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Preface

This book contains exercises with solutions to the text-book Basic
Dynamics and Control, TechTeach, August 2010. The exercises can all be
solved with just manual calculations (using paper and pencil). So,
computer-based exercises are not covered.1

The following freely available material may also be useful in exercises. This
material is available at http://techteach.no.

• SimView which is a collection of ready-to-run simulators.

• TechVids which is a collection of instructional streaming videos,
together with the simulators that are played and explained by me as
a part of the videos.

This book is organized in chapters and sections which corresponds to the
text-book.

Finn Haugen, MSc

TechTeach

Skien, Norway, August 2010

1The formulation of computer-based exercises depends largely on the tool being used,
e.g. MATLAB/SIMULINK, LabVIEW, Scilab/Scicos, Octave., and the tool being used
may vary from one school/university to another. Therefore, this book does not contain
such exercises.
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Part I

EXERCISES

1





Chapter 1

Introduction to control

Exercise 1.1

Figure 1.1 shows the different components of a speed control system of an
electric motor.

Subtractor

Controller
Tacho-
meter

Voltage

Rotational
speed of 

shaft

Motor

Measurement
filter

Load torque 
(disturbance)

Figure 1.1:

1. “Construct” a speed control system by connecting the components
(draw a block diagram of the control system). Where is the control

3
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error in your block diagram?

2. How does the control system work? (Assume that the speed initially
is equal to the speed reference (setpoint), and that the load torque is
increased so that the motor speed is reduced.)

Exercise 1.2

The weight control system shown in Figure 1.2 seems to be an automatic
bartender.1 Explain how the control system works. (Explain the feedback

Figure 1.2: A weight control system from the Antics. An automatic bartender?

control action.)

Do you know any other process of your daily life which uses the same
principle of level control?

Exercise 1.3

Figure 1.3 shows an evaporator where the product is created by
evaporating the feed. (As an example, an evaporator is used to remove
water from the half-finished fertilizer in a fertilizer factory.) Suggest a
control structure for the evaporator according to the following
requirements: The feed is a “wild stream”, i.e. it shall not be controlled
(in this exercise). The mass balances of the liquid and the vapour must be
maintained. The product quality or composition is strongly influenced by
the steam supply (flow).1From the book ”Origins of Feedback Control” by O. Mayr.
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Feed

Vapour

Steam

Product

Figure 1.3:

Exercise 1.4

Below are mentioned several processes which are supposed to be
controlled. The process output variable is indicated in paranthesis. For
each of the processes, what is

• control (manipulating) variable

• disturbances or loads or environmental variables (these are
alternative names)

Make your own assumptions. The processes are as follows:

1. Robot arm or manipulator driven by an electric motor (arm position)

2. Steam heated heat exchanger with some process fluid to be heated
(temperature of fluid outlet)

3. Ship positioned with thrusters (denoted a dynamic positioning
system) (ship position)

Exercise 1.5

Control engineering may be crucial for each of the following kinds of
applications. For each of these, give one concrete example of a system,
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including identification of the variable to be kept under control. (For
example, the autopilot of an aircraft may be crucial for safety. Aircraft
position and speed are controlled.)

• Product quality

• Product economy

• Safety

• Environmental care

• Comfort

• Feasibility

• Automation



Chapter 2

Representation of differential

equations with block

diagrams and state-space

models

2.1 Introduction

No exercises here.

2.2 Dynamic systems

Exercise 2.1

Give three examples of dynamic systems, and for each system, identify at
least one input variable and at least one output variable.

2.3 Mathematical block diagrams

Exercise 2.2

Figure 2.1 shows a liquid tank. Assume that the following differential

7
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qin [m3/s]

A [m2]

 [kg/m3]

qout [m3/s]

h [m]

0

V [m3]

u [A]

Ku [m
3/A]

Kv

Figure 2.1:

equation is a mathematical model describing how the level h varies:

Aḣ(t) = Kuu(t)−Kv

√
ρgh(t) (2.1)

where A, Ku, Kv, ρ and g are parameters. The initial value of h is h0.
Pump inflow is Kuu where u is the pump control signal. Valve outflow is
Kv

√
ρgh(t) where Kv is the valve constant. h is the level. ρ is denisity. A

is cross-sectional area. g is gravity. h is the output variable of the system,
and u is the input (manipulating) variable.

1. Draw a detailed mathematical block diagram of the differential
equation (2.1) using blocks (no formula block).

2. Draw a block diagram using a formula block in stead of blocks as in
Problem 1 (but still use an integrator block).

3. What use can you have of such a block diagram?

2.4 State-space models

Exercise 2.3
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q1 [m3/s]

A1 [m
2]

 [kg/m3]
q2

h1 [m]

q3A2 [m2]

Tank 1

Tank 2

 [m3/s]

 [m3/s]

Valve 1

Valve 2

u2

u1

Pump 1

h2 [m]

Figure 2.2:

Figure 2.2 shows two coupled liquid tanks. u1 and u2 are control signals.
Mass balance of tank 1 is

ρA1ḣ1 = ρKpu1︸ ︷︷ ︸
q1

− ρKv1

√
ρgh1
G︸ ︷︷ ︸

q2

(2.2)

Mass balance of tank 2 is

ρA2ḣ2 = ρKv1

√
ρgh1
G︸ ︷︷ ︸

q2

− ρKv2u2

√
ρgh2
G︸ ︷︷ ︸

q3

(2.3)

Valve 1 has fixed opening. Valve 2 is a control valve with control signal u
between 0 and 1. The square root functions stems from the common valve
characteristic which expresses that the flow is proportional to the square
root of the pressures drop across the valve. Here, the pressure drops are
assumed to be equal to the hydrostatic pressures at the bottom the tanks.
For example, for tank 1 the hydrostatic pressure is ρgh1. The parameter G
is the relative density of the liquid.1

Assume that the input variables are u1 and u2, and that the output
variables are y1 = h1 and y2 = h2. Write the model (2.2) — (2.3) as a
state-space model.

1G = ρ/ρwater.
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2.5 How to calculate static responses

Exercise 2.4

See Exercise 2.2. Assume that all the variables in (2.1) have constant
values, which you can indicate with sub-index “s” in your answer.

Find the constant pump control signal us that gives steady-state level hs.



Chapter 3

Mathematical modeling

3.1 Introduction

No exercises here.

3.2 A procedure for mathematical modeling

Exercise 3.1

The inventory at time t is given by

Inventory(t) = Inventory(0) +

∫ t

0
(Inflows−Outflows+Generated) dθ

(3.1)
Draw a mathematical block diagram of (3.1).

3.3 Mathematical modeling of material systems

Exercise 3.2

Figure 3.1 shows a wood chip tank with a feed screw and conveyor belt
(the belt has constant speed).1 There is an outflow of chip via an outlet at

1Typically, there is such a chip tank in the beginning of the production line of a paper
mass factory.
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To the 
cookery

0 m

Chip

Screw control 
signal
u [mA]

Conveyor belt

Chip tank

wout [kg/min]

Level
h [m]

Mass flow
ws [kg/min]

win [kg/min]

Feed screw

Screw constant
Ks [(kg/min)/mA]

Time delay
τ [min]

Chip

Chip density
ρ [kg/m3]

A [m2]

Figure 3.1:

the bottom of the tank. The mass flow ws from the feed screw to the belt
is proportional to the screw control signal u:

ws = Ksu (3.2)

The mass flow win into the chip tank is equal to ws but time delayed time
τ :

win(t) = ws(t− τ) (3.3)

1. Draw an overall input-output block diagram of the system. Define
the input and output variables (it is assumed that the level is of
particular interest).

2. Develop a mathematical model describing the behaviour of the chip
level.

3. Draw a detailed mathematical block diagram from the derived
mathematical model. Assume that all independent variables and
parameters are input variables.

3.4 Mathematical modeling of thermal systems

Exercise 3.3
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Figure 3.2 shows a tank with cold water inflow and heated (blended) water
outflow. The tank is full constantly, and the volumetric flow is thus equal
to the sum of the inflows. Assume homogeous conditions in the tank.

Mixer

qk [m
3/s]

Cold water Hot water

qv [m
3/s]

V [m3]

c [J/kgK]

Blended
water

q [m3/s]

T [K]

Tk [K] Tv [K]

T [K]

Figure 3.2:

Develop a mathematical model of the water temperature T in the tank.

3.5 Mathematical modeling of motion systems

Exercise 3.4

Figure 3.3 shows a ship. In this exercise we concentrate on the so-called
surge (forward-backward) direction, i.e., the movements in the other
directions are disregarded. The wind acts on the ship with the force Fw.
The hydrodynamic damping force Fh (damping from the water) is
proportional to the square of the difference between the ship speed u and
the water current speed uc. Assume that the proportionality constant is D
(a positive number).

