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Chapter 4

The Laplace transform

Exercise 4.1

Calculate the Laplace transform, F (s), of the time function

f(t) = e−t (4.1)

using the definition of the Laplace transform.

Can you find the same answer (F (s)) by using a proper Laplace transform
pair?

Exercise 4.2

Given the following differential equation:

ẏ(t) = −2y(t) + u(t) (4.2)

with initial value y(0) = 4. Assume that the input variable u(t) is a step of
amplitude 1 at time t = 0.

1. Calculate the response in the output variable, y(t), using the Laplace
transform.

2. Calculate the steady-state value of y(t) using the Final Value
Theorem. Also calculate the steady-state value, ys, from y(t), and
from (4.2) directly. Are all these values of ys the same?
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Chapter 5

Transfer functions

5.1 Introduction

No exercises here.

5.2 Definition of the transfer function

Exercise 5.1

In Exercise 3.2 the mathematical model of a wood-chip tank was derived.
The model is

ρAḣ(t) = Ksu(t− τ)− wout(t) (5.1)

Calculate the transfer function H1(s) from the screw control signal u to
the level h and the transfer function H2(s) from the outflow wout to the
level h. (Tip: Use Eq. (4.16) in the text-book to calculate the Laplace
transform of the time-delay.)

Exercise 5.2

Figure 5.2 shows a mass-spring-damper-system. y is position. F is applied
force. D is damping constant. K is spring constant. It is assumed that the
damping force Fd is proportional to the velocity, and that the spring force
Fs is proportional to the position of the mass. The spring force is assumed
to be zero when y is zero. Force balance (Newtons 2. Law) yields

mÿ(t) = F (t)−Dẏ(t)−Ky(t) (5.2)
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m

K [N/m]

D [N/(m/s)]

F [N]

0 y [m]

Calculate the transfer function from force F to position y.

5.3 Characteristics of transfer functions

Exercise 5.3

Given the following transfer function:

H(s) =
s+ 3

s2 + 3s+ 2
(5.3)

1. What is the order?

2. What is the characteristic equation?

3. What is the characteristic polynomial?

4. What are the poles and the zeros?

5.4 Combining transfer functions blocks in block
diagrams

Exercise 5.4

Given a thermal process with transfer function Hp(s) from supplied power
P to temperature T as follows:

T (s) =
bp

s+ ap︸ ︷︷ ︸
Hp(s)

P (s) (5.4)
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The transfer function from temperature T to temperature measurement
Tm is as follows:

Tm(s) =
bm

s+ am︸ ︷︷ ︸
Hm(s)

T (s) (5.5)

ap, bp, am, and bm are parameters.

1. Draw a transfer function block diagram of the system (process with
sensor) with P as input variable and Tm as output variable.

2. What is the transfer function from P to Tm? (Derive it from the
block diagram.)

5.5 How to calculate responses from transfer
function models

Exercise 5.5

Given the transfer function model

y(s) =
5

s︸︷︷︸
H(s)

u(s) (5.6)

Suppose that the input u is a step from 0 to 3 at t = 0. Calculate the
response y(t) due to this input.

5.6 Static transfer function and static response

Exercise 5.6

See Exercise 5.2. It can be shown that the transfer function from force F
to position y is

H(s) =
y(s)

F (s)
=

1

ms2 +Ds+K
(5.7)

Calculate the static transfer function Hs. From Hs calculate the static
response ys corresponding to a constant force, Fs.
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Chapter 6

Dynamic characteristics

6.1 Introduction

No exercises here.

6.2 Integrators

Exercise 6.1

See Exercise 5.1. The transfer function from wout to h is

h(s)

wout(s)
= − 1

ρAs
= H2(s) (6.1)

1. Does this transfer function represent integrator dynamics?

2. Assume that wout(t) is a step from 0 to W at time t = 0. Calculate
the response h(t) that this excitation causes in the level h. You are
required to base your calculations on the Laplace transform.

Exercise 6.2

Figure 6.2 shows an isolated tank (having zero heat transfer through the
walls). Show that the tank dynamically is an integrator with the power P
as input variable and the temperature T as output variable. (Hint: Study
the transfer function from P to T .)
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Isolation
(zero heat transfer)

P [J/s]

T [K]

V [m3]

c [J/(kg K)]

6.3 Time-constants

Exercise 6.3

Calculate the gain and the time-constant of the transfer function

H(s) =
y(s)

u(s)
=

2

4s+ 8
(6.2)

and draw by hand roughly the step response of y(t) due to a step of
amplitude 6 in u from the following information:

• The steady-state value of the step response

• The time-constant

• The initial slope of the step response, which is

S0 = ẏ(0+) =
KU

T
(6.3)

(This can be calculated from the differential equation (6.12) in the
text-book by setting y(0) = 0.)

