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Preface

This book gives an introduction to PID control of dynamic systems. The
PID controller (PID = Proportional Integral Derivative) is the dominating
(most frequently used) controller function in industry. This book can be
used as a text-book in control courses in B.Sc. studies and in M.Sc.
studies. It may also serve as a reference for engineers working in the
industry.

The book describes the theory, but does not (except in a few cases)
describe computer tools for analysis and design. However, lots of
supplementary material are available from the homepage of the book on
http://techteach.no. This material is in the form of documents which
describes how analysis, simulation, and design of dynamic systems can be
performed in MATLAB, Octave1, SIMULINK, and LabVIEW. From this
homepage there is also a link to KYBSIM (http://techteach.no/kybsim)
which is a library of freely available simulators. Many of these simulators
are used in this text book.

To benefit from all parts of the book, you must be familiar with systems
theory of continuous-time dynamic systems — specifically basic
mathematical modeling, differential equations, transfer functions, block
diagrams, first and second order systems and frequency response.2

The theoretical tools for analysis and design described in this book is for
continuous-time feedback control systems. The theoretical tools for
analysis and design of discrete-time (sampled) feedback systems are quite
similar to tools for continuous-time systems, and they are described in
documents available for free on http://techteach.no.

1Octave is a free mathematical tool, quite similar to MATLAB, with lots of in-
built function categories, like the toolboxes in MATLAB. Octave is available from
http://www.octave.org.

2These topics are included in the textbook Dynamic systems — modelling, analy-
sis and simulation by F. Haugen, Tapir Academic Publisher, 2004. (Information on
http://techteach.no.)
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A textbook covering advanced control topics building on the present book
will be available during 2004. (Information is given on
http://techteach.no.)

The book focuses on topics which I have found practically important. I
have tried to describe the material in a simple and understandable way. I
will appreciate suggestions and comments about both the presentation in
the book and the choice of topics (e-mail to finn@techteach.no).

A comment about mathematical notation used in the book: Given a
function of time, say f(t). Taking the Laplace transform of f(t) yields, say
F (s). Different symbols are used since they are different functions.
However, because it is very convenient to do it, I have chosen to use the
same symbol for both the time function and the corresponding Laplace
transform in this book. So I write f(s) for the Laplace transform of f(t).
It is my experience that this style of notation does not cause problems or
misunderstandings.

The book is written with the text formatting program Scientific Word.
LabVIEW, MATLAB, and SIMULINK are used as computer-based tools
for analysis and simulation. Most simulations are performed with
LabVIEW.

An exercise book with solutions is available during 2004 (information will
be given on http://techteach.no).

A few words about my background: I have a M.Sc. degree (1985) in
Engineering cybernetics from the Norwegian Institute of Technology. I
have been doing teaching, writing, programming, and consulting since
then. I have now a teaching position at the Telemark University College. I
also work in my one-man company TechTeach.

I want to thank my family for giving me good working conditions while
writing this book.

FinnHaugen

Skien, Norway, August 2004



Chapter 1

Introduction

1.1 The importance of control

Control engineering is a fascinating and important field. In short, control
engineering is the methods and techniques used in technical systems
having the ability of automatically correcting its own behaviour so that
specifications for this behaviour are satisfied. The following process
variables are typical objects of control:

• Level or weight (mass)
• Pressure
• Temperature
• Flow
• pH
• Speed
• Position

Due to control engineering, a supply ship will stay at or close to a specified
position without anchor; a painting robot paints accurately and smoothly
on a car body; The temperature and the composition in a chemical reactor
will follow the specifications defined to give an optimal production; A
turbine generator produces AC voltage of the specified frequency of 50
Hertz; The pen of an X-Y-plotter draws (follows) a varying voltage signal

1
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with great precision; The tool of a rotational cutting machine cuts the
work-pieces with high precision; The emission of ammonia from a fertilizer
producing factory is kept within limits established by law; The pH value
and the composition of Nitrogen, Phosphate and Potassium in the fertilizer
which is sent to the market lies between certain quality limits. And many
more examples can be given.

Control engineering may be of crucial importance for the following
applications:

• Product quality: A product will have acceptable quality only if the
difference between certain process variables and their setpoint values
— this difference is called the control error — are kept less than
specified values. Proper use of control engineering may be necessary
to achieve a sufficiently small control error, see Figure 1.1.

t t

Max
limit

Min
limit

Without control or with
poor control

With good control

Setpoint, ySP

Process output, y

Less error!
(Smaller variance)

Control error,
e = ySP - y

Figure 1.1: Good control reduces the control error

One example: In fertilizers the pH value and the composition of
Nitrogen, Phosphate and Potassium are factors which express the
quality of the fertilizer (for example, too low pH value is not good for
the soil). Therefore the pH value and the compositions must be
controlled.

• Production economy: The production economy will be
deteriorated if part of the products has unacceptable quality so that
it can not be sold. Good control may maintain the good product
quality, and hence, contribute to good production economy. Further,
by good control it may be possible to tighten the limits of the quality
so that a higher price may be taken for the product!
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• Security: To guarantee the security both for humans and
equipment, it may be required to keep variables like pressure,
temperature, level, and others within certain limits— that is, these
variables must be controlled. Some examples:

— An aircraft with an autopilot (an autopilot is a positional
control system).

— A chemical reactor where pressure and temperature must be
controlled.

• Environmental care: The amount of poisons to be emitted from a
factory is regulated through laws and directions. The application of
control engineering may help to keep the limits. Some examples:

— In a wood chip tank in a paper factory, hydrogen sulfate gas
from the cookery is used to preheat the wood chip. If the chip
level in the tank is too low, too much (stinking) gas is emitted
to the atmosphere, causing pollution. With level control the
level is kept close to a desired value (set-point) at which only a
small amount of gas is expired.

— In the so-called washing tower nitric acid is added to the
intermediate product to neutralize exhaust gases from the
production. This is accomplished by controlling the pH value of
the product by means of a pH control system. Hence, the pH
control system ensures that the amount of expired ammonia is
between specified limits.

— Automatically controlled spray painting robots avoid humans
working in dangerous areas. See Figure 1.2.

Figure 1.2: Spray painting robot (IRB580, ABB)

• Comfort:
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— The automatic positional control which is performed by the
autopilot of an aircraft to keep a steady course contributes to
the comfort of the journey.

— Automatic control of indoor temperature may give better
comfort.

• Feasibility: Numerous technical systems could not work or would
even not be possible without the use of control engineering. Some
examples:

— An exothermal reactor operating in an unstable (but optimal)
operating point

— Launching a space vessel (the course is stabilized)

— A dynamic positioning system holds a ship at a given position
without an anchor despite the influence of waves, wind and
current on the ship. The heart of a dynamic positioning system
is the positional control system which controls the thrusters
which are capable of moving the ship in all directions. See
Figure 1.3.

Figure 1.3: A dynamic positioning system holds a ship at a given position
without an anchor despite the influence of waves, wind and current on the ship
(Kongsberg Simrad, Norway)

• Automation: Due to automatic control the operators can perform
various tasks in stead of continuously controlling the process, for
example perform maintenance or just resting.
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1.2 Software tools for analysis and design of
control systems

Some typical tasks for software tools for analysis and design of control
systems are:

• Analysis of control systems:

— Calculating poles and eigenvalues to observe dynamic properties
and stability properties.

— Calculating frequency response to observe dynamic properties in
the term of bandwidth and stability properties.

— Simulating control systems to observe

∗ dynamic properties,
∗ control system robustness against noise and parameter
variations,
∗ implications of nonlinear elements in the control loop, as
saturation, hysteresis, etc.

• Design of control systems:

— Calculation of controller parameters on basis of a mathematical
model of the control system from specifications to time
response, frequency response or stability.

— Tuning controller parameters by applying an experimental
method in a simulator.

— Trying out various control system structures and control
methods on a simulator.

MATLAB1 with Control System Toolbox [8] and SIMULINK covers the
above items. Octave2, which is a freely available MATLAB-like computer
tool for numeric analysis and visualization, includes a set of functions
which are similar to the functions of Control Toolbox in MATLAB.
LabVIEW3 with Control Design Toolkit, PID Control Toolkit and
Simulation Module also supports the items above. In addition, LabVIEW
has powerful tools for developing graphical user interfaces, and has
comprehensive I/O-support (Input/Output) to physical processes. (On the

1Produced by The MathWorks
2http://www.octave.org
3Produced by National Instruments
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homepage of this book you can find documents and other files which
describes using MATLAB, SIMULINK and LabVIEW to such analysis and
design, including simulation.)

Computer tools as described above assumes that a mathematical model of
the process to be controlled, is available. To develop a precise physics
based models for industrial processes is a demanding task. Months of work
may be required, except for the most simple processes, as the wood-chip
tank described in Example 2.3 (page 19). However, tools are available, as
MATLAB’s System Identification Toolbox and LabVIEW’s System
Identification Toolkit, for development of input-output-models in the form
of transfer functions or state-space models from experimental data, and
these models can be used for analysis and design, as described above. Note
that for teaching and training testing (trial) purposes simplified models
can be very useful.

There are commercially available simulator for processes, including control
systems, based on precise models of processes as heat exchangers, reactors,
and columns. The instrumentation diagram of the process constitutes the
user interface. Examples of such simulators are Hysys 4 and ASSETT5.

1.3 A short history of control

Back in 2000 B.C. the Babylonians constructed automatic watering
systems based on level control. The old Greeks constructed level control
systems for water clocks and oil lamps. The weight control system shown
in Figure 1.4 seems to be an automatic bartender.

In the fifteenth and sixteenth century there were made temperature control
systems for incubators (heating boxes for eggs), pressure control systems
for boilers, and position control systems for wind mills.

In 1788 James Watt constructed a speed control system for a steam
engine, see Figure 1.5. Watt’s speed control system was based on feedback
from measured rotational speed to the opening of the steam valve via a
centrifugal controller, which works as follows: The larger the speed, the
smaller the valve opening (and steam supply), and vice versa. In this way
the speed was held at or near a constant set-point value, despite the
disturbances as variations in the steam pressure and changing load torques
acting on the engine shaft. Watt’s speed control system is regarded as the

4Produced by AspenTech
5Produced by Kongsberg Simrad
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Figure 1.4: A weight control system from the Antics. An automatic bartender?
[12]

first industrial application of control engineering.

Watt’s control system was not based on any accurate mathematical
analysis, but on experiments and trial-and-error. In 1868 James C.
Maxwell made a mathematical analysis of the speed control system, and
this analysis may be regarded as the stating point of the theoretical
methods for analysis and design of control systems.

The field of control engineering and control theory has had an enormous
development since 1930. Mechanical and/or pneumatic controllers were
developed for the process industry. The first controllers has proportional
action only, and later integral and derivative action was implemented. The
controller was typically a physical unit mounted on the control valve.
There was lack of good methods for tuning the controller parameters.
However, this problem was solved by Ziegler and Nichols [20] around 1940.
Their controller tuning methods remains among the very best methods
available today, and their two methods are described in this book. Their
work increased the availability of control engineering in the process
industry. Mr. Ziegler was also involved in the first commercial PID
controller (Fulscope 100 produced by Taylor Instruments & Co. at the end
of the nineteen-thirties).

The big steps, or the new directions, in the control theory have typically
been initiated by practical problems which had to be solved. One example
is the development of feedback electronic amplifiers with Bell Telephone
Lab. in USA in the thirties which led to the frequency response methods
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Figure 1.5: Principal diagram of James Watt’s speed control system. (Based
on [25].)

for analysis and design of feedback amplifiers and feedback control
systems. One other example is the development of control systems for
radar systems and artillery under The Second World War. The
development of the space technology in the Soviet Union and the USA in
the fifties and the sixties raised problems which were attempted to be
solved by optimal control which is formulated by using state-space
methods. (A state-space model is a set of first order differential equations
describing the system.) In an optimal control system there is an optimal
balance between the “amount” of control power used and the control error.
The optimal solution minimizes a certain optimal criterion.

The development of auto-pilots required adaptive controllers as there was a
need for control systems which adapted to the varying dynamics of the
aeroplane during the flight. The first adaptive controllers were gain
scheduling controllers, in which the PID parameters are found from a
table-lookup in a table or schedule of precalculated PID parameter values.
In the 1980’s the first generic commercial adaptive PID controllers were
introduced. In these adaptive controllers a process model is estimated
continuously, and the PID parameters are automatically adjusted from this
model.

In the late 1980’s and the 1990’s there were much interest in fuzzy control.
Fuzzy control is available in several commercial controllers. The theoretical
basis stems from the fuzzy-logic developed by Lotfi Zadeh around 1965.
Fuzzy control is particularly suited for processes where the knowledge
about how to control it is in the form of an empirically developed set of
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rules.

From the mid 1980’s model-based predictive control or MPC has been in
the focus of the research of control methods. Several vendors now offer
MPC-modules, and MPC has been applied in various industries. MPC is
based on a mathematical process model, which can be in the form of a
transfer function model or a step-response model or a state-space model.
The models used in MPC include the physical limits of the process to be
controlled. The MPC algorithm calculates a future sequence of the control
variable from an criterion which typically is a criterion containing
quadratic terms of the control variable and the control error. From this
sequence the first element is used to actually control the process. The
MPC algorithm is executed regularly with a fixed time-step. MPC has
proven to give good control of difficult processes, as nonlinear multivariable
processes with dead-time. We may say that MPC is the next most
important control method in the industry today (next to PID control).
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Chapter 2

Introduction to feedback
control

2.1 Introduction

I this chapter the control problem is defined, and the principle of feedback
is introduced as the most important solution to the control problem.
Furthermore, standard industrial controller functions based on feedback
are described. These are versions of the PID controller. The on/off
controller is also introduced. Many practical aspects of the PID controlled
are described. The chapter also shows how control systems can be
documented in process and instrumentation diagrams — P&I-diagrams or
just P&IDs — and block diagrams.

2.2 Terminology. Formulation of the control
problem

Control engineering solves a control problem. We will soon formulate it,
but first we need to define the terminology which will be used.

Figure 2.1 shows a general block diagram of the process, which can be of
material, mechanical, thermal or electrical type (concrete examples follows
soon). Below are definitions of the quantities shown in Figure 2.1.

• The process is the physical system which is to be controlled.

11
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Process
y

v

u
Process output variableControl variable

Disturbance

Figure 2.1: Block diagram representation of a process with input and output
variables

Included in the process is the actuator, which is the equipment with
which (the rest of) the process is controlled.

• The control variable or the manipulating variable is the
variable which the controller uses to control or manipulate the
process. In this book u is used as a general symbol of the control
variable. In commercial equipment you may see the symbol MV
(manipulating variable).

• The process output variable is the variable to be controlled so
that it becomes equal to or sufficiently close to the setpoint. In this
book y is used as a general symbol of the process output variable. In
commercial control equipment PV (process variable or process value)
may be used as a symbol.

The process output variable is not necessarily a physical output from
the process! One example: In a heat exchanger where the
temperature of the product flow is to be controlled, the temperature
— and not the product flow — is the process output variable.

• The disturbance is a non—controlled input variable to the process
which affects the process output variable. This influence is
undesirable, and the controller will adjust the control variable to
compensate for the influence. In this book v is used as a general
symbol for the disturbance.

Above, the control variable, the process output variable and the
disturbance were assumed to be scalar values. In general, however, there
may be several of these variables, most typically: More than one
disturbance.

To formulate the control problem, we need a few more definitions:

• The setpoint or the reference is the desired or specified value of



Finn Haugen: PID Control 13

the process output variable. The general symbol ySP will be used in
this book.

• The control error is the difference between the setpoint and the
process output variable:

e = ySP − y (2.1)

Now let us formulate:

The control problem:

Adjust the control variable u so that the control error e is within acceptable
limits.

“Within acceptable limits” typically means that the steady-state or static
control error, es, is zero:

es = lim
t→∞e(t) = 0 (2.2)

The static control error is the error when all variables have (converged to)
constant values.

In practical control systems there are random noise and disturbances
acting on various parts of the system, causing the control error to fluctuate
randomly around its mean value, see Figure 2.2. The requirement es = 0

Figure 2.2: In practical control systems the control error fluctuates more or less
randomly around its mean value.

then must be interpreted as zero mean value of e. In most of the examples
of control systems described in this book, the system is assumed to be
noise-free. However, consequences of random measurement noise in control
systems is treated in Section 2.7.3.

The present value of the process output variable y defines the operating
point of the process, for example water level of 3.2 meters or product
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temperature of 150◦C. If y is equal to ySP , we say that the process is in
the specified operating point. Usually a specific operating point is
steady-state which means that all process variables have constant values.
If necessary, the control variables and the disturbances can also be
included in the specification of an operating point.

2.3 Solutions to the control problem

2.3.1 Introduction

The control problem is about finding the value of the control variable u so
that the control error e becomes sufficiently small. Two ways to try to
solve the control problem are as follows:

• Using a constant control signal, independent of the present value of
the control error.

• Using a control signal which is continuously adjusted as a function of
the control error.

These two solutions are described in more detail in the following sections.

There is actually a third way to control a process: By continuously
calculating the control signal from a mathematical model of the process to
be controlled. This control method is however not easy to use in practice
since an accurate model expressing the dynamics of the process is not
easily available for most processes. The method is called feedforward
control, and it is described in Section 9.1.

2.3.2 Control using a constant control signal

Using a constant control signal is the simplest way to control a process.
Figure 2.3 shows a block diagram of the process controlled by a constant
control signal

u = u0 = constant (2.3)

The constant control signal u0 can be tuned in two ways:
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Process
y

v

u = u0

Constant 
control
signal:

Figure 2.3: Controlling the process with a constant control signal, u = u0.

• Experimentally: u0 is adjusted until we observe that the process
output variable y (or its measurement value) is approximately equal
to the setpoint ySP in steady-state, and then u0 is fixed at this value.

• Calculated from a mathematical process model: This
approach eliminates possibly expensive or time consuming
experiments on the physical process, but a mathematical process
model is required. The procedure is the same as for finding the
nominal control variable used in feedback control, which is described
— with a concrete example — in Section 2.6.2.

If there are no changes in the setpoint or in the disturbance, using a
constant control variable is an acceptable solution. But if the setpoint or
the disturbance varies — a common situation in real control systems — the
control error may be too large. A better, but more complicated solution is
feedback control which is described in Section 2.3.3.

Example 2.1 Controlling a process with constant control signal

Figure 2.4 shows typical responses for a simulated process controlled by a
constant control signal.1 The control variable u has a constant value,
u0 = 50. (The unit of this value is not important here, but it may be
percent.) Initially, the setpoint is ySP = 50 and the disturbance is v0 = 0.
The setpoint ySP is changed as a step from 50 to 70 (so the amplitude is
20) at t = 5, and the disturbance v is changed as a step from 0 to −20
(amplitude −20) at t = 15. Figure 2.4 shows a steady-state control error
different from zero (more specifically 20) after the step in ySP , and the
error increases to 40 after the step in v.

[End of Example 2.1]

1The simulated process is a first order system with time delay.
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Figure 2.4: Responses in a simulated process controlled by a constant control
signal. The control system is excited by a setpoint step and a disturbance step.

The solution of using a constant control variable is sometimes denoted
open loop control, since it can be regarded an alternative to closed loop
control which is described in Section 2.3.3). The solution can also be
regarded as static feedforward, cf. Chapter 9.1.

2.3.3 Control using error-based control signal (feedback
control)

The problem with control with constant control signal, cf. Section 2.3.2, is
that there is no adjustment of the control variable if there are changes in
the setpoint or in the disturbance. Consequently the control error can be
different from zero and maybe too large. We should expect better control,
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that is, smaller control error, if the control signal is calculated continuously
as a function of the control error. Since the error e = ySP − y, y must be
measured. Figure 2.5 illustrates this solution, which is error-driven control
or feedback control since there is a connection from the process output
variable y back to the control variable (the process input) u. The loop
which consists of process, sensor and controller is called the control loop.

Process

Sensor

v

y

Measured y

ySP ue
Controller

Feedback
from process output y 

to process input uControl
loop

Figure 2.5: Feedback control

The calculation of u takes place in the controller . The term controller here
means controller function, which usually is implemented in a computer
program in the control equipment. We will use the term controller for both
the control function and the physical equipment in which the control
function is implemented.

Example 2.2 Controlling a process with error-based control signal

Figure 2.6 shows typical responses in a feedback control system for a
simulated process (the process is the same as used in the simulation shown
in Figure 2.4).2 The control variable u has initially value 50, the setpoint
has value 50, and the disturbance has value 0. The control system is
excited by a step in the setpoint ySP from 50 to 70 (amplitude 20) at
t = 5, and with a step in the disturbance v from 0 to −20 (amplitude −20)
at t = 15. Figure 2.6 shows responses in the control variable u and in the
process output variable y. We see that the control variable changes value
when the control error e changes value (from zero), which takes place after

2The simulated process is a first order system with time delay. The controller is a
PI-controller.
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Figure 2.6: Typical responses in a feedback control system, where the control
variable is continuously calculated as a function of the control error. The control
system is excited by a setpoint step and a disturbance step.

the steps in ySP and v. In this simulated control system the static control
error, es, becomes zero both after the steps in ySP and after the step in v.
This is a large improvement compared to using a constant control variable,
cf. Example 2.1 and Figure 2.4.