1. What is the mathematical relation between speed u and position x?

2. Develop a mathematical model of the ship expressing the motion
(the position) in the surge direction.

3. Draw an input-output block diagram of the system. Assume that the
ship position is the variable of particular interest.
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Wind force
Fw [N]

Hydrodynamic
force Fh [N]

Propeller force
Fp [N]

Ship speed (relative to earth ) u [m/s]

Mass m [kg]

Position  x [m]

Water current speed (rel. to earth ) uc [m/s]

Figure 3.3:

Exercise 3.5

Figure 3.4 shows a satellite with manoeuvering motors. Develop the
equation of the motion of the satellite.

Exercise 3.6

Figure 3.5 shows a cart with the pendulum. A motor (in the cart) acts on
the cart with a force F .2 You can use the following variables and
parameters in the model:

• I — the moment of inertia of the pendulum about it’s center of
gravity. For the pendulum shown in Figure 1,

I =
mL2

12
(3.4)

• V and H — vertical and horizontal forces, respectively, in the pivot.

• d — a damping coefficient.
2This force can be manipulated by the controller to stabilize the pendulum in an upright

position or in a downright position at a specified position of the cart, but this exercise
is not about control. The system can be well controlled with model-based control, for
example optimal control based on state-variable feedback (cf. e.g. Lecture notes on Modes,
Estimation and Control, TechTeach/F. Haugen).
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Angular position
θ [rad] 0

Intertia
J [kgm2]

Torque
T [Nm]

Figure 3.4:

Derive a mathematical model of the system based on the following
principles:

1. Force balance (Newton’s Second Law) applied to the horizontal
movement of the center of gravity of the pendulum.

2. Force balance applied to the vertical movement of the center of
gravity of the pendulum.

3. Torque balance (the rotational version of the Newton’s Second Law
applied to the center of gravity of the pendulum.

4. Force balance applied to the cart.

(When using the model for developing a simulator or design of a stabilizing
controller, it will probably be necessary to eliminate the internal forces V
and H, but this elimination is not a part of this exercise. Hence, it is ok
that the resulting model in this exercise contains V and H.)

3.6 Mathematical modeling of electrical systems

Exercise 3.7

Figure 3.6 shows a combination of resistors. What is the resulting
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a [rad]

mg [N]

2L [m]

m [kg]

M [kg]

V [N]

H [N]

L

F [N]

y [m]0 m

-dy [N]

Figure 3.5:

R1

R2

R3

R4

Figure 3.6:

resistance R4?

Exercise 3.8

Given a lamp which receives P = 100 W mean (average) power when it is
connected to the mains, which is an alternate voltage of amplitude
U = 220 V. Calculate the lamp restistance R.

Exercise 3.9

Figure 3.7 shows an (analog) highpass filter. (It attenuates low-frequent
signals, while high-frequent signals pass through the filter.) Find a
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v2 [V]

++

_ _

v1 [V]
C [F]

i [A]

Input OutputiR

i2+
_vR [V]

Figure 3.7:

mathematical model that relates the input voltage v1 and the output
voltage v2.



18



Chapter 4

The Laplace transform

Exercise 4.1

Calculate the Laplace transform, F (s), of the time function

f(t) = e−t (4.1)

using the definition of the Laplace transform.

Can you find the same answer (F (s)) by using a proper Laplace transform
pair?

Exercise 4.2

Given the following differential equation:

ẏ(t) = −2y(t) + u(t) (4.2)

with initial value y(0) = 4. Assume that the input variable u(t) is a step of
amplitude 1 at time t = 0.

1. Calculate the response in the output variable, y(t), using the Laplace
transform.

2. Calculate the steady-state value of y(t) using the Final Value
Theorem. Also calculate the steady-state value, ys, from y(t), and
from (4.2) directly. Are all these values of ys the same?

19
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Chapter 5

Transfer functions

5.1 Introduction

No exercises here.

5.2 Definition of the transfer function

Exercise 5.1

In Exercise 3.2 the mathematical model of a wood-chip tank was derived.
The model is

ρAḣ(t) = Ksu(t− τ)−wout(t) (5.1)

Calculate the transfer function H1(s) from the screw control signal u to
the level h and the transfer function H2(s) from the outflow wout to the
level h. (Tip: Use Eq. (4.16) in the text-book to calculate the Laplace
transform of the time-delay.)

Exercise 5.2

Figure 5.1 shows a mass-spring-damper-system. y is position. F is applied
force. D is damping constant. K is spring constant. It is assumed that the
damping force Fd is proportional to the velocity, and that the spring force
Fs is proportional to the position of the mass. The spring force is assumed
to be zero when y is zero. Force balance (Newtons 2. Law) yields

mÿ(t) = F (t)−Dẏ(t)−Ky(t) (5.2)

21
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m

K [N/m]

D [N/(m/s)]

F [N]

0 y [m]

Figure 5.1:

Calculate the transfer function from force F to position y.

5.3 Characteristics of transfer functions

Exercise 5.3

Given the following transfer function:

H(s) =
s+ 3

s2 + 3s+ 2
(5.3)

1. What is the order?

2. What is the characteristic equation?

3. What is the characteristic polynomial?

4. What are the poles and the zeros?

5.4 Combining transfer functions blocks in block

diagrams

Exercise 5.4

Given a thermal process with transfer function Hp(s) from supplied power
P to temperature T as follows:

T (s) =
bp
s+ ap︸ ︷︷ ︸
Hp(s)

P (s) (5.4)
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The transfer function from temperature T to temperature measurement
Tm is as follows:

Tm(s) =
bm
s+ am︸ ︷︷ ︸
Hm(s)

T (s) (5.5)

ap, bp, am, and bm are parameters.

1. Draw a transfer function block diagram of the system (process with
sensor) with P as input variable and Tm as output variable.

2. What is the transfer function from P to Tm? (Derive it from the
block diagram.)

5.5 How to calculate responses from transfer

function models

Exercise 5.5

Given the transfer function model

y(s) =
5

s︸︷︷︸
H(s)

u(s) (5.6)

Suppose that the input u is a step from 0 to 3 at t = 0. Calculate the
response y(t) due to this input.

5.6 Static transfer function and static response

Exercise 5.6

See Exercise 5.2. It can be shown that the transfer function from force F
to position y is

H(s) =
y(s)

F (s)
=

1

ms2 +Ds+K
(5.7)

Calculate the static transfer function Hs. From Hs calculate the static
response ys corresponding to a constant force, Fs.
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Chapter 6

Dynamic characteristics

6.1 Introduction

No exercises here.

6.2 Integrators

Exercise 6.1

See Exercise 5.1. The transfer function from wout to h is

h(s)

wout(s)
= − 1

ρAs
= H2(s) (6.1)

1. Does this transfer function represent integrator dynamics?

2. Assume that wout(t) is a step from 0 to W at time t = 0. Calculate
the response h(t) that this excitation causes in the level h. You are
required to base your calculations on the Laplace transform.

Exercise 6.2

Figure 6.1 shows an isolated tank (having zero heat transfer through the
walls). Show that the tank dynamically is an integrator with the power P
as input variable and the temperature T as output variable. (Hint: Study
the transfer function from P to T .)

25
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Isolation
(zero heat transfer)

P [J/s]

T [K]

V [m3]

c [J/(kg K)]

Figure 6.1:

6.3 Time-constants

Exercise 6.3

Calculate the gain and the time-constant of the transfer function

H(s) =
y(s)

u(s)
=

2

4s+ 8
(6.2)

and draw by hand roughly the step response of y(t) due to a step of
amplitude 6 in u from the following information:

• The steady-state value of the step response

• The time-constant

• The initial slope of the step response, which is

S0 = ẏ(0
+) =

KU

T
(6.3)

(This can be calculated from the differential equation (6.12) in the
text-book by setting y(0) = 0.)
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Exercise 6.4

Figure 6.2 shows the temperature response T of a thermal system due to a
step of amplitude 1 kW in the supplied power P . Find the transfer

Figure 6.2:

function from ∆P (power) to ∆T (temperature) where ∆ indicates
deviations from the steady-state values. Assume that the system is of first
order (a time-constant system).

Exercise 6.5

Figure 6.3 shows an RC-circuit (the circuit contains the resistor R and the
capacitor C). The RC-circuit is frequently used as an analog lowpass filter:
Signals of low frequencies passes approximately unchanged through the
filter, while signals of high frequencies are approximately filtered out
(stopped). It can be shown that a mathematical model of the RC circuit is

RCv̇in = vout − vin (6.4)

1. Calculate the transfer function H(s) from vin to vout, and calculate
the gain and the time-constant of H(s).
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vout [V]

++

_ _

vin [V]
C [F]

i [A]

Input Output

iC

i2+
_

vR [V]

Figure 6.3: RC-circuit

2. Assume that the RC circuit is used as a signal filter. Assume that
the capacitance C [F] is fixed. How can you adjust the resistance R
(increase or descrease) so that the filter performs stronger filtering
or, in other words: is more sluggish.