Exercise 6.4
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Figure 6.1:

Figure 6.1 shows the temperature response T of a thermal system due to a
step of amplitude 1 kW in the supplied power P . Find the transfer
function from ∆P (power) to ∆T (temperature) where ∆ indicates
deviations from the steady-state values. Assume that the system is of first
order (a time-constant system).

Exercise 6.5

Figure 6.2 shows an RC-circuit (the circuit contains the resistor R and the
capacitor C). The RC-circuit is frequently used as an analog lowpass filter:

vout [V]

++

_ _

vin [V]
C [F]

i [A]

Input Output
iC

i2+ _vR [V]

Figure 6.2: RC-circuit

Signals of low frequencies passes approximately unchanged through the
filter, while signals of high frequencies are approximately filtered out
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(stopped). It can be shown that a mathematical model of the RC circuit is

RCv̇out = vin − vout (6.4)

1. Calculate the transfer function H(s) from vin to vout, and calculate
the gain and the time-constant of H(s).

2. Assume that the RC circuit is used as a signal filter. Assume that
the capacitance C [F] is fixed. How can you adjust the resistance R
(increase or descrease) so that the filter performs stronger filtering
or, in other words: is more sluggish.

6.4 Time-delays

Exercise 6.6

For a pipeline of length 0.5 m and cross sectional area of 0.01 m2 filled
with liquid which flows with a volumetric flow 0.001 m3/s, calculate the
time-delay (transport delay) from inlet to outlet of the pipe.

6.5 Higher order systems

Exercise 6.7

Assume that a system can be well described by 3 time-constant systems in
series, with the following time-constants respectively: 0.5, 1, and 2 sec.
What is the approximate response time of the system?
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which can be written as

RCv̇2 − v2 = RCv̇1 (12.31)

Solution to Exercise 4.1

We set f(t) = e−t in the integral that defines the Laplace transform:

L{e−t} =

∫ ∞
0

e−ste−tdt

=

∫ ∞
0

e−(s+1)tdt

=
1

−(s+ 1)

[
e−(s+1)t

]t=∞
t=0

=
1

−(s+ 1)
[0− 1]

=
1

s+ 1

The proper Laplace transform pair is:

k

Ts+ 1
⇐⇒ ke−t/T

T
= e−t (12.32)

Here, T = 1 and k = 1. Thus, F (s) becomes

F (s) =
1

s+ 1
= L{e−t} (12.33)

which is the same as found above using the definition of the Laplace
transform.

Solution to Exercise 4.2

1. To calculate y(t) we start by taking the Laplace transform of both
sides of the given differential equation:

L{ẏ(t)} = L{−2y(t) + u(t)} (12.34)

Here, we apply the time derivative property, cf. Eq. (4.10) in the
text-book, at the left side, and the linear combination property, cf.
Eq. (4.14) in the text-book, to the right side, to get

sY (s)− 4 = −2Y (s) + U(s) (12.35)
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Here,

U(s) =
1

s
(12.36)

since the Laplace transform of a step of amplitude 1 is 1s , cf.
transform pair (4.7) in the text-book.

By now we have

sY (s)− 4 = −2Y (s) +
1

s
(12.37)

Solving for Y (s) gives

Y (s) =
4

s+ 2︸ ︷︷ ︸
Y1(s)

+
1

(s+ 2) s︸ ︷︷ ︸
Y2(s)

(12.38)

To get the corresponding y(t) from this Y (s) we take the inverse
Laplace transform of Y1(s) and Y2(s) to get y1(t) and y2(t)
respectively, and then we calculate y(t) as

y(t) = y1(t) + y2(t) (12.39)

according to the linearity property of the Laplace transform. y1(t)
and y2(t) are calculated below.