[End of Example 2.2]

A control system which is capable of getting static control error for any
constant setpoint value and any constant disturbance value is said to give
perfect static control.
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2.4 Examples of control systems. Documentation
with P&I diagram and block diagram

Sections 2.3.2 and 2.3.3 indicated that the control error becomes smaller
with feedback control (error-based control) than with a constant control
variable. Therefore, feedback control is the main control principle. In the
following several examples of feedback control systems are described.
These are control system for a wood-chip tank, a heated liquid tank, a
motor, and a shower. The control systems, except the latter, are described
or documented in two ways:

• Process and instrumentation diagram or P&I diagrams
which is a common way to document control systems in the industry.
This diagram contains easily recognizable drawings and symbols of
the process to be controlled, together with symbols for the controllers
and the sensors and the signals in the control system. Appendix A
gives a small overview over some of the most frequently used symbols
in P&I diagrams. There are international standards for
instrumentation diagram, but you must expect that company
standards are used.

• Block diagram, which are useful in principal and conceptual
descriptions of control systems.

Example 2.3 Level control of a wood-chip tank

Figure 2.7 shows a P&I diagram and a block diagram of a level control
system for a wood-chip tank with feed screw and conveyor belt (which
moves with constant speed).3 Chip is consumed via a outlet screw in the
bottom of the tank. This outflow is a disturbance to the control system.
The chip level h shall be controlled to be equal or approximately equal to a
given level setpoint hSP .4 LT (Level Transmitter) represents the level
sensor. (The levels sensor is based on ultrasound: The level is calculated
from the reflection time for a sound signal emitted from a transmitter to a

3Such a tank is in the beginning of the process string in the paper mass factory Södra
Cell Tofte in Norway.

4A few words about the need for a level control system for this chip tank: Hydrogene
sulphate gas from the cookery is used to preheat the wood chip. If the chip level in the
tank is too low, too much (stinking) gas is emitted to the athmosphere, causing pollution.
With level control the level is kept close to a desired value (set-point) at which only a
small amount of gas is expired. The level must not be too high, either, to avoid overflow
and reduced preheating temperature increase.
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Figure 2.7: P&I diagram and block diagram of a level control system for a
wood-chip tank

receiver.) LC is the Level Controller. The setpoint is usually not shown
explicitly in an P&I diagram (it is included in the LC block). The
controller controls the chip level by manipulating the (rotational speed of
the) feed screw.

[End of Example 2.3]

Example 2.4 Temperature control of heated liquid tank

Figure 2.8 shows a P&I diagram and a block diagram of a temperature
control system for a heated liquid tank with continuous inlet and outlet
flow. This process can represent a heat exchanger or a heated reactor in a
process line. The temperature T is to be controlled. The temperature
setpoint is TSP . Important disturbances of the temperature control system
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are the inflow temperature Tin and the environmental temperature Te. The
controller controls the temperature by manipulating the power via the
control signal u to the power amplifier.
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TT
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Disturbance

Process
output

Control
variable

Disturbance

Disturbance

Figure 2.8: P&I diagram and a block diagram for a temperature control system
for a heated liquid tank

[End of Example 2.4]

Example 2.5 Speed control of motor

Figure 2.9 shows a P&I diagram and a block diagram of a speed control
system for a motor (electrical or hydraulic). The load can be a tool or a
conveyor belt. The rotational speed n is to be controlled. The speed
setpoint is nSP . The motor is influenced by a load torque TL, which is a
disturbance on speed control system. The controller controls the rotational
speed by manipulating the power supplied to the motor.
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LoadMotor

u [V] + Load torque
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Power
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Speed
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Controller
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ST

SC

Motor
with load

n

TL
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STSC

Disturbance
Control
variable

Process output

Figure 2.9: P&I diagram and a block diagram of a speed control system for a
motor. SC is speed controller. ST (Speed Transmitter) is speed transmitter.

[End of Example 2.5]

Example 2.6 Control of shower water temperature

When we adjust the position of the crane in the shower on the basis of the
hand measured temperature to obtain a pleasant water temperature, we
actually implement feedback temperature control. The hand is the sensor,
the brain is the controller, and the nerve signal which via the (other) hand
controls the crane position, is the control variable. Figure 2.10 shows the
process and a block diagram of the temperature control system.

[End of Example 2.6]

2.5 Function blocks in the control loop

We will now take a closer look at the function blocks in a control loop.
The level control system for the wood-chip tank, cf. Example 2.3, will be
used as a concrete example. Figure 2.11 shows a detailed block diagram of
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Figure 2.10: Feedback control of shower water temperature

the level control system. The block diagram contains a switch between
automatic mode and manual mode of the controller:

• Automatic mode: The controller calculates the control signal using
the control function (typically a PID control function).

• Manual mode: A human operator may adjust the control variable
directly on the equipment, with the control (PID) function being
inactive. The process is controlled by the manually adjusted control
variable signal u0 — the nominal control value . Typically, u0 can not
be adjusted in automatic mode. Its value is however included in the
control signal in switching from manual to automatic mode to ensure
bumpless transfer between the control modes.

The operator sets the controller into manual mode during controller
tuning or maintenance (you can then just not turn off the controller,
otherwise e.g. the reactor would stop).
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Figure 2.11: Detailed block diagram of the level control system

On commercial control equipment the operator typically can switch the
controller between automatic and manual mode e.g. via a physical button
or a menu on a screen.

The block diagram in Figure 2.11 contains scaling blocks for calculating
the signals in proper units. Let us look at some of the blocks.

• Sensor or measurement function: The relation between the
process output variable y and the physical sensor signal ym1 can be
expressed by the sensor or measurement function fsensor:

ym1 = fsensor(y) (2.4)

The sensor function is in most cases linear and can then be written
on the form:

ym1 = Km1(y − y0) + ym10| {z }
fsensor(y)

(2.5)

where Km1 is the measurement gain and y0 is the value of the
process signal y which gives the measurement value ym10

. Figure 2.12
illustrates (2.5).
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Figure 2.12: The sensor or measurement function ym1 = Km1(y − y0) + ym10

Usually the physical measurement signal ym is a voltage signal or a
current signal. For industrial applications a number of standard
signal ranges of measurement signals are defined. Common standard
ranges are 0 – 5V, −10 – +10V and 4 – 20mA.

Example (the wood-chip tank): Assume that the measurement signal
range is 0 – 5V, and that this range corresponds to 0 – 15m
(linearly). Thus,

y0 = 0m, ym10
= 0V, Km1 =

5− 0m
15− 0V ≈ 0.33V/m (2.6)

• Scaling of measurement signal: It is quite usual that the
measurement signal is in unit % and that the %-value is used in the
control function. The measurement signal ym1 in unit V is scaled to
a corresponding signal ym in unit % by the scaling function fsy.
With a linear fsy,

ym = Ksm(ym1 − ym10
) + ym0| {z }

fsm

(2.7)

Commercial control equipment contains functions for scaling. During
configuration of the controller, the user typically gives information
about the minimum and the maximum values of the physical sensor
signal, e.g. 4mA and 20mA, and the minimum and the maximum
values of the scaled measurement signal, e.g. 0% and 100%. From
this information the controller automatically configures the scaling
function (2.7).
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Example (wood-chip tank): Assume that the 0 – 5V measurement
signal range corresponds to the range 0 – 100%. Then,

ym10
= 0V; ym0 = 0%; Ksy =

100− 0%
5− 0V = 20%/V (2.8)

• Combined scaling and sensor/measurement function: The
function fs in Figure 2.11 is the combined function of (2.4) and (2.7).
If both these functions are linear, the combined function is on the
form

ym = fs(y) = Km(y − y0) + ym0 (2.9)

Example (wood-chip tank): The combined scaling and measurement
function from level in meter to level measurement signal in percent
can be found from (2.4) and (2.7). However, in this case it can more
easily be set up from the information that 0− 15m corresponds to
0− 100%. Thus,

y0 = 0m, ym0 = 0%, Km =
100− 0%
15− 0m = 6.67%/m (2.10)

• Setpoint scaling: The setpoint and the measurement signal must of
course be represented with the same unit, otherwise subtracting the
measurement signal from the setpoint is meaningless. The setpoint
must be scaled using a scaling function which is equal to the
combined scaling function for the measurement signal, (2.9). Thus,

ymSP = Km(ySP −
=ym0z}|{
ySP0 ) + ymSP0| {z }

fsSP=fs

(2.11)

• The controller calculates the control variable according to the
control function (control functions are described in Section 2.6).

• Scaling the control variable: If the controller calculates the
control variable u in % (which is quite usual), then a scaling of the
%-value to the physical unit used by the actuator, is necessary. A
linear scaling function is

ua = Ksu(u− up0) + ua0| {z }
fsu

(2.12)

Example (wood-chip tank): Assume that the control variable in the
range 0− 100% is to be scaled to the range 4− 20mA. In this case

up0 = 0%, ua0 = 4mA, Ksu =
20− 4mA
100− 0% = 0.16mA/% (2.13)
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• Scaling the control error: To scale the control error em from
measurement unit (typically %) to the unit used of the process
output variable y, the following scaling function can be used:

ey = Kse|{z}
fsy

=
1

Km
em (2.14)

where Km is the same as in (2.9).

Example (wood-chip tank): Scaling of the control error in % to meter
is realized by

Kse =
15− 0m
100− 0% = 0.15m/% (2.15)

2.6 Controller functions

2.6.1 Introduction

Figure 2.11 shows where the control function — usually denoted simply
“controller” — is placed in a control loop. The most common control
functions are the following:

• On/off controller
• P controller (proportional)
• PD controller (proportional-derivative)
• PI controller (proportional-integral)
• PID controller (proportional-integral-derivative)

The P-, PD- and PI controllers can be derived from the PID controller.
The PI- and the PID controller is by far the most commonly used in the
industry since they gives best control: Zero static control error is achieved.
The derivative term creates problems due to amplification of high frequent
measurement noise, so that the control variable would become noisy, and
therefore the D-term is not used in many practical cases. Thus, the PI
controller is probably most frequently used.

The On/off controller is particularly easy to implement using an electrical
or a mechanical on/off-element (as in a thermostat) or by simple
expressions in a control program. However, the On/off controller gives a
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somewhat imprecise control because there will be sustained oscillations in
the control loop. The On/off controller may be used for tuning of a PID
controller, cf. Section 4.5.

The control functions which are described in detail in the following, are all
on the following form:

u = u0 + ue (2.16)

where u0 is the nominal (manually adjusted) control variable and ue is a
function of the control error e, cf. Figure 2.11. (2.16) is illustrated in
Figure 2.13. u0 is the control signal required to keep the process in or close

ue

u0

u

Figure 2.13: The control variable (or signal) is calculated as u = u0 + ue.

to the nominal (specified) operation point when the controller is in manual
mode. u0 can be adjusted by the operator while the controller is in manual
mode, but is typically fixed while the controller is in automatic mode. u0
may be used by the control function as an initial value of the control
variable u when the controller is switched from manual to automatic mode.
The term ue in (2.16) represents the feedback term or the error based
term, which gives compensation for changes in the setpoint or in the
disturbances.

Tuning u0 is described in Section 2.6.2. Various control functions
producing (calculating) the feedback term ue are described in Sections
2.6.3 — 2.6.7.

2.6.2 Tuning the nominal control signal

The nominal control signal u0 can be tuned in two ways:

• Experimentally: u0 is adjusted until we observe that the process
output variable y (or, more correctly: its measurement value) is
approximately equal to the setpoint ySP in steady-state, and then u0
is fixed at this value.

Example: Figure 2.7 shows a feedback control system for a wood-chip
tank. The nominal control signal is adjusted until it is observed that
the level is constant and approximately equal to the level setpoint.
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• Calculated from a mathematical process model: This
approach eliminates possibly expensive experiments on the physical
process, but it is required that a mathematical model exists. The
procedure is as follows: u0 is calculated as the steady-state or static
solution u of the equations which constitute the static process model
in which the setpoint ySP is substituted for the process output variable
y. The static process model is derived from a dynamic model in the
form of differential equations by setting all time-derivatives equal to
zero and neglecting any time-dependencies, as time delays.

Example 2.7 Nominal control signal for wood-chip tank

A level control system for a wood-chip tank is described in Example 2.3
(page 19). We will now calculate the nominal control signal u0 for the
following operation point: The level h is equal to the level setpoint hSP ,
and the chip outflow wout has a constant (static) value of wouts .

We need a mathematical model. Assume the following: h [m] is the level.
A [m2] is the cross sectional area. ρ [kg/m3] is the chip density. ρAh [kg] is
the mass of chip in the tank. win [kg/min] is the chip inflow from the belt.
ws [kg/min] is the chip inflow to the belt from the screw. wout [kg/min] is
the chip outflow from the outlet in the bottom of the tank. Ks
[(kg/min)/%] is the screw gain. τ [min] is the time delay or transport
delay on the conveyor belt, which runs with constant speed. u [%] is the
control variable.

Mass balance of the chip in the tank yields

d [ρAh(t)]

dt
≡ ρAḣ(t) = win(t)− wout(t) (2.17)

= ws(t− τ)− wout(t) (2.18)

= Ksu(t− τ)− wout(t) (2.19)

or, rearranged,

ḣ(t) =
1

ρA
[Ksu(t− τ)− wout(t)] (2.20)

A static process model can be found from the dynamic the model (2.20) by
setting the time-derivative equal to zero and neglecting the time delay:

ρAḣs(t) = 0 = Ksu0| {z }
wins

−wouts (2.21)
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or5

u0 =
wouts
Ks

[%] (2.22)

This control signal will keep the chip level at a constant value, but at
which value? Actually, at any level, since (2.22) does not contain
information of the level — it just ensures that the inflow and the outflow
are equal. For this process — and for many other tank processes - it is
insufficient to use a fixed control signal to control the level. The control
variable must contain an error-based term or feedback term to obtain
control of the level, as explained in the following sections.

[End of Example 2.7]

2.6.3 On/off controller

The On/off controller calculates the control variable u according to (2.16),
which is repeated here:

u = u0 + ue (2.23)

The nominal control signal u0 can be calculated as explained in Chapter
2.6.2. With the On-off controller the error-based or feedback term ue is
calculated as a function of the control error e as follows:

ue =

½
A for e ≥ 0
−A for e < 0

¾
(2.24)

where A is the amplitude. The control error e has same unit as for the
setpoint and the process measurement in the expression e = ySP − y,
typically %, or V, mA, m, oC or some other. Figure 2.14 illustrates ue and
u.

If your controller does not implement an On/off controller, you can get one
by using a P controller with a very large (ideally: infinite) value of the
controller gain Kp. The P controller is described in detail in Section 2.6.5.

Maybe you recognize the On/off controller from the room temperature
control at home? The thermostat is actually a combined temperature
sensor and an On/off controller.

Unfortunately, with an On/off controller all signals in the control loop will
oscillate continuously (unless some saturation limit is reached). These
oscillations comes automatically. This can be explained as follows: Assume
that the control error e is positive. Then the control signal u equals

5 I guess you could have come up with this relation without deriving the full dynamic
model...
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Figure 2.14: The total control signal u and the error-based term ue in the
On/off-controller

u0 +A, which causes the process output variable y and consequently the
process measurement ym to increase. When ym has increased so much that
it becomes greater that the setpoint, the error changes sign, and the
control signal becomes u0 −A, which causes the process output variable to
decrease, and then the error eventually is positive and the control variable
becomes u0 +A, and so on. Thus, there are oscillations.

The oscillations in u are in the form of a square wave. If the actuator is a
mechanical device, e.g. a feed screw or a valve, the stepwise movements
may cause wear. But if the actuator is an electronic device, e.g. an
electronically controlled heating element, there will not be any wear
problems. The oscillations in the process output variable y becomes
sinusoidal for most processes, but for processes having only integrator
dynamics (as a tank), the oscillations are triangular, as we will see in
Example 2.8 (below).

Example 2.8 On/off-control of chip level of a wood-chip tank

Figure 2.15 shows the front panel of a simulator for the wood-chip tank.6

(The front panel also shows parameters of a PID controller, but this
controller is not used in this example.) Here is some information about the
simulation: The amplitude A is 20%. The initial level is 10 m. The
setpoint is initially 10 m and is increased to 12 m at approximately t = 60
min. The chip outflow wout (the disturbance) is initially 1500 kg/min and
is increased to 1800 kg/min at approx. 120 min. The nominal control

6The simulator, which is implemented in LabVIEW, is based on a numeric solution of
the differential equation (2.20) which expresses the mass balance of the tank.
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Figure 2.15: Example 2.8: Level control of the wood-chip tank with an On/off-
controller. (The front panel shows also PID-parameters, but they are irrelevant
in this simulation.)

signal u0 is 45%, which is calculates according to (2.22) where
wouts = 1500 kg/min and Ks = 33.36 (kg/min)/%.

The simulation shows the following:

• The control variable oscillates as a square wave. It is symmetric
about the nominal control value u0 (45%). The oscillations become
asymmetric if u0 is no longer correctly tuned (after t = 120 min.).

• The oscillations in the level are triangular (not sinusoidal as they
may be for many other processes), which is due to the integrator
dynamic of the tank (the time-integral of a piecewise constant inflow
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is a piecewise ramp).

• The level oscillates about the setpoint with a mean value equal to the
setpoint as long as the nominal control signal u0 has correct value.

• The level oscillates about the setpoint with a mean value which is
not equal to the setpoint and with an asymmetric form when u0 has
an incorrect value, which is the case after the disturbance was
changed from 1500 til 1800 kg/min.

[End of Example 2.8]

In the following sections you will see that the controller can perform far
better (without oscillations and, for some of the controllers, with zero
static control error) if the error-based term ue in the control variable (2.16)
is calculated using a “softer” and more dynamic function than the abrupt
On/off function.

2.6.4 Overview: The PID controller

In the following sections, the P, PI and PID controllers are described.
Typically, if you need the only a P- or PI control function, these are
achieved as special cases of the PID controller. Therefore, although the
PID controller is described in detail later, in Section 2.6.7, it is proper to
present the (ideal) PID controller now:

u = u0 +Kpe|{z}
up

+
Kp
Ti

Z t

0
e dτ| {z }

ui

+KpTd
de

dt| {z }
ud

(2.25)

The controller parameters are as follows: Kp is the proportional gain. Ti
[s] or [min] is the integral time. Td [s] or [min] is the derivative time.
Furthermore, u0 is the nominal value of the control variable. up is the
P-term. ui is the I-term. ud is the D-term.

From the PID controller (2.25), the P controller and the PI controller can
be found from the PID controller as follows:

• A P controller is achieved by setting Ti =∞ (or to a very large
value) and Td = 0.7

7 In some commercial controllers you can set Ti to 0 (zero), which is a code expressing
that the integral term is de-activated.



34 Finn Haugen: PID Control

• A PI controller is achieved by setting Td = 0.

2.6.5 P controller

The P controller (proportional) calculates the control variable according to
(2.16) as follows:

u = u0 +Kpe|{z}
up

(2.26)

where up is the P-term. The nominal control variable term u0 can be
found experimentally or by model-based calculations as explained in
Section 2.6.2. Kp is the proportional gain. Figure 2.16 illustrates the
controller function (2.26).

e

umax

u

0
umin

u0

Kp

Figure 2.16: P controller as given by (2.26)

In some commercial controllers the proportional band PB, is used in stead
of the proportional gain. The proportional band is given by

PB =
100%

Kp
(2.27)

where Kp is the gain, which here is assumed to be dimensionless. (It will
be dimensionless if the control error e and the control variable u have the
same unit, typically percent). It is typical that PB has a value in the range
of 10% ≤ PB ≤ 500%, which corresponds to Kp being in the range of 0.2 ≤
Kp ≤ 10. It is important to note that PB is inverse proportional to Kp.
Thus, a small PB corresponds to a large Kp, and vice versa.

What does proportional band actually mean? One explanation is that PB
is the size of the control error interval ∆e (or the size of the measurement



Finn Haugen: PID Control 35

signal interval) which gives a control signal interval ∆u equal to 100%:
From (2.26) we see that ∆e = ∆u/Kp = 100%/Kp = PB.

How does the P controller work? Let us look at the wood-chip tank, cf.
Example 2.3 (page 19). The P controller changes the control signal
proportionally to the error. Assume that the level is less than the setpoint.
Then, the control error e is positive, and consequently the controller
calculates a control signal change Kpe which is positive, which again
increases the chip inflow, so that that the level increases and the error is
reduced.

Although the P controller increases the control signal if the control error
increases, it will in practice not achieve zero error: Assume that the
nominal control value u0 does not have a correct value, so that e is different
from zero (the process not in the specified operation point). In this
situation, the P controller can not bring e to zero, since if it could, e would
be zero, and e was assumed to be different from zero. In other words: As
long as u0 does not have the correct value (and this is, strictly, always the
case), the static control error is different from zero with a P controller.