6.4 Time-delays

Exercise 6.6

For a pipeline of length 0.5 m and cross sectional area of 0.01 m2 filled
with liquid which flows with a volumetric flow 0.001 m3/s, calculate the
time-delay (transport delay) from inlet to outlet of the pipe.

6.5 Higher order systems

Exercise 6.7

Assume that a system can be well described by 3 time-constant systems in
series, with the following time-constants respectively: 0.5, 1, and 2 sec.
What is the approximate response time of the system?



Chapter 7

Feedback control

7.1 Introduction

No exercises here.

7.2 Function blocks in the control loop

Exercise 7.1

On Page 77 in the textbook you can read this statement: “If you do not
have any other requirements for setting the filter time-constant, you can
try setting it to 2 sec.” Assume that a filter is to be used on a tachometer1

reading on an electrical motor which itself can be modelled as a
time-constant system with time-constant of 0.2 sec. Is is wise to use 2 sec.
as the filter time-constant?

Exercise 7.2

Given a temperature sensor which represents temperatures, T , in the range
[15 — 55 oC] with a measurement signal (current), M , in the range [4 — 20
mA], with a linear relation between these ranges. Find the scaling function
with C as input and T as output on the following form:

T = aM + b (7.1)
1A tachometer is a rotational speed sensor which gives a voltage being proportional to

the speed.

29
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Exercise 7.3

See Figure 7.5 in the text-book. Find the scaling function with u in the
range [0 — 3336 kg/min] as input and u1 in the range [4 — 20 mA] as
output on the following form:

u1 = au+ b (7.2)

What will you use this scaling function for in the level control system (on
which the above mentioned figure is based)?

7.3 The PID controller

Exercise 7.4

Suppose you want to verify that a PI controller works correctly according
to the mathematical PI controller function. This can be done with a step
response test, where a step is applied to the setpoint ySP input to the
controller while the measurement input ym is kept constant. Assume that

ym(t) = A (7.3)

and that the setpoint is increased from A to

ySP (t) = A+E (7.4)

This implies that the control error e is increased as a step from zero to

e(t) = ySP (t)− ym(t) = (A+E)−A = E (7.5)

By comparing the observed (experimental) step response in the controller
output u with the theoretical output, you can (hopefully) confirm that the
mathematical operation of the controller is correct.

The PI controller function is

u = Kpe+
Kp

Ti

∫ t

0
e dt (7.6)

1. Calculate the step response in u (as a function of time) assuming
that the control error is a step of amplitude E, and plot u(t).

2. Figure 7.1 shows the step response in u for a given PI controller.The
step amplitude of the control error was

E = 1 (7.7)

Calculate Kp and Ti from the step response.
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Figure 7.1:

Exercise 7.5

What is the value of the controller gain Kp corresponding to proportional
band PB = 250%?

Exercise 7.6

Figure 7.2 shows an air heater. A fan with fixed speed blows air through
the pipe. The fan opening can be varied manually. The air is heated by a
electrical heater. The control signal u is the voltage signal which controls
(adjusts) the power supplied to the heater. The temperature is measured
with a thermistor which is a temperature-dependent resistance. In the
experiments described below the controller is implemented in a PC with
I/O-device (Input/Output-device). (In general, a control system should
contain a measurement filter, but in this particular system a filter was not
used.)

1. Draw a block diagram of the control system, including a
measurement filter.

2. Figure 7.3 shows the response in the temperature y after a step in
the temperature reference (setpoint) and after a step in the air inflow
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Figure 7.2:

due to an increase of the fan opening. The air inflow or —
equivalently the fan opening — can be regarded as a disturbance. In
this experiment the control is constant, hence there is no feedback
(no measurement-based or error-driven) control.

Explain why there is no response in the temperature due to the
reference change. And explain why there is a response after the
disturbance (fan opening) change.

3. Assume that the temperature is controlled with a PID-controller
(with proper parameter settings). Draw the principal temperature
response after a reference step and after a disturbance step. You can
“add” your curves to 7.3.)

Exercise 7.7

Figure 7.4 shows a pressure control system. Assume that increasing the
control signal to the valve increases the valve opening. Will you set the
controller to have reverse action or direct action?
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Increased fan 
opening

t [s]

Figure 7.3:

7.4 Practical modifications of the ideal PID

controller

7.4.1 Lowpass filter in the D-term

Exercise 7.8

Given a PID controller with a lowpass filter acting on the derivative term.
Assume that the derivative time Td is 2.0 sec. Suggest a proper value of
the filter time-constant Tf .

7.4.2 Reducing P-kick and D-kick caused by setpoint

changes

Exercise 7.9

A derivative term — or D-term — with the possibility of setpoint weight
reduction is

ud = KpTd
d (wdySP − y)

dt
(7.8)

(It is here, for simplicity, assumed that there is no lowpass filter acting on
the D-term.) Assume that there is no reduced weight of the setpoint, i.e.

wd = 1 (7.9)
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PT PC

Figure 7.4:

Assume that the process measurement y is constant, and that the setpoint
ySP is changed as a step at time t = 0. Describe (qualitatively) the
corresponding response in the control signal ud due to this step. What
kind of signal is this response?

7.4.3 Integrator anti wind-up

Exercise 7.10

One appliaction where it is particularly important with anti windup is
limiting control. Figure 7.5 shows a gas tank with one inlet and two
outlets. The purpose of the normal control loop is to keep the gas pressure
at the normal setpoint SP1, say 2 bar. The purpose of the limiting control
loop is to limit the pressure to the higher setpoint SP2, say 4 bar.

What is the control error of controller PC2 under normal conditions? Why
is it particularly important that this controller has anti windup?

7.5 Control loop stability

Exercise 7.11

How will the stability of the control loop change if the proportional band
PB is reduced?

Exercise 7.12
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Figure 7.5:

Figure 7.6 shows a temperature control system with two different positions
of the temperature sensor. Assume that the temperature controller is
tuned so that the stability of the control system is satisfactory with the
sensor in position 1.

1. What wil happen to the stability if the sensor is moved to position 2?

2. Assume that the sensor is in position 1. How will the stability change
if the liquid flow decreases?

3. How will the stability change if the sensor gain is increased (the gain
is the ratio of the sensitivity of the measurement signal in volts or
amperes to the temperature)?

4. How will the stability change if the heater is substituted by a heater
delivering more power per unit of the control signal?

Exercise 7.13

A temperature control system is described in Exercise 7.6. Figure 7.7
shows the temperature response after a relatively large reduction of the fan
opening. Explain the unstable response!
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Chapter 8

Feedforward control

8.1 Introduction

No exercises here.

8.2 Designing feedforward control from

differential equation models

Exercise 8.1

See Exercise 3.4. The mathematical model of the ship is

mẍ = Fp −D|ẋ− uc| (ẋ− uc) + Fw (8.1)

Assume that the positional reference is xr [m]. Fp is the control variable.
Design a feedforward controller for the ship. What information is needed
to implement the feedforward controller? Is it realistic to get this
information?

Exercise 8.2

Figure 8.1 shows a heated liquid tank where the temperature T shall be
controlled using feedback with PID controller in combination with
feedforward control. We assume the following process model, which is
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Figure 8.1:

based on energy balance:

cρV Ṫ (t) = Khu(t)︸ ︷︷ ︸
P

+ cw [Tin(t)− T (t)] + U [Te(t)− T (t)] (8.2)

where T [K] is the temperature of the liquid in the tank, Tin [K] is the
inlet temperature, Te [K] is environmental temperature, c [J/(kg K)] is
specific heat capacity, w [kg/s] is mass flow (same in as out), V [m3] is the
liquid volume, ρ [kg/m3] is the liquid density, U [(J/s)/K] is the total heat
transfer coefficient, P = Khu [J/min] is supplied power via heating element
where Kh is a parameter (gain) and u [%] is the control signal applied to
the heating element. cρV T is the (temperature dependent) energy of the
liquid in the tank. We can consider Tin and Te as disturbances, but the
derivation of the feedforward function Ff is not dependent of such a
classification.

Derive the feedforward function from the process model (8.2). Which
parameters and variables must have known values to implement the
feedforward control?
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8.3 Designing feedforward control from

experimental data

Exercise 8.3

See Figure 8.7 in the text-book. Assume that you will implement the
feedforward function as a set of linear functions (lines) between the data
points (fan, uff ). The linear functions are on the form

uff = a · fan+ b (8.3)

Let us select the points (40,52) and (60,61). Calculate a and b of the line
between these two points.
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Chapter 9

Controller equipment

Exercise 9.1

Given a controller with analog output (control signal) in the range 0 — 20
mA. Suppose the controller is to be used to control a device (e.g. a pump)
that only takes voltage in the range 0 — 10 V. How can you (easily) convert
the current control signal to a corresponding voltage control signal. Draw
your solution.

Exercise 9.2

Where in the data sheet of the controller ECA600 shown in Figure 9.3 in
the text-book is it shown that the controller has the options of reverse and
direct action?

