformed contribution to the total response in the output variable, here
y1(s), and the Laplace transformed input variable, here u1(s). We may
also say that the transfer functions is the ratio between the Laplace
transformed total response in the output variable, here y(s), and the
Laplace transformed input variable, here u1(s), when all other inputs are
set to zero and the initial state is zero.

5.3 Characteristics of transfer functions

A transfer function can be written on a factorized form — often called a
zero-pole form:

H(s) = K
(s− z1)(s− z2) · · · (s− zr)

(s− p1)(s− p2) · · · (s− pn)
=

b(s)

a(s)
(5.12)

Here z1, . . . , zr are the zeros and p1, . . . , pn are the poles of the transfer
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function. For example, the transfer function

H(s) =
4s− 4

s2 + 5s+ 6
= 4

s− 1

(s+ 3)(s+ 2)
(5.13)

have two poles, −3 and −2, one zero, 1, and the gain is 4. (As shown in
e.g. [2] the values of the poles determines the stability property of a
system. The system is stable only if all the poles have negative real parts,
in other words if all the poles lie in the left half part of the complex plane.
But we will not go into any stability analysis here.)

The s-polynomial in the denominator of H(s), which is a(s) in (5.12), is
denoted the characteristic polynomial. The poles are the roots of the
characteristic polynomial, that is

a(s) = 0 for s = s1, s2, ..., sn (the poles) (5.14)

The order of a transfer function is the order of the characteristic
polynomial. For example, the transfer function (5.13) has order 2.

5.4 Combining transfer functions blocks in block
diagrams

Transfer function blocks may be combined in a block diagram according to
the rules shown in Figure 5.2. One possible purpose of such a combination
is to simplify the block diagram, or to calculate the resulting or overall
transfer function. For example, the combined transfer function of two
transfer functions connected in series is equal to the product of the
individual transfer functions, jc. the Series connection rule in Figure 5.2.

5.5 How to calculate responses from transfer
function models

It is quite easy to calculate responses in transfer function models manually
(by hand). Assume given the following transfer function model:

y(s) = H(s)u(s) (5.15)

To calculate the time-response y(t) for a given input signal u(t), we can do
as follows:
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H1(s) H2(s) H2(s)H1(s)
u(s) u(s)y(s) y(s)

H1(s)

H1(s)+H2(s)
u(s) y(s)

Series 
connection

H2(s)

u(s) y(s)
Parallel connection

u1(s)

u2(s)

u3(s)

u1(s)

u2(s)

u3(s)

y(s) y(s)

Splitting
sum junction

H1(s)
u1(s)

H2(s)
u2(s)

y(s) Moving
sum junction

H1(s)

u2(s)

u1(s)

H2(s)

H1(s)

y(s)

H1(s)
y(s)

H2(s)

Negative
feedback

u(s)
H1(s)

1+H1(s)H2(s)

y(s)u(s)

Figure 5.2: Rules for combining transfer function blocks

1. First, find u(s) — the Laplace transform of the input signal. u(s) can
be found from precalculated Laplace transform pairs, cf. Section 4.3,
possibly combined with one or more of the Laplace transform
properties, cf. Section 4.4, where particularly the linearity property
(4.14) is useful.

2. The Laplace transform of the output signal, y(s), is calculated from
(5.15), that is,

y(s) = H(s)u(s) (5.16)

where u(s) is found as explained above.

3. The time-function y(t) is calculated as the inverse Laplace transform
of y(s), cf. Chapter 4.
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Example 5.1 Calculation of time-response for transfer function
model

Given the transfer function model

y(s) =
3

s+ 0.5� �� �
H(s)

u(s) (5.17)

Suppose that u(t) is a step from 0 to 2 at t = 0. We shall find an expression
for the time-response y(t). The Laplace transform of u(t) is, cf. (4.7),

u(s) =
2

s
(5.18)

Inserting this into (5.17) gives

y(s) =
3

s+ 0.5
·
2

s
=

6

(s+ 0.5)s
=

12

(2s+ 1)s
(5.19)

(5.19) has the same form as the Laplace transform pair (4.11) which is
repeated here:

k

(Ts+ 1)s
⇐⇒ k

�
1− e−t/T

�
(5.20)

Here k = 12 and T = 2. The time-response becomes

y(t) = 12
�
1− e−t/2

�
(5.21)

Figure 5.3 shows y(t). The steady-state response is 12, which can be
calculated from y(t) by setting t =∞.

[End of Example 5.1]

5.6 Static transfer function and static response

Suppose that the input signal to a system is a step of amplitude us. The
corresponding static time-response can found from the Final Value
Theorem:

ys = lim
s→0

s · y(s) = lim
s→0

s ·H(s)
us
s
= lim
s→0

H(s)
� �� �

Hs

us (5.22)

where Hs is the static transfer function. That is,

Hs = lim
s→0

H(s) (5.23)
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Figure 5.3: Example 5.1: The time-response y(t) given by (5.21)

Thus, the static transfer function, Hs, is found by letting s approach zero
in the transfer function, H(s).