The static control error which exists with a P controller, can be reduced by
increasing the controller gain Kp, since an increased Kp gives more control
variable adjustment, Kpe, for a given error e, and this again gives less
error. The drawback of increasing Kp is that the control loop gets reduced
stability, and if Kp becomes too large, the control loop becomes unstable.
The stability of control loops is discussed further in Section 2.11 and in
Chapter 6.4.

Example 2.9 P control of the level of a wood-chip tank

Figure 2.17 shows simulated responses for the level control system for
wood-chip tank described in Example 2.3 (page 19). The front panel of the
simulator is as shown in Figure 2.15 (page 32). The controller gain, tuned
with the Ziegler-Nichols’ closed loop tuning method, cf. Section 4, is

Kp = 1.55 (2.28)

The initial level is 10m. The setpoint is initially 10m and is increased to
12m at approx. t = 10min. The chip outflow wout (which is a disturbance
to the control system) is initially 1500kg/min and is increased to
1800kg/min after approx. 60min. The nominal control signal u0 is 45%,
which is calculated from (2.22) where wouts = 1500kg/min and Ks = 33.36
(kg/min)/%. The simulation shows the following:
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Figure 2.17: Example 2.9: Level control of the wood-chip tank with a P con-
troller. (The front panel of the simulator is as shown in Figure 2.15 on page
2.15.)

• Tracking properties: The steady-state error es is zero only as long as
the nominal control variable value u0 has a correct value, which is
the case for t < 60min.

• Compensation properties: es is different from zero due to the step in
the disturbance wout which comes at t = 60min. In Figure 2.15 es
has value 0.83 at t = 120min which is the time when the simulation
is stopped. However, if the simulations were run longer (the
responses has not converged completely at t = 120s) we would have
seen that the error actually settles at

es = 0.87m (2.29)

Finally, what happens if we increase Kp? We should expect that es is
reduced since increasing Kp in the compensation term up = Kpe forces e to
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become smaller. Figure 2.18 shows simulated responses with Kp = 2.6.
The steady-state control error will be reduced from 0.87m to 0.52m, and the
stability of the control loop is reduced.

Figure 2.18: Example 2.9: Level control of the wood-chip tank with a P con-
troller with an increased gain of Kp = 2.6. (The front panel of the simulator is
as shown in Figure 2.15.)

[End of Example 2.9]

2.6.6 PI controller

Example 2.9 demonstrated a problem with the P controller: The
steady-state control error es becomes different from zero when the nominal
control signal u0 does not have correct value. In practice, u0 does never
have a completely correct value since there are always unknown
disturbances acting on the process to be controlled. If the P controller is
substituted by a PI controller, es = 0 can be achieved, for any value of u0!

In the PI controller (proportional + integral) the control variable is
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calculated as

u = u0 +

uez }| {
Kpe|{z}
up

+
Kp
Ti

Z t

0
e dτ| {z }

ui

(2.30)

Here, ui is the integral term, Kp is the proportional gain. Ti [s] or [min] is
the integral time (also denoted the reset time). In some commercial
controllers the fraction Kp/Ti is represented by the integral gain Ki:

Ki =
Kp
Ti

(2.31)

In some controllers the value of 1/Ti is used in stead of the value of Ti.
The unit of 1/Ti is repeats per minute. For example, 5 repeats per minute
means that Ti is equal to 1/5 = 0.2min. The background of the term
repeats per minute is as follows: Assume that the control error e is
constant, say E. The P-term has value up = KpE. During a time interval
of 1 minute the I-term equals Kp

Ti

R 1
0 E dτ = KpE · 1[min]/Ti = up · 1/Ti.

Thus, the I-term has repeated the P-term 1/Ti times.

How does the PI controller work? The integral term is essential. ui as
calculated as the time integral of the control error e from as initial time,
say t = 0, to the present point of time, thus the integral is being calculated
continuously. Let us think about the level control of the wood-chip tank:
Assume that e initially is greater than zero (the level is then less than the
level setpoint). As long as e is positive, ui and therefore the total control
variable u will get steadily increasing value, since the time integral of a
positive value increases with time. The increasing u gives an increasing
wood-chip inflow. Consequently, the chip level in the tank increases. Due
to this level increase the control error eventually becomes less positive.
The increase of the integral term (the inflow) continues until the error has
become zero. The conclusion is that the integral term ensures zero
steady-state control error. The zero steady-state control error is achieved
even if the nominal control signal u0 has an incorrect value (even if the
value is zero).

The potential of achieving zero static control error is why the PI controller,
besides the PID controller which also contains an integral term, is the most
commonly used control function in the industry.

Example 2.10 PI control of chip level of a wood-chip tank

Figure 2.19 shows simulated responses for the level control system for the
wood-chip tank described in Example 2.3 (page 19). The front panel of the
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Figure 2.19: Example 2.10: Level control of the wood-chip tank with a P-
controller. (The front panel of the simulator is as shown in Figure 2.15 (page
2.3).)

simulator is as shown in Figure 2.15. The controller parameters have values

Kp = 1.40; Ti = 900s = 15.0min (2.32)

(found using the Ziegler-Nichols’ closed loop-method, cf. Section 4.4). The
simulation shows that the steady-state control error is zero both due to a
step in the level setpoint and due to a step in the disturbance (chip
outflow).

[End of Example 2.10]
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2.6.7 PID controller

We may be quite content with the PI controller since it gives zero
steady-state control error. But in some cases it would be desirable to have
faster control than with the PI controller. This can be achieved by
including a term in the control variable that is proportional to the time
derivative or the rate of change of the error e. Then we have the PID
controller (proportional + integral + derivative)

u = u0 +

uez }| {
Kpe|{z}
up

+
Kp
Ti

Z t

0
e dτ| {z }

ui

+KpTd
de

dt| {z }
ud

(2.33)

ud is the derivative term. Kp is the proportional gain. Ti [s] or [min] is the
integral time . Td [s] or [min] is the derivative time. In some commercial
controllers the product KpTd is represented by the derivative gain Kd:

Kd = KpTd (2.34)

The derivative term of the PID controller works as follows: Assume that
the control error e is increasing. Then the time derivative de/dt is positive,
and the derivative contributes with a positive value to the total control
signal u. This will in general give faster control.

All commercial controllers implements a PID controller. But none of them
implements (2.33)! It is namely an ideal PID controller, and its D-term
must be modified, otherwise the controller will not work properly in
practical applications (we will return to this practical aspect later in this
section).

Example 2.11 PID control of chip level of a wood-chip tank

Figure 2.20 shows simulated responses for the level control system for
wood-chip tank described in Example 2.3. The PID parameters have values

Kp = 1.86; Ti = 540s = 9.0min; Td = 135s = 2.25min (2.35)

(found using the Ziegler-Nichols’ closed loop-method, cf. Section 4.4). The
simulation shows the following:

• The steady-state or static control error is zero both after a step in
the level setpoint and after a step in the disturbance (chip outflow).
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Figure 2.20: Example 2.11: Level control of the wood-chip tank with a P-
controller. (The front panel of the simulator is as shown in Figure 2.15.)

• The setpoint tracking is faster than with a PI controller, cf. Example
2.10. Also, the compensation of the step change of the disturbance
(outflow) is faster than with a PI controller.

[End of Example 2.11]

Behaviour of the PID controller terms

Do you want to see how each of the terms of a PID controller function
works? Figure 2.21 shows the time-responses due to a step in the outflow
wout (the disturbance) from the initial value of 1500kg/min to 1800kg/min.
The controller parameters have values as in Example 2.11. The nominal
control signal u0 has value 45% which gives an inflow that is equal to the
initial value of wout. We can observe the following:
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Figure 2.21: Behaviour of the various terms of the PID-controller terms after
a step in the outflow wout (disturbance)

• The D-term ud reacts abruptly and its value converges towards zero
(the time-derivative of a constant error is constant).

• The I-term is relatively sluggish. Its value changes as long as the
control error is different from zero. ui goes to a (new) constant value
after the step in wout. The change in ui constitutes the compensation
for the incorrect value in u0 after the change in wout (the
disturbance).

• The P-term up is quicker than the I-term, but more sluggish than the
D-term, and its value goes to zero since Kpe goes to zero when e goes
to zero.
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Measurement noise and lowpass filter in the D-term

There is a potential problem using the PID controller: It may give a very
unsteady high frequent control signal due to noise in the process
measurement — and such noise is always present, more or less. See Figure
2.22. The measurement noise can stem from electronic noise sources or

PID-
controller Process

Sensor

u yySP

wMeasurement
noise

ym

Measured process 
variable, y (assumed 
noise-free)

v

Figure 2.22: Measurement noise in the control loop

from the measurement principle, e.g. ultrasound based level measurement
of a liquid surface.

The unsteady control signal is due to the differentiation of the control
error e in the D-term. The control error consist of the following terms:

e = ySP − ym = ySP − (y +w) (2.36)

where ySP is the setpoint, ym is the process measurement, y is the
(noise-free) process variable, and w is the measurement noise. The D-term
becomes

ud = KpTd
d(ySP − ym)

dt
(2.37)

= KpTd
d [ySP − (y + w)]

dt
(2.38)

= KpTd
d(ySP − y)

dt| {z }
de
dt

−KpTddw
dt

(2.39)

The term dw/dt is the time-derivative of the noise and it is a term in the
control variable. If the noise w is high frequent, its time-derivative (rate of
change) may get very large values, and the control variable u may be very
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unsteady. We can see this by assuming that w is sinusoidal:

w(t) =W sin(ωt) (2.40)

From this we get
dw

dt
= ωW|{z}

Aw

cos(ωt) (2.41)

If the frequency ω is large, the amplitude Aw = ωW of the time-derivative
dw/dt may be large, and consequently the term −KpTddw/dt in the
D-term ud may get a large amplitude.

How can we reduce the problem of the time-differentiation of the
measurement noise? If we can not reduce or remove the noise itself, we can
lowpass filter the control error used in the D-term before it is differentiated.
This is a standard solution used in commercial controllers. Let us use the
symbol ef for the filtered error. The modified PID controller is then

u = u0 +Kpe|{z}
up

+
Kp
Ti

Z t

0
e dτ| {z }

ui

+KpTd
def
dt| {z }

ud

(2.42)

The filter is typically a first order lowpass filter. It is convenient to
represent the filter with its Laplace transfer function. The relation between
ef and e is then8

ef (s) =
1

Tfs+ 1
e(s) (2.43)

where Tf is the filter time constant which usually is expressed as a fraction
of the derivative time Td:

Tf = aTd (2.44)

a is a constant which typically is chosen between 0.05 and 0.2. If no special
requirements exist, we can set a = 0.1.

Figure 2.23 shows simulations of a control system (not the wood-chip tank
this time). The setpoint ySP and the process measurement ym are shown
in one diagram, and the control variable u is shown in the other diagram.
The controller is a PID controller where Kp and Ti have constant values.
The setpoint is constant. The measurement contains random measurement
noise w (uniformly distributed between ±0.2%). The simulation shows
three situations:

• Between t = 120 and 140s: No D-term, that is, the controller is a PI
controller (Td = 0 in the PID controller). The simulation shows

8Although it is not mathematically correct, it is convenient to use the same symbol for
the time function and the Laplace transform of the function.
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Figure 2.23: Simulation of a PID-control system with measurement noise for
three different situations, cf. the text

naturally enough some noise in the control signal u. The noise
propagates to the control variable mainly via the P-term, but also
somewhat via the I-term.

• Between t = 140 and 160s: Ordinary PID controller with lowpass
filter with a = 0.1. The noise gives a larger response in the control
variable than with the PI controller due to the noise sensitivity in the
D-term. This demonstrates that the PID controller gives more noisy
control signal than PI controller.

• Between t = 160 and 180s: PID controller with an (approximately)
ideal D-term, that is, the lowpass filter in the D-term is
(approximately) removed. The response of the noise in the control
signal is very noisy . This demonstrates that the lowpass filter in the
D-term is important for attenuating the response of the measurement
noise in the control variable.

If the measurement noise has a mean value mw different from zero, there
will be a steady-state control error different from zero, since mw will appear
as an addition to the setpoint. The PID controller ensures that the process
output variable y will track this false setpoint (containing the mw term).

Above, the solution to the measurement noise was to lowpass filter the
control error used in the D-term. If this does not give enough filtering, we
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can try to use a separate measurement filter acting on the measurement
signal. This is described in Section 2.7.3.

Block diagram of the PID controller

Figure 2.24 shows a block diagram of the PID controller given by (2.42).

Kp

KpTd

up

ui

ud

u0

PID-controller

ue ue Kp

Ti

LP-
filter

efd
dt

Figure 2.24: Block diagram of the PID-controller (2.42)

Transfer function of the PID controller

In some situations it is useful to represent the PID controller (2.42) by its
transfer function. This is the case in frequency response analysis control
systems, analytical calculation of time-responses using the Laplace
transform, and simulations when it is sufficient to use a compact, linear
controller model.

It is quite easy to find the controller transfer function Hc(s) from input e
to output u by taking the Laplace transform of (2.42) combined with (2.43)
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and neglecting u0 (the controller transfer function is independent of u0):

u(s) = Kpe(s) +
Kp
Ti

1

s
e(s) +KpTdsef (s) (2.45)

=

·
Kp +

Kp
Tis

+
KpTds

Tfs+ 1

¸
| {z }

Hc(s)

e(s) (2.46)

=
KpTi (Tf + Td) s

2 +Kp (Ti + Tf ) s+Kp
TiTfs2 + Tis| {z }

Hc(s)

e(s) (2.47)

PID controller on serial form

The PID controller given by (2.33) is said to be on parallel form since a
block diagram of the controller function shows the P, I and D term in
parallel paths, cf. Figure 2.24. There is also a serial form. In most cases it
is not an important difference between the parallel form and the serial
form. The the serial form consists of a PD controller (which is a PID
controller with the I-term removed) in series with a PI controller, and with
the gain of the PD and the PI controllers combined in the common gain
Kp:

u(s) = Kpi

µ
1 +

1

Tis

¶
| {z }

PI

·Kpd
Tds+ 1

Tfs+ 1| {z }
PD

e(s) (2.48)

= Kp
(Tis+ 1) (Tds+ 1)

Tis (Tfs+ 1)
e(s) (2.49)

=
KpTiTds

2 +Kp (Ti + Td) s+Kp
TiTfs2 + Tis| {z }

Hs(s)

e(s) (2.50)

A few comments:

• The serial form is more practical than the parallel form in frequency
response based controller design, cf. Chapter 8, due to the factorized
form of (2.49).

• The parallel form is more general since it can have complex zeros in
its transfer function (the serial form can only have real zeros).

• The parallel form is somewhat easier to express in the time domain
as a differential/integral equation) and to realize as a practical
discrete-time algorithm.
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• According to [24] the serial form is more frequently used in modern
commercial controllers — probably because the serial form behaves
similar to the first industrial PID controllers which were pneumatic
and was used in the 1930s.9

Transformation from serial to parallel form

You can perform a transformation from serial form to parallel form (the
reverse transformation is less used). One reason for performing such a
transformation is that you used tuning methods which assumes the serial
form, while the controller you use, actually implements the parallel form.
The transformation can be executed as follows[24] (it is based on
comparing coefficients between the ideal PID controller functions, that is,
with Tf set to 0): Given the parameters Kps , Tis and Tds of the serial form
PID controller. The corresponding parameters, Kpp , Tip , Tdp and Tfp of a
parallel PID controller having approximately the same behaviour as the
serial form, is achieved with the following transformations:

Kpp = Kps

µ
1 +

Tds
Tis

¶
(2.51)

Tip = Tis

µ
1 +

Tds
Tis

¶
(2.52)

Tdp = Tds
1

1 +
Tds
Tis

(2.53)

In addition, the time constant of the lowpass filter in the derivative term
can be calculated by

Tfp = aTdp (2.54)

where a typically is 0.1. For P and PI controllers the serial and the parallel
forms are identical (since Tds is 0).

From (2.51)-(2.53) we see that the transformations are functions of the
ratio Tds/Tis . The less Tds/Tis , the less importance of the transformations.
In the Ziegler-Nichols’ tuning methods, cf. Chapter 4,

Tds
Tis

=
1

4
(2.55)

If this relation is used in (2.51)—(2.53),

Kpp = 1.25Kps (2.56)
9The famous Ziegler-Nichols’ methods for controller tuning, cf. Chapter 4, were pub-

lished in 1942 and they must have been based on pneumatic controllers approximately
implementing the serial form.
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Tip = 1.25Tis (2.57)

Tdp = 0.8Tds (2.58)

In this case the parameter transformations do not change the PID
parameters much, and you can quite safely assume that the two PID
controllers behave approximately equally, which implies that you not need
to care about which PID form which is actually implemented in the
controller. But if you feel a little uncertain about the different
implementations, you should still consider to use the transformations. You
can use simulations to check if the parallel and serial form causes any
substantial difference in the behaviour of the control systems.

Example 2.12 Parallel and serial form of the PID controller

In this example control systems for processes having the following transfer
function model are simulated:

y(s) =
Ku

(T1s+ 1) (T2s+ 1)
e−τs u(s) (2.59)

+
Kv

(T1s+ 1) (T2s+ 1)
e−τs v(s) (2.60)

(The process model is thus a second order system with time delay.) The
process parameter are

Ku = 1; Kv = 2; T1 = 1s; T2 = 1s; τ = 0.5s; (2.61)

For comparison two control system are simulated simultaneously: One
with a parallel PID controller and one with a serial PID controller. The
process to be controlled, and the setpoint and the disturbance are identical
for both control systems. The two control systems are simulated in two
scenarios:

1. Without using PID parameter transformation: The following PID
parameters (found using the Ziegler-Nichols’ closed loop method) are
used for both the parallel PID controller and the serial PID
controller:

Kp = 3.6; Ti = 2.0s; Td = 0.5s; (2.62)

Figure 2.25 shows the simulated responses due to a setpoint step (at
t = 4s) and a disturbance step (at t = 20s). The simulations shows
that the responses in the two control systems are somewhat but not
dramatically different. The stability is satisfactory in both systems.
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Figure 2.25: Example 2.12: Simulated responses due to a setpoint step and a
disturbance step. PID parameter transformation is not used.

2. Using PID parameter transformation: The PID parameters (2.62)
are still used for the serial PID controller, but for the parallel PID
controller the following parameters are used:

Kp = 4.5; Ti = 2.5s; Td = 0.42s; (2.63)

These parameter values are found by transforming the serial form
parameters (2.62) to parallel form parameters using (2.51)-(2.53).
The parallel PID controller and the serial PID controller should then
have the same behaviour. Figure 2.26 shows the simulated responses
due to a setpoint step and a disturbance step. The responses in the
two control systems are now almost identical. The difference is
probably due to simulation technicalities, and possibly due to the
fact that the parameter transformations are not ideal since they do
not take the derivative filter time constant Tf into account.

[End of Example 2.12]

This above example indicates that it is probably not important to
distinguish between the serial PID controller and the parallel PID
controller. This conclusion is true if the Ziegler-Nichols’ closed loop tuning
method is used, in which Td/Ti = 1/4. If a different (larger) ratio between
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Figure 2.26: Example 2.12: Simulated responses due to a setpoint step and a
disturbance step. PID parameter transformation is used.

Ti and Td is used, the difference between the controllers may be larger and
hence the PID parameter transformations more important.

2.6.8 Positive or negative controller gain?

On commercial controllers can you choose whether the controller gain Kp
of the PID controller has positive or negative value. Let us write the PID
controller (2.42) as

u = u0 +Ksign ·Kp1| {z }
Kp

µ
e+

1

Ti

Z t

0
e dτ + Td

def
dt

¶
(2.64)

The controller gain, which is Kp = KsignKp1 where Kp1 is always positive,
will have positive sign with Ksign = 1 and negative sign with Ksign = −1.
On commercial controllers the user typically sets the value of Kp1 , while
the sign, here Ksign, is set via a parameter field or a button. The default
choice is positive gain (Ksign = 1).

The consequence of choosing wrong sign of Kp is dramatic: The control
loop becomes unstable. Instability implies that the variables in the control
loop shows a steadily increasing amplitude, until some saturation occurs.
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How do you know which controller gain sign to use? It is the sign of the
process gain K which determines the controller gain sign, as follows:

• If the process gain K is positive, Kp shall be positive, that is
Ksign = 1. The controller is in this case said to have reverse action,
since an increase of the process output variable gives a reduction of
the control signal.

• If the process gain K is negative, Kp shall be negative, that is
Ksign = −1. The controller is in this case said to have direct action.

Above, the term “process” includes all subsystems in the control loop
except the controller. Consequently, the “process” also includes the sensor.

The point is that the total gain of the loop shall be positive whatever the
sign of the process is (in this context we disregard the negative gain of the
subtraction between the setpoint and the process measurement). This is
achieved by requiring that Kp ·Ksign is positive, cf. Figure 2.27.10

Process
(with

sensor)

ySP ue
Controller

Gain
Kp

Gain
K

ym

Figure 2.27: To have a stable control loop the productKp ·Ks must be positive.