Exercise 9.3

For a certain biogas reactor the feed should have a value of 0.1 l/h (litres
per hour). The feed pump delivers a maximum flow of 5 l/h. Lower pump
flow rates than 0.5 l/h are very uncertain, so running the pump at such
low flows may not give the flow you expect. To obtain such a small flow
into the reactor as 0.1 l/h, the pump can be controlled with Pulse-Width
Modulation (PWM) with maximum flow equal to 5 l/h and mimimum flow
equal to 0 l/h (pump is stopped). Assume that the hydraulic resident time
(HRT) of the reactor, which is the same as the time-constant of the
reactor, is 1 hour, and assume that the period of the PWM signal is 1 min,
which is much smaller than 1 hour. This implies that the reactor will
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“feel” the average value of the PWM flow, even if the flow is actually
On-Off-On-Off etc.

What is the Duty Cycle, DC, of the pump flow in percent which gives the
demanded flow of 0.1 l/h, and what is the corresponding On-time, Ton, of
the pump flow?



Chapter 10

Tuning of PID controllers

10.1 Introduction

No exercises here.

10.2 The Good Gain method

Exercise 10.1

Figure 10.1 shows the response in the temperature of a simulated
temperature control system with P controller with the following “good
gain” value:

Kc = 4.0 (10.1)

Tune a PI controller for this process using the Good Gain method.

What can you do with the controller tuning if turns out that the stability
of the control system is too bad with this value of Kp?

10.3 Skogestad’s PID tuning method

Exercise 10.2

Given a process where the relation between the control signal and the
process measurement can be well represented as “time-constant with
time-delay”:

43



44

Figure 10.1:

Gain:
K = 0.5 (10.2)

Time-constant:
T = 5 s (10.3)

Time-delay:
τ = 1 s (10.4)

Tune a PI(D) controller for this process using Skogestad’s method.

Exercise 10.3

Figure 10.2 shows a level control system for a wood-chip tank with feed
screw and conveyor belt which runs with constant speed. (This system is
described in Section 7.2 of the text-book, however the measurement filter
is omitted in the present example, assuming it has negligible effect on the
dynamics of the control loop.)Based on mass balance of the wood-chip of
the tank, a mathematical model is

ρAẏ(t) = Ksu(t− τ)−wout(t) (10.5)

where ρ [kg/m3] is chip density, A [m2] is cross-sectional area, Ks

[(kg/min)/%] is feed screw gain, τ [min] is time-delay of the conveyor belt.
The level y is measured with a level sensor, and the measurement is

ym(t) = Kmy(t) (10.6)

where Km [%/m] is the sensor gain.
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Figure 10.2:

1. Calculate the transfer function H(s) from control variable u to
process measurement ym.

2. Calculate the PI(D) parameters for the process using Skogestad’s
method.

Exercise 10.4

Figure 10.3 shows the response in the filtered process measurement ymf

due to a step of amplitude U = 2 in the control signal u (the step comes at
time t = 0). Calculate PID settings for this process.

10.4 Auto-tuning

Exercise 10.5

1. In general, if you in a given application are to select between open
loop excitation and closed loop excitation, which one would you
select?

2. Are there any processes for which open loop excitation should not be
used?
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Figure 10.3:

10.5 PID tuning when process dynamics varies

Exercise 10.6

Assume that the process to be controlled has varying process dynamics,
which may cause stability problems or sluggish control. Both of the
solutions A and B below are possible. Which is the best one with respect
to control performance, and which is the simplest one?

A: The controller is tunes the the most critical operating point, and the
controller parameters are then kept constant.

B: The controller parameters are adjusted continually so that they fit to
the dynamic properties of the process at any operating point.

Exercise 10.7

Assume that you in a given control system for a “time-constant with
time-delay” process have found proper PI parameters in one specific
operating point. Assume that the process gain increases.

1. How would this process gain increase influence the stability of the
control system?
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2. Derive formulas for the new controller parameters. You can indicate
the initial values of the controller parameters and the process
parameters (before the change) with index 0, and new values (after
the changes) with index 1.

Exercise 10.8

Figure 10.4 shows a chemical reactor and a PID parameter table which is
the basis of a PID controller with gain scheduling. Assume that gain

Figure 10.4:

scheduling is not to be used, but fixed PID settings in stead. Should the
controller be tuned at high temperature or at low temperature, given that
it is crucial that the stability of the control system is satisfactory at any
temperature?

Exercise 10.9

Table 10.1 shows parts of a gain scheduling based PID controller.
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GS Kp Ti Td
...

...
...

...

20% 0.4 5.2 1.3

30% 0.5 4.5 1.6
...

...
...

...

Table 10.1: PID Gain Schedule

Find Kp as a function of the gain scheduling variable GS between the
operating points shown in the table. The function should be based on
linear interpolation.

Exercise 10.10

Figure 10.5 shows a process with a PID control system where the actuator
is represented with a nonlinear relation between the control signal u and
the internal process variable z:

z = f(u) (10.7)

For example, the actuator can be a control valve with some nonlinear
relation between the control signal (u) and the flow (z). In most cases it is

Linear
process

part

Sensor 
and

scaling

ySP y

ym

ue PID
controller

f()

Nonlinear
process 

part

u

Process

z

Figure 10.5:

benefical if the PID controller sees a linear process — not a nonlinear
process, because this makes the controller tuning easier, and the dynamic
properties of the control system may be independent of the operating
point. This can be achieved by including the inverse of the nonlinear
function in the controller:

u = f−1(z) (10.8)
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The z-value that the PID controller demands can be denoted zPID. See
Figure 10.6.

Assume that the nonlinear function z = f(u) can be represented with n
tabular data points (which can stem from a data sheet or from
experiments):

z u

z1 u1
z2 u2
...

...

zn un

Explain how you can implement the inverse function using table-lookup.
Table-lookup functions implements linear interpolation between the data
points in the table.1

1Table lookup functions are available in computer tools as MATLAB and LabVIEW.
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Chapter 11

Various control methods and

control structures

11.1 Cascade control

Exercise 11.1

In the neutralization section of a fertilizer production plant, intermediate
mother liquor flows into and out of a tank. In the tank the pH value of the
liquid is controlled by adjusting the inflow of ammonia gas to the tank.
The ammonia flow is flow controlled using a control valve.

Draw an instrumentation diagram of this process section. (You can use Q
(for quality) as symbol for pH.) What can be the purpose of the ammonia
flow control loop?

Exercise 11.2

Figure 11.1 shows a control valve being used to manipulate the flow of a
heating medium (liquid) into a heat exchanger where the temperature is to
be controlled. The output of the temperature controller is flow command
signal (flow setpoint) to the valve, and the output of the flow controller is
a valve stem position command (position setpoint) to the stem moving
mechanism.

Draw an instrumentation diagram of the total control system. You can use
symbol G for position of the valve stem. (Hint: There are three control
loops.)
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Exercise 11.3

Figure 11.2 shows a ship. The position of the ship is controlled. Assume

?

? ?

?

Motor

?

Figure 11.2:

that it is benefical for the positional control system that the rotational
speed of the propeller is controlled.

Based on the given information, substitute the question marks with proper
functions (text). What are the purposes of the control loops?
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11.2 Ratio control

Exercise 11.4

Figure 11.3 shows a tank with two inlet flows. The liquid level of the tank

AB

Figure 11.3:

is to be controlled by manipulating (controlling) flow A. It is assumed that
flow A is much larger than flow B. The ratio between flow B and A is
specified as

FB

FA
= k (11.1)

where k is a given ratio. Assume that it is necessary to have local flow
control loops around each valve.

Draw a Process & Instrumentation diagram of a control system for this
process.

11.3 Split-range control

Exercise 11.5

Figure 11.4 shows a liquid tank where the pH value of the liquid is to be
controlled with split-range control where acid flow and base flow are
adjusted. Both the acid flow and the base flow are controlled with (local)
flow control loops. Draw an instrumentation diagram of the tank with
control system.
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11.4 Flow smoothing with sluggish level control

Exercise 11.6

See Figure 11.13 in the text-book. Assume that the process model is given
by Eq. (11.4) in the text-book. The model is repeated here:

ρAḣ = Fin − Fout (11.2)

Assume that the level is controller with a P controller:

Fout = Kp(hSP − h) (11.3)

where Kp is the controller gain. (The value of Kp will be negative because
the controller must have direct action mode.)

1. Express the level h as a function of the setpoint hSP and the inflow
Fin under static conditions. (Hint: At static conditions the
time-derivative is zero.) You can use index s for “static”.

2. Assume that for a given flow, Fin0 , the level are allowed to depart
from the setpoint by ∆hs. (Thus, ∆hs is the level control error, es.)
Calculate the corresponding controller gain.

Is ∆hs reduced or increased if Kp is increased?

