
Hurtigreferanse til Automatiseringsteknikk av Finn Aakre Haugen

Hurtigreferanse (cheat sheet) til boken Automatiseringsteknikk

https://techteach.no/automatiseringsteknikk

Finn Aakre Haugen

1. januar 2026

Reguleringsavvik

e = r − ymf (1)

der e er reguleringsavviket, r er referanse (eller settpunkt eller skal-verdi) og ymf er filtrert
prosessm̊alesignal.

IAE (Integral of Absolute value of control Error)

IAE =

∫ tstop

tstart

|e(t)| dt ≈ [|estart|+ · · ·+ |estop|] · ts (2)

Teknisk flytskjema (TFS)

Mye brukte bokstavsymboler:

FT = Flow Transmitter. FC = Flow Controller.
LT = Level Transmitter. LC = Level Controller.
PT = Pressure Transmitter. PC = Pressure Controller.
TT = Temperature Transmitter. TC = Temperature Controller.

Nummereringen er typisk parallell: Tallkodene kan være de samme (repeteres) for hver nye
bokstavkode eller for hver nye bokstavkombinasjon. Eksempler: FC-101. FT-101. LC-102.
LT-102. Tallkoden kan være et sløyfenummer for den aktuelle reguleringssløyfen.

Signalsymboler:

General (undefined) signal:

Pneumatic signal:

Electrical signal:

or

Digital signal:

or

or

or
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Analog-digital-oppløsning

R =
yanalogmaks

− yanalogmin

2n − 1
(3)

Målesignalskalering

Prosessverdi som funksjon av m̊aleverdi:

p = am+ b (4)

a =
p2 − p1
m2 −m1

(5)

b = p1 − am1 (6)

der (p1, m1) og (p2, m2) er gitte datapunkter for sensoren/transmitteren.

EWMA-filter (Exponentially Weighed Moving Average)

ymf = (1− a) ymf,prev + aym (7)

a =
1

Nf
(8)

Nf =
tf
ts

+ 1 (9)

Tidskonstantfilter

Differensiallikning:
y′mf = (ym − ymf) /tf (10)

Transferfunksjon:
Ymf(s)

Ym(s)
= Hf (s) =

1

tfs+ 1
(11)

Tidsdiskret filteralgoritme (basert p̊a Euler bakoverdiskretisering) er lik (7) der

a =
1

tf
ts

+ 1
=

ts
tf + ts

(12)

Analogt RC-filter

(10) eller (11) med
tf = RC (13)
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Ventillikningen

Q = Kvf(z)

√
∆p

G
(14)

Elektrisk effekt

Paverage =
Ueff

2

R
(15)

P̊adragsskalering

v = a · u+ b (16)

a =
v2 − v1
u2 − u1

(17)

b = v1 − a · u1 (18)

Pulsbreddemodulering

ton = D · tp (19)

Ohms lov

R =
U

I
(20)

Av/p̊a-regulator

u =

{
uon hvis e ≥ 0

uoff hvis e < 0
(21)

Tidskontinuerlig PID-regulator

u = uman + Kce︸︷︷︸
up

+
Kc

Ti

∫ t

0
e dτ︸ ︷︷ ︸

ui

+KcTd ef
′︸ ︷︷ ︸

ud

(22)
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Tidsdiskret PID-regulator (algoritme)

u = uman + up + ui + ud (23)

der
up = Kce

ui = ui,prev + (Kc/Ti) tse (24)

ud = KcTd (ef − ef,prev) /ts (25)

der
ef = (1− ad)ef,prev + ade (26)

Tidsdiskret PI-regulator (algoritme)

u = uman + up + ui + ud (27)

der
up = Kce

ui = ui,prev + (Kc/Ti) tse (28)

Proporsjonalb̊and

PB =
100 %

Kc
⇐⇒ Kc =

100 %

PB
(29)

Alternative PID-parametre

Ki =
Kc

Ti
(30)

Kd = KcTd (31)

Reduksjon av P-spark

up = Kc (wpr − ymf ) (32)

der wp = 0,3 (typisk).

Reduksjon av D-spark

ud = KcTd (wdr − ymf )
′
f (33)

der wd = 0.
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Implementering av integratorbegrensning (anti windup) i PID-regulator

Integralleddet ui l̊ases (oppdateres ikke) n̊ar u ligger an til å bli større enn umaks eller mindre
enn umin.