What is the process gain, K? Simply stated, the gain of a system is the
ratio of the output signal (or the rate of change of the output signal if the
system has integral dynamics) to the input signal of the system. So, if the
output has a positive response to a positive input, the gain is positive.
Here are a few examples:

• Figure 2.28 shows a level control system for a liquid tank where the
control variable controls the outflow of the tank. An increase of the
control signal reduces the level and the level measurement (it is

10Note that KpKs > 0 does not ensure stability since the loop will be ustable if KpKs

has too large positive value. But the loop is certainly unstable if KpKs < 0.
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assumed that the measurement signal decreases as the level
decreases). Consequently, the process (including sensor) has a
negative process gain.

LT

LC

Control
variable

Measurement

Level control
system

Figure 2.28: An example of a process (with sensor) with negative gain. An
increase of the control signal will reduce the level.

• A heat exchanger with temperature control where the control signal
controls the supply of cooling media (e.g. cold water) has a negative
gain since an increase of the control signals increases the cooling and
hence decreases the temperature (and the temperature
measurement).

The process gain can of course be found from the process model. Here are
a few examples:

• The transfer function model (first order with time delay)

ym(s) =
3

s+ 1
e−2su(s) (2.65)

has positive gain, namely 3.

• The transfer function model (integrator with time delay)

ym(s) =
−2
s
e−su(s) (2.66)

has negative gain, namely −2.
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2.7 Practical problems: Control kicks, windup,
and noise

This Section describes several important practical problems which can
exist in real control loops, and how to solve these problems.

2.7.1 Reducing P- and D-kick caused by setpoint changes

Introduction

Abrupt changes of the setpoint ySP , for example step changes, may cause
unfortunate kicks in the control variable. The problem is connected to the
P-term and the D-term of the controller function (2.42). These kicks are
denoted proportional kick or P-kick and derivative kick or D-kick,
respectively. Such kicks may cause mechanical actuators to move abruptly,
resulting in excessive wear.

One solution to the above mentioned problem is to modify the P-term
and/or the D-term of the PID controller. Another solution is to accept
only smooth setpoint changes! We will study these solutions in detail in
the following sections.

For an easy reference the PID controller function with setpoint weights in
the D-term and the P-term is repeated here:

u = u0 +Kpep| {z }
up

+
Kp
Ti

Z t

0
e dτ| {z }

ui

+KpTd
dedf
dt| {z }

ud

(2.67)

where edf is given by

edf (s) =
1

Tfs+ 1
ed(s) (2.68)

and
ep = wpySP − y (2.69)

ed = wdySP − y (2.70)

where wp and wd are setpoint weights in the P-term and the D-term,
respectively.

Note: Do not try reducing the setpoint weight in the I-term since it will
cause the static control error to become different from zero! This is
because the integrand becomes zero in steady-state in a stable control
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system, and if the integrand of the ui-term is not equal to the difference
ySP − y, but in stead say wiySP − y, then of course ySP − y = e can not be
equal to zero in steady-state. So, once more: Do not use reduced setpoint
weighting in the I-term!

Reduction of D-kick

The derivative term of the PID controller (2.42) is

ud = KpTd
dedf
dt

= KpTd
d (wpySP − y)f

dt
(2.71)

where index f is for “filtered”. Assume initially that wd = 1, that is, no
reduced setpoint weight. Due to the time derivative, an abrupt change of
the setpoint ySP gives an abrupt change of ud and a corresponding change
of the total control variable u in which ud is an additive term, cf. (2.67).
For example, a stepwise change of the setpoint gives an impulse in ud since
the time derivative of a step is an impulse.

To avoid such changes of ud, the setpoint ySP can be given a reduced
weight in the D-term by giving wd a value less than 1. In the case of
reduced weight, it is common to set wd = 0, causing the setpoint to be
removed completely from the derivative term. In many commercial
controllers wd = 0 is a fixed factory setting.

One drawback with reduced setpoint weight is more sluggish response to
varying setpoint signals. This can be unfortunate in at least the following
cases

• Secondary controllers in cascade control systems, cf. Chapter 9.2.
• Servo systems (control systems for motors).

One question is: Will reduced weighting of the setpoint in the D-term
influence the ability of the controller to compensate for disturbances? The
answer is no because the compensation for disturbances takes place after
the disturbance has caused a response in the process output variable y and
measurement ym, and the appearance of ym in the D-term is independent
of the setpoint weight.

Example 2.13 Reduced setpoint weight in the D-term
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In this example a control system for a process having the following transfer
function model is simulated:

y(s) =
Ku

(T1s+ 1) (T2s+ 1)
e−τs u(s) (2.72)

+
Kv

(T1s+ 1) (T2s+ 1)
e−τs v(s) (2.73)

(The process is thus a second order system with time delay.) u is the
control variable, and v is the process disturbance. The process parameter
are

Ku = 1; Kv = 1; T1 = 2s; T2 = 1s; τ = 0.5s; (2.74)

The PID parameters are

Kp = 3.6; Ti = 2.0s; Td = 0.5s; (2.75)

(tuned with the Ziegler-Nichols’ closed loop method). Two cases are
simulated:

• Full setpoint weight, wd = 1: Figure 2.29 shows simulated responses
in the control system due to a setpoint and a disturbance step.

Figure 2.29: Example 2.13: Simulated responses in the control system. There
is No reduction of setpoint weight, thus wd = 1.
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Figure 2.30: Example 2.13: Simulated responses in the control system. The
setpoint is removed from the D-term with wd = 0.

• No setpoint weight, wd = 0: Figure 2.30 shows simulated responses.

Comparing the responses in Figures 2.29 and 2.30, it is clear that the
control signal reacts smoother with wd = 0 than with wd = 1 after the
setpoint step. However, there is no difference in the control signals after
the disturbance step, as expected.

[End of Example 2.13]

Reduction of P-kick

The proportional term (P-term) in the PID controller (2.67) is

up = Kpe = Kp(wpySP − y) (2.76)

Let us assume initially that wp = 1, which means there is no reduction of
the setpoint weight in the P-term. If the setpoint is changed, say it is
changed as a step, the P-term up and therefore the total control variable
where up appears as an additive term, is changed like a step, too. This can
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be unfortunate for mechanical actuators, cf. the discussion in Chapter
2.7.1.

By setting wp less than 1, the setpoint has reduced weight in the P-term,
which implies less abrupt changes in up caused by setpoint changes. It is
however common in commercial controllers to have wp = 1 (which means
no reduced weight), but if wp is reduced, then wp = 0.3 is suggested [24].

Note: If you are to use the Ziegler-Nichols’ closed loop method to tune
PID parameters, the control system will not react at all to excitations via
the setpoint if wp = 0. So, you should not set wp = 0 during the tuning.

Smoothing the control signal by ramping the setpoint

In the previous sections you have seen that abrupt setpoint changes
implies abrupt control signal changes. As explained, one way to reduce
problem is to use a reduced setpoint weight in the D-term and/or in the
P-term (the D-term is the most critical case due to the time
differentiation). An alternative solution is to avoid sudden changes, e.g.
step changes, in the setpoint. The change of the setpoint from one value to
another may follow a ramp in stead of a step, see Figure 2.31. Commercial

t

ySP

Figure 2.31: The change of the setpoint from one value to another may follow
a ramp in stead of a step to avoid kicks in the control signal.

controllers typically supports setpoint ramping.

Example 2.14 Setpoint ramping

Figure 2.32 shows a simulation of the same system which was simulated in
Example 2.13, but now there is no reduced setpoint weight. In stead, the
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setpoint is changed as a ramp. Clearly the control signal varies much
smoother compared to the response shown in Figure 2.29 where the
setpoint was changed as step. The response after the disturbance step is of
course the same since the disturbance is independent of the setpoint.

Figure 2.32: Example 2.14: Ramping the setpoint gives smoother control signal.

[End of Example 2.14]

2.7.2 Integrator anti wind-up

All actuators have saturation limits, i.e. a maximum limit and a minimum
limit. For example, a power amplifier (for a heater or a motor) can not
deliver an infinitely amount of power, and a valve can not have an
infinitely large opening and can not be more closed than closed(!). Under
normal process operation the control variable should not reach the
saturation limits.

But everything is not normal all the time. Assume that in a time interval a
large process disturbance acts on the process so that the process output
variable is reduced. The control error then becomes large and positive, and
the control variable will increase (because of the integral term of the PID
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controller) until the control signal limits at its maximum value, umax.
Assume that the disturbance is so large that umax is not large enough to
compensate for the large disturbance. Because of this, the control error
keeps large, and the integral of the control error continues to increase,
which means that the calculated integral term ui continues to increase.
This is integrator wind-up.

Assume that the process disturbance after a while goes back to its normal
value. This causes the process output variable to increase since the
disturbance is reduced (the load is removed), and the error will now
change sign (it becomes negative). Consequently the integral term starts
to integrate downwards (its value is continuously being reduced), so that
the calculated ui is reduced, which is ok, since the smaller disturbance
requires a smaller control signal. However, the problem is that is may take
a long time until the large value of the calculated ui is reduced (via the
down-integration) to a normal (reasonable) value. During this long time
the control variable is larger than what is required to compensate for the
disturbance, causing the process output variable to be larger than the
setpoint during this time.

To sum it up: A large and long-lasting process disturbance which forces
the control variable (via the controller) to one of its saturation limits,
implies a long-lasting error different from zero.

A practical PID controller must be able to cope with the possibility of
integrator wind-up, that is, it must have some anti wind-up mechanism.
You can assume that anti wind-up is implemented in commercial
controllers. The principle of an anti wind-up mechanism is simple: Since
the problem is that the integral term increases continuously during
actuator saturation, the solution is to halt the integration when the control
signal reaches either its maximum or minimum limit. An analogy of anti
wind-up is to mount an overflow outlet in a liquid tank, see Figure 2.33. A
tank is dynamically an integrator, so it represents here the I-term of the
controller.

Note that you can not implement integrator anti-windup by just limiting
the control signal, u, calculated by the PID controller. It is crucial to halt
the integration of the control error.

There are several ways to implement anti wind-up in a continuous-time
PID controller [24], but these are not described here. It is more likely that,
if you are to implement integrator anti wind-up in a controller, it will be
on a discrete-time controller, cf. Chapter 5.
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Figure 2.33: An analogy of anti wind-up: The overflow outlet limits the integral
of the inflow (which is the volume, or the level) in a liquid tank

Example 2.15 Integral anti wind-up in a temperature control
system

Figure 2.34 shows the front panel of a simulator for a temperature control
system for a liquid tank with continuously mass flow. The disturbance is
here the inlet temperature Tin, which is is changed as a step from 40oC to
10oC at approx. 210min and back to 40oC at approx. 300min. The
temperature setpoint TSP is 70oC (constant). The parameters of the PID
controller are Kp = 6.7, Ti = 252s = 42min and Td = 63s = 10.5 min
(found using Ziegler-Nichols’ closed loop method). The maximum value of
the control variable is 100% and the minimum value is 0%. When Tin is
reduced to 10oC, the actuator (heating element) goes into saturation
(100%), trying to compensate for the (cold) disturbance. It can be shown
that the control variable u should have a value of 122.5% (which
corresponds to more heat power than what is available) to be able to
compensate for Tin = 10oC.

Figure 2.34 shows the simulated responses in the control system without
using integrator anti wind-up, and Figure 2.35 shows the responses with
integrator anti wind-up. In the case of no anti wind-up, it was observed
(but this is not indicated in Figure 2.34) that the integral term ui in the
PID controller reached a maximum value of approximately 2200%! The
simulations clearly show that it is beneficial to use integrator anti wind-up
(as the temperature returns much quicker to the setpoint after the
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Figure 2.34: Example 2.15: Temperature control without anti wind-up

disturbance has changed back to its normal value).

[End of Example 2.15]

2.7.3 Measurement noise. Signal variance

Introduction

You have already seen the problems concerning measurement noise in a
control loop, cf. Section2.6.7. Figure 2.22 shows where the measurement
noise enters the control loop. Section2.6.7 describes a necessary
modification of the derivative term in a PID controller: A lowpass filter is
inserted before (in series with) the D-term to attenuate the noise before it
is time-differentiated to avoid too large noise-generated responses in the
control signal. But what if the lowpass filter in the D-term does not give
sufficient noise filtering? Then an additional filter should be included in
the feedback path, acting on the measurement signal. This filter can be
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Figure 2.35: Example 2.15: Temperature control with anti wind-up

• either a linear dynamic lowpass filter,
• or a deadband filter.

These solutions are described in more detail below.

Calculating the variance

Measurement noise is typically a random signal. The noise propagates
through the control system via the controller, causing variations in all
variables in the control system. Figure 2.36 shows typical examples of a
noisy process measurement and the control variable and in a simulated
control system. The variances shown in the figure are calculated as
explained below from the 50 most recent samples.

To express the variation of a process variable, the statistical variance can
be calculated, alternatively the standard deviation which is the square root
of the variance. The larger variance, the larger the variations. The
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[s]

Figure 2.36: Typical examples of a noisy process measurement and the control
variable

variance is the mean square deviation about the mean value11

Var(ym) =
1

N − 1
NX
k=1

[ym(tk)−mym ]
2 (2.77)

where N is the number of samples and mym is the mean value of ym, which
may be calculated by

mym =
1

N

NX
k=1

ym(tk) (2.78)

The numerical value of the variance is usually not particularly useful in
itself, but it is useful when comparing signals.

In Example 2.16 variances will be used to express the improvements by
using a lowpass filter on the process measurement signal.

11To obtain a so-called nonbiased estimate of the variance, you must divide by N − 1,
not by N .
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Using a dynamic lowpass filter

Figure 2.37 shows a control loop having a lowpass filter acting on the
measurement signal. The filter can be a discrete-time filter implemented in

Controller Process

Sensor
and

scaling

u yymSP

w
Measurement

noise

ym2

v

LP-
filter

ym0ym1

Scaling
ySP

Figure 2.37: Control loop having a lowpass filter acting on the measurement
signal. (LP = lowpass.)

the control equipment. It is common that control equipment have inbuilt
lowpass filter functions. Alternatively, the filter can be a continuous-time
lowpass filter implemented using electronic components external to the
control equipment. For example a first order filter can be implemented as
an RC-circuit.

Let us assume that the measurement lowpass filter is a first order filter.
Such a filter has the following transfer function from filter input xin to
filter output xout:

xout(s)

xin(s)
= H(s) =

1
s
ωb
+ 1

=
1

s
2πfb

+ 1
(2.79)

The bandwidth of the lowpass filter is ωb = 2πfb where ωb has unit rad/s
and fb has unit Hz. The bandwidth must be given a value which is smaller
than the frequency of the substantial noise frequency components so that
these components fall within the stopband of the filter. The bandwidth
may be tuned experimentally. Figure 2.38 shows a typical amplitude gain
function of first order lowpass filter. One example of a noise frequency
component is shown in the figure (it is in the stopband of the filter). The
bandwidth is typically defined as the frequency where amplitude gain is
1/
√
2 = 0.71 ≈ −3dB.
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Figure 2.38: Typical amplitude gain function of a lowpass filter. One example
of a noise frequency component is shown.

Example 2.16 Measurement noise filter in a control loop

In this example a control system for a process having the following transfer
function model is simulated:

y(s) =
Ku

(T1s+ 1) (T2s+ 1)
e−τs u(s) (2.80)

+
Kv

(T1s+ 1) (T2s+ 1)
e−τs v(s) (2.81)

(The process is thus a second order system with time delay.) u is the
control variable, and v is the process disturbance. The process parameter
are

Ku = 1; Kv = 1; T1 = 1s; T2 = 0.5s; τ = 0.3s; (2.82)

The PID parameters are

Kp = 2.8; Ti = 1.2s; Td = 0.3s; (2.83)

(tuned with the Ziegler-Nichols’ closed loop method). Figure 2.39 shows
simulated responses in the control system. The measurement noise is a
random signal uniformly distributed12 between −1 and +1. The lowpass
filter acts on the process measurement, cf. Figure 2.37. It is switched into
the loop at t = 10s. From Figure 2.37 we see that the filter removes noise
from the process measurement and that the control variable (therefore) is
less noisy. The filter is a first order lowpass filter with bandwidth 1.5Hz.
12which means that there is equal probability for any value between −1 and +1.
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Figure 2.39: Example 2.16: Simulated responses of a control system. A lowpass
filter acting on the process measurement signal is switched into the control loop
at t = 10s.

Table 2.1 shows the variances of the control signal u and the process
measurement (after the filter) without and with lowpass measurement
filter. The variances are calculated from the 50 most recent signal samples.
It is clear from the variances that the filter reduces the influence of the
noise in the loop.

Without Filter With Filter
Var(u) = 36.4 Var(u) = 5.2
Var(ym) = 0.33 Var(ym) = 0.13

Table 2.1: Variances of control signal u and measurement signal ym without
and with lowpass filter

[End of Example 2.16]

Including a filter in the control loop changes the dynamic properties of the
loop! Actually, it can cause stability problems in the control loop. In most
cases, the less bandwidth (i.e., more sluggish filter), the more reduction of



68 Finn Haugen: PID Control

the stability of the loop.

Example 2.17 Poor stability because of measurement filter

Figure 2.40 shows simulated responses for the same control system
simulated in Example 2.16. Before t = 10s there is no lowpass filter in the
loop, while after t = 10s a first order lowpass filter with bandwidth 0.2Hz
is switched into the loop. The filter causes the control system to have very
poor stability.

Figure 2.40: Example 2.17: A first order lowpass filter is switched into the
control loop at t = 10s, causing the control system to have poor stability.

[End of Example 2.17]

If a measurement filter results in poor stability of the control loop — how
can that problem be avoided? By tuning (or re-tuning) the controller with
the filter in the control loop.

It is tempting to select a very small bandwidth of the measurement
lowpass filter to achieve strong attenuation of the measurement noise. But
in addition to attenuating noise, also frequency components in the ideal
(noise-free) process output signal is attenuated. In other words: Important
process information may be removed from the measurement signal. This in
turn may cause the controller to calculate the control signal on basis of an
erroneous control error value. One way to solve this problem, is to
introduce a similar filter in series with the setpoint, as shown in Figure .
This solution is equivalent to placing one filter in series with (or before)
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the PID controller in Figure 2.41. A setpoint filter implies that the
setpoint which the controller observes, becomes more sluggish since high
frequency components are attenuated.
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Figure 2.41: Lowpass filter acting on the setpoint

Using a deadband filter

If you know the maximum amplitude of the measurement noise, the noise
can be removed from the noisy measurement signal by letting the signal
pass through a deadband filter, see Figure 2.42. The output value of the
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Figure 2.42: Deadband filter acting on the process measurement signal

deadband filter changes value only if the change of the input signal is
larger than the deadband.
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Example 2.18 Deadband measurement filter in the control loop

Figure 2.43 shows a simulation of a control system with deadband
measurement filter. The process and the PID controller are as described in
Example 2.16. In the simulation the measurement noise is a random signal

Figure 2.43: Example 2.18: Simulation of a control system with deadband
measurement filter

uniformly distributed between −1% and +1%. The deadband of the filter
is 2%. The simulation shows the following:

• Up to time t = 10s the setpoint is constant (50%). The measurement
signal which is the output of the deadband filter is constant since the
amplitude of the noise is smaller than the deadband. And since the
measurement signal is constant, the control signal generated by the
controller is constant — which is good!

• At t = 10s the setpoint is changed as a step (from 50% to 51%)
which implies that the measurement signal due to the overshoot in
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the step response changes value beyond the deadband of 2%.
Thereafter the deadband filter acts similar to an on/off-element in
the loop, and there are sustained oscillations in the loop — not good!

[End of Example 2.18]

You have in this Section seen two ways of filtering measurement noise:

• Using a dynamic lowpass filter : The dynamic filter can be easily
tuned via the bandwidth. The filter influences the dynamics and
hence the stability of the loop. The controller should be tuned with
the filter in the loop.

• Using a deadband filter : This filter may give a constant measurement
signal, as long as the input signal to the deadband filter does not
change more than the deadband of the filter. Once the deadband is
exceeded, the deadband filter may behave almost like an on/off
controller, causing oscillations in the control loop.

From the above results it seems that the dynamic filter is a safer way than
deadband filter to handle measurement noise.

2.8 Performance index of control systems

Assume that different control systems are to be compared, or that different
controller parameter for one control system are to be compared. There are
several ways to express the performance of the control systems, e.g.
bandwidth and stability margins. These measures are based on a
mathematical model of the control system, and they are described in
Chapter 6.

Alternatively, we can use performance indices which are functions of the
observed control error e. These indices does not require a mathematical
model. Probably the most frequently used index is the IAE — Integral of
Absolute value of control Error [15]:

IAE =
Z ∞

0
|e| dt (2.84)

The less IAE value, the better performance. The IAE value is finite only if
e converges towards zero in steady-state, which in practice requires the
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controller to have have integral action, as in a PI controller and in a PID
controller. In discrete time the IAE value can be regarded as the sum of
the absolute values of the sample values of the control error, since

IAE =
Z ∞

0
|e| dt ≈

∞X
k=0

h |e(tk)| = h
∞X
k=0

|e(tk)| (2.85)

where h is the time step (time interval between each discrete point of
time). h is tk − tk−1. k is a time index: tk = hk.