3. What is the drawback, regarding the static control error, of using a P
controller for level control of the tank?
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11.5 Plantwide control

Exercise 11.7

Figure 11.5 shows a wood-chip tank, which is in the beginning of the pulp
& paper production line. Spruce, pine and eucalyptus are used as feeds
into the tank, via a conveyor belt. The percentages of each of these flows
are indicated in Figure 11.5. There is a flow disturbance before the belt
which is due to sieving the chip flow to remove large parts of chip.

Level [m]

Chip 
tank

Outflow [kg/min]

Conveyor belt
Inflow 

disturbance
[kg/min]

Steam

Spruce

Pine

Eucalytpus

40%

30%

30%

Screw 4

Screw 1

Screw 2

Screw 3

Figure 11.5:

Draw a P&I (Process & Instrumentation) diagram of a control system for
this part of the production line according to the following specifications:

• The production rate is controlled to a setpoint with flow control of
Screw 4.

• The level of chip in the tank is controlled to a setpoint by
manipulating the total inflow to the conveyor belt.

• The total chip flow into the belt is splitted into percentage flows
shown in Figure 11.5. The splitting can be represented with a block
with total control signal (100%) as input and three flow value
outputs (30%, 30% and 40% respectively). The flows out of the three
inflow screws are flow controlled.
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• A flow control loop is used to compensate for the flow disturbance
due to the sieveing. This flow loop is based on the measurement of
the flow with a flow sensor at the beginning of the belt (cf. Figure
11.7 in the text-book).

• The temperature of the chip in the tank is controlled to a setpoint
using the steam valve.

Exercise 11.8

Figure 11.6 shows an incomplete P&I (Process & Instrumentation)
diagram of a controlled distillation column.

If you need it, here is some basic information about distillations columns: A

distillation column contains a number of trays from where liquid can pour

downwards (to the next tray) and vapour can rise upwards (to the next tray).

The purpose of the distillation column is to separate the “light” component and

the “heavy” component by exploiting their different boiling points of temperature.

Heat is supplied to the boiler at the bottom of the column. Vapour leaving the

column is condensed in the condenser. The liquid leaving the condenser is

accumulated or stored in the accumulator. Part of the liquid leaving the

accumulator is directed back to the column, and the rest — the distillation product

— is directed to e.g. a storage tank. Ideally, the concentration of “heavy”

component in the top product is zero, and the concentration of the “light”

component in the bottoms product is zero. In principle this can be achieved by

one quality control loop for the top product and one quality control loop for the

bottoms product, but due to the dynamic properties of distrillation columns such

“two-point” control is difficult to realize. Therefore, there is typically either

quality control of the top product or quality control of the bottoms product.

Make the diagram shown in Figure 11.6 complete by entering letter codes
in the instrumentation symbols according to these specifications: The
quality of the distillate product is controlled, and there is mass balance
control of various parts of the column. (The heating medium supplied to
the boiler is manually controlled, so it is not adjusted by an automatic
controller.)
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Chapter 12

Sequential control

Exercise 12.1

Figure 12.1 shows a simple drilling machine. The machine operates as
follows: The drilling operation is started with the Start button which sets

Control_drill
(On/Off)

Control_clamp 
(On/Off)

Control_cart
(Up/Down/Steady)

Position p_high

Position p_low

Measured position 
Meas_p

Workpiece

Start

Control_start
(On/Off)

Cart

Zero position

Figure 12.1:

the control signal Control_start to value On. Just after the the button has
been pressed, it pops up automatically and Control_start is automatically
set back to Off (this reset is not a part of the control task in this exercise).
When the drilling operation has been started, the clamps are activated by
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setting the control signal Control_clamp to On, the drill starts rotating
with Control_drill set to On, and the cart is moved downwards with
Control_cart set to Down until the measured drill position Meas_p
becomes p_low. Then, the cart is automatically moved upwards with
Control_cart set to Up. When the Meas_p has become p_high, the cart
is stopped with Control_cart set to Steady, the clamp is released with
Control_clamp set to Off, and the drill is stopped with Control_drill set to
Off. Then the drill is idle, waiting until the Start button is again pressed.

Placing the workpiece in the correct position is not a part of this control
task.

Draw a Sequential Function Chart (SFC) with steps, actions and
transitions solving the control task given above.



Part II

SOLUTIONS
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Solution to Exercise 1.5

Examples are given in the first chapter of the text-book (no additional
examples are given here).

Solution to Exercise 1.1

1. Figure 12.2 shows the speed control system.The control error, e, is

Subtractor

Controller
Tacho-
meter

Speed
reference

Motor

Measurement
filter

e

Load torque 
(disturbance)

Figure 12.2:

the output of the subtractor.

2. When the speed is reduced due to the increased load torque, the
control error becomes different from zero, and positive. This
non-zero, positive control error causes the controller to increase the
control signal acting on the motor, so that the speed is increased. If
the controller is properly chosen (it must have integral action,
actually), the controller is able to adjust the control signal to excactly
the new value that is needed to compensate for the load torque, and
consequently the control error become zero — in steady state.

Solution to Exercise 1.2

The purpose of the system is to fill just the right amount of liquid into the
cup, i.e. level control. The system works as follows: As long as the level is
low the inlet is open and the cup is being filled. The more liquid in the
cup, the less opening in the inlet. Eventually, when the cup is full, the
inlet is closed ands hence, the desired level (the level setpoint) is reached.

Another system: Water toilet.

Solution to Exercise 1.3
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The control structure is shown in Figure 12.3.

Feed

Vapour

Steam

Product QCQT

LC

LT

PC

PT

Figure 12.3:

Solution to Exercise 1.4

1. Robot arm: Control signal manipulates the motor. Disturbances:
Torques due to the gravity and due to mechanical couplings to other
arms.

2. Heat exchanger: Control signal manipulates the valve. Disturbances:
Temperature and pressure of inlet steam.

3. Ship: Control signal manipulates the propellers (thrusters).
Disturbances: Wind, current, waves.

Solution to Exercise 2.1
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Three examples of dynamic systems:

1. System: Airplane: Inputs: Control signal to motors and flaps.
Output: Airplane positions (altitude, pitch, yaw).

2. System: Chemical reactor. Input: Feed flow. Output: Concentration
of the contents of the reactor.

3. System: Bank account: Inputs: Salary paid into the account, and
withdrawal. Output: Amount of money in the account.

Solution to Exercise 2.2

Before drawing the block diagram, it is convenient to write the model with
the time-derivative isolated at the left hand side:

ḣ(t) =
1

A

[
Kuu(t)−Kv

√
ρgh(t)

]
(12.1)

1. See Figure 12.4.

u

h
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variabledh/dt = h

.

SQRT MULT

Integrator

h
g

rho

A

×

÷

hinit

MULTKu

Kv

MULT

Figure 12.4:

2. See Figure 12.5.

3. One use of such a block diagram is for creating a simulator in a block
diagram tool as LabVIEW Simulation Module or Simulink.

Solution to Exercise 2.3
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Density ρ can be cancelled. (2.2) becomes

ḣ1 =

f1(·)︷ ︸︸ ︷
1

A1

(

Kpu1 −Kv1

√
ρgh1
G

)

(12.2)

(2.3) becomes

ḣ2 =

f2(·)︷ ︸︸ ︷
1

A2

(

Kv1

√
ρgh1
G

−Kv2u2

√
ρgh2
G

)

(12.3)

The measurement equations become

y1 =

g1(·)︷︸︸︷
h1 (12.4)

y2 =

g2(·)︷︸︸︷
h2 (12.5)

Solution to Exercise 2.4

The time-derivative in (2.1) is set to zero:

Aḣs(t) = 0 = Kuus −Kv

√
ρghs (12.6)

Solving for us gives

us =
Kv
√
ρghs

Ku
(12.7)
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Solution to Exercise 3.1

See Figure 12.6.

Solution to Exercise 3.2

1. Since there is a time delay in the system (due to the transport delay
of the conveyor belt) it is important to include the time argument in
the equations. The mass balance if the chip contents of the tank is

d
dt [ρAh(t)] = ρAḣ(t) = win(t)−wout(t)

= ws(t− τ)−wout(t)
= Ksu(t− τ)−wout(t)

(12.8)

2. Figure 12.7 shows the overall block diagram.

Chip tank
with conveyor 

belt

hu

wout

Figure 12.7:

3. Figure 12.8 shows the mathematical block diagram (it can be drawn
in many other ways).

Solution to Exercise 3.3

Energy balance of the liquid in the tank:

d(cρV T )

dt
= cρV Ṫ = cρqkTk + cρqvTv − cρqT (12.9)
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Cancelling ρ:
cV Ṫ = cqkTk + cqvTv − cqT (12.10)

Here, q is given by
q = qk + qv (12.11)

Solution to Exercise 3.4

1. The relation between position x and speed u is

ẋ = u (12.12)

2. Force balance:

mu̇ = Fp + Fh + Fw (12.13)

= Fp −D|u− uc| (u− uc) + Fw (12.14)

(12.12) and (12.14) constitutes the model.