Calculation of y1(t):

We can use the transform pair (4.10) in the text-book, which is
repeated here:

k

Ts+ 1
⇐⇒ ke−t/T

T
(12.40)

We have
Y1(s) =

4

s+ 2
=

2

0.5s+ 1
(12.41)

Hence, k = 2, and T = 0.5. Therefore,

y1(t) =
ke−t/T

T
=

2e−t/0.5

0.5
= 4e−2t (12.42)

Calculation of y2(t):

We can use the transform pair (4.11) in the text-book, which is
repeated here:

k

(Ts+ 1)s
⇐⇒ k

(
1− e−t/T

)
(12.43)

We have
Y2(s) =

1

(s+ 2) s
=

0.5

(0.5s+ 1) s
(12.44)
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Hence, k = 0.5, and T = 0.5. Therefore,

y2(t) = k
(

1− e−t/T
)

= 0.5
(

1− e−t/0.5
)

= 0.5
(
1− e−2t

)
(12.45)

The final result becomes

y(t) = y1(t) + y2(t) (12.46)

= 4e−2t + 0.5
(
1− e−2t

)
(12.47)

= 0.5 + 3.5e−2t (12.48)

2. Using the Final Value Theorem on (12.38):

ys = lim
s→0

sY (s) = lim
s→0

s

[
4

s+ 2
+

1

(s+ 2) s

]
(12.49)

= lim
s→0

s
4

s+ 2
+ lim
s→0

s
1

(s+ 2) s
= 0 +

1

2
= 0.5 (12.50)

From (12.48) we get
ys = lim

t→∞
y(t) = 0.5 (12.51)

And from the differential equation we get (because the
time-derivative is zero in steady-state)

0 = −2ys(t) + us(t) (12.52)

which gives

ys =
us
2

=
1

2
= 0.5 (12.53)

So, the three results are the same.

Solution to Exercise 5.1

The Laplace transform of (5.1) is

ρA [sh(s)− h0] = Kse
−τsu(s)− wout(s) (12.54)

Solving for output variable h gives

h(s) =
1

s
h0 +

Ks

ρAs
e−τs︸ ︷︷ ︸

H1(s)

u(s) +

(
− 1

ρAs

)
︸ ︷︷ ︸

H2(s)

wout(s) (12.55)

Thus, the transfer functions are

H1(s) =
Ks

ρAs
e−τs (12.56)
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and
H2(s) = − 1

ρAs
(12.57)

Solution to Exercise 5.2

Laplace transform of (5.2) gives

m
[
s2y(s)− sẏ0 − y0

]
= F (s)−D [sy(s)− y0]−Ky(s) (12.58)

Setting initial values y0 = 0 and ẏ0 = 0, and then solving for y(s) gives

y(s) =
1

ms2 +Ds+K︸ ︷︷ ︸
H(s)

F (s) (12.59)

The transfer function is

H(s) =
y(s)

F (s)
=

1

ms2 +Ds+K
(12.60)

Solution to Exercise 5.3

1. Order: 2.

2. s2 + 3s+ 2 = 0

3. s2 + 3s+ 2

4. We write the transfer function on pole-zero-form:

H(s) =
s+ 3

s2 + 3s+ 2
=

s+ 3

(s+ 1)(s+ 2)
(12.61)

We see that the poles are −1 and −2, and the zero is −3.

Solution to Exercise 5.4

1. Figure 12.3 shows the block diagram.

2. According to the series combination rule the transfer function
becomes

H(s) =
Tm(s)

P (s)
= Hm(s)Hp(s) =

bm
s+ am

bp
s+ ap

(12.62)
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bp
P T bm

s+ams+ap

Tm

Figure 12.3:

Solution to Exercise 5.5

The Laplace transform of u(t) is (cf. Eq. (4.7) in the text-book)

u(s) =
3

s
(12.63)

Inserting this into (5.6) gives

y(s) =
5

s
· 3

s
=

15

s2
(12.64)

which has the same form as in the Laplace transform pair given by Eq.
(4.8) in the text-book. This transform pair is repeated here:

k

s2
⇐⇒ kt (12.65)

We have k = 15, so the response is

y(t) = 15t (12.66)

Solution to Exercise 5.6

Setting s = 0 in the transfer function gives

Hs = H(0) =
1

K
(12.67)

The static response ys corresponding to a constant force, Fs, is

ys = HsFs =
Fs
K

(12.68)

Solution to Exercise 6.1

1. Yes! Because the transfer function has the form of Ki/s.
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2. The Laplace transform of the response is

h(s) = H2(s)wout(s) = − 1

ρAs
wout(s) (12.69)

Since wout(t) is a step of amplitude W at t = 0, wout(s) becomes (cf.
Eq. (4.7) in the text-book)

wout(s) =
W

s
(12.70)

With this wout(s) (12.69) becomes

h(s) = − 1

ρAs

W

s
(12.71)

According to Eq. (4.8) in the text-book),

h(t) = −W
ρA

t (12.72)

That is, the response is a ramp with negative slope.