We can in practical applications calculate the IAE value only over a finite
time interval, say from t = 0 to tk. We can derive a recursive algorithm of
the IAE as follows:

IAE(tk) =

Z tk

0
|e| dt (2.86)

=

Z tk−1

0
|e| dt+

Z tk

tk−1
|e| dt (2.87)

≈ IAE(tk−1) + h|e(tk)| (2.88)

The expression h|e(tk)| in (2.88) is an Euler backward (rectangular)
approximation to the latter integral in (2.87).

Example 2.19 IAE for level control of chip tank

The level control system for the wood-chip tank described in Example 2.3
(page 19). Figure 2.19 shows simulated responses with a PI controller, and
Figure 2.20 shows responses with a PID controller. In both cases the IAE
index is computed for the control error after the step in the outflow wout
(disturbance), which is from t = 65s to 120s. The results are as follows:

• PI controller: IAE = 6296

• PID controller: IAE = 3767

We see that the PID controller has better IAE performance than the PI
controller. This is in accordance with the better compensating
performance of the PID controller that we can easily see in the simulations.

[End of Example 2.19]
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2.9 Selecting P, PI, PD, or PID?

In general, the PID controller is the first choice since it gives zero static
control error and relatively quick control. Here are a few guidelines for
choosing other controller functions than PID:

• If there is much process measurement noise the derivative term
should be dropped. What remains is a PI controller.

• If the process is of first order or is a pure integrator and in addition
has a time delay, the stability margins of the control system may be
small if the controller has a derivative term. This means that the
control system stability may become poor after small parameter
changes in the process. If you want to be on the safe side, the
derivative term may be left out, and a PI controller remains.

• If the process has fast dynamics compared to other processes it is
connected to, the derivative term may be dropped since the control
system will be quick enough with a PI or a P controller. On example
is quick flow control loops which works as inner or secondary loops
within more sluggish loops for temperature control or level control,
as in cascade control, cf. Chapter 9.2. The increase of control speed
due to the derivative term is usually not important since the inner
loop in any case will be faster than the outer, primary loop, due to
the fast dynamics of the inner process.

• The P controller may be a sufficiently good controller for processes
containing a pure integrator, as motors where position is to be
controlled, and liquid tanks where level is to be controlled when the
disturbance (e.g. load force or load torque on the motor or tank
inflow or outflow) is zero or small. In these cases, the integral action
in the “inbuilt” integrator in the process ensures zero static control
error at constant setpoint. However, a further analysis, as described
in Chapter 6, should be done to see if the simple P controller is
sufficient to obtain the specifications of maximum control error and
quickness (bandwidth).

• The PD controller may be applied in electrical servomechanisms
where the steady-state control error due to disturbances (as load
torque) is sufficiently small. The D-term may increase the quickness
(bandwidth) of the control loop. The D-term may cause stability
problems in hydraulic servomechanisms because of the hydraulic
resonance.
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2.10 Reduction of control error by process
changes

Earlier in this chapter we have seen how to use the control variable u to
control the process so that the control error becomes sufficiently small.
However, the control error, e = ySP − y, depends not only of only the
control variable, but also of the disturbance and the process itself. This
implies that it may be possible to reduce the control error by change the
disturbance and/or the process. This is explained in more detail below.

1. Reducing control error by reducing or isolating the
disturbance(s). In most processes it difficult or impossible realize
this point. This is because the disturbance often is closely related to
the function of the process.

Here are a few examples:

• Example 1 : In a level control system for the wood-chip tank, cf.
Example 2.3, the chip outflow (disturbance) can not be reduced
since it is the feed to the cookery downstream in the process
line.

• Example 2 : In a temperature control system for liquid the tank,
cf. Example 2.4, it is hardly possible to change the ambient
temperature (disturbance). But it may be possible to change
the inlet temperature (also a disturbance).

• Example 3 : In a motor speed control system, cf. Example 2.5, it
is not realistic to be able to change the load torque
(disturbance) since it is probably closely related to the function
of the motor, as in a grinding machine or a conveyor belt.

2. Reducing control error by changing the process
construction. Of course it may be impractical to change the
construction of a process which is already built, but a process under
planning can be changed more easily.

A few examples:

• Example 1 : In a level control system for a liquid tank a wider
tank will reduce the level variations (but not mass variations).

• Example 2 : In the level control system for the wood-chip tank,
cf. Example 2.3, reducing the transport delay on the conveyor
belt may give quicker control and hence smaller control error.
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Imagine the inlet screw rotational speed and the band speed
were controlled simultaneously and proportionally...13

• Example 3 : In a temperature control system, better tank
isolation will reduce the effects of the ambient temperature, see
Figure 2.44. And an increase of the tank volume would give

T [oC]

u

Tamb [oC]

Power amplifier

Isolation

TT

TC

Figure 2.44: Better isolation of the tank will reduce the influence of the ambient
temperature Tamb on the tank temperature T .

better attenuation (dynamically, but not statically) of
temperature disturbances in the tank.

• Example 4 : In a speed control system a larger motor or using a
gear reduces the effects of the load torque on the motor speed.

2.11 Control loop stability

It is important to be aware that there may be stability problems in a
control loop. It is an basic requirement to a control loop that it is stable.
Simply stated this means that the response in any signal in control loop
converges towards a finite value after a limited change (with respect to the
amplitude) of the setpoint or the disturbance or any other input signal to
the loop. For example, the control loop constituting the control system for
the wood-chip tank in Example 2.11 is stable.

All methods for tuning controller parameters have as the main aim that
13Then the transport delay was eliminated.
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the control loop is stable. The PID parameters used in the level control
system in Example 2.11 where tuned using the Ziegler-Nichols’ closed loop
method, cf. Chapter 4.4. However, there is always a possibility that a
feedback control system which is originally stable, may become unstable
due to parameter changes in the loop. Instability implies that signals in
the loop starts to increase in amplitude until some saturation limit is
reached (for example, a valve have a limited opening).

Instability can be explained in two ways:

• The signal one place in the loop is amplified too much through the
subsystems in the loop. In other words, the loop gain is too high.
The loop gain is the product of the gains in each of the subsystems
(controller, process, sensor) in the loop.

• There is too much time delay through the subsystems in the loop.

Chapter 6.4 describes ways to analyze control loop stability theoretically.

Example 2.20 Instability in the wood-chip tank level control
system

We will see that the level control system for the wood-chip tank becomes
unstable if the controller gain Kp in the PID controller becomes too large,
and if the transport delay related to the conveyor belt becomes too large.
Figure 2.15 (page 32) shows the front panel of the simulator. The control
system is initially stable for the following PID parameters:

Kp = 1.9; Ti = 540s = 9.0min; Td = 135s = 2.25min (2.89)

(found by the Ziegler-Nichols’ closed loop-method, cf. Section4). The time
delay is 250s = 4.17min.

Figure 2.45 shows responses for Kp = 6, which is considerably larger than
the optimal (Ziegler-Nichols) value of 1.9. The setpoint and the
disturbance (chip outflow) are constant. The control error has initially the
very small value of 0.0004. We see from the simulation that the control
system is unstable. One explanation of the instability is that the loop gain
is too large, due to the large Kp-value. The amplitude of the oscillations
are limited due to the limits of the control variable (the maximum value is
100%, and the minimum value is 0%).

Figure 2.46 shows responses with the original PID values, but for an
increased value of the time delay τ , namely 600s = 10min (the nominal



Finn Haugen: PID Control 77

Figure 2.45: Example 2.20: Level control of the wood-chip tank with a (too)
large Kp-value of 6, which causes the control system to become unstable. (The
front panel of the simulator is as shown in Figure 2.15.)

value is 250sec= 4.17min). The simulation shows that the control system is
unstable, which is due to the (too) large time delay in the loop.

[End of Example 2.20]
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Figure 2.46: Example 2.20: Level control of the wood-chip tank with a (too)
large τ -value of 9, which causes the control system to become unstable. (The
front panel of the simulator is as shown in Figure 2.15.)



Chapter 3

Control equipment

This chapter gives an overview over various kinds of commercial control
equipment.

3.1 Process controllers

A process controller is a single controller unit which can be used to control
one process output variable. Figure 3.1 shows an example of a process
controller (ABB’s ECA600). Today new process controllers are
implemented digitally with a micro processor. The PID controller function
is in the form of a program which runs cyclically, e.g. each 0.1s, which
then is called the time step of the controller. Earlier, controllers were build
using analog electronics, and even earlier, pneumatic and mechanical
components were used. Such controllers are still in use today in some
factories since they work well and are safe in dangerous (explosive) areas.

Here is a list of typical characteristics of process controllers:

• The front panel of the controller has vertical bar indicators and/or
numeric displays showing, see Figure 3.1,

— the process measurement signal (a common symbol is PV —
Process Value),

— the setpoint (symbol SP),

— the control variable (MV — control variable).

79
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Figure 3.1: A process controller (ABB ECA600)

• The controller has analog input (AI) (for measurement signals) and
analog output (AO) (for the control variable). The input signal is a
voltage signal (in volts) or a current signal (in amperes). The output
signal is a current signal. In general, current signals are preferred
before voltage signals, because:

— A current signal is more robust against electrical noise.

— With long conductors the voltage drop along the conductor may
become relatively large due to the internal resistance in the
conductor.

— A current signal of 0 mA is abnormal and indicates a break of
the conductor.

The standard current range is 4—20 mA (also 0—20 mA is used).
There are several standard voltage ranges, as 1—5V1 and 0—10V. The
physical measurement signal in A or V is usually transformed to a
percent value using a linear function. For example, the
transformation from the a signal yA in the range 4-20 mA to a signal

14—20 mA may be transformed to 1—5 V using a resistor of 250 Ω.
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y% in the range 0-100% is realized using the following formula:

y% = K (yA − yA0) + y%0 (3.1)

where y%0 = 0%, yA0 = 4mA and K = 100%/16mA = 6, 25%/mA.

The most important reasons to use 4 mA and not 0 mA as the lower
current value, is that the chance that the actual measurement signal
is drowned in noise is reduced and that the base signal of 4 mA can
be used as an energy source for the sensor or other equipment.

• The controller may have pulse output, which may used to implement
analog output using a binary actuator, typically a relay. The
technique is called PWM - Pulse Width Modulation. The
PWM-signal is a sequence of binary signals or on/off-signals used to
control the binary actuator. See Figure 3.2. The PWM-signal is kept

t

upwm
(mean value)

Duty cycle, D  [%]

Periode, Tp
~100%

U

0

On

Off

Control signal, u

Figure 3.2: Pulse Width Modulation

in the on-state for a certain time-interval of a fixed cycle period.
This time-interval (for the on-state) is called the duty cycle, and it is
expressed as a number in unit percent. For example, 60% duty cycle
means that the PWM-signal is in on-state in 60% of the period (and
in the off-state the rest of the period). The duty cycle is equal to the
specified analog control signal which is calculated by the PID
controller function. In the mean the PWM-signal will become equal
to the specified analog control signal, if the cycle period is small
compared to the time constant of the process to be controlled.

• In addition to the analog inputs and outputs the process controller
typically have digital inputs (on/off-signals) to detect signals from



82 Finn Haugen: PID Control

switches, buttons, etc., and digital outputs which can be used to
control relays, lamps, motors etc.

• The process controller typically have ports for serial (RS-232)
communication with another controller or a computer.

• The controller can be programmed from a panel on the front or on
the side of the unit or from a connected PC. The programming
includes combining function modules (see below).

• One of the function modules is the PID controller. You will have to
enter values for the PID parameters, typically being Kp, Ti and Td,
but other parameters may be used in stead, as the proportional
band, PB, which is equal to 100%/Kp, cf. Chapter 2.6.5.

• Other function modules include logical functions as AND, OR,
SR-flipflop, etc., and arithmetic functions, as addition,
multiplication, square root calculation, etc.

• In addition to the common single-loop PID control, the process
controller may implement more advanced control methods, as
feedforward control (cf. Chapter 9.1) gain scheduling PID control
(4.9.2), cascade control (9.2) and ratio control (9.3).

• The operator can adjust the setpoint internally (locally) on the
controller, but it is usually possible to use an external setpoint, too,
which may come from another controller (as in cascade control) or
from a sensor (as in ratio control) or from a computer which
calculates the setpoint as a result of a plantwide control strategy.

• The operator can take over the control by switching the process
controller from automatic mode to manual mode. This may be
necessary if the control program is to be modified, and at first-time
start-up. In manual mode the operator adjusts the controller output
(which is used as the manipulating variable of the process) manually
or directly, while in automatic mode the control output is calculated
according to the control function (typically PID control function).

• Many controllers have the possibility of auto-tuning, which means
that the process controller — initialized by the operator — calculates
proper values of the controller parameters based on some
automatically conducted experiment on the process to be controlled.
An even more advanced option which may be implemented is an
adaptive PID controller where the PID parameters are calculated
continuously from an estimated process model.
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• The operator can define alarm limits of the measurement signal. The
alarm can be indicated on the front panel of the controller unit, and
the alarm limits can be used by the control program to set the value
of a digital output of the process controller to turn on e.g. an alarm
lamp.

Figure 3.3 shows a section of the data sheet of the controller ECA600
shown in Figure 3.1.

Figure 3.3: A section of the datasheet of the controller ECA600 shown in Figure
3.1.

3.2 PLCs and similar equipment

PLC s are common in industrial automation. Figure 3.4 shows a PLC
system (Mitsubishi FX2N). PLC is short for Programmable Logical
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Figure 3.4: A PLC (Programmable Locical Controller). (Mitsubishi FX2N)

Controller. PLC-systems are modular systems for logical (binary) and
sequential control of valves, motors, lamps etc. Modern PLCs includes
function modules for PID control. The programming is usually executed
on a PC, and the PLC-program is then downloaded (transfered) to the
CPU in the PLC-system which then can be disconnected from the PC. The
program languages are standardized (the IEC 1131-3 standard), but the
actual languages which are implemented on commercial PLCs may differ
more or less from the standard.

There exists alternatives to PLCs. Figure 3.5 shows National Instruments’
Compact FieldPoint, which is denoted a PAC - Programmable Automation
Controller. This is a modular system similar to a PLC in several aspects.
Both logical and sequential control and PID control can be realized in the
PAC. The control program is developed in LabVIEW on a PC, and then it
is downloaded to the PAC, where it runs independently of the PC.

3.3 SCADA systems and DSC systems

3.3.1 SCADA systems

SCADA systems (Supervisory Control and Data Acquisition) are
automation systems where typically PCs are used for supervision and
control, but the execution of the control program takes place in a PLC or
some other control equipment. In this way the SCADA system implements
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Figure 3.5: Modular control equipment: Compact Fieldpoint, denoted PAC -
Programmable Automation Controller. (National Instruments)

a distributed control system architecture. Figure 3.6 shows an example of
a SCADA-system.

Here are some characteristics of PC-based control systems:

• A set of function modules are available in the SCADA program on
the PC, as arithmetic and logical functions, and signal processing
functions. The setpoint to be used by the connected PLC or other
control equipment may be calculated by the SCADA program
according to some optimal control strategy.

• The user can build the screen contents containing process images of
tanks, vessels, valves, etc., and bars, diagrams, numeric displays,
alarm indicators etc.

• The PCs can communicate with other PCs or other kinds of
computers via standard communication means, as RS-232 cables or
Ethernet etc.

• The SCADA system has driver programs for a number of
PLC-systems (from different vendors) and other I/O-systems
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Figure 3.6: SCADA system (FIX, Novotek)

(systems for analog and digital Input/Output). The number of
drivers may exceed 100.

• Data can be exchanged between programs in real-time. The OPC
standard (OLE for Process Control)2 has become an important
standard for this.

3.3.2 DCS

DCS (Distributed Control Systems) are similar to SCADA systems in that
the control equipment is distributed (not centralized) throughout the
plant. Special process stations — not standard PLCs or process controllers
— executes the control. DCSs can however communicate with PLCs etc.
The process stations are mounted in special rooms close to process. The
whole plant can be supervised and controlled from control rooms, where
the operators communicate with the distributed control equipment, see
Figure 3.7.

3.4 Embedded controllers in motors etc.

Producers of electrical and hydraulic servo motors also offers controllers for
the motors. These controllers are usually embedded in the motor drive
system, as separate physical unit connected to the motor via cables. The
controllers implement speed control and/or positional control. Figure 3.8
shows an example of a servo amplifier for DC-motor. The servo amplifier

2OLE = Object Linking and Embedding, which is a tecnology developed by Microsoft
for distributing objects and data bewteen Windows applications.
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Figure 3.7: Control room of a distributed control system (DCS)

have an embedded PI controller which the user can tune via screws on the
servo amplifier card.

Figure 3.8: DC-motor with servo amplifier (shown behind the motor) imple-
menting a PI-controller
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Chapter 4

Experimental tuning of PID
controllers

4.1 Introduction

This chapter describes several methods for experimental tuning of
controller parameters in P-, PI- and PID controllers, that is, methods for
finding proper values of Kp, Ti and Td. The methods can be used
experimentally on physical systems, but also on simulated systems.

The methods described can be applied only to processes having a time
delay or having dynamics of order higher than 3. Here are a few examples
of processes (transfer function models) for which the method can not be
used:

H(s) =
K

s
(integrator) (4.1)

H(s) =
K

Ts+ 1
(first order system) (4.2)

H(s) =
K

( sω0 )
2 + 2ζ s

ω0
+ 1

(second order system) (4.3)

Controller tuning for processes as above can be executed with a transfer
function based method, cf. Chapter 7.

The methods described in this chapter can be regarded as general methods
since their procedure is the same, regardless the dynamic properties of the
process to be controlled. There are processes for which the methods does
not fit well, for example a first order process with a time delay much larger
than the time constant. Chapter 7 describes tuning methods which are

89
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based on the given dynamic properties of the process as expressed in a
transfer function model, and the PID parameters are then tailored for this
process. You can expect that such model-based tuning methods will give
the control system better performance (as faster control) than if the
controller was tuned with a general tuning method. Despite this, the
general tuning methods are important because they have proven to work
well and because they are simple to use (they do not require an explicit
process model).

4.2 A criterion for controller tuning

A reasonable criterion for tuning the controller parameters is that the
control system has fast control with satisfactory stability. These two
requirements — fast control and satisfactory stability — are in general
contradictory: Very good stability corresponds to sluggish control (not
desirable), and poor stability (not desirable) corresponds to fast control. A
tuning method must find a compromise between these two contradictory
requirements.

What is meant by satisfactory stability? Simply stated, it means that the
response in the process output variable converges to a constant value with
satisfactory damping after a time-limited change of the setpoint or the
disturbance. Satisfactory damping can be quantified in several ways.
Ziegler and Nichols [20] who published famous tuning rules in the 1940s
claimed that satisfactory damping corresponds to an amplitude ratio of
approximately 1/4 between subsequent peaks in the same direction (due to
a step disturbance in the control loop), see Figure 4.1:

A2
A1

=
1

4
(4.4)

Ziegler and Nichols used this as a stability criterion when they derived
their PID tuning rules. However, there is no guaranty that the actual
amplitude ratio of a given control system becomes 1/4 after tuning with
one of the Ziegler and Nichols’ methods, but it should not be very different
from 1/4.

If you think that the stability of the control loop becomes too bad or too
good, you can try to adjust the controller parameters. The first aid, which
may be the only adjustment needed, is to adjust the controller gain Kp as
follows:

• Too bad stability: Decrease Kp somewhat, for example a 25%
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Figure 4.1: Good stability (according to Ziegler and Nichols)

decrease.

• Too good stability (which corresponds to sluggish control): Increase
Kp somewhat, for example a 25% increase.

4.3 The P-I-D method

The P-I-D method is a simple and intuitive method (which does not
require the control system to have sustained oscillations, as in the
Ziegler-Nichols’ closed loop method, cf. Section 4.4). The method is based
on experiments on the established control system (or on a simulator of the
control system), see Figure 4.2. The method is as follows:

1. Bring the process to or close to the normal or specified operation
point by adjusting the nominal control signal u0 (with the controller
in manual mode).

2. Controller tuning:
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Figure 4.2: The P-I-D method is applied to the established control system.

• P controller: Ensure that the controller is a P controller with
Kp = 0 (set Ti =∞ and Td = 0). Increase Kp until the control
loop gets satisfactory stability as seen in the response in the
measurement signal after e.g. a step in the setpoint or in the
disturbance (exciting with a step in the disturbance may be
impossible on a real system, but it possible in a simulator).
If you do not want to start with Kp = 0, you can try Kp = 1
(which is a good initial guess in many cases) and then increase
or decrease the Kp value until you are content with the stability
of the control loop.

• PI controller:
(a) Start by executing the procedure for a P controller (see

above).
(b) Activate the integral term by reducing Ti until the loop gets

a little too poor stability. Alternatively, you can jump to
the following Ti-value: Ti = Tp/1.5, where Tp is the time
period of the damped oscillations when using the P
controller. Because of the introduction of the I-term, the
loop will have a somewhat reduced stability than with the
P controller only.