Alternatively, since
u̇ = ẍ (12.15)

the model can be expressed as

mẍ = Fp −D|ẋ− uc| (ẋ− uc) + Fw (12.16)

3. We can regard Fp, Fw and uc as input variables, and x as the output
variable. Figure 12.9 shows the block diagram.

Solution to Exercise 3.5

Torque balance:
Jθ̈ = T (12.17)

Solution to Exercise 3.6
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Ship
Fp x
Fw

uc

Figure 12.9:

1. Force balance (Newton’s Second Law) applied to the horizontal
movement of the center of gravity of the pendulum.

m
d2

dt2
(y + L sina) = H (12.18)

(The differentiation of the additive term (y + L sin a) must be carried
out in applications of this model, but it is not shown here.)

2. Force balance applied to the vertical movement of the center of
gravity of the pendulum:

m
d2

dt2
(L cos a) = V −mg (12.19)

(The differentiation of the additive term (L cos a) is not shown here.)

3. Torque balance (the rotational version of the Newton’s Second Law
applied to the center of gravity of the pendulum:

Iä = V L sina−HL cos a (12.20)

4. Force balance applied to the cart:

Mÿ = F −H − dẏ (12.21)

(From Eq. (12.18) — (12.21), the internal forces V and H can be
eliminated, resulting in two differential equations not containing V and H.)

Solution to Exercise 3.7

The circuit consists of two resistors in parallel in series with the third
resistor. The resulting resistance is

R4 =
R1R2
R1 +R2

+R3 (12.22)

Solution 3.8
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Mean power is

P =
1

2

U2

R
(12.23)

which solved for R gives

R =
1

2

U2

P
=
1

2

2202

100
= 242 Ω (12.24)

Solution to Exercise 3.9

There are many ways to find a mathematical model. Here is one:
Kirchhoff’s voltage law gives

−v1 + vC + v2 = 0 (12.25)

or
vC = v1 − v2 (12.26)

Kirchhoff’s current law applied to the upper node gives

0 = iC − iR +
=0︷︸︸︷
i2 (12.27)

= C
dvC
dt

− v2
R

(12.28)

= C
d (v1 − v2)
dt

− v2
R

(12.29)

= C (v̇1 − v̇2)−
v2
R

(12.30)

which can be written as

RCv̇2 − v2 = RCv̇1 (12.31)

Solution to Exercise 4.1

We set f(t) = e−t in the integral that defines the Laplace transform:

L{e−t} =

∫
∞

0
e−ste−tdt

=

∫
∞

0
e−(s+1)tdt

=
1

−(s+ 1)

[
e−(s+1)t

]t=∞

t=0

=
1

−(s+ 1)[0− 1]

=
1

s+ 1
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The proper Laplace transform pair is:

k

Ts+ 1
⇐⇒ ke−t/T

T
= e−t (12.32)

Here, T = 1 and k = 1. Thus, F (s) becomes

F (s) =
1

s+ 1
= L{e−t} (12.33)

which is the same as found above using the definition of the Laplace
transform.

Solution to Exercise 4.2

1. To calculate y(t) we start by taking the Laplace transform of both
sides of the given differential equation:

L{ẏ(t)} = L{−2y(t) + u(t)} (12.34)

Here, we apply the time derivative property, cf. Eq. (4.10) in the
text-book, at the left side, and the linear combination property, cf.
Eq. (4.14) in the text-book, to the right side, to get

sY (s)− 4 = −2Y (s) + U(s) (12.35)

Here,

U(s) =
1

s
(12.36)

since the Laplace transform of a step of amplitude 1 is 1
s , cf.

transform pair (4.7) in the text-book.

By now we have

sY (s)− 4 = −2Y (s) + 1
s

(12.37)

Solving for Y (s) gives

Y (s) =
4

s+ 2︸ ︷︷ ︸
Y1(s)

+
1

(s+ 2) s
︸ ︷︷ ︸

Y2(s)

(12.38)

To get the corresponding y(t) from this Y (s) we take the inverse
Laplace transform of Y1(s) and Y2(s) to get y1(t) and y2(t)
respectively, and then we calculate y(t) as

y(t) = y1(t) + y2(t) (12.39)
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according to the linearity property of the Laplace transform. y1(t)
and y2(t) are calculated below.

Calculation of y1(t):

We can use the transform pair (4.10) in the text-book, which is
repeated here:

k

Ts+ 1
⇐⇒ ke−t/T

T
(12.40)

We have

Y1(s) =
4

s+ 2
=

2

0.5s+ 1
(12.41)

Hence, k = 2, and T = 0.5. Therefore,

y1(t) =
ke−t/T

T
=
2e−t/0.5

0.5
= 4e−2t (12.42)

Calculation of y2(t):

We can use the transform pair (4.11) in the text-book, which is
repeated here:

k

(Ts+ 1)s
⇐⇒ k

(
1− e−t/T

)
(12.43)

We have

Y2(s) =
1

(s+ 2) s
=

0.5

(0.5s+ 1) s
(12.44)

Hence, k = 0.5, and T = 0.5. Therefore,

y2(t) = k
(
1− e−t/T

)
= 0.5

(
1− e−t/0.5

)
= 0.5

(
1− e−2t

)
(12.45)

The final result becomes

y(t) = y1(t) + y2(t) (12.46)

= 4e−2t + 0.5
(
1− e−2t

)
(12.47)

= 0.5 + 3.5e−2t (12.48)

2. Using the Final Value Theorem on (12.38):

ys = lim
s→0
sY (s) = lim

s→0
s

[
4

s+ 2
+

1

(s+ 2) s

]
(12.49)

= lim
s→0
s
4

s+ 2
+ lim

s→0
s

1

(s+ 2) s
= 0 +

1

2
= 0.5 (12.50)

From (12.48) we get
ys = lim

t→∞
y(t) = 0.5 (12.51)
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And from the differential equation we get (because the
time-derivative is zero in steady-state)

0 = −2ys(t) + us(t) (12.52)

which gives

ys =
us

2
=
1

2
= 0.5 (12.53)

So, the three results are the same.

Solution to Exercise 5.1

The Laplace transform of (5.1) is

ρA [sh(s)− h0] = Kse
−τsu(s)−wout(s) (12.54)

Solving for output variable h gives

h(s) =
1

s
h0 +

Ks

ρAs
e−τs

︸ ︷︷ ︸
H1(s)

u(s) +

(
− 1

ρAs

)

︸ ︷︷ ︸
H2(s)

wout(s) (12.55)

Thus, the transfer functions are

H1(s) =
Ks

ρAs
e−τs (12.56)

and

H2(s) = −
1

ρAs
(12.57)

Solution to Exercise 5.2

Laplace transform of (5.2) gives

m
[
s2y(s)− sẏ0 − y0

]
= F (s)−D [sy(s)− y0]−Ky(s) (12.58)

Setting initial values y0 = 0 and ẏ0 = 0, and then solving for y(s) gives

y(s) =
1

ms2 +Ds+K︸ ︷︷ ︸
H(s)

F (s) (12.59)

The transfer function is

H(s) =
y(s)

F (s)
=

1

ms2 +Ds+K
(12.60)

Solution to Exercise 5.3
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1. Order: 2.

2. s2 + 3s+ 2 = 0

3. s2 + 3s+ 2

4. We write the transfer function on pole-zero-form:

H(s) =
s+ 3

s2 + 3s+ 2
=

s+ 3

(s+ 1)(s+ 2)
(12.61)

We see that the poles are −1 and −2, and the zero is −3.

Solution to Exercise 5.4

1. Figure 12.10 shows the block diagram.

bp
P T bm

s+ams+ap

Tm

Figure 12.10:

2. According to the series combination rule the transfer function
becomes

H(s) =
Tm(s)

P (s)
= Hm(s)Hp(s) =

bm
s+ am

bp
s+ ap

(12.62)

Solution to Exercise 5.5

The Laplace transform of u(t) is (cf. Eq. (4.7) in the text-book)

u(s) =
3

s
(12.63)

Inserting this into (5.6) gives

y(s) =
5

s
· 3
s
=
15

s2
(12.64)

which has the same form as in the Laplace transform pair given by Eq.
(4.8) in the text-book. This transform pair is repeated here:

k

s2
⇐⇒ kt (12.65)
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We have k = 15, so the response is

y(t) = 15t (12.66)

Solution to Exercise 5.6

Setting s = 0 in the transfer function gives

Hs = H(0) =
1

K
(12.67)

The static response ys corresponding to a constant force, Fs, is

ys = HsFs =
Fs

K
(12.68)

Solution to Exercise 6.1

1. Yes! Because the transfer function has the form of Ki/s.

2. The Laplace transform of the response is

h(s) = H2(s)wout(s) = −
1

ρAs
wout(s) (12.69)

Since wout(t) is a step of amplitude W at t = 0, wout(s) becomes (cf.
Eq. (4.7) in the text-book)

wout(s) =
W

s
(12.70)

With this wout(s) (12.69) becomes

h(s) = − 1

ρAs

W

s
(12.71)

According to Eq. (4.8) in the text-book),

h(t) = −W
ρA
t (12.72)

That is, the response is a ramp with negative slope.