Once we know the static transfer function Hs the static (steady-state)
response ys due to a constant input of value us, is

ys = Hsus (5.24)

Example 5.2 Static transfer function and static response

See Example ??. The transfer function is

H(s) =
3

s+ 0.5
(5.25)

The corresponding static transfer function becomes

Hs = lim
s→0

H(s) = lim
s→0

3

s+ 0.5
= 6 (5.26)

Assume that the input u has the constant value of us = 2. What is the
corresponding static response ys in the output? It can be calculated from
the static transfer function as

ys = Hsus = 6 · 2 = 12 (5.27)

which is the same result as found in Example 5.1.

[End of Example 5.2]



Chapter 6

Dynamic characteristics

6.1 Introduction

In this chapter a number of standard dynamic models in the form of
transfer functions will be defined. With such standard models you can
characterize the dynamic properties of a physical system in terms of for
example gain, time-constant, and time-delay. These terms are also useful
for controller tuning, as in the Skogestad’s tuning method which is
described in Section 10.3.

This chapter covers integrators, time-constant systems and time-delays.
Second order systems, which may show oscillatory responses, are not
covered.1

6.2 Integrators

An integrator is a system where the output variable y is the time integral
of the input variable u, multiplied with some gain K:

y(t) = K

� t

0
udθ (6.1)

1Because I have found that the theory about second order systems is not important
in most applications. However, an article about second order systems is available at
http://techteach.no.
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Taking the time derivative of both sides of (6.1) yields the following
differential equation describing an integrator:

ẏ(t) = Ku(t) (6.2)

Taking the Laplace transform using (4.20) gives

sy(s) = Ku(s) (6.3)

which gives the following transfer function of an integrator:

H(s) =
y(s)

u(s)
=

K

s
(6.4)

Let us now find the step response of the integrator. We assume that u(t) is
a step of amplitude U at t = 0. From (4.7) u(s) = U

s . Thus,

y(s) = H(s)u(s) =
K

s
·
U

s
=

KU

s2
(6.5)

which, inverse Laplace transformed using (4.8), is

y(t) = KUt (6.6)

Thus, the step response of an integrator is a ramp with rate KU . Figure
6.1 shows simulated response of an integrator.

Figure 6.1: Simulated response of an integrator
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Example 6.1 An integrator: A liquid tank

See Example 3.1 on page 36 which describes a liquid tank. Assume for
simplicity that there is no outflow from the tank. The mathematical model
of this system is then

ḣ(t) =
1

A
qi(t) (6.7)

Taking the Laplace transform of (6.7) gives

sh(s)− h0 =
1

A
qi(s) (6.8)

which gives

h(s) =
h0
s
+

1

As����
H(s)

qi(s) (6.9)

So, the transfer function is

H(s) =
h(s)

qi(s)
=
1

A
·
1

s
(6.10)

The system is an integrator!

It is actually quite naturally that the liquid tank is an integrator, since the
level is proportional to the integral of the inflow. This can be seen by
integrating (6.7), which gives

h(t) = h(0) +

� t

0

1

A
qi(θ) dθ (6.11)

Whenever you need a concrete example of an integrator, recall the tank!

[End of Example 6.1]

6.3 Time-constant systems

In time-constant system — also denoted first order systems — the output
variable y and the input variable u are related according to the following
differential equation:

T ẏ(t) + y(t) = Ku(t) (6.12)

Here K is the gain, and T is the time-constant..
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Taking the Laplace transform of both sides of (6.12) gives

y(s) =
K

Ts+ 1� �� �
H(s)

u(s) (6.13)

where H(s) is the transfer function. Here is an example:

H(s) =
3

4s+ 2
=

1.5

2s+ 1
(6.14)

The gain is K = 1.5, and the time-constant is T = 2 (in a proper time
unit, e.g. seconds).

Let us study the step response of a first order system. We assume that the
input signal u(t) is a step of amplitude U at time t = 0. From (4.7)
u(s) = U

s . The Laplace transformed response becomes

y(s) = H(s)u(s) =
K

Ts+ 1
·
U

s
(6.15)

Taking the inverse Laplace transform using (4.11) gives

y(t) = KU(1− e−
t
T ) (6.16)

Let us study the importance of the parameters K and T for the step
response. Its is assumes that the system is in an operating point where the
input is u0 and the ouput is y0 before the step in the input u. Figure 6.2
shows a simulation of a first order system. The parameters used in the
simulation are U = 1, K = 2, and T = 5.

• Importance of K: The steady-state response due to the input step
is

ys = lim
t→∞

y(t) = KU (6.17)

which is found from (6.16) with t→∞. Thus, the step is amplified
with the gain K in steady-state. This is confirmed in Figure 6.2.

