Can you make a Python program with scikit learn which adapts a deep NN model to the time series of data in time interval from 30 to 48 sec in the following csv file? https://techteach.no/control/python/dcmotor_v01.csv In the file: Time step is 0.05 s. # Column 0: t [s] (time in seconds) # Column 1: r [krpm] (disregard in modeling) # Column 2: S [krpm] (output) # Column 3: u [V] (input) # Column 4: L_meas [V] (disregard in modeling) # Column 5: L_estim [V] (disregard in modeling) Please load the data into Python workspace with numpy loadtxt, not pandas. You can use 60 % of data for training, 20 % for testing (validation), and 20 % for recursive predictions (simulations). Please plot as follows: subplot(2,3,1): train S and predicted S. subplot(2,3,2): test S and predicted S. subplot(2,3,3): simulated (recursive prediction) S, and actual S. subplot(2,3,4): training input u. subplot(2,3,5): test input u. subplot(2,3,6): input u used for simulation. In all subplots: time (t) in sec should be along the abscissa axes.