Comment: This h(t) is only the contribution from the outflow to the
level. To calculate the complete response in the level, the total model
(5.1), where both u and wout are independent or input variables,
must be used.

Solution to Exercise 6.2

Energy balance:

cρV
dT

dt
= P (12.73)

Laplace transformation:

cρV [sT (s)− T0] = P (s) (12.74)

which yields

T (s) =
1

s
T0 +

1

cρV s︸ ︷︷ ︸
H(s)

P (s) (12.75)

The transfer function is

H(s) =
T (s)

P (s)
=

1

cρV s
=
K

s
(12.76)

which is the transfer function of an integrator with gain K = 1/cρV .



76

Solution to Exercise 6.3

We manipulate the transfer function so that the constant term of the
denominator is 1:

H(s) =
2

4s+ 8
=

2/8

(4/8) s+ 8/8
=

0.25

0.5s+ 1
=

K

Ts+ 1
(12.77)

Hence,

K = 0.25; T = 0.5 (12.78)

We base the drawing of the step response on the following information:

• The steady-state value of the step response:

ys = KU = 0.25 · 6 = 1.5 (12.79)

• The time-constant:
T = 0.5 (12.80)

which is the time when the step response has reached value

0.63 · ys = 0.63 · 1.5 = 0.95 (12.81)

• The initial slope of the step response:

S0 = ẏ(0+) =
KU

T
=

0.25 · 6
0.5

= 3 (12.82)

Figure II shows the step response.

t [s]0 1

1

1.5=KU

0.95 = 63% * 1.5

0.5=T

Slope = 3

0
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Solution to Exercise 6.4

From Figure 6.1 we see that the gain is

K =
∆T

∆P
=

30 K− 20 K
1 kW

= 10
K
kW

(12.83)

and that the time constant (the 63% rise time) is

T1 = 50 min (12.84)

The transfer function becomes

∆T (s)

∆P (s)
=

10

50s+ 1

K
kW

(12.85)

Solution to Exercise 6.5

1. Laplace transformation of the differential equation (6.4) gives

RCsvout(s) = vin(s)− vout(s) (12.86)

Solving for vout(s) gives

vout(s) =
1

RCs+ 1
vin(s) (12.87)

The transfer function is

H(s) =
1

RCs+ 1
=

K

Ts+ 1
(12.88)

The gain is
K = 1 (12.89)

The time-constant is
T = RC (12.90)

2. The filtering is stronger if R is increased.

Solution to Exercise 6.6

The time-delay is

τ =
AL

q
=

0.01 m2 · 0.5 m
0.001 m3/s

= 5 s (12.91)
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Solution to Exercise 6.7

The approximate response time is

T = 0.5 + 1 + 2 = 3.5 s (12.92)

Solution to Exercise 7.1

With Tf = 2 sec the filter will be much more sluggish than the motor.
Quick motor speed changes will then be filtered or smoothed out
(depending on how quick the real speed actually varies).

A good estimate of the filter time-constant is one tenth of the process
time-constant:

Tf =
0.2s
10

= 0.02 s (12.93)

Solution to Exercise 7.2

The slope a can be calculated from

a =
Tmax − Tmin
Mmax −Mmin

=
55− 15

20− 4
=

40

16
= 2.5

oC
mA

(12.94)

and

b = Tmin − aMmin = 15 oC− 2.5
oC
mA
· 4 mA = 5 oC (12.95)

Solution to Exercise 7.3

The slope a can be calculated from

a =
u1max − u1min
umax − umin

=
20− 4

3336− 0
=

16

3336

mA
kg/min

= 0.0048
mA

kg/min
(12.96)

and

b = u1min − aumin = 4 mA− 16

3336

mA
kg/min

· 0 kg
min

= 4 mA (12.97)

The scaling function u1 = au+ b is used to transform the flow value in
kg/min demanded by the level controller (as the controller output signal)
to a corresponding currect signal in mA to be applied to the feed screw.

Solution 7.4