In Section 5.6 the static transfer function Hs was defined. What is
the Hs of a time-constant system? We get

Hs =
ys
us
=

KU

U
= K (6.18)

So, the Hs is equal to the gain parameter, K.
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Figure 6.2: Step response of a time-constant system

• Importance of T : Let us set t = T in (6.16):

y(T ) = KU(1− e−
T
T ) (6.19)

= KU(1− e−1) (6.20)

= 0.63 ·KU (6.21)

Thus, at time t = T the step response has increased to 63% of the
total increase which is KU . This is confirmed in Figure 6.2. This
suggests a practical way to read off the time-constant from a step
response curve.

Qualitatively, we can state the importance of the time-constant as
follows: The less T , the faster the system.

Does the steady-state response depend on the time-constant? No,
because the steady-state response is equal to ys = KU which is not
dependent of T .

Example 6.2 First order system: Heated liquid tank
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In Example 3.3 on page 42 we developed a mathematical model of heated
liquid tank (a thermal system). The model is repeated here:

cmṪ = P + cF (Ti − T ) + Uh(Te − T ) (6.22)

Let’s for simplicity assume that the tank is well isolated so that

Uh ≈ 0 (6.23)

We will now calculate the transfer functions from P to T and from Ti to T .
Taking the Laplace transform of (6.22) gives

cm [sT (s)− T0] = P (s) + cF [Ti(s)− T (s)] (6.24)

Since we are to find the transfer function, we may set the initial value to
zero:

T0 = 0 (6.25)

From (6.24) we will find

T (s) =
K1

T1s+ 1� �� �
H1(s)

P (s) +
K2

T1s+ 1� �� �
H2(s)

Ti(s) (6.26)

The gains and the time-constant of each of the two transfer functions are

K1 =
1

cF
(6.27)

K2 = 1 (6.28)

T1 =
m

F
=

Mass
Flow

(6.29)

Comments:

• The time-constant, which represents the “dynamics”, is the same for
both transfer functions H1(s) and H2(s).

• In many applications the flow F may change. Assume that the flow
is decreased. The dynamic properties of the system then change:

— According to (6.27) the gain from P to T increases, and hence
the T becomes more sensitive to P , giving higher value of T for
a given change of P .

— According to (6.29) the time-constant increases, causing a more
sluggish response in T to a change in P .

[End of Example 6.2]
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6.4 Time-delays

In many systems there is a time-delay or dead-time in the signal flow, for
example with material transport on a conveyor belt, see Figure 6.3. In this
application, the relation between the input variable Fin and the output
variable Fout is

Fout(t) = Fin(t− τ) (6.30)

where τ is the time-delay which is the transportation time on the belt. In
other words: The outflow at time t is equal to the inflow τ time units ago.

Figure 6.3: Time-delay on a conveyor belt

What is the transfer function of a time-delay? Taking the Laplace
transform of (6.30) using (4.16):

Fout(s) = e−τs����
H(s)

Fin(s) (6.31)

Thus, the transfer function of a time-delay of τ [time unit] is

H(s) = e−τs (6.32)

Figure 6.4 shows a simulation of a time-delay. The time-delay is τ = 1 sec.

6.5 Higher order systems

Systems having higher order of the denominator polynomial of the transfer
function than one, are so-called higher order systems, or more specifically,
second order systems, third order systems and so on. A serial connection
of first order systems results in a higher order system. (But not all possible
higher order systems can be constructed by serial connection of first order
systems.) When transfer functions are connected in series, the resulting



76

Input Output

Figure 6.4: Output is equal to input, time delayed 1 sec.

transfer function is the product of the individual transfer functions, cf.
Figure 5.2. As an example, Figure 6.5 shows a second order system
consisting of “two time-constants” connected in series. The combined
transfer function becomes

H(s) =
1

(T1s+ 1) (T2s+ 1)
=

y2(s)

u(s)
(6.33)

The figure also shows the step responses in the system. It is assumed that
T1 = 1, T2 = 1 and K = 1. Observe that each first order systems makes
the response become more sluggish, as it has a smoothing effect.

Let us define the response-time Tr as the time it takes for a step response
to reach 63% of its steady-state value. For time-constant systems, the
response-time is equal to the time-constant:

Tr = T (6.34)

For higher order systems (order larger than one) it turns out that the
response-time can be roughly estimated as the sum of the time-constants
of the assumed serial subsystems that make up the higher order system:

Tr ≈
�

i

Ti (6.35)
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Figure 6.5: Step responses in a second order system

As an example, the response-time of the system shown in Figure 6.5 is

Tr ≈ 1 + 1 = 2 s (6.36)

Does the simulation shown in Figure 6.5 confirm this?2

2Yes