Revers- og direktevirkning i PID-regulator

• For prosessforsterkning Kprosess > 0, velg Kc > 0, dvs. reversvirkning. ≪Positiv-positiv.≫

• For prosessforsterkning Kprosess < 0, velg Kc < 0, dvs. direktevirkning.
≪Negativ-negativ.≫

Ziegler-Nichols PID-innstilling

Kc Ti Td

P-regulator 0,5Kcu ∞ 0

PI-regulator 0,45Kcu
tp
1,2 0

PID-regulator 0,6Kcu
tp
2

tp
8 = Ti

4

Relaxed Ziegler-Nichols PI-innstilling

Kc Ti

Relaxed Ziegler-Nichols 0,25Kcu 1,25tp
Opprinnelig Ziegler-Nichols 0,45Kcu

tp
1,2

Kvasi Ziegler-Nichols PI-innstiling

Kc = 0,45Kc0 (34)

Ti =
tp0
1,2

(35)

Åstrøm-Hägglunds relémetode

1. Les av tp, Du og Dy fra eksperiment med av/p̊a-regulator.

2. Beregn kritisk forsterkning:

Kcu = 1,27
Du

Dy
(36)

3. Beregn PID-innstilling med Ziegler-Nichols-formlene eller Relaxed
Ziegler-Nichols-formlene med Kcu og tp.
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Good Gain-metoden

Kc = 0,8Kc,GG (37)

Ti = 1,5tou (38)

Prosessresponsmetoden

Rn =
R

∆u
(39)

Kc =
1

2RnL
(40)

Ti = 4L (41)

Ziegler-Nichols åpen sløyfe-metode

Rn =
R

∆u
(42)

Kc =
0,9

RnL
(43)

Ti = 3,3L (44)

PID-parameterstyring (gain scheduling)

PID-parametertabell:

GS Kc Ti Td

GS1 Kc1 Ti1 Td1

GS2 Kc2 Ti2 Td2

GS3 Kc3 Ti3 Td3

Typisk: Stykkevis konstant interpolering mellom PID-parametersettene.

Alternativt: Stykkevis lineær interpolering (her antatt to intervaller: GS1-GS2 og GS2-GS3 ):

Kc = a1,2 ·GS + b1,2 (45)

Kc = a2,3 ·GS + b2,3 (46)

Typisk ved tank med gjennomstrømning F [kg/s]:

Prosessens forsterkning ∝ 1

F
(47)

Prosessens tidskonstant ∝ 1

F
(48)

Prosessens tidsforsinkelse ∝ 1

F
(49)

GS = F (50)

6



Hurtigreferanse til Automatiseringsteknikk av Finn Aakre Haugen

PI-innstilling ved midlende niv̊aregulering (averaging level control)

1. Spesifiser akseptabel ∆hmax [m] for antatt ∆Fin,max[m
3/s].

2. Innstilling av PI-niv̊aregulator:

Kc = −∆Fin,max

∆hmax
(51)

Ti = 2A
∆hmax

∆Fin,max
(52)

PLS-programmeringsspr̊ak støttet i Codesys

• Ladder (LD) – iht. IEC 61131-3-standarden

• Function Block Diagram (FBD) – iht. IEC 61131-3

• Structured Text (ST) – iht. IEC 61131-3

• Instruction List (IL) - tatt ut Codesys og fra IEC 61131-3

• Continuous Function Chart (CFC) – er ikke definert i IEC 61131-3

• Sequential Function Chart (SFC) – iht. IEC 61131-3-standarden

Typer POU (Program Organization Units)

• PRG (programmer), som kjøres syklisk eller hendelsesstyrt.

• FUN (funksjoner), som ikke har intern hukommelse, dvs. at verdien av interne
FUN-variabler ikke lagres mellom programsykler. Kan brukes for programmering av
f.eks. formler.

• FB (funksjonsblokker), som har intern hukommelse for lagring av interne variabler, dvs.
at verdien av interne FB-variabler kan lagres mellom programsykler. Kan brukes for
programmering av formler. Må brukes ved programmering av algoritmer der
variabelverdier skal huskes mellom hver programsyklus.