(c) Adjust Kp (you can try decreasing Kp by 20%) until the
stability of the loop is satisfactory.

• PID controller:

(a) Start by executing the procedure for a P controller (see
above).

(b) Then activate both the integral term by reducing Ti — an
initial guess is Ti = Tp/2 where Tp is the time period of the
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damped oscillations for the P controller, and the derivative
term by increasing Td — an initial guess is Ti/4.

(c) Adjust Kp (you can try increasing it by 20%) until the
stability of the loop is satisfactory.

Example 4.1 Controller tuning of a wood-chip level control
system with the P-I-D method

I have used the P-I-D method on the simulator shown in Figure 2.15. The
PID parameter values became

Kp = 2.1; Ti = 10min = 600s; Td = 2.5min = 150s (4.5)

Figure 4.3 shows the resulting responses. The control system seems to have
satisfactory stability.

Figure 4.3: Example 4.1: Level control of the wood-chip tank with a P-
controller. (The front panel of the simulator is as shown in Figure 2.15.)

[End of Example 4.1]



94 Finn Haugen: PID Control

4.4 Ziegler-Nichols’ closed loop method

Ziegler and Nichols published in 1942 a paper [20] where they described
two methods for tuning the parameters of P-, PI- and PID controllers.
These two methods are the Ziegler-Nichols’ closed loop method (which is
described in this section) and the Ziegler-Nichols’ open loop method
(described in Section 4.6). These methods are still useful despite many
years of research on PID tuning, and they form the basis of some
auto-tuning methods (auto-tuning is described in Section 4.8).

The method is based on experiments executed on an established control
loop (a real system or a simulated system), see Figure 4.4.

Process

Sensor

v

y

Measured y

ySP

ue
PID

u0

Auto

Manual

Controller

Tp

Figure 4.4: The Ziegler-Nichols’ closed loop method is executed on an estab-
lished control system.

The tuning procedure is as follows:

1. Bring the process to (or as close to as possible) the specified
operating point of the control system to ensure that the controller
during the tuning is “feeling” representative process dynamic1 and to
minimize the chance that variables during the tuning reach limits.
You can bring the process to the operating point by manually
adjusting the control variable, with the controller in manual mode,
until the process variable is approximately equal to the setpoint.

2. Turn the PID controller into a P controller with gain Kp = 0 (set
Ti =∞ and Td = 0). Close the control loop by setting the controller

1This may be important for nonlinear processes.
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in automatic mode.

3. Increase Kp until there are sustained oscillations in the signals in the
control system, e.g. in the process measurement, after an excitation
of the system. (The sustained oscillations corresponds to the system
being on the stability limit.) This Kp value is denoted the ultimate
(or critical) gain, Kpu .

The excitation can be a step in the setpoint. This step must be
small, for example 5% of the maximum setpoint range, so that the
process is not driven too far away from the operating point where the
dynamic properties of the process may be different. On the other
hand, the step must not be too small, or it may be difficult to
observe the oscillations due to the inevitable measurement noise.

It is important that Kpu is found without the actuator being driven
into any saturation limit (maximum or minimum value) during the
oscillations. If such limits are reached, you will find that there will be
sustained oscillations for any (large) value of Kp, e.g. 1000000, and
the resulting Kp-value (as calculated from the Ziegler-Nichols’
formulas, cf. Table 4.1) is useless (the control system will probably
be unstable). One way to say this is that Kpu must be the smallest
Kp value that drives the control loop into sustained oscillations.

4. Measure the ultimate (or critical) period Tu of the sustained
oscillations.

5. Calculate the controller parameter values according to Table 4.1, and
use these parameter values in the controller.

The lowpass filter time constant Tf (cf. Section 2.6.7) can be set to

Tf = 0.1Td (4.6)

(if no other specification exists).

If the stability of the control loop is poor, try to improve the stability
by decreasing Kp.

Kp Ti Td
P controller 0.5Kpu ∞ 0

PI controller 0.45Kpu
Tu
1.2 0

PID controller 0.6Kpu
Tu
2

Tu
8 =

Ti
4

Table 4.1: Formulas for the controller parameters in the Ziegler-Nichols’ closed
loop method.
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Example 4.2 The Ziegler-Nichols’ closed loop method

Figure 4.5 shows the signals in the simulated wood-chip level control
system shown in Figure 2.15 (page 32). The system was excited by a step
in the setpoint from 10m to 10.5m. The ultimate gain was Kpu = 3.1, and

Figure 4.5: Example 4.2: The tuning phase of the Ziegler-Nichols’ closed-loop
method. (The front panel of the simulator is as shown in Figure 2.15.)

the ultimate period is approximately Tu = 18min. From Table 4.1 we get
the following PID parameters:

Kp = 1.86; Ti = 9min = 540s; Td = 2.25min = 135s (4.7)

Figure 4.6 shows signals of the control system with the above PID
parameter values. The control system has satisfactory stability. The
amplitude ratio in the damped oscillations is less than 1/4, that is, which
means that the stability is a little better than prescribed by Ziegler and
Nichols’.

[End of Example 4.2]
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Figure 4.6: Example 4.2: Time responses with PID parameters tuned using the
Ziegler-Nichols’ closed loop method

Some comments to the Ziegler-Nichols’ closed loop method

1. You do not know in advance the amplitude of the sustained
oscillations. The amplitude depends partly of the initial value of the
process measurement. By using the Åstrøm-Hägglund’s tuning
method described in Section 4.5 in stead of the Ziegler-Nichols’
closed loop method, you have full control over the amplitude, which
is beneficial, of course.

2. For sluggish processes it may be time consuming to find the ultimate
gain in physical experiments. The Åstrøm-Hägglund’s method
reduces this problem since the oscillations come automatically.

3. If the operating point varies and if the process dynamic properties
depends on the operating point, you should consider using some kind
of adaptive control or gain scheduling, where the PID parameter are
adjusted as functions of the operating point.
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If the controller parameters shall have fixed value, they should be
tuned in the worst case as stability is regarded. This ensures proper
stability if the operation point varies. The worst operating point is
the operation point where the process gain has its greatest value
and/or the time delay has its greatest value.

4. The responses in the control system may become unsatisfactory with
the Ziegler-Nichols’ method. 1/4 decay ratio may be too much, that
is, the damping in the loop is too small. A simple re-tuning in this
case is to reduce the Kp somewhat, for example by 20%.

A possibly better way to re-tune the controller for better stability is
described by Ziegler and Nichols in [20]. They suggested to decrease
Kp, 1/Ti and Td with the same factor, for example 10%.2

In the beginning

The Ziegler and Nichols’ methods have definitely proven to be useful, but
they actually met some resistance in the beginning. In [2] Ziegler reports
from a meeting in the American Society of Mechanical Engineers (ASME):
“The questions at the end were pretty bitter because they (the ‘old-timers’)
could not stomach this ultimate sensitivity3. The questions got worse and
worse and I was answering them. Finally a little guy in the back of the
room got up. He was from Goodyear. Since he was on the committee he
had received an advance copy of the paper. He stuttered some, and
stammered out for all to hear: ‘We had one process in our plant, a very
bad one, and so I tried this method and it just worked perfectly.’ That
broke up the meeting.”

4.5 Åstrøm-Hägglund’s On/off method

Åstrøm-Hägglund’s On/off method can be regarded as a practical
implementation of the Ziegler-Nichols’ closed loop method described in
Chapter 4.4. There are a few practical problems with the Ziegler-Nichols’
method:

• It may be time-consuming to find the least controller gain Kp which
gives sustained oscillations.

2Note: Decreasing 1/Ti is the same as increasing Ti.
3which implies that the control system is on the stability limit and oscillates
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• You do not have full control over the amplitude of the oscillations.

Both these problems are eliminated is in the Åstrøm-Hägglund’s’ method
[21]. The method is based on using an On/off controller in place of the
PID controller to be tuned, see Figure 4.7. The On/off controller is the
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e PID
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Auto

Manual

Controller

Tp

On/
off
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Figure 4.7: Configuration of the control loop in Åstrøm-Hägglund’s On/off
method for tuning a PID controller

same as described in Section 2.6.3. Due to the On/off controller the
sustained oscillations in control loop will come automatically. These
oscillations will have approximately the same period as if the
Ziegler-Nichols’ closed loop method were used, and the ultimate gain Kpu
can be easily calculated. The method is as follows.

1. Bring the process to (or as close to as possible) the specified
operating point of the control system to ensure that the controller
during the tuning is “feeling” representative process dynamic4 and to
ensure that the signals during the tuning can vary without meeting
limits due to being in a non-representative operating point. You
bring the process to the operating point by manually adjusting the
control variable, with the controller in manual mode, until the
process variable is approximately equal to the setpoint.

2. Set the amplitude A of the On/off controller, cf. Chapter 2.6.3, to a
reasonable value — not too small and not too large — for example 10%
of the range of the control signal.

4This may be important for nonlinear processes.
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3. Switch the On/off controller into the loop. This causes sustained
oscillations to appear automatically in the control loop. It is not
necessary to excite the control loop externally for the oscillations to
come (thus, the setpoint can be constant).

4. Read off the amplitude E of the oscillations of the input signal to the
On/off controller, which is the control error, and calculate the
equivalent gain as follows:

Ke =
Au
Ae

(4.8)

where Au is

Au =
4A

π
(4.9)

and Ae is to be selected among these following alternatives,
depending on the type of input signal e (control error) to the On/off
controller:

• If the oscillations are sinusoidal (this is the most common signal
form) with amplitude E5, set

Ae = E (4.10)

• If the oscillations are triangular (this is more seldom, but exists
in integrator systems as the wood-chip tank) with amplitude E,
set

Ae =
8E

π2
(4.11)

A few words about the background of the formulas above:

• (4.8) calculates the equivalent gain of the On/off controller as
the ratio between equivalent amplitudes in the output signal
and the input signal of the On/off controller.

• Au is the amplitude of the first harmonic of a Fourier series
expansion of the square pulse train at the output of the On/off
controller.

• Ae in (4.10) is the amplitude in the sinusoidal control error.
• Ae in (4.11) is the first harmonic of a Fourier series expansion of
the triangular pulse train at the output of the On/off controller.

5. Read off the ultimate period Tp as the period of the sustained
oscillations (Tp can be read off fro any signal in the the control loop).

5The amplitude may be measured as half the distance between the maximum value
and the minimum value.
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6. Calculate the controller parameters of a P, PI or PID controller
according to the Ziegler-Nichols’ closed loop method, cf. Table 4.1,
using Kpu = Ke and Tp.

7. Once the PID parameters have been entered into the controller,
activate the PID controller. (The On/off controller has finished its
job.)

Example 4.3 Controller tuning using Åstrøm-Hägglund’s method

Figure 4.8 shows the signals in the controller tuning phase for the
wood-chip level control system shown in Figure 2.15 (page 32). The

Figure 4.8: Example 4.3: Oscillations in the control system in the tuning phase
of the Åstrøm-Hägglund’s method

amplitude A in the On/off controller is set to 10%. Then oscillations in the
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control error e are triangular with amplitude E = 0.75m. This value must
be transformed to a corresponding value in % using the measurement
function. (It is necessary transform to percent because percent is the unit
of the signal into the On/off controller.) Since 0− 15m corresponds to
0− 100%, 0.75m corresponds to 5.0% = E, which we insert into (4.11)
since the oscillations are triangular. (4.8) gives

Ke =
Au
Ae

=
4A
π
8E
π2

=
4·10%
π

8·5.0%
π2

= 3.14 (4.12)

(which is close to Kpu = 3.1 found using the Ziegler-Nichols’ closed loop
method in Example 4.2).

The ultimate period Tp is read off to 18min = 1080s (same as as in
Example 4.2).

Finally, inserting the values of Kpu and Tp into the formulas in Table 4.1
gives the following PID controller parameters:

Kp = 1.88; Ti = 9min = 540s; Td = 2.25min = 135s (4.13)

Since these PID values are very similar to those found using the
Ziegler-Nichols’ closed loop method in Example 4.2, you can look at Figure
4.6 to see simulated responses in the control system with the tuned PID
controller.

[End of Example 4.3]

How to control the amplitude of the oscillations

You will obtain the same value for the equivalent gain Ke of the On/off
controller no matter the value of the amplitude A in the controller (unless
some maximum or minimum limits are reached). Ke is independent of A
because Ke gets a value which is (quite) equal to the value of Kpu we
would have found using the Ziegler-Nichols’ closed loop method, and the
Kpu value is of course independent of A. This fact can be used to control
the amplitude of the oscillations. Let us here assume that the signal e into
the On/off controller is sinusoidal, but the conclusion still holds if the
oscillations are triangular. From (4.8)-(4.10),

Ke =
4A

πE
(4.14)

Two different A values A1 and A2 will, since Ke has a fixed value, results
in two different amplitude values E1 and E2, but so that

Ke =
4A1
πE1

=
4A2
πE2

(4.15)
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From (4.15) we get a formula for a new A value, Anew, from a specified
new E value, Enew:

Anew = Aold
Enew
Eold

(4.16)

For example, if we want to halve the amplitude E, we set Enew = Eold/2,
giving Anew = Aold/2. The ultimate period Tu of the sustained oscillations
is independent of the value of A.

4.6 Ziegler-Nichols’ open loop method

4.6.1 Ziegler-Nichols’ open loop method used
experimentally

The Ziegler-Nichols’ open loop method is based on the process step
response. The PID parameters are calculated from the response in the
process measurement ym after a step with height U in the control variable
u, see Figure 4.9. The term “process” here means all blocks in the control
except the controller. The step response experiment is executed on the
uncontrolled process, so the control loop is open (no feedback).

Process
including
sensor and

scaling

Process
measure-

ment
uu0

u0+U
u

t t

ym

ym

ym0

Control
signal

Figure 4.9: The Ziegler-Nichols’ open loop method is based on the step response
of the uncontrolled process

The method is as follows.

1. If the control loop is closed (i.e. feedback), the loop must be opened.
This can be done by setting the controller in manual mode.

2. Bring the process to the operation point by adjusting the control
variable manually. This is done by adjusting u0 in Figure 4.9.

3. Excite the process via a step of amplitude U in the control variable
u. The step should be “small” so that the process is not brought too
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far from the operation point, but of course the step must large
enough to give an observable response in process measurement ym. A
step amplitude of U = 10% can be a reasonable value, but the
amplitude must be chosen individually in each case.

4. Read off the following characteristic parameters from the step
response in ym:

• Equivalent dead-time or lag L
• Rate or slope R

Figure 4.10 which shows the relevant part of a typical step response.
In the figure the time axis starts at the step time. The annotation
“0.0” along the y-axis corresponds to ym0 in Figure 4.9. L is the time
from the step time to the point of intersection between the “0.0”-line
and the steepest tangent. R is the slope of the steepest tangent.

Figure 4.10: Ziegler-Nichols’ open loop method: The equivalent dead-time L
and rate R read off from the process step response. (The figure is a reprint
from [20] with permission.)

5. Calculate the controller parameters according to Table 4.2.

6. After the controller parameters have been calculated and entered into
the PID controller, the control loop is closed (by setting the
controller in automatic mode).

Example 4.4 Controller tuning using Ziegler-Nichols’ open loop
method

In this example the Ziegler-Nichols’ open loop method is applied to the
wood-chip tank shown in Figure 2.15. The step in the control variable is
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Kp Ti Td
P controller 1

LR/U ∞ 0

PI controller 0.9
LR/U 3.3L 0

PID controller 1.2
LR/U 2L 0.5L = Ti

4

Table 4.2: Ziegler-Nichols’ open loop method: Formulas for the controller pa-
rameters.

U = 10% from u0 = 45% to 55%. Figure 4.11 shows the response in the
level measurement. We read off

L = 4.2min (4.17)

(which is in good accordance with the time delay on the conveyor belt of
4.17min used in the simulator).

R can be calculated from the slope of the level response. From Figure 4.11
we will find that the level increases approximately 1.7m during 10min,
giving a slope of R1 = 1.7/10 = 0.17m/min. However, the slope R must be
expressed in unit %/min. The level sensor transforms 0− 15m to 0− 100%,
corresponding to a measurement gain of Km = 6.67%/m. Therefore,

R = R1Km = 0.17m/min · 6.67%/m = 1.13%/min (4.18)

Using these values for L and R in Table 4.2 gives the following PID
parameters:

Kp = 2.52; Ti = 8.4min = 504s; Td = 2.1min = 126s (4.19)

Figure 4.12 shows simulated responses with the PID controller with these
above parameters. There is a step in the setpoint and a step in the
disturbance (the outflow). The control system has satisfying stability, but
the stability is a little reduced as compared to the case of Ziegler-Nichols’
closed loop method, cf. Figure 4.6.

[End of Example 4.4]

4.6.2 Ziegler-Nichols’ open loop method with transfer
function models

If the process to be controlled is a first order system with time delay or an
integrator with time delay, it is simple to find formulas for controller
tuning based on the Ziegler-Nichols’ open loop method. The tuning
method can then be applied without experiments or simulations.



106 Finn Haugen: PID Control

Figure 4.11: Example 4.4: Ziegler-Nichols’ open-loop method applied to the
wood-chip tank

• First order system with time delay: Assume that the transfer
function from control variable u to process measurement ym is

ym(s)

u(s)
= H(s) =

K

Ts+ 1
e−τs (4.20)

where K is the gain, T is the time constant and τ is the time delay.
According to Ziegler-Nichols’ open loop method u is assumed to be
step of amplitude U . It can be shown that the steepest slope of the
step response in ym is

R =
KU

T
(4.21)

The time delay is of course
L = τ (4.22)

R and L can now be used in Table 4.2 to calculate controller
parameters.

For example, the PID parameters are

Kp =
1.2T

τK
; Ti = 2τ ; Td = 0.5τ (4.23)
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Figure 4.12: Example 4.4: Time responses with PID parameters tuned using
the Ziegler-Nichols’ open loop method

• Integrator with time delay: The transfer function from control
variable u to process measurement ym is

ym(s)

u(s)
= H(s) =

K

s
e−τs (4.24)

where K is the gain and τ is the time delay. u is assumed to be step
of amplitude U . It can be shown that the slope of the step response
in ym (this response is a ramp) is

R = KU (4.25)

The time delay is
L = τ (4.26)

R and L can now be used in Table 4.2.
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Example 4.5 Ziegler-Nichols’ open loop method with transfer
function model

A level control system for a wood-chip tank including conveyor belt is
described in Example 2.3. Mass balance gives the following mathematical
model of the tank, cf. Example 2.7:

ḣ(t) =
1

ρA
[u(t− τ)− wout(t)] (4.27)

Taking the Laplace transform of this differential equation gives

sh(s)− h0 = 1

ρA

£
Kse

−τsu(s)− wout(s)
¤

(4.28)

which leads to the following transfer function from control variable u
(control signal acting on the inlet screw) to the level h:

h(s)

u(s)
= Hp(s) =

Ks
ρAs

e−τs (4.29)

The transfer function from level h to level measurement hm is

hm(s)

h(s)
= Hm(s) = Km (4.30)

Combining (4.29) and (4.30) gives the following transfer function from u to
hm:

hm(s)

u(s)
= Hp(s)Hm(s) =

KmKs
ρAs

e−τs =
K

s
e−τs (4.31)

which is on the form (4.24). We get

R = KU =
KmKs
ρA

U (4.32)

L = τ (4.33)

R and L can now be used in Table 4.2. For example, a PID controller will
have the following parameter values (the process parameters can be seen at
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the front panel of the simulator shown in Figure 2.15 (page 32):

Kp =
1.2

LR/U
(4.34)

=
1.2

τ KmKs
ρA U/U

(4.35)

=
1.2ρA

τKmKs
(4.36)

=
1.2 · 145 kgm3 · 13.4m2

4.17min · 6.67%m · 33.36kg/min%

(4.37)

= 2.51 (4.38)

Ti = 2L = 2τ = 2 · 4.17 = 8.3min (4.39)

Td = 0.5L = 0.5τ = 0.5 · 4.17 = 2.1min (4.40)

These parameter values are in very good accordance with the values found
“experimentally” in Example 4.4.

[End of Example 4.5]

Adjustment of controller parameters using Ziegler-Nichols’ open
loop method

Ziegler-Nichols’ open loop method is a good starting point for deciding
how the controller parameters can be adjusted if there is a change of
parameters in the control loop. Let us assume that the process gain K
may be changed and that the time delay τ in the process may be changed.
We assume that the slope R of the process step response is proportional to
K and (of course) also proportional to the step amplitude U of the input
signal acting on the process:

R = aKU (4.41)

(It is not important for the discussion below what is the actual value of a.)
Furthermore, we assume that the time delay or lag L is independent of K,
while it is approximately equal to the process dead time τ :

L = τ (4.42)

Assuming as an example that the controller is a PID controller, we get
from Table 4.2

Kp =
1.2

LR/U
=

1.2

aτK
(4.43)

Ti = 2τ (4.44)
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Td = 0.5τ (4.45)

One example: Assume that the process gain K is doubled. (4.43) — (4.45)
says that the controller gain Kp should be halved, while Ti and Td remains
unchanged.