Comment: This h(t) is only the contribution from the outflow to the
level. To calculate the complete response in the level, the total model
(5.1), where both u and wout are independent or input variables,
must be used.
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Solution to Exercise 6.2

Energy balance:

cρV
dT

dt
= P (12.73)

Laplace transformation:

cρV [sT (s)− T0] = P (s) (12.74)

which yields

T (s) =
1

s
T0 +

1

cρV s︸ ︷︷ ︸
H(s)

P (s) (12.75)

The transfer function is

H(s) =
T (s)

P (s)
=

1

cρV s
=
K

s
(12.76)

which is the transfer function of an integrator with gain K = 1/cρV .

Solution to Exercise 6.3

We manipulate the transfer function so that the constant term of the
denominator is 1:

H(s) =
2

4s+ 8
=

2/8

(4/8) s+ 8/8
=

0.25

0.5s+ 1
=

K

Ts+ 1
(12.77)

Hence,

K = 0.25; T = 0.5 (12.78)

We base the drawing of the step response on the following information:

• The steady-state value of the step response:

ys = KU = 0.25 · 6 = 1.5 (12.79)

• The time-constant:
T = 0.5 (12.80)

which is the time when the step response has reached value

0.63 · ys = 0.63 · 1.5 = 0.95 (12.81)
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• The initial slope of the step response:

S0 = ẏ(0
+) =

KU

T
=
0.25 · 6
0.5

= 3 (12.82)

Figure 12.11 shows the step response.

t [s]0 1

1

1.5=KU

0.95 = 63% * 1.5

0.5=T

Slope = 3

0

Figure 12.11:

Solution to Exercise 6.4

From Figure 6.2 we see that the gain is

K =
∆T

∆P
=
30 K− 20 K

1 kW
= 10

K

kW
(12.83)

and that the time constant (the 63% rise time) is

T1 = 50 min (12.84)

The transfer function becomes

∆T (s)

∆P (s)
=

10

50s+ 1

K

kW
(12.85)

Solution to Exercise 6.5

1. Laplace transformation of the differential equation (6.4) gives

RCsvin(s) = vout(s)− vin(s) (12.86)
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Solving for vout(s) gives

vout(s) =
1

RCs+ 1
vin(s) (12.87)

The transfer function is

H(s) =
1

RCs+ 1
=

K

Ts+ 1
(12.88)

The gain is
K = 1 (12.89)

The time-constant is
T = RC (12.90)

2. The filtering is stronger if R is increased.

Solution to Exercise 6.6

The time-delay is

τ =
AL

q
=
0.01 m2 · 0.5 m

0.001 m3/s
= 5 s (12.91)

Solution to Exercise 6.7

The approximate response time is

T = 0.5 + 1 + 2 = 3.5 s (12.92)

Solution to Exercise 7.1

No! Because the filter will be much more sluggish than the motor.
Probably, real speed information will be filtered or smoothed out
(depending on how quick the real speed actually varies).

Solution to Exercise 7.2

The slope a can be calculated from

a =
Tmax − Tmin
Mmax −Mmin

=
55− 15
20− 4 =

40

16
= 2.5

oC

mA
(12.93)

and

b = Tmin − aMmin = 15
oC− 2.5

oC

mA
· 4 mA = 5 oC (12.94)
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Solution to Exercise 7.3

The slope a can be calculated from

a =
u1max − u1min
umax − umin

=
20− 4
3336− 0 =

16

3336

mA

kg/min
= 0.0048

mA

kg/min
(12.95)

and

b = u1min − aumin = 4 mA− 16

3336

mA

kg/min
· 0 kg

min
= 4 mA (12.96)

The scaling function u1 = au+ b is used to transform the flow value in
kg/min demanded by the level controller (as the controller output signal)
to a corresponding currect signal in mA to be applied to the feed screw.

Solution 7.4

1. Setting e = E in the controller function gives

u(t) = KpE +
Kp

Ti

∫ t

0
E dt = KpE +

Kp

Ti
Et (12.97)

which is “constant plus ramp”. Figure 12.12 shows this step response.

t

Kp

0

Slope
KpE/Ti

u

Figure 12.12:

2. From Figure 7.1 we see that

u(0+) = 2 = Kp (12.98)

And we see that the slope is

Slope = 4 =
Kp

Ti
E =

2

Ti
· 1 (12.99)
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which gives

Ti = 0.5 sec (12.100)

Solution to Exercise 7.5

Kp =
100

PB
=
100

250
= 0.4 (12.101)

Solution to Exercise 7.6

1. The block diagram is shown in Figure 12.13.

Controller
Air heater
(Process)

Temp.-
sensor

Temp.-
reference 
or setpoint

y

Air inflow
(Disturbance)

Control
signal to 
heater

Temperature
(Process
output)yr u

Temperature
measurement

ymMeas.
filter

Figure 12.13:

2. Since u0 is not influenced by the temperature reference (setpoint),
the control signal remains constant. Therefore, the reference does not
influence the actual temperature. However, an increase of the the fan
opening will influence (reduce) the temperature because more cold
air is blown into the pipe.

3. The PID-controller gives zero control error (in average), see Figure
12.14.

Solution to Exercise 7.7

Assume that for some reason the presssure is larger than the pressure
reference. The controller must react to this by ensuring that the valve
opening is increase, which means that the valve control signal is increased.
Therefore, the controller must have directe action.
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Increased fan 
opening

t [s]

Figure 12.14:

Solution to Exercise 7.8

Tf = 0.1Td = 0.1 · 2 = 0.2 s (12.102)

Solution to Exercise 7.9

The control signal is

ud = KpTd
d (Setpoint step− constant)

dt
(12.103)

The time-derivative of a setpoint step is an impulse, which is a signal if
infinite amplitude and with infinite duration, see Figure 12.15. So, the

t

Impulse at time t0

t0

Figure 12.15:

stepwise change of the setpoint causes an impulse-like change of the control
signal. That is the derivative kick.
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Solution to Exercise 7.10

Under normal conditions the control error of PC2 is

e2 = SP1 − SP2 = 4− 2 bar = 2 bar (12.104)

This sustained non-zero control error would have caused the integral term
of controller PC2 to wind up — or, actually, to wind down to a very large
negative value, making the controller virtually inactive if the pressure rises
and comes close to SP2, which makes the controller useless for limiting
control.

Solution to Exercise 7.11

Reduced PB value means increased controller gain, and therefore increased
loop gain. This implies that the stability is reduced if the PB value is

decreased.

Solution to Exercise 7.12

1. The transport time from tank to sensor increases, thus increasing the
time-delay in the control loop, causing reduced stability. If the

time-delay gets too large, the control system becomes unstable.

2. With reduces flow, the time-delay is increased, causing
reduced stability.

3. The stability is reduced since the loop gain is increased.

4. The stability is reduced since the loop gain is increased.

Solution to Exercise 7.13

The response is oscillatory because the control system is unstable. The
instability is due to: (1) The reduced air flow which causes increased
transport delay (time-delay) in the process from heating element to
temperature sensor. (2) Increased process gain because the reduced air
flow makes the temperature more sensitive to the supplied heat (adjusted
by the control signal), and increased process gain implies increased control
loop gain.

Solution to Exercise 8.1

We substitute x by its reference xr and then solve for the control variable
Fp which we denote the feedforward control variable Fpf . The result is

Fpf = mẍr −D|ẋr − uc| (ẋr − uc) + Fw (12.105)
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To implement the feedforward controller: xr must be known, no problem.
Parameters m and D must be known. Their values should be known by
the ship designer. Water current uc may be measured. However, in real
DP applications (Dynamic Positioning) uc is estimated using a state
estimator algorithm named Kalman Filter. Wind force Fw must be known.
In real DP applications it is calculated from measured wind direction and
wind speed using a so-called “wind model”. (The sensor for measuring
wind direction and speed is placed on the top of the ship.)

Solution to Exercise 8.2

We substitute the temperature T by the temperature setpoint TSP (the
time argument t is omitted for simplicity, but it should not be omitted if
the model contain time-delay terms):

cρV ṪSP = Khu+ cw (Tin − TSP ) + U (Te − TSP ) (12.106)

We solve (12.106) for the control variable u to get the feedforward control
variable uf:

uf =
1

Kh

[
cρV ṪSP − cw (Tin − TSP )− U (Te − TSP )

]
(12.107)

=

1

Kh

[
cρV ṪSP + cwTSP + UTSP

]

︸ ︷︷ ︸
ufSP

+
1

Kh
[−cwTin − UTe]

︸ ︷︷ ︸
ufd

(12.108)

Implementation of feedforward control signal uf requires measurement or
knowledge of the following five quantities: c, ρ, V , h, w, Kh and Tin, in
addition to the setpoint time-derivative, ṪSP .