Logiske funksjoner

AND:

in 1 in 2 out 1 := in 1 AND in 2;

TRUE TRUE TRUE

TRUE FALSE FALSE

FALSE TRUE FALSE

FALSE FALSE FALSE

OR:
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in 1 in 2 out 1 := in 1 OR in 2;

TRUE TRUE TRUE

TRUE FALSE TRUE

FALSE TRUE TRUE

FALSE FALSE FALSE

NOT:

in 1 out 1 := NOT in 1;

TRUE FALSE

FALSE TRUE

Matematisk modellform for dynamiske systemer

Differensiallikning, som beregner den tidsderiverte av systemets tilstand:

x′ = f(·) (53)

Integrallikning, som beregner tilstanden:

x(t) = x(0) +

∫ t

0
x′(θ) dθ (54)

Prinsipper for matematisk modellering

Massebalanse:
m′ =

∑
i

Fi (55)

Energibalanse:

E′ =
∑
i

Qi (56)

Kraftbalanse (Newtons 2. lov for lineær bevegelse):

mv′ = my′′ =
∑
i

Fi (57)

Momentbalanse (Newtons 2. lov for rotasjonsbevegelse):

Jω′ = Jθ′′ =
∑
i

τi (58)

Sammenheng mellom moment, armlengde og kraft:

τ = FL (59)

Sammenheng mellom buelengde, radius og vinkel:

b = ar (60)
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Momentan elektrisk effekt:

P = ui = Ri2 =
u2

R
(61)

Midlere elektrisk effekt:

Pmidlere = UeffIeff = R Ieff
2 =

Ueff
2

R
(62)

Modellblokkdiagrammer

Anta modellen
x′(t) = f(·) (63)

x(t) = x(0) +

∫ t

0
x′(θ) dθ (64)

Opptegning av blokkdiagram: Start med å tegne en integratorblokk for (64). Deretter tegnes
blokkene som beregner x′, som er inngangen til integratorblokken.

Tilstandsrommodell

x′ = f(x,u,d,p) ≡ f(·) (65)

y = g(x,u,d,p) ≡ g(·) (66)

der x er tilstandsvektor (og tilsvarende for de andre variablene):

x =

 x1
...
xn

 = [x1, · · · , xn]T (67)

Lineær tilstandsrommodell

x′ = Ax+Bu (68)

y = Cx+Du (69)

Linearisert tilstandsrommodell

∆x′ =
∂f

∂x

∣∣∣∣
0︸ ︷︷ ︸

A

∆x+
∂f

∂u

∣∣∣∣
0︸ ︷︷ ︸

B

∆u (70)

= A∆x+B∆u (71)
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Simuleringsalgoritme basert p̊a Eulers foroverdmetode

• Gitt startverdier for x, u, d og p. Systemets initialtilstand xinit er startverdien for x.

• Tilstandsbegrensning:
x ∈ [xmin, xmax] (72)

• x slik den foreligger p̊a dette punktet i algoritmen, er simulert tilstand.

• Hvis aktuelt: Endre u, d og p.

• Hvis aktuelt: Lagre x, u, d og p i array el.l.

• Tidsderivert:
x′ = f (x,u,d,p) (73)

• Prediksjon:
xnext = x+ tsx

′ (74)

• Tidsindeksskift:
x = xnext (75)

Ev. tidsforsinkelser kan realiseres med en array der elementene i prinsippet flytter ett element
mot høyre ved hvert tidsskritt. Den forsinkede variabelen tas ut som siste element i arrayen.
Ikke-forsinket variabel settes inn som første element. Arrayens lengde er Nd = td/ts.

Transferfunksjon

H(s) =
Y (s)

U(s)
(76)

eller
Y (s) = H(s)U(s) (77)

Tidsrespons beregnet med invers Laplacetransformasjon

y(t) = L−1 {Y (s)} = L−1 {H(s)U(s)} (78)

Sluttverditeoremet

ys = lim
s→0

s · Y (s) = lim
s→0

s ·H(s)U(s) (79)
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Fra tilstandsrommodell til transferfunksjon

Gitt lineær tilstandsrommodell:

x′ = Ax+Bu (80)

y = Cx+Du (81)

Transferfunksjon fra U(s) til Y (s):

H(s) =
Y (s)

U(s)
= C(sI −A)−1B +D (82)

Integratormodell

Differensiallikning:
y′ = Kiu (83)

Transferfunksjon:

H(s) =
Y (s)

U(s)
=

Ki

s
(84)

Sprangrespons:
y(t) = KiAut (85)

Tidskonstantmodell

Differensiallikning:
tcy

′ = Ku− y (86)

Transferfunksjon:

H(s) =
Y (s)

U(s)
=

K

tcs+ 1
(87)

Sprangrespons:
y(t) = KAu(1− e−t/tc) (88)

Tidsforsinkelse

y(t) = u(t− td) (89)

Transferfunksjon:

H(s) =
Y (s)

U(s)
= e−tds (90)

Padéapproksimasjon:

e−tds ≈ 1− k1s+ k2s
2 − · · · knsn

1 + k1s+ k2s2 + · · · knsn
(91)
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Tidskonstant + tidsforsinkelse + prosessforstyrrelse

tcy(t)
′ = Kuu(t− td) +Kdd(t)− y(t) (92)

2. ordens system

H(s) =
Y (s)

U(s)
=

Kω0
2

s2 + 2ζω0s+ ω0
2

(93)

Poler til underdempet system:

p1, p2 = −ζω0︸ ︷︷ ︸
Re

± j
√
1− ζ2 ω0︸ ︷︷ ︸

Im

(94)

Responstid til seriekoplede tidskonstantsystemer

t63% ≈
∑
i

tci (95)

Modelltilpassing

Modellparametrene p beregnes som den optimale løsningen til optimeringsproblemet

min
p=[p(1),p(2),...,p(r)]

f

Modellparametrene p er optimeringsvariablene. fer objektfunksjonen:

f = SSPE =
N∑
k=1

ek
2 (96)

ek er prediksjonsfeilen:
ek = yobs,k − ypred,k (97)

yobs,k er observerte (typisk m̊alte) y. ypred,k kan være simulerte y p̊a basis av p.

Simulering av reguleringssystemer

Hele reguleringssystemet simuleres. Mulige simuleringsplattformer:

• Simuleringsalgoritmer implementert i elementær programkode (f.eks. Python, Matlab)

• Modellblokkdiagrammer der blokker kan være programmert med elementær kode (f.eks.
Codesys, OpenModelica, LabVIEW, Simulink)

• Transferfunksjonsmodeller (f.eks. Pythons Control-pakke, Matlabs Control System
Toolbox)
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Beregning av statiske responser i reguleringssystemer

Alle variabler i reguleringssystemets modell antas konstante, og alle tidsderiverte settes derfor
lik null. Du kan ≪bli kvitt≫ integraler i modellen ved å tidsderivere hele modellen. Den
resulterende statiske modellen er en algebraisk statisk modell som du kan løse mhp. variabelen
du skal beregne den statiske responsen i.

Transferfunksjonsmodeller av reguleringssystemer

PID-regulatorens transferfunksjon:

Hc(s) =
U(s)

E(s)
= Kc +

Kc

Tis
+

KcTds

tfds+ 1
(98)

PI-regulatorens transferfunksjon:

Hc(s) =
U(s)

E(s)
= Kc +

Kc

Tis
+

KcTds

tfds+ 1
(99)

Sløyfetransferfunksjonen:
Hl(s) = Hp(s)Hc(s) (100)

Følgetransferfunksjonen:

Ht(s) =
Y (s)

R(s)
=

Hp(s)Hc(s)

1 +Hp(s)Hc(s)
=

Hl(s)

1 +Hl(s)
(101)

Sensitivitetstransferfunksjonen:

Hs(s) =
1

1 +Hl(s)
=

1

1 +Hp(s)Hc(s)
(102)

Tolkninger av Hs(s):

• Transferfunksjon fra referanse til reguleringsavvik:

Hs(s) =
E(s)

R(s)
(103)

• Forholdet mellom reguleringsavvik for regulert prosess og uregulert prosess:

Hs(s) =
Ed,regulert(s)

Ed,uregulert(s)
(104)

Frekvensresponsanalyse

Amplitudeforsterkning:

A(ω) =
Ay

Au
(ω) (105)
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Faseforskyvning:
ϕ(ω) = −ω ·∆t [rad] (106)

Desibel:
A = 20 log10A dB (107)

Frekvensresponsen beregnet fra transferfunksjon:

A(ω) = |H(jω)| (108)

ϕ(ω) = argH(jω) (109)

Definisjon av −3 dB-b̊andbredde ωc:

|H(jωc)| =
1√
2

(110)

−3 dB-b̊andbredde til tidskonstantsystem:

ωc =
1

tc
(111)

Frekvensresponsanalyse av reguleringssystemer

Analysen baseres p̊a Hs(jω), Ht(jω) og/eller Hl(jω).

• God referansefølging:

|Hs(jω)| ≪ 1, |Ht(jω)| ≈ 1, |Hl(jω)| ≫ 1 (112)

• D̊arlig referansefølging:

|Hs(jω)| ≈ 1, |Ht(jω)| ≪ 1, |Hl(jω)| ≪ 1 (113)

Alternative b̊andbreddedefinisjoner til reguleringssystemer:

• ωt:
|Ht(jωt)| = 1/

√
2 ≈ 0,71 = −3 dB (114)

• ωl:
|Hl(jωl)| = 1 = 0 dB (115)

• ωs:
|Hs(jωs)| = 1− 1/

√
2 ≈ 0,29 ≈ −11 dB (116)

14



Hurtigreferanse til Automatiseringsteknikk av Finn Aakre Haugen

Eksperimentell stabilitetsanalyse av reguleringssystemer

Eksperimentell forsterkningsmargin:
GM = ∆Ku (117)

Eksperimentell fasemargin:

PM =
∆td,u
tp

· 360° (118)

Akseptable stabilitetsmarginer:
1,7 ⩽ GM ⩽ 4,0 (119)

30° ⩽ PM ⩽ 45° (120)

Stabilitetsanalyse av dynamiske systemer

Stabilitetsdefinisjoner basert p̊a stasjonær impulsrespons h(∞):

• Asymptotisk stabilt system
h(∞) = 0 (121)

• Marginalt stabilt system:
0 < |h(∞)| < ∞ (122)

• Ustabilt system:
|h(∞)| = ±∞ (123)

Stabilitetsanalyse basert p̊a polplasseringen til systemets transferfunksjon:

• Asymptotisk stabilt system: Alle polene ligger i venstre halvplan.

• Marginalt stabilt system: En eller flere poler ligger p̊a imaginæraksen. Disse polene m̊a
være ulike, ellers er systemet ustabilt.

• Ustabilt system: Minst én pol ligger i høyre halvplan. Systemer med flere poler p̊a
imaginæraksen er ogs̊a ustabile.

Stabilitetsanalyse av tilstandsrommodeller: Bytt ut ≪pol≫ ovenfor med ≪egenverdi≫ siden
systemets egenverdier er de samme som systemets poler. Egenverdiene (polene) kan beregnes
som s-løsningene til den karakteristiske likning:

α(s) = det(sI −A) = 0 (124)

Stabilitetsanalyse av reguleringssløyfer

Analyse basert p̊a poler baseres p̊a polplasseringen til følgetransferfunksjonen Ht(s).

Analyse basert p̊a frekvesresponsanalyse:

• Nyquists stabilitetskriterium:
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– Asymptotisk stabilt system: ωc < ω180.

– Marginalt stabilt system: ωc = ω180.

– Ustabilt system: ωc > ω180.

• Bode-Nyquists stabilitetskriterium:

GM > 0 dB = 1 og dessuten PM > 0◦ (125)

Tidsdiskrete modeller

Eksempel p̊a differenslikning:

yk = −a1yk−1 − a0yk−2 + b0uk−2 (126)

Tidsdiskret tilstandsrommodell:

xk+1 = fd (xk,uk,dk,pk) (127)

yk = gd (xk,uk,dk,pk) (128)

Lineær tidsdiskret tilstandsrommodell:

xk+1 = Adxk +Bduk (129)

yk = Cdxk +Dduk (130)

Euler forover-diskretisert tilstandsrommodell:

xk+1 = xk + tsf (xk, uk) (131)

z-transferfunksjon:

H(z) =
Y (z)

U(z)
(132)

Stabilitetsegenskapene til tidsdiskrete systemer

• Asymptotisk stabilt system: Alle polene til transferfunksjonen ligger innenfor
enhetssirkelen.

• Marginalt stabilt system: En eller flere poler ligger p̊a enhetssirkelen. Disse polene m̊a
være ulike, ellers er systemet ustabilt.

• Ustabilt system: Minst én pol ligger utenfor enhetssirkelen. Systemer med flere poler enn
én p̊a enhetssirkelen er ogs̊a ustabile.

Stabilitetsanalyse av tidsdiskret tilbakekoplet system

Analysen baseres p̊a polplasseringen til følgetransferfunksjonen Ht(z).
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Stokastiske signaler

Middelverdi:

mx =
1

N

N−1∑
k=0

xk (133)

Varians:

Var(x) =
1

N − 1

N−1∑
k=0

[xk −mx]
2 (134)

Standardavvik:
σ =

√
Var(x) (135)

Autokovarians (med null tidsforskyvning):

Rx(0) = E{[xk+0 −mx][xk −mx]} = E{[xk −mx]
2} = Var(x) (136)

Autokovariansen Rx(L) estimert fra dataserie {x}:

Rx(L) =
1

N − L

N−1−|L|∑
k=0

[xk+L −mx][xk −mx] (137)

Farget støy vha. EWMA-filter (tidsdiskret tidskonstantfilter):

xf = (1− a)xf,prev + ax (138)

Endring av stokastisk signal gjennom et skalart statisk system,

yk = Gvk + C (139)

• Middelverdi:

my = Gmv + C (140)

• Varians;

σ2
y = G2σ2

v (141)

• Standardavvik:

σy = Gσv (142)

Analysen baseres p̊a polplasseringen til følgetransferfunksjonen Ht(z).
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Observerbarhetstest

Systemet
xk+1 = Adxk +Bduk (143)

yk = Cdxk +Dduk (144)

er observerbart hvis og bare hvis observabilitetsmatrisen

Mobs =


Cd

CdAd
...

CdA
n−1
d

 (145)

har rang n.

Stasjonært Kalmanfilter

Initialisering: xp,0 = xinit (146)

Initialisering: P = Pp,init (147)

Predikert måling: yp = g (xp) (148)

Innovasjonsvariabel: e = ym − yp (149)

M̊ale-korrigert tilstandsestimat (brukes som estimat): xc = xp +Kse (150)

Modell-predikert tilstandsestimat: xp,next = f (xc, u) (151)

Tidsindeksskift: xp = xp,next (152)

Tidsindeksskift: Pp = Pp,next (153)

Den stasjonære Kalmanforsterkningen Ks kan beregnes f.eks. med dlqe-funksjonen i Pythons
Control-pakke:

(Ks, Pcorr, E) = control.dlqe(Ad, G, Cd, Q, R) (154)

Modell for augmentert tilstand i Kalmanfilter

Modell av augmentert tilstand som representerer antatt konstant parameter eller
prosessforstyrrelse som skal estimeres:

x′a = 0 (155)

Utvikling av foroverkopler

1. Formuler en prosessmodell som skal danne grunnlaget for foroverkoplingen.

2. Sett referansen (r) inn for prosessutgangen (y) i prosessmodellen.

3. Løs prosessmodellen fra punkt 2 mhp. p̊adraget u, og kall u for uff. Formelen for uff er
foroverkopleren.
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SIMC-innstilling av PI-regulator for ≪integrator med tidsforsinkelse≫-prosess

Kc =
1

2Kitd
(156)

Ti = 4td (157)

SIMC-innstilling av PI-regulator for ≪integrator≫-prosess

Kc =
1

Kitcc
(158)

Ti = 2tcc (159)

SIMC-innstilling av PI-regulator for niv̊aregulering

1. Anta ∆Fin,max, og spesifiser akseptabel ∆hmax.

2. Beregn tcc:

tcc =
A∆hmax

∆Fout,max
(160)

3. Bruk den beregnede tcc til innstilling av niv̊aregulatoren:

Kc =
A

tcc
(161)

Ti = 2tcc (162)

SIMC-innstilling av PI-regulator for ≪tidskonstant med tidsforsinkelse≫-prosess

Kc =
tc

2Ktd
(163)

Ti = minimum (tc, 4td) (164)

SIMC-innstilling av PI-regulator for ≪dobbelintegrator≫-prosess

Kc =
1

2Kii tcc 2
(165)

Ti = 8tcc (166)

Td = 2tcc (167)
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LQ-regulator

u(t) = −G(t)x(t) (168)

Stasjonær verdi av regulatorforsterkningen G kan beregnes med f.eks. lqr-funksjonen i Pythons
Control-pakke:

(Gs, S, E) = control.lqr(A, B, Q, R) (169)

MPC

MPC-ens p̊adrag beregnes som den optimale løsningen til optimeringsproblemet

min
upred

J (170)

der J er objektfunksjonen:

J =
k+N∑
i=k

[
ei

T Ceei + u′i
T
Cu′u′i

]
(171)

Predikert avvik e kan beregnes som simulert avvik:

ek = rk − yk,pred (172)

der yk,pred beregnes fra prosessmodellen med initialtilstand fra sensorer og/eller fra et
Kalmanfilter.
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