Another example: Assume that the process dead time τ doubled. Then,
according to (4.43) — (4.45) Kp should be halved and both Ti and Td
should be doubled.

4.7 Consequences of adjusting controller
parameters

4.7.1 Introduction

After you have tuned the controller parameters using e.g. one of the
Ziegler-Nichols’ methods, it may still be a need for adjusting the controller
parameters. The reason for this may be that the original tuning did not
give satisfactory results, as poor stability of the control system, or that
there are later changes of the dynamic properties of the controlled process.

We will now take a brief look at typical consequences of adjusting the three
parameters of a PID controller. The level control system for the wood-chip
tank will be used as an example. The front panel of the simulator front
panel is shown in 2.15. In the outset the PID parameters are

Kp = 1.86; Ti = 9min = 540s; Td = 2.25min = 135s (4.46)

which we found using the Ziegler-Nichols’ closed loop method in Example
4.13. Figure 4.6 shows the response with the above PID parameters after
step in the disturbance (the outflow wout).

In the following examples we consider responses due to a step in the
disturbance wout from 1500kg/min to 1800kg/min for adjusted controller
parameter values. Only changes in one direction for each PID parameter
will be shown.

4.7.2 Increasing Kp

Figure 4.14 shows responses due to a step in wout (disturbance) from
1500kg/min to 1800kg/min for Kp increased from 1.86 to 2.7. The stability
is reduced due to the increased Kp.
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Figure 4.13: Level control of wood-chip tank: Response in level with PID
parameters after step in disturbance (outflow wout) for PID parameters found
from Ziegler-Nichols’ closed loop method

4.7.3 Reducing Ti

If Ti is reduced, the integration of the control error runs faster, but
unfortunately the stability of the control system is reduced. Figure 4.15
shows responses due to a step in wout (disturbance) from 1500kg/min to
1800kg/min for Ti reduced from 9.0min to 4.0min. The stability is reduced
due to the reduced Ti.

4.7.4 Increasing Td

In general the derivative term can increase both the quickness and the
stability of a control system. But it is important that Td has a proper
value. Increasing Td from a proper value may actually reduce the stability
because the control variable is more (or too) sensitive to changes in the
control error causing “overcompensation”. In addition the control variable
becomes more sensitive to high frequent measurement noise, cf. Chapter
2.6.7.

Figure 4.16 shows responses due to a step in wout (disturbance) from
1500kg/min to 1800kg/min for Td increased from 2.25min to 4.0min. The
stability is reduced due to the increased Td.
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Figure 4.14: Level control of wood-chip tank: Response in level with Kp in-
creased from 1.86 to 2.7

4.8 Auto-tuning

Auto-tuning is automatic tuning of controller parameters in one
experiment. It is common that commercial controllers offers auto-tuning.
The operator starts the auto-tuning via some button or menu choice on
the controller. The controller then executes automatically a pre-planned
experiment on the uncontrolled process or on the control system depending
on the auto-tuning method implemented. Below are described a couple of
auto-tuning methods.

Auto-tuning based On/off control

The Åstrøm-Hägglund’s On/off method for tuning PID controllers, cf.
Section 4.5, is used as the basis of auto-tuning in some commercial
controllers.6 The principle of this method is as follows:

• When the auto-tuning phase is started, an On/off controller is used
as the controller in the control loop, see Figure 4.7. Due to this
On/off controller there are sustained oscillations in control loop, cf.
Chapter 4.5, and these oscillations come automatically.

6E.g. the ECA600 PID controller by ABB.
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Figure 4.15: Level control of wood-chip tank: Response in level for Ti reduced
from 9.0min to 4.0min.

• Once the controller has measured information about amplitude and
period of the oscillations in the process measurement — and a few
periods may give sufficient information — the PID parameters are
calculated automatically. Immediately thereafter the PID controller
with the tuned parameters is switched into the control loop.

Auto-tuning based on estimated process model

Commercial software tools 7 exist for auto-tuning based on en estimated
process model developed from a sequence of logged data — or time-series —
of the control variable u and process measurement ym. The process model
is a “black-box” input-output model in the form of a transfer function.
The controller parameters are calculated automatically on the basis of the
estimated process model. The time-series of u and ym may be logged from
the system being in closed loop or in open loop:

• Closed loop, with the control system being excited via the setpoint,
ySP , see Figure 4.17. The closed loop experiment may be used when
the controller should be re-tuned, that is, the parameters should be
optimized.

7 som MultiTune (norsk) og ExpterTune
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Figure 4.16: Level control of wood-chip tank: Response in level for Td increased
from 2.25min to 4.0min.

• Open loop, with the process, which in this case is not under
control, being excited via the control variable, u, see Figure 4.18.
This option must be made if there are no initial values of the
controller parameters.

Manual model based controller tuning

If you have the right software tools at your disposal you can perform
modeling and model based controller tuning yourself. Here is a short
description of what is needed:

• Tools for estimating input-output models from logged data
(time-series) of control signal and process measurement:
Examples of tools are MATLAB’s System Identification Toolbox and
LabVIEW’s System Identification Toolkit. These tools contains
powerful functions for estimating input-output models. Particularly
useful and user-friendly are the estimation functions based on
subspace methods: n4sid in MATLAB and State Space Estimation in
LabVIEW. The subspace based DSR-toolbox [3] for MATLAB is also
powerful for such modeling. From the estimated modeling, a transfer
function model in the form of a discrete-time z-transfer function, say
Hp(z), can be derived.
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Figure 4.17: Auto-tuning based on closed loop excitation via the setpoint

• Tools for simulation of discrete-time dynamic systems:
Examples of tools are MATLAB’s Control System Toolbox and
SIMULINK, and LabVIEW’s Simulation Module and Control Design
Toolkit. There are even simulation tools in MATLAB’s System
Identification Toolbox and LabVIEW’s System Identification Toolkit.
With such tools you can simulate control loops consisting of a
z-transfer function Hc(z) of the controller and a process transfer
function Hp(z), and tune controller parameters “experimentally” on
the simulator, using e.g. the Ziegler-Nichols’ closed loop method.

With tools for frequency response analysis, as in MATLAB’s Control
System Toolbox and LabVIEW’s Control Design Toolkit, you can
combine simulations with frequency response analysis and design of
control system.

Example 4.6 Controller tuning from estimated model

The n4sid function in MATLAB’s System Identification Toolbox is used to
estimate a process model (a z-transfer function) from time-series of control
signal u and process measurement ym from a simulated process. The
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Figure 4.18: Auto-tuning based on open loop excitation via the control variable

simulated process is a first order system with gain 2 and time constant 1s
in series with a time delay of 0.4s. A closed loop system experiment is
performed. The controller is a PI controller with the following original
parameter values:

Kp = 0.50; Ti = 3.0s (4.47)

(it was observed that responses in the control system are somewhat
sluggish, so it is hoped that improvements can be made after re-tuning).

Figure 4.19 shows the control signal u and process measurement ym from
the simulation (excitation). The time-series of u and ym are used in the
n4sid function to estimate a process model. The Ziegler-Nichols’ closed
loop method were then used in a simulator based on the step simulation
function of the MATLAB’s Control System Toolbox to calculate PI
parameters. The result is

Kp = 0.89; Ti = 1.37s (4.48)

Figure 4.20 shows simulated responses in process measurement after a step
in the setpoint. Two cases are shown: Simulated response for PI controller
with original parameter values (4.47), and for PI controller with re-tuned
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Figure 4.19: Example 4.6: Control signal u and process measurement ym used
for estimation of process model

parameter values (4.48). The re-tuning has clearly given an improvement
of the quickness of the control loop, and the stability of the control loop is
satisfactory.

[End of Example 4.6]

4.9 PID tuning when process dynamics varies

4.9.1 Introduction

A well tuned PID controller has parameters which are adapted to the
dynamic properties to the process, so that the control system becomes fast
and stable. If the process dynamic properties varies without re-tuning the
controller, the control system

• gets reduced stability or
• becomes more sluggish.

Problems with variable process dynamics can be solved as follows:

• The controller is tuned in the most critical operation point,
so that when the process operates in a different operation point, the
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Figure 4.20: Example 4.6: Response in process output for control system with
original and re-tuned PI controller parameters

stability of the control system is just better – at least the stability is
not reduced. However, if the stability is too good the tracking
quickness is reduced, giving more sluggish control.

• The controller parameters are varied in the “opposite”
direction of the variations of the process dynamics, so that
the performance of the control system is maintained, independent of
the operation point. Two ways to vary the controller parameters are:

— PID controller with gain scheduling. This is described in detail
in Section 4.9.2.

— Model-based adaptive controller. This is described briefly in
Section 4.9.4.

Commercial control equipment is available with options for gain scheduling
and/or adaptive control.

4.9.2 Gain scheduling PID controller

Figure 4.21 shows the structure of a control system for a process which
may have varying dynamic properties, for example a varying gain. The
Gain scheduling variable GS is some measured process variable which at
every instant of time expresses or represents the dynamic properties of the
process. As you will see in Example 4.7, GS may be the mass flow through
a liquid tank.
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Figure 4.21: Control system for a process having varying dynamic properties.
The GS variable expresses or represents the dynamic properties of the process.

Assume that proper values of the PID parameters Kp, Ti and Td are found
using for example Ziegler-Nichols’ closed loop method for a set of values of
the GS variable. These PID parameter values can be stored in a parameter
table — the gain schedule — as shown in Table 4.3. From this table proper
PID parameters are given as functions of the gain scheduling variable, GS.

GS Kp Ti Td
P1 Kp1 Ti1 Td1
P2 Kp2 Ti2 Td2
P3 Kp3 Ti3 Td3

Table 4.3: Gain schedule or parameter table of PID controller parameters.

There are several ways to express the PID parameters as functions of the
GS variable:

• Piecewise constant controller parameters: An interval is
defined around each GS value in the parameter table. The controller
parameters are kept constant as long as the GS value is within the
interval. This is a simple solution, but is seems nonetheless to be the
most common solution in commercial controllers.

When the GS variable changes from one interval to another, the
controller parameters are changed abruptly, see Figure 4.22 which
illustrates this for Kp, but the situation is the same for Ti and Td. In
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Figure 4.22 it is assumed that GS values toward the left are critical
with respect to the stability of the control system. In other words: It
is assumed that it is safe to keep Kp constant and equal to the Kp
value in the left part of the the interval.

GS1 GS2 GS3 GS

Kp1

Kp2

Kp3

Kp

Assumed range of P

Table values of Kp

Linear interpolation

Piecewise constant value 
(with hysteresis )

Figure 4.22: Two different ways to interpolate in a PID parameter table: Using
piecewise constant values and linear interpolation

Using this solution there will be a disturbance in the form of a step
in the control variable when the GS variable shifts from one interval
to a another, but this disturbance is probably of negligible practical
importance for the process output variable. Noise in the GS variable
may cause frequent changes of the PID parameters. This can be
prevented by using a hysteresis, as shown in Figure 4.22.

• Piecewise interpolation, which means that a linear function is
found relating the controller parameter (output variable) and the GS
variable (input variable) between to adjacent sets of data in the
table. The linear function is on the form

Kp = a ·GS + b (4.49)

where a and b are found from the two corresponding data sets:

Kp1 = a ·GS1 + b (4.50)

Kp2 = a ·GS2 + b (4.51)
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(Similar equations applies to the Ti parameter and the Td
parameter.) (4.50) and (4.51) constitute a set of two equations with
two unknown variables, a and b.8

• Other interpolations may be used, too, for example a polynomial
function fitted exactly to the data or fitted using the least squares
method.

Example 4.7 Gain schedule based PID temperature control at
variable mass flow

Figure 4.25 shows the front panel of a simulator for a temperature control
system for a liquid tank with variable mass flow, w, through the tank. The
control variable u controls the power to heating element. The temperature
T is measured by a sensor which is placed some distance away from the
heating element. There is a time delay from the control variable to
measurement due to imperfect blending in the tank.

The process dynamics We will initially, both in simulations and from
analytical expressions, that the dynamic properties of the process varies
with the mass flow w. The response in the temperature T is simulated for
the following two open loop cases (i.e., not feedback control):

• A step in u of amplitude 10% from 31.5% to 41.5% at mass flow
w = 12kg/min, which in this context is a relatively small value, see
Figure 4.23.

• A step in u of amplitude 10%, from 63.0 % to 73.0 % at
w = 24kg/min, which in this context is a relatively large value, see
Figure 4.24.

The simulations show that the following happens when the mass flow w is
reduced (from 24 to 12kg/min): The gain process K is larger, the time
constant Tt is larger, and the time delay τ is larger. (These terms assumes
that system is a first order system with time delay. The simulator is based
on such a model. The model is described below.)

Let us see if the way the process dynamics seems to depend on the mass
flow w as seen from the simulations, can be confirmed from a

8The solution is left to you.
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Figure 4.23: Response in temperature T after a step in u of amplitude 10%
from 31.5% to 41.5% at the small mass flow w = 12kg/min

Figure 4.24: Response in temperature T after a step in u of amplitude 10%
from 63.0% to 73.0% at the large mass flow w = 24kg/min

mathematical process model.9 Assuming perfect stirring in the tank to
have homogeneous conditions in the tank, we can set up the following
energy balance for the liquid in the tank:

cρV Ṫ1(t) = KPu(t) + cw [Tin(t)− Tt(t)] (4.52)

where T1 [K] is the liquid temperature in the tank, Tin [K] is the inlet
temperature, c [J/(kg K)] is the specific heat capacity, V [m3] is the liquid
volume, ρ [kg/m3] is the density, w [kg/s] is the mass flow (same out as
in), KP [W/%] is the gain of the power amplifier, u [%] is the control
variable, cρV T1 is (the temperature dependent) energy in the tank. It is
assumed that the tank is isolated, that is, there is no heat transfer through

9Well, it would be strange if not. After all, we will be analyzing the same model as
used in the simulator.
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the walls to the environment. To make the model a little more realistic, we
will include a time delay τ [s] to represent inhomogeneous conditions in the
tank. Let us for simplicity assume that the time delay is inversely
proportional to the mass flow. Thus, the temperature T at the sensor is

T (t) = T1(t− Kτ

w|{z}
τ

) (4.53)

where τ is the time delay and Kτ is a constant. Let us study the transfer
function from u to T . Taking the Laplace transform of (4.52) gives

cρV [sT1(s)− T10 ] = KPu(s) + cw [Tin(s)− Tt(s)] (4.54)

where T10 is the initial value of T . Rearranging (4.54) yields the following
model

T1(s) =
ρV
w

ρV
w s+ 1

T10 +
KP
cw

ρV
w s+ 1

u(s) +
1

ρV
w s+ 1

Tin(s) (4.55)

Taking the Laplace transform of (4.53) gives

T (s) = e−
Kτ
w
sT1(s) (4.56)

Substituting T1(s) in (4.56) by T1(s) from (4.55) yields the following
transfer function Hu(s) from u to T :

T (s) =

Kz}|{
KP
cw

ρV

w|{z}
Tt

s+ 1
e
−

τz}|{
Kτ

w
s
u(s) (4.57)

=
K

Tts+ 1
e−τs| {z }

Hu(s)

u(s) (4.58)

Thus,

K =
KP
cw

(4.59)

Tt =
ρV

w
(4.60)

τ =
Kτ

w
(4.61)

This confirms the observations in the simulations: Reduced mass flow w
implies larger process gain, larger time constant, and larger time delay.

Heat exchangers and blending tanks in a process line where the production
rate or mass flow varies, have similar dynamic properties as the tank in
this example.
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Figure 4.25: Example 4.7: Simulation of temperature control system with PID
controller with fixed parameters tuned at maximum mass flow, which is w =
24kg/min

Control without gain scheduling (with fixed parameters) Let us
look at temperature control of the tank. The mass flow w varies. In which
operating point should the controller be tuned if we want to be sure that
the stability of the control system is not reduced when w varies? In general
the stability of a control loop is reduced if the gain increases and/or if the
time delay of the loop increases. (4.59) and (4.61) show how the gain and
time delay depends on the mass flow w. According to (4.59) and (4.61) the
PID controller should be tuned at minimal w. If we do the opposite, that
is, tune the controller at the maximum w, the control system may actually
become unstable if w decreases.

Let us see if a simulation confirms the above analysis. Figure 4.25 shows a
temperature control system. The PID controller is in the example tuned
with the Ziegler-Nichols’ closed loop method for a the maximum w value,
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which here is assumed 24kg/min. The PID parameters are

Kp = 7.8; Ti = 3.8min; Td = 0.9min (4.62)

Figure 4.25 shows what happens at a stepwise reduction of w: The
stability becomes worse, and the control system becomes unstable at the
minimal w value, which is 12kg/min.

Instead of using the PID parameters tuned at maximum w value, we can
tune the PID controller at minimum w value, which is 12kg/min. The
parameters are then

Kp = 4.1; Ti = 7.0min; Td = 1.8min (4.63)

The control system will now be stable for all w values, but the system
behaves sluggish at large w values. (Responses for this case is however not
shown here.)

Control with gain scheduling Let us see if gain scheduling maintains
the stability for varying mass flow w. The PID parameters will be adjusted
as a function of a measurement of w since the process dynamics varies with
w. Thus, w is the gain scheduling variable, GS:

GS = w (4.64)

A gain schedule consisting of three PID parameter value sets will be used.
Each set is tuned using the Ziegler-Nichols’ closed loop method at the
following GS or w values: 12, 16 and 20kg/min. These three PID
parameter sets are shown down to the left in Figure 4.25. The PID
parameters are held piecewise constant in the GS intervals. In each
interval, the PID parameters are held fixed for an increasing GS = w
value, cf. Figure 4.22.10 Figure 4.26 shows the response in the temperature
for decreasing values of w. The simulation shows that the stability of the
control system is maintained even if w decreases.

[End of Example 4.7]

4.9.3 Adjusting PID parameters from process model

In Section 4.9.2 the adjustment of the PID parameters was based on
interpolating between PID parameter values in a parameter table.
However, a table with interpolation is not the only way the adjustment can
10The simulator uses the inbuilt gain schedule in LabVIEW’s PID Control Toolkit.
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Figure 4.26: Example 4.7: Simulation of temperature control system with a
gain schedule based PID controller

be implemented. By studying the process model we may find a function for
parameter adjustment without having to make tuning in a number of
operating points. Assume as an example that the process gain K is a
function of a process variable P :

K = fK (P ) (4.65)

In many control loops the stability of the loop is maintained if the loop
gain KL, which is the product of the gain of each subsystems in the loop,
is constant, say KL0 . In other words, the stability is maintained if

KL = KpKKs = KpfK (P )Ks = KL0 (4.66)

where Kp is the controller gain (of a P or PI or PID controller) and Km is
the measurement gain (including a scaling function). For a given P value,
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say P1,
Kp1fK (P1)Ks = KL0 (4.67)

where Kp1 is assumes to be a proper Kp value (found using some tuning
method) when P = P1. By dividing (4.66) by (4.67) we get

KpfK (P )Ks
Kp1fK (P1)Ks

=
KL0
KL0

= 1 (4.68)

from which we get the following formula for adjusting the controller gain
Kp:

Kp = Kp1
fK (P1)

fK (P )
(4.69)

Adjusting Kp according to (4.69) ensures that the stability of the control
loop is maintained for any P value.

Example 4.8 Model based adjustment of level controller

Figure 4.27 shows a level control system for a cylindrical tank. You will

R

L

ρ

h

0

A

win

wout=Kuu

LC

LT

PI-
controller u

V

m

Figure 4.27: Example 4.8: Level control of a cylindric tank. The cross sectional
area is a function of the level.

now see that the process gain K varies with the level. This implies that
the controller gain Kp should vary. Mass balance for the liquid of the tank
(we assume homogeneous conditions) is

dm

dt
= ρ

dV

dt
= ρA

dh

dt
= win − wout = win −Kuu (4.70)
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It can be shown that the cross sectional area A is a function of the level h
as follows:

A(h) = 2L
p
R2 − (R− h)2 (4.71)

From (4.70) we find that the transfer function from a deviation ∆u in the
control signal to the corresponding deviation ∆h in the level is11

∆h(s)

∆u(s)
= H(s) = − Ku

ρA(h)s
(4.72)

giving the following process gain

K = − Ku
ρA(h)

= − Ku

2ρL
p
R2 − (R− h)2 = fK(h) (4.73)

The controller gain should be adjusted according to (4.69), which in this
case gives

Kp = Kp1
fK (h1)

fK (h)
= Kp1

h
− Ku

ρA(h1)

i
h
− Ku

ρA(h)

i = Kp1 A(h)A(h1)
(4.74)

where fK is given by (4.73) and A(h) is given by (4.71). Kp1 is a Kp value
of a P or PI controller (the PID controller is not a good choice for this
level control system since the process has pure integrator dynamics) tuned
at some level h1. (For example, h1 may correspond to half of the maximum
level.) Kp can be found by trial and error, or better: from transfer
function based controller tuning, cf. Chapter 7. For example, (4.74) says
that if the cross sectional area is halved (which gives doubled process
gain), Kp should be halved. The integral time Ti in a PI controller can be
unchanged in this case.

[End of Example 4.8]

4.9.4 Adaptive controller

In an adaptive control system, see Figure 4.28, a mathematical model of
the process to be controlled is continuously estimated from samples of the
control signal (u) and the process measurement (ym). The model is
typically a transfer function model. Typically, the structure of the model is
fixed. The model parameters are estimated continuously using e.g. the
least squares method. From the estimated process model the parameters of
a PID controller (or of some other control function) are continuously
11The transfer function is here actually relating the deviation variables about an oper-

ating point since the process model is nonlinear.
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Figure 4.28: Adaptive control system

calculated so that the control system achieves specified performance in
form of for example stability margins, poles, bandwidth, or minimum
variance of the process output variable[22]. Adaptive controllers are
commercially available, for example the ECA60 controller (ABB).
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Chapter 5

Discrete-time PID controller

5.1 Introduction

In former days, as in the 1930s, PID controllers were implemented with
pneumatic components. Later electronic components were used. Today,
dedicated control computers are used. A computer operates in discrete
time. A computer which executes PID control calculates a new value of the
control variable at each new time step. This calculation is implemented in
a computer program which may be written in principle in any
programming language, as C, Delphi, Visual Basic, MATLAB or
LabVIEW. This chapter describes briefly the main components of a
discrete-time control loop, and you will learn how to develop a
discrete-time PID controller function in the form of an algorithm which
can be programmed.

In commercial control equipment the discrete-time PID control function is
already implemented, and the tuning parameters available for the user is
the well-known P-, I,- and D-parameters defined in Chapter 1. It may still
be useful to know the details of discrete-time PID controllers if you want
to understand the background of the discrete-time PID control function
which may be shown in the documentation of the control equipment.

131
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5.2 Computer based control loop

Figure 5.1 shows a control loop where controller is implemented in a
computer.1 The computer registers the process measurement signal via an
AD converter (from analog to digital). The AD converter produces a
numerical value which represents the measurement. As indicated in the
block diagram this value may also be scaled, for example from volts to
percent. The resulting digital signal, y(tk), is used in the control function,
which is in the form of a computer algorithm or program calculating the
value of the control signal, u(tk).

Process

Sensor

v
yu(t)Discrete-time

PID controller
Scaling and

DA-converter
with signal holding

AD-converter
and scaling

SamplingTs

u(tk)e(tk)ySP(tk)

y(tk)

tk=kTs
Ts

ySP(tk)

tk

e(tk)

tk

u(tk) u(t)

t t

y(t)

tk

y(tk)

t

Measured
y(t)

Figure 5.1: Control loop where the controller function is implemented in a
computer

The control signal is scaled, for example from percent to milliamperes, and
sent to the DA converter (from digital to analog) where it is held constant
during the present time step. Consequently the control signal becomes a
staircase signal. The time step or the sampling interval, Ts [s], is usually
small compared to the time constant of the actuator (e.g. a valve) so the
actuator does not feel the staircase form of the control signal.

A typical value of Ts in commercial controllers is Ts = 0.1s. With Ts = 0.1
the sampling and calculation of the control value is executed 10 times per
second.

1 In this Chapter a somewhat less detailed nomenclature is used compared to other
Chapters of this book. For example y is used to represent the scaled measurement signal,
while in other chapters the symbol ym is used.
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A few words about the symbols used in Figure 5.1. For example in u(tk),
the integer k is the time step index. The time interval between subsequent
time steps is Ts. Time step k represents the present time step, while k−1
represents the previous time step. Alternative ways of writing u(tk) are
u(k) and u(kTs).

5.3 Development of discrete-time PID control
function

5.3.1 PID control function on absolute form

There are two main forms of a discrete-time PID control function or
algorithm:

• The absolute algorithm, also denoted the positional algorithm

• The incremental algorithm, also denoted the velocity algorithm

We will no derive the absolute algorithm. The incremental algorithm is
described in Section 5.3.2.

The starting point is the continuous-time PID control function presented
in Section 2.6.7. It is repeated here:

u = u0 +Kpep| {z }
up

+
Kp
Ti

Z t

0
e dτ| {z }

ui

+KpTd
dedf
dt| {z }

ud

(5.1)

= u0 + up + ui + ud (5.2)

where the derivative error term edf is given by

edf (s) =
1

Tfs+ 1
ed(s) (5.3)

and
ep = wpySP − y (5.4)

ed = wdySP − y (5.5)

wp and wd are setpoint weights in the P-term and in the D-term,
respectively.
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The discrete-time PID control function will be derived by discretizing the
above continuous-time PID control function. The aim is to derive a
formula for the control variable u(tk). There are several ways to make the
discretization. We will use a procedure where the additive terms of (5.1)
are discretized individually. Finally, u(tk) is calculated using the
summation (5.2).

Discretizing the nominal control variable u0 yields

u0(tk) = u0 = constant (5.6)

Discretizing the P-term yields

up(tk) = Kpep(tk) (5.7)

The I-term can be written

ui(tk) =
Kp
Ti

Z tk

0
e(t) dt (5.8)

The integral term in (5.8) must be calculated using some numerical
method. It seems to be a common practice to use the Euler backward
method , and we will use this method here. In the Euler backward method
the calculation of the integral is based on holding the integrand at a
constant value throughout the duration of the time step. Generally the
Euler backward is as follows:

Euler backward:
Z tk

tk−1
x(t) dt ≈ Tsx(tk) (5.9)

That is, the time integral of the function x(t) between time
tk−1 = (k − 1)Ts and time tk = kTs is approximated by Tsx(tk), which is a
rectangular approximation of the area under the curve, which is the exact
integral. This is illustrated in Figure 5.2.

Let us now return to the discretization of the I-term (5.8): We divide (5.8)
into two parts, as follows:

ui(tk) =
Kp
Ti

Z tk−1

0
e(t) dt| {z }

ui(tk−1)

+
Kp
Ti

Z tk

tk−1
e(t) dt (5.10)

= ui(tk−1) +
Kp
Ti

Z tk

tk−1
e(t) dt (5.11)
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Figure 5.2: Euler backward method of numerical calculation of an integral is a
rectangular approximation of the integral (the area under the curve)

Applying the Euler backward method (5.9) on the integral in (5.11) yields

ui(tk) = ui(tk−1) +
TsKp
Ti

e(tk) (5.12)

which is the discrete version of the I-term.

The D-term is

ud(tk) = KpTd
dedf (tk)

dt
(5.13)

Again we may use the Euler backward method, this time as a numerical
method of calculating the time-derivative term in (5.13). In general the
Euler backward method applied to the time-derivative is

Euler backward method:
dx(tk)

dt
≈ x(tk)− x(tk−1)

Ts
(5.14)

That is, the time-derivative is calculated as the difference between the
value of the present time-step and the previous time-step, divided by the
length of one time-step. Applying the Euler backward method on (5.13)
yields

ud(tk) = KpTd
edf (tk)− edf (tk−1)

Ts
(5.15)

We have to discretize the filtering function (5.3), too. From (5.3) we get,
by cross-multiplying,

Tfsedf (s) + edf (s) = ed(s) (5.16)
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Taking the inverse Laplace transformation gives the following differential
equation (where time t is represented by tk):

Tf
dedf (tk)

dt
+ edf (tk) = ed(tk) (5.17)

Applying the Euler backward method (5.14) on the time-derivative yields
the following filtering algorithm:

edf (tk) =
1

(Ts/Tf ) + 1
edf (tk−1) +

Ts/Tf
(Ts/Tf ) + 1

ed(tk) (5.18)

Finally, we now have all terms of (5.2).

To sum up, here is the algorithm constituting the discrete-time PID
control function, ready for programming:

Discrete-time PID control function:

Read the measurement y(tk) from the AD converter (5.19)

P-term:

ep(tk) = wpySP (tk)− y(tk) (5.20)

up(tk) = Kpep(tk) (5.21)

I-term:

e(tk) = ySP (tk)− y(tk) (5.22)

ui(tk) = ui(tk−1) +
TsKp
Ti

e(tk) (5.23)

D-term including lowpass filter:

ed(tk) = wdySP (tk)− y(tk) (5.24)

edf (tk) =
1

(Ts/Tf ) + 1
edf (tk−1) +

Ts/Tf
(Ts/Tf ) + 1

ed(tk) (5.25)

ud(tk) = KpTd
edf (tk)− edf (tk−1)

Ts
(5.26)

Total control value:

u(tk) = u0 + up(tk) + ui(tk) + ud(tk) (5.27)

Write the control value u(tk) to the DA converter (5.28)

Assign for use in next time-step:
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ui(tk−1) := ui(tk) (5.29)

edf (tk−1) := edf (tk) (5.30)

Start with (5.19) in next time-step (5.31)

When starting this algorithm for the first time, you can set k = 1. The
value of ui(t0) can initially be set to 0 if it assumed that u0 in (5.27) has a
proper value. If you choose not to include the u0-term in (5.27) you can set
ui(t0) equal to u0. The initial value of edf (t0) can be set to 0.

Integral anti wind-up

In Section 2.7.2 integral anti wind-up was described. Integral anti wind-up
can be realized in the absolute algorithm (5.20)—(5.27) as follows:

1. Calculate an intermediate value of the control variable u(tk)
according to (5.20)—(5.27), but do not send this value to the DA
converter.

2. Check if the intermediate u(tk) is greater than the maximum value
umax (typically 100%) or less than the minimum value umin (typically
0%). If u(tk) is exceeding one of these limits, calculate the I-term
ui(tk) once more, but now with

ui(tk) = ui(tk−1) (5.32)

(which implies that the I-term is fixed), and calculate u(tk) once
more according to (5.27) using ui(tk) given by (5.32).

3. Write u(tk) to the DA converter.

Bumpless transfer

Figure 5.3 shows a block diagram of a control loop. Suppose the controller
is switched from automatic to manual mode, or from manual to automatic
mode (this will happen during maintenance, for example). It is important
that the control signal does not jump much. In other words, the transfer
between modes must be bumpless, ideally. Bumpless transfer can be
realized as follows:
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Figure 5.3: Block diagram of a control loop

• Bumpless transfer from automatic to manual mode: In
manual mode it is the nominal control signal u0 which controls the
process. We assume that the control variable u has a proper value,
say ugood, so that the control error is small immediately before the
switch to manual mode. At the switching moment set u0 equal to
ugood.

While the controller is in manual mode, each of the P-, I-, and the
D-term is given zero value.

• Bumpless transfer from manual to automatic mode: At the
switching from manual to automatic mode each of the P- , I- , and
D-terms is set to zero value.

If the controller is implemented so that the control variable is
calculated by

u(tk) = up(tk) + ui(tk) + ud(tk) (5.33)

that is, if the nominal (manual control variable) u0 is not included in
the PID control function, the I-term should be given a proper value
at the switching. This can be obtained by setting ui(tk) equal to the
manually tuned control value, u0, at the switching.

5.3.2 Incremental PID control function

The PID control function (5.20)—(5.27) is on absolute form. The control
function can be written in an alternative form denoted the incremental or
velocity form. The incremental form is based on splitting the calculation of
the control value into two steps:
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1. First the incremental control value ∆uk is calculated.

2. Then the total or absolute control value is calculated with
uk = uk−1 +∆uk.

One way to find the expression of the increment ∆uk is by differentiating
the expression (5.1) and then approximating the derivatives using the
Euler backward method given by (5.14). We will not do these calculations
in detail here, but the result is as follows:

Discrete-time PID control function on incremental form:

∆u(tk) = Kp [ep(tk)− ep(tk−1)] + KpTs
Ti

e(tk)

+
KpTd
Ts

£
edf (tk)− 2edf (tk−1) + edf (tk−2)

¤
(5.34)

uk = uk−1 +∆uk (5.35)

where ep(tk) is given by (5.20) and edf (tk) is given by (5.25), where ed(tk)
is given by (5.24). To obtain bumpless transfer from manual to automatic
mode, the nominal (manually adjusted) control value u0 is used as the
initial value in (5.35).

The incremental PID control function is particularly useful if the actuator
is controlled by an incremental signal. A step-motor is such an actuator
(the motor itself implements the numerical integral (5.35)). A benefit of
the absolute PID algorithm (5.20)—(5.27) as compared to the incremental
algorithm is that it is easier to implement modifications which involves
only the P- or the I- or the D-term. Another benefit is that it is somewhat
easier to develop and to understand the absolute algorithm.

5.4 How the sampling interval influences loop
stability and tuning

If the time-step or sampling interval Ts is sufficiently small, tuning a
discrete-time PID controller is in most cases nothing different from tuning
a continuous-time PID controller. For example, you can probably use the
Ziegler-Nichols’ closed loop method in the ordinary way. However, if the
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sampling time Ts is relatively large, the discrete-time nature of the
controller becomes more important, and it may be necessary to cope with
it, as explained in the following.

Let us inspect to some detail what actually happens in the DA converter,
cf. Figure 5.1. The calculated control value is held fixed during the present
time-step or sampling interval. This holding implies that the control signal
is time delayed approximately Ts/2, see Figure 5.4. This delay influences

t

Ts /2

u

The original signal time-delayed Ts /2
= average stair-formed signal

Original discrete-time signal

The signal
held fixed

Figure 5.4: The DA-converter holds the calculated control signal throyghout
the sampling interval, thereby introducing an approximate time-delay of Ts/2.

the stability of the control loop. Suppose we have tuned a continuous-time
PID controller, and apply these PID parameters on a discrete-time PID
controller. Then the control loop will get worse stability because of the
approximate delay of Ts/2. How much is the stability reduced? As a rule
of thumb, the stability reduction is small and tolerable if the time delay is
less than one tenth of the response-time of the control system as it would
have been with a continuous-time controller or a controller having very
small sampling time:

Ts
2
≤ Tr
10

(5.36)

which gives

Ts ≤ Tr
5

(5.37)

(The response time is here the 63% rise time which can be read off from
the setpoint step response. For a system the having dominating time
constant T , the response-time is approximately equal to this time
constant.) If the bandwidth of the control system is ωb [rad/s] (assuming
that the PID parameters have been found using a continuous-time PID
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controller), the response-time of the control system can be estimated by

Tr ≈ 1

ωb
(5.38)

(5.37) can be used as an upper limit of the sampling interval Ts if Ts is to
be chosen by the user.2

If you want to include the effect of the discrete-time nature of the PID
controller when tuning the controller on a simulator or when analyzing the
discrete-time control loop, you can select one of the following options:

• Exact method : The PID controller is represented by a discrete-time
model. This model may be the PID algorithm itself or the z-transfer
function of the controller. z-transfer functions belong to the theory
of discrete-time systems. This theory is not covered by the present
book.3

• Approximate method : The PID controller is represented by a
continuous-time model which may be in the form of an s-transfer
function of the controller, cf. Section 2.6.7. To include a model of the
sample-and-hold effect of the DA converter, the transfer function of a
time delay of Ts/2 can be used. This transfer function is

Hsh(s) = e
−Ts

2
s (5.39)

Hsh(s) may be included as a factor in the controller transfer function
(alternatively as a factor in the process transfer function).

Example 5.1 The importance of the sampling time

Let us look at responses in a simulated control system. In the simulator
the PID controller is represented by its discrete-time algorithm (thus, it is
exactly represented in the simulator). The process to be controlled has the
following transfer function from control variable u to process output
variable y:

y(s)

u(s)
=

K

(T1s+ 1) (T2s+ 1)
e−τs = Hu(s) (5.40)

2 It can be shown from frequency based stability analysis that the reduction of the
phase margin is approximately 5◦ if the limit (5.37) is used, and the PID parameters are
found assuming a continuous-time PID controller.

3Analysis of discrete-time control systems is described in a document available from
the home page of this book at http://techteach.no.
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where
K = 1; T1 = 2s; T2 = 1s; τ = 1s (5.41)

The PID parameters have been found as

Kp = 2.2; Ti = 2.8s; Td = 0.7s (5.42)

(using the Ziegler-Nichols’ closed loop with a very small Ts). The response
time Tr is found by simulation to be Tr = 2.0s. The upper limit of Ts
according to (5.37) then becomes

Tsmax =
2.0

5
= 0.4s (5.43)

Let us initially set Ts equal to the upper limit 0.4s. Figure 5.5 shows for
example the response in y due to a step in the setpoint with discrete-time
PID controller with parameters equal to (5.42). We observe that the

Figure 5.5: Step response in y with discrete-time PID controller with parameters
equal to (5.42). Ts = 0.4s which is on the limit given by (5.37).

control system has acceptable stability.

Now let us increase the sampling time Ts from 0.4s to 1.0s without
changing the PID parameters. Figure 5.6 shows for example the response
in y due to a step in the setpoint. The control system is now unstable, due
to the large Ts.

Finally, let us re-tune the PID controller when Ts = 1.0s. The PID
parameters becomes (using the Ziegler-Nichols’ closed loop method)

Kp = 1.7; Ti = 3.5s; Td = 0.83s (5.44)
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Figure 5.6: Step response in y. The time-step Ts has a relatively large value of
1.0s, but with unchanged PID parameters. The control system is unstable!

Figure 5.7 shows that the control system now is stable, but the stability is
not good. The stability could be improved by reducing the controller gain
Kp somewhat.

[End of Example 5.1]
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Figure 5.7: Step response in y. The time-step Ts is 1.0s, but the PID controller
has been retuned. The control system is now stable.



Chapter 6

Analysis of feedback control
systems

6.1 Introduction

In this chapter various methods of analysis of control systems are
described:

• simulation,
• analytical calculation of time responses,
• frequency response analysis,
• stability analysis.

A theoretical analysis of a control system assumes that a mathematical
model of the control system exists, that is, a model of the controller, the
process and the sensor constituting the control system (control loop). Most
analysis methods assume linear models. However, practical control
systems are nonlinear due to phenomena as saturation, hysteresis, stiction,
nonlinear signal scaling etc. Such nonlinearities can influence largely the
dynamic behaviour of the control system.

To perform “linear” analysis of a non-linear model, this model must be
linearized [7] about some operating point. Thus, the results of the analysis
will be valid at or close to the operation point where the linearization was
made. This fact limits the usefulness of a theoretical analysis of a given

145
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nonlinear control system using linear systems methods, but the results may
still be useful, particularly if the system most of the time operates close to
the chosen or specified operating point.

Although a “linear” analysis of a given nonlinear control system may have
limited value, you will get much general knowledge about the behaviour of
control systems through analysis of examples of linear control systems.

6.2 About using simulators

If you have a mathematical model of a given control system, you should
definitely run simulations as a part of the analysis. This applies for both
linear and nonlinear control systems. Actually, you may get all the answers
you need by just running simulations. The types of answers may concern
response-time, static control error, responses due to process disturbances
and measurement noise, and effects of parameter variations.

Figure 6.1 shows a detailed block diagram of a control system (the units
shown are just examples of units). Such a block diagram can be used
directly in block diagram based (graphical) simulation tools, as
SIMULINK and LabVIEW. The individual blocks may represent transfer
functions, nonlinear elements, etc.

Process

Sensor

v

y

ym

Scaling
uem

Controller

Scaling
ym1

[oC]

[V]

[%]

[%]

[mA][%]
Scaling

[%]

u1

Scaling
ey

[oC]

ySP ymSP

[oC]

Figure 6.1: Detailed block diagram of a control system. Such block diagrams
can be used directly in block diagram based simulation tools as SIMULINK and
LabVIEW.
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6.3 Setpoint tracking and disturbance
compensation

This section concerns theoretical analysis of control systems.

6.3.1 Introduction

Figure 6.2 shows a principal block diagram of a control system. There are

Process

Sensor

v

yySP u

e

Controller

Control system

Figure 6.2: Principal block diagram of a control system

two input signals to the control system, namely the setpoint ySP and the
disturbance v. The value of the control error e is our primary concern (it
should be small, preferably zero). Therefore we can say that e is the
(main) output variable of the control system. The value of e expresses the
performance of the control system: The less e, the higher performance. e is
influenced by ySP and v. Let us therefore define the following two
conceptions:

• The setpoint tracking property of the control system concerns
the relation between ySP and e.

• The disturbance compensation property of the control system
concerns the relation between v and e.

Totally, the setpoint tracking and disturbance compensation properties
determine the performance of the control system.
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6.3.2 Analysis based on differential equation models

A (theoretical) analysis of control system performance (read: calculation of
the control error) can be made on the basis of a time domain model of the
control system, that is, on basis of the differential- and/or integral
equations constituting the model. The model may be nonlinear. Dynamic
time responses may be calculated from these equations by solving the
equations analytically (which may be quite difficult except for very simple
models), or numerically. Numerical calculations can be realized in a
computer program using e.g. the Euler forward method or one of the
Runge-Kutta methods [7], or using some simulation tool1. In this section
we confine ourselves to static analysis of control systems based on manual
calculations using the differential- and/or integral equations constituting
the model of the control system.

Control systems often operates under approximate static condition, which
means that all signals are approximately constant. