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Reguleringsavvik

€ =17 —Ynt (1)

der e er reguleringsavviket, r er referanse (eller settpunkt eller skal-verdi) og yms er filtrert
prosessmalesignal.

IAE (Integral of Absolute value of control Error)

tstop
TIAE = / ’6(75)‘ dt ~ Hestart| + -+ ’€St0pH 'ts (2)

tstart

Teknisk flytskjema (TFS)

Mye brukte bokstavsymboler:

FT = Flow Transmitter. FC = Flow Controller.

LT = Level Transmitter. LC = Level Controller.

PT = Pressure Transmitter. PC = Pressure Controller.

TT = Temperature Transmitter. TC = Temperature Controller.

Nummereringen er typisk parallell: Tallkodene kan veere de samme (repeteres) for hver nye
bokstavkode eller for hver nye bokstavkombinasjon. Eksempler: FC-101. FT-101. LC-102.
LT-102. Tallkoden kan vzere et slgyfenummer for den aktuelle reguleringsslgyfen.

Signalsymboler:

General (undefined) signal:

or —F—F

Electrical signal:

————————————— of —p—pp—pp— Of

Digital signal:

—o—o—o0—

Pneumatic signal:

— A or A A—A—
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Analog-digital-opplgsning

R— Yanalog,, s — Yanalog,, i,

2n —1
Malesignalskalering
Prosessverdi som funksjon av maleverdi:
p = am+b (4)
o= P2 —P1 (5)
mo — m

b=p —am

der (p1, m1) og (p2, ma) er gitte datapunkter for sensoren/transmitteren.

EWMA-filter (Exponentially Weighed Moving Average)

Ymf = (1 - a) Ymf prev + aym

1
a=—
Ny
ty

Tidskonstantfilter

Differensiallikning:

Transferfunksjon:

— H = —
Yin(s) #(5) trs+1
Tidsdiskret filteralgoritme (basert pa Euler bakoverdiskretisering) er lik (7) der

(10)

(11)

1 ts
T Tt (12)
. +1 f s
Analogt RC-filter
(10) eller (11) med
ty = RC (13)
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Ventillikningen
/| Ap
Q= K,f(z) Xl (14)
Elektrisk effekt
U 2
Paverage = eT;f (15)
Padragsskalering
v=a-u+b (16)
Vo — U1
= 17
pg— (17)
b=vi—a- -w (18)
Pulsbreddemodulering
ton =D -t, (19)
Ohms lov
U
R== 20
- (20)
Av/pa-regulator
oy - J ton hv?s e>0 (21)
Uog hvis e <0
Tidskontinuerlig PID-regulator
K. [! ,
U= Upan + Kee + — [ edr + K, ey (22)
~~ T; 0 ————

Up Uq
Uq
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Tidsdiskret PID-regulator (algoritme)

U = Uman + Up + U; + Uqg (23)
der
u, = Kce
Ui = Uj prev T (KC/TZ) tse (24)
Uqg = Kch (ef - ef,prev) /ts (25)
der
ey = (1= aa)esprev + age (26)
Tidsdiskret PI-regulator (algoritme)
U = Uman + Up + U; + Ug (27)
der
u, = Kce
U; = Uj,prev + (KC/TZ) tse (28)
Proporsjonalband
100 % 100 %
K, ‘" PB (29)
Alternative PID-parametre
K.
K. = ¢ 30
Ky= K., (31)
Reduksjon av P-spark
up = Ke (Wpr = Ymy) (32)
der w, = 0,3 (typisk).
Reduksjon av D-spark
Uq = Kch (wd'r — ymf)/f (33)

der wg = 0.
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Implementering av integratorbegrensning (anti windup) i PID-regulator

Integralleddet u; lases (oppdateres ikke) nar u ligger an til a bli stgrre enn ks eller mindre
enn Umin-

Revers- og direktevirkning i PID-regulator
e For prosessforsterkning Kprosess > 0, velg K. > 0, dvs. reversvirkning. <Positiv-positiv.>

e For prosessforsterkning Kprosess < 0, velg K. < 0, dvs. direktevirkning.
«Negativ-negativ.>

Ziegler-Nichols PID-innstilling

K. T; Td
P-regulator 0,5K, oo | 0
Pl-regulator | 045K, | 1% | 0
PID-regulator | 0,6K,, |2 [Z2="1
Relaxed Ziegler-Nichols PI-innstilling
K. T
Relaxed Ziegler-Nichols 0,25K., | 1,25,
Opprinnelig Ziegler-Nichols | 0,45K,, %
Kvasi Ziegler-Nichols PI-innstiling
K. = 045K (34)
5%
T, == 35
= 22 ()
Astrgm-Higglunds relémetode
1. Les av t,, D, og Dy fra eksperiment med av/pa-regulator.
2. Beregn kritisk forsterkning:
D
Kew = 1,27D—“ (36)

Y

3. Beregn PID-innstilling med Ziegler-Nichols-formlene eller Relaxed
Ziegler-Nichols-formlene med K., og t,.
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Good Gain-metoden

K.=08K.ca (37)
T; = 1,5t (38)
Prosessresponsmetoden
R
1
Ke= 2R, L (40)
T, =4L (41)

Ziegler-Nichols apen slgyfe-metode

R
Ry = (42)
0,9
K, = — 4
°T R,L (43)
T, = 3,3L (44)

PID-parameterstyring (gain scheduling)
PID-parametertabell:

(GS [ K. [T [Ty |
GSi | K., | T;, | 1y
GSy | K, | Ty, | Ty
GS; | Ko, | Th, | Ty

<

1

2

3

Typisk: Stykkevis konstant interpolering mellom PID-parametersettene.

Alternativt: Stykkevis lineser interpolering (her antatt to intervaller: GS1-GS2 og GS2-GS3 ):
K. = a2 - GS + b172 (45)
K. = a3 - GS + b273 (46)

Typisk ved tank med gjennomstrgmning F' [kg/s|:

Prosessens forsterkning o ya (47)
. 1

Prosessens tidskonstant o i (48)
1

Prosessens tidsforsinkelse o T (49)

GS=F (50)
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PI-innstilling ved midlende nivaregulering (averaging level control)
1. Spesifiser akseptabel Ahyax [m] for antatt AFin’maX[m?’ /s].

2. Innstilling av PI-nivaregulator:

AEH max
K, = — 2finmax 1
b (51)
Ahmax
T, =2A———— 52
AEn,maX ( )

PLS-programmeringssprak stgttet i Codesys

e Ladder (LD) — iht. IEC 61131-3-standarden

Function Block Diagram (FBD) — iht. IEC 61131-3

Structured Text (ST) — iht. IEC 61131-3

o InstruetionList{(H) - tatt ut Codesys og fra IEC 61131-3
Continuous Function Chart (CFC) — er ikke definert i IEC 61131-3

Sequential Function Chart (SFC) — iht. IEC 61131-3-standarden

Typer POU (Program Organization Units)
e PRG (programmer), som kjgres syklisk eller hendelsesstyrt.

e FUN (funksjoner), som ikke har intern hukommelse, dvs. at verdien av interne
FUN-variabler ikke lagres mellom programsykler. Kan brukes for programmering av
f.eks. formler.

e F'B (funksjonsblokker), som har intern hukommelse for lagring av interne variabler, dvs.
at verdien av interne FB-variabler kan lagres mellom programsykler. Kan brukes for
programmering av formler. Ma brukes ved programmering av algoritmer der
variabelverdier skal huskes mellom hver programsyklus.

Logiske funksjoner

AND:
in_1 in_2 out_1 :=in_1 AND in_2;
TRUE | TRUE TRUE
TRUE | FALSE FALSE
FALSE | TRUE FALSE
FALSE | FALSE FALSE
OR:
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| inl | in2 [outl:=in1OR in2

TRUE | TRUE TRUE
TRUE | FALSE TRUE
FALSE | TRUE TRUE
FALSE | FALSE FALSE
NOT:
in_1 out_1 := NOT in_1;
TRUE FALSE
FALSE TRUE

Matematisk modellform for dynamiske systemer

Differensiallikning, som beregner den tidsderiverte av systemets tilstand:
/
a' = f(")

Integrallikning, som beregner tilstanden:

Prinsipper for matematisk modellering

Massebalanse:

m’:ZFi
7

Energibalanse:

E'=) Q

Kraftbalanse (Newtons 2. lov for lineser bevegelse):

mv’ = my” = Z F;
i

Momentbalanse (Newtons 2. lov for rotasjonsbevegelse):

Jw'=J0"=> "7

Sammenheng mellom moment, armlengde og kraft:

T=FL

Sammenheng mellom buelengde, radius og vinkel:

b=ar
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Momentan elektrisk effekt:

2 u?
P=wui=Ri* = — 61
ul 7 7 (61)
Midlere elektrisk effekt: )
U,
Pmidlere = eferff =R Ieff2 = eTff (62)
Modellblokkdiagrammer
Anta modellen
a'(t) = f(°) (63)

() = 2(0) + /0 2/(0) do (64)

Opptegning av blokkdiagram: Start med a tegne en integratorblokk for (64). Deretter tegnes
blokkene som beregner z’, som er inngangen til integratorblokken.

Tilstandsrommodell
' = f(xudp) = f() (65)
y = g(zu,dp) =g(-) (66)

der z er tilstandsvektor (og tilsvarende for de andre variablene):

1
x = = [x1,- -, zn)” (67)
Ln
Lineszer tilstandsrommodell
' = Az + Bu (68)
y=Cx+ Du (69)
Linearisert tilstandsrommodell
Az’ = or A + or Au (70)
oz |, ou |
~—~—
A B
=AAx+ BAu (71)
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Simuleringsalgoritme basert pa Eulers foroverdmetode

e Gitt startverdier for z, u, d og p. Systemets initialtilstand xi,;; er startverdien for x.

Tilstandsbegrensning;:
HARS [xmina xmax] (72)

x slik den foreligger pa dette punktet i algoritmen, er simulert tilstand.

Hvis aktuelt: Endre u, d og p.

Hvis aktuelt: Lagre x, u, d og p i array el.l.

e Tidsderivert:
2 = f(xu,d,p) (73)
e Prediksjon:
Tnext = T + tsx/ (74)
e Tidsindeksskift:
T = Tnext (75)

Ev. tidsforsinkelser kan realiseres med en array der elementene i prinsippet flytter ett element
mot hgyre ved hvert tidsskritt. Den forsinkede variabelen tas ut som siste element i arrayen.
Ikke-forsinket variabel settes inn som forste element. Arrayens lengde er Ny = t4/ts.

Transferfunksjon
H) = ) (76)
eller
Y(s) = H(s)U(s) (77)

Tidsrespons beregnet med invers Laplacetransformasjon

y(t) =LY (s)} = L7 {H(s)U(s)} (78)
Sluttverditeoremet
Ys = lig[l)s'Y(s) = ;ig(l]&H(s)U(s) (79)

10
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Fra tilstandsrommodell til transferfunksjon

Gitt lineser tilstandsrommodell:

2’ = Az + Bu (80)
y=Cx+ Du (81)
Transferfunksjon fra U(s) til Y (s):
H(s) = Y(s) =C(sI-A)"'B+D (82)
U(s)
Integratormodell
Differensiallikning:
y = K;u (83)
Transferfunksjon:
Y(s) K;
H(s) = = — 84
0= 705 (34)
Sprangrespons:
y(t) = KAyt (85)
Tidskonstantmodell
Differensiallikning:
tcy/ =Ku—y (86)
Transferfunksjon:
Y (s) K
H(s) = = 87
)= T0) "t s 1 (87)
Sprangrespons:
y(t) = KAy, (1 — e te) (88)
Tidsforsinkelse
y(t) = u(t —tq) (89)
Transferfunksjon:
Y(s) —t
H(s) = = e ¥ 90
)= 79 =* (90)
Padéapproksimasjon:
1— 2_ ... n
—tys kis + kos kns (91)

Tl 4 ks + kos2 4 - kpst

11
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Tidskonstant + tidsforsinkelse + prosessforstyrrelse

tey(t) = Kyu(t — ta) + Kqd(t) — y(t) (92)

2. ordens system

Y(S) Kw02

(93)

Poler til underdempet system:

p1, p2 = —Cwo £ v 1 — (2 wo (94)
Re Im

Responstid til seriekoplede tidskonstantsystemer

tosy ~ ZtCi (95)
i

Modelltilpassing

Modellparametrene p beregnes som den optimale lgsningen til optimeringsproblemet
min f
p=[p(1),p(2),-..p(r)]

Modellparametrene p er optimeringsvariablene. fer objektfunksjonen:

N
f=SSPE=) ¢’ (96)
k=1
e er prediksjonsfeilen:
€k = Yobs,k — Ypred,k (97)

Yobs,k €T observerte (typisk malte) . Ypred,k kan veere simulerte y pa basis av p.

Simulering av reguleringssystemer

Hele reguleringssystemet simuleres. Mulige simuleringsplattformer:
e Simuleringsalgoritmer implementert i elementaer programkode (f.eks. Python, Matlab)

e Modellblokkdiagrammer der blokker kan vaere programmert med elementeer kode (f.eks.
Codesys, OpenModelica, LabVIEW, Simulink)

e Transferfunksjonsmodeller (f.eks. Pythons Control-pakke, Matlabs Control System
Toolbox)

12
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Beregning av statiske responser i reguleringssystemer

Alle variabler i reguleringssystemets modell antas konstante, og alle tidsderiverte settes derfor

lik null. Du kan «bli kvitt> integraler i modellen ved & tidsderivere hele modellen. Den

resulterende statiske modellen er en algebraisk statisk modell som du kan lgse mhp. variabelen

du skal beregne den statiske responsen i.

Transferfunksjonsmodeller av reguleringssystemer

PID-regulatorens transferfunksjon:

U(s) K, K. Tys
H = =K. 4+ S 4 9 98
(5) = F5) ~ Kt T, tras+ 1 (98)
Pl-regulatorens transferfunksjon:
U(s) K. K/ys
H = =Kc+—+——
(8) = Fimy = Ket 7o, tras+ 1 (99)
Slgyfetransferfunksjonen:
Hi(s) = Hp(s)Hc(s) (100)
Fglgetransferfunksjonen:
Y H,(s)H H
Ht(s) — (S) — P(s) C<S> — l(S) (101)
R(s 1+ Hy(s)He(s) 1+ H(s)
Sensitivitetstransferfunksjonen:
1 1
Hy(s) = = 102
5(5) 1+ Hi(s) 14 Hp(s)Hc(s) (102)
Tolkninger av Hg(s):
e Transferfunksjon fra referanse til reguleringsavvik:
E(s)
H = 103
S (5) R(S) ( )
e Forholdet mellom reguleringsavvik for regulert prosess og uregulert prosess:
Ed regulert (3)
Hy(s) = —————= 104
S( ) Ed,uregulert(s) ( )
Frekvensresponsanalyse
Amplitudeforsterkning:
A
Alw) = 2 (w) (105)
Ay
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Faseforskyvning:
d(w) = —w - At [rad] (106)
Desibel:
A =20log;, A dB (107)
Frekvensresponsen beregnet fra transferfunksjon:
Aw) = |H(jw)| (108)
¢(w) = arg H(jw) (109)
Definisjon av —3 dB-bandbredde w,:
[H ()| = - (110)
we)| = —
JWe V2
—3 dB-bandbredde til tidskonstantsystem:
1
We = — (111)
te
Frekvensresponsanalyse av reguleringssystemer
Analysen baseres pa Hs(jw), Hi(jw) og/eller H;(jw).
e God referansefglging:
[H(jw)| < 1, [Hy(jw)| = 1, [Hi(jw)| > 1 (112)
e Darlig referansefglging:
[Hs(jw)| ~ 1, |Hi(jw)| <1, [Hi(jw)] <1 (113)
Alternative bandbreddedefinisjoner til reguleringssystemer:
® (Wi
|Hy(jwi)| = 1/V2 ~ 0,71 = -3 dB (114)
® Wy
[Hy(jw)| =1=0dB (115)
o w;:
|Hy(jws)| =1—-1/v2~0,29~ —11 dB (116)

14
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Eksperimentell stabilitetsanalyse av reguleringssystemer

Eksperimentell forsterkningsmargin:

GM = AK, (117)
Eksperimentell fasemargin:
At
PM = =%% . 360° (118)
tp
Akseptable stabilitetsmarginer:
1,7 < GM <40 (119)
30° < PM < 45° (120)

Stabilitetsanalyse av dynamiske systemer

Stabilitetsdefinisjoner basert pa stasjonser impulsrespons h(oo):

e Asymptotisk stabilt system

h(o0) =0 (121)
e Marginalt stabilt system:
0 < |h(o0)] < o0 (122)
e Ustabilt system:
|h(o0)] = £00 (123)

Stabilitetsanalyse basert pa polplasseringen til systemets transferfunksjon:
o Asymptotisk stabilt system: Alle polene ligger i venstre halvplan.

e Marginalt stabilt system: En eller flere poler ligger pa imagineeraksen. Disse polene ma
vaere ulike, ellers er systemet ustabilt.

e Ustabilt system: Minst én pol ligger i hgyre halvplan. Systemer med flere poler pa
imaginaeraksen er ogsa ustabile.

Stabilitetsanalyse av tilstandsrommodeller: Bytt ut <pols> ovenfor med <egenverdi> siden
systemets egenverdier er de samme som systemets poler. Egenverdiene (polene) kan beregnes
som s-lgsningene til den karakteristiske likning;:

a(s) =det(s] —A) =0 (124)

Stabilitetsanalyse av reguleringsslgyfer

Analyse basert pa poler baseres pa polplasseringen til folgetransferfunksjonen Hy(s).
Analyse basert pa frekvesresponsanalyse:

e Nyquists stabilitetskriterium:

15
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— Asymptotisk stabilt system: w. < wigp.
— Marginalt stabilt system: w. = wigp.
— Ustabilt system: w, > wigo.

e Bode-Nyquists stabilitetskriterium:

GM >0 dB =1 og dessuten PM > 0° (125)
Tidsdiskrete modeller
Eksempel pa differenslikning:
Yk = —a1Yk—1 — QoYk—2 + boug—2 (126)
Tidsdiskret tilstandsrommodell:
Try1 = fa (Th,uk,dr,pr) (127)
Y = ga (Tk,wk,d,pr) (128)
Lineaer tidsdiskret tilstandsrommodell:
Tpy1 = Agy + Bauy (129)
vk = Cazy + Dguy (130)
Euler forover-diskretisert tilstandsrommodell:
Tp1 = X + ts f (xk, ug) (131)
z-transferfunksjon:
H(z) = 58 (132)

Stabilitetsegenskapene til tidsdiskrete systemer

e Asymptotisk stabilt system: Alle polene til transferfunksjonen ligger innenfor

enhetssirkelen.

e Marginalt stabilt system: En eller flere poler ligger pa enhetssirkelen. Disse polene ma

vaere ulike, ellers er systemet ustabilt.

e Ustabilt system: Minst én pol ligger utenfor enhetssirkelen. Systemer med flere poler enn

én pa enhetssirkelen er ogsa ustabile.

Stabilitetsanalyse av tidsdiskret tilbakekoplet system

Analysen baseres pa polplasseringen til fglgetransferfunksjonen Hy(z).

16
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Stokastiske signaler

Middelverdi:
1 N—1
k=0
Varians:
1 N—1
Var(z) = N_1 [z, — My
k=0
Standardavvik:

o =/ Var(x)

Autokovarians (med null tidsforskyvning):

Ry (0) = E{[rs0 — ma][zr — ma]} = E{lay, — ma]*} = Var(z)

Autokovariansen R, (L) estimert fra dataserie {z}:

N-1-|L
1 IL|

= NI Z [Trtrr — me][Tre — my]
k=0

Ry(L)

Farget stgy vha. EWMA-filter (tidsdiskret tidskonstantfilter):

x5 =(1—a)zsprer +ax

Endring av stokastisk signal gjennom et skalart statisk system,

yr = Gup + C
e Middelverdi:
my = Gmy, + C
e Varians;
05 = G2
e Standardavvik:
oy = Go,

Analysen baseres pa polplasseringen til fglgetransferfunksjonen Hy(z).

(133)

(134)

(135)

(136)

(137)

(138)

(139)

(140)

(141)

(142)

17
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Observerbarhetstest

Systemet
Tr+1 = Agxr + Baug (143)

Yk = Cazg + Dguy, (144)

er observerbart hvis og bare hvis observabilitetsmatrisen

Cq
CaAd
Mops = : (145)
Cy A7
har rang n.

Stasjonaert Kalmanfilter
Initialisering: , 0 = Zinit (146)
Initialisering: P = P init (147)
Predikert maling: y, = ¢ (xp) (148)
Innovasjonsvariabel: e =y, — v, (149)
Male-korrigert tilstandsestimat (brukes som estimat): x. = x, + Kge (150)
Modell-predikert tilstandsestimat: =, next = f (¢, w) (151)
Tidsindeksskift: z, = Zp next (152)
Tidsindeksskift: P, = Pp next (153)

Den stasjonaere Kalmanforsterkningen K, kan beregnes f.eks. med dlge-funksjonen i Pythons
Control-pakke:
(Ks, Pcorr, E) = control.dlge(Ad, G, Cd, Q, R) (154)

Modell for augmentert tilstand i Kalmanfilter

Modell av augmentert tilstand som representerer antatt konstant parameter eller
prosessforstyrrelse som skal estimeres:
=0 (155)

a

Utvikling av foroverkopler
1. Formuler en prosessmodell som skal danne grunnlaget for foroverkoplingen.
2. Sett referansen (r) inn for prosessutgangen (y) i prosessmodellen.

3. Lgs prosessmodellen fra punkt 2 mhp. padraget u, og kall u for ug. Formelen for ug er
foroverkopleren.

18
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SIMC-innstilling av PI-regulator for <integrator med tidsforsinkelses-prosess

K, = 1
2Kty (156)

T, = 4ty (157)

SIMC-innstilling av PI-regulator for «integrators-prosess

1
K. = 158
¢ Kitcc ( )
T; = 2te (159)
SIMC-innstilling av PI-regulator for nivaregulering
1. Anta AFj, max, 0g spesifiser akseptabel Ahpax.
2. Beregn t..:
AAhmax
tee = ——— 160
“ AFout,max ( )
3. Bruk den beregnede t.. til innstilling av nivaregulatoren:
A
K.=— (161)
tCC
T; = 2t (162)

SIMC-innstilling av PI-regulator for «tidskonstant med tidsforsinkelse>-prosess

le
K.=— 1
= oKis (163)
T; = minimum (., 4t4) (164)
SIMC-innstilling av PI-regulator for <«dobbelintegrator>-prosess

1

Ki=—— 165

¢ 2Kn t002 ( )

T; = 8tee (166)

Ty = 2tee (167)

19
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LQ-regulator

u(t) = —G(t)x(t) (168)

Stasjoneer verdi av regulatorforsterkningen GG kan beregnes med f.eks. lqr-funksjonen i Pythons
Control-pakke:
(Gs, S, E) = control.lqr(A, B, Q, R) (169)

MPC

MPC-ens padrag beregnes som den optimale lgsningen til optimeringsproblemet

min.J (170)
Upred
der J er objektfunksjonen:
k+N
J = Z [eiTCeei + ugTCu/uli (171)
i=k

Predikert avvik e kan beregnes som simulert avvik:

€k = Tk — Yk,pred (172)

der yi prea beregnes fra prosessmodellen med initialtilstand fra sensorer og/eller fra et
Kalmanfilter.
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