Solution to Exercise 8.3

With the two data points given, we have

52 = a · 40 + b (12.109)

and
61 = a · 60 + b (12.110)

From these two equations we get (the mathematics to solve these two
equations is not shown here)

a = 0.45 (12.111)

b = 34 (12.112)
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Solution to Exercise 9.1

The control signal (current) is sent through a resistor of resistance

R =
10 V

20 mA
= 500 Ω (12.113)

The voltage drop across the resistor is used to control the device, see 12.16.

Controller R

0-20mA +

-

0-10V

Control 
signal 
(current)

Device
(e.g. pump)

Controller

Figure 12.16:

Solution to Exercise 9.2

In line 6 from the top: “Control action, Direct, reversed”.

Solution to Exercise 9.3

DC =
0.1

5
· 100 = 2% (12.114)

Ton = 2% · 1 min = 0.02 min = 1.2 s (12.115)

Solution to Exercise 10.1

See Figure 12.17. We read off

Tou = 8.0 min (12.116)

which gives

Ti = 1.5Tou = 12.0 min (12.117)

And we can try keeping

Kp = 0.8 · 4.0 = 3.2 min (12.118)
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Tou = 8 min

Figure 12.17:

If it turns out that the stability of the control system is too bad with this
value of Kp, you can try reducing the gain and/or increasing the integral
time.

Solution to Exercise 10.2

We use

TC = τ = 1 s (12.119)

According to Skogestad’s tuning formulas for “time-constant with
time-delay”:

Kp =
T

K (Tc + τ)
=

5

0.5 · (1 + 1) = 5 (12.120)

Ti = min[T, c (Tc + τ)] = min[5, 2 (1 + 1)] = min[5, 4] = 4 s (12.121)

Td = 0 (12.122)

(Above, min[x, y] means the minimum of the two numbers x and y.)

Solution to Exercise 10.3

1. The Laplace transform of (10.5) is

ρA [sy(s)− y0] = Kse
−τsu(s)−wout(s) (12.123)
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Solving for output variable h gives

y(s) =
1

s
h0 +

Ks

ρAs
e−τs

︸ ︷︷ ︸
H1(s)

u(s) +

(
− 1

ρAs

)
wout(s) (12.124)

Thus, the transfer function from u to y is

H1(s) =
y(s)

u(s)
=
Ks

ρAs
e−τs (12.125)

The Laplace transform of (10.6) is

H2(s) =
ym(s)

y(s)
= Km (12.126)

Combining these two transfer functions gives

H(s) =
ym(s)

u(s)
=
ym(s)

y(s)
· y(s)
u(s)

=
KsKm

ρAs
e−τs =

K

s
e−τs (12.127)

where

K =
KsKm

ρA
(12.128)

H(s) is “integrator with time-delay”.

2. We set
TC = τ (12.129)

According to Skogestad’s tuning formulas for “integrator with
time-delay”:

Kp =
1

K (Tc + τ)
=

1
KsKm

ρA (2τ)
=

0.5ρA

KsKmτ
(12.130)

Ti = c (Tc + τ) = 2 (2τ) = 4τ (12.131)

Td = 0 (12.132)

Solution to Exercise 10.4

From Figure 10.3 we may say that the process looks like “time-constant
with time-delay”. The gain becomes

K =
ysteady_state

U
=
10

2
= 5 (12.133)

The time-delay is (approximately)

τ ≈ 1 sec (12.134)
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The time-constant is (approximately) the time from the end of the
time-delay to the 63 % rise time:

T ≈ 2 sec (12.135)

According to Skogestad’s PID setting formulas for “time-constant with
time-delay” (with Tc = τ):

Kp =
T

K (Tc + τ)
=

2

5 · (1 + 1) = 0.2 (12.136)

Ti = min[T, c (Tc + τ)] = min[2, 2 (1 + 1)] = min[2, 4] = 2 s (12.137)

Td = 0 (12.138)

Solution to Exercise 10.5

1. In general closed loop-excitation is preferable because then the
process is being controlled, which implies that the process variable
will vary relatively about the setpoint. In other words, the process
will stay around the operating point, which is good.

2. Most tanks are integrators dynamically, which implies that a
constant control signal will cause a ramped response in the process
output, bringing the response far off the operating point. For such
processes closed loop excitation is preferable.

Solution to Exercise 10.6

For best control performance: B. Simplest: A.

Solution to Exercise 10.7

1. The stability would be decreased.1

2. Let is indicate initial values (before the change) with index 0, and
new values (after the changes) with index 1. According to
Skogestad’s table on page 142 in the text-book,

Kp0 =
T0

K0 (TC + τ0)
(12.139)

1For processes that are unstable, the controller gain must actually be “large” for the
control system to be stable, but such processes are relatively rare (one example is exother-
mal reactors).



88

Ti0 = min[T0, c(TC + τ0)] (12.140)

and, of course,

Kp1 =
T1

K1 (TC + τ1)
(12.141)

Ti1 = min[T1, c(TC + τ1)] (12.142)

If the process gain K is the only parameter that has changed, we get
from (12.139) and (12.141)

Kp0

Kp1

=

T0
K0(TC+τ0)

T1
K1(TC+τ1)

=

T0
K0(TC+τ0)

T0
K1(TC+τ0)

=
K1
K0

(12.143)

from which we get the following formula for the new controller gain:

Kp1 = Kp0

K0
K1

(12.144)

For the integral time there will be no change because the process
gain is not in the formula of Ti:

Ti1 = Ti0 (12.145)

Solution to Exercise 10.8

From the table shown in Figure 10.4 we see that Gain = Kp has (should
have) less value and Integral = Ti has (should have) larger value the lower
the temperature. This indicates that minimum temperature is “worst
case”. Therefore, a PID controller with fixed settings should be tuned at
miminum temperature.

Solution to Exercise 10.9

Kp =
0.5− 0.4
30%− 20%(GS − 20%) + 0.4 = 0.01%

−1 ·GS + 0.2 (12.146)

Solution to Exercise 10.10

The table-lookup is used straightforward: The input to the table-lookup
function is zP ID which is the z-value that the PID controller demands, and
the output from the table-lookup function is u which is used as control
signal to the nonlinear process part (e.g. valve).

Solution to Exercise 11.1
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Figure 12.18:

See Figure 12.18.

The purpose of the ammonia flow control loop can be to obtain an
ammonia flow that tracks the flow value (flow setpoint) that the pH
controller demands. The flow control will compensate for flow variations
caused by e.g. pressure variations in the ammonia gas supply.

Solution to Exercise 11.2

Figure 12.19 shows the instrumentation diagram.

Solution to Exercise 11.3

Figure 12.20 shows the ship with control system.

The purpose of the position control loop is to make the ship track the
position reference.

The purpose of the propeller speed control loop is to make the propeller
speed track the speed command or reference generated by the positional
controller. The speed control loop will compensate for disturbances acting
on the propeller so that the propeller speed is more smooth. In addition,
this speed control loop may make the tuning of the position controller
easier because the position controller will control the speed more directly.
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Figure 12.19:

Solution to Exercise 11.4

See Figure 12.21.

Solution to Exercise 11.5

Figure 12.22 shows the pH control system.

Solution to Exercise 11.6

1. Substituting Fout in the process model by Fout from the controller
gives the following model of the control system:

ρAḣ = Fin − Fout = Fin −Kp(hSP − h) (12.147)

Assuming static conditions the model is

0 = Fins −Kp(hSPs − hs) (12.148)

which gives

hs = hSPs +
1

−Kp
Fins (12.149)

2. From (12.149) we see that the difference between the level and level
setpoint is

∆hs = es = hSPs − hs =
1

Kp
Fins (12.150)
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Figure 12.20:

Solving for Kp:

Kp =
1

∆hs
Fins =

1

es
Fins (12.151)

∆hs is reduced if Kp is increased.

3. The drawback about using a P controller is that the static control
error es = ∆hs becomes different from zero.

Solution to Exercise 11.7

See Figure 12.23.

Solution to Exercise 11.8

See Figure 12.24.

Solution to Exercise 12.1

Figure 12.25 shows the Sequential Function Chart (SFC) solving the
control task given above.
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S0
(Init/Idle)

A0_1: Control_clamp := Off;
A0_2: Control_cart := Steady;
A0_3: Control_drill := Off;

S1
(Down)

Transition T0_1: Control_start == On;

T1_2: Meas_p <= p_low;

S2
(Up)

T2_0: Meas_p >= p_high;

A1_1: Control_clamp := On;
A1_2: Control_cart := Down;
A1_3: Control_drill := On;

A2_1: Control_cart := Up;

Actions:

Figure 12.25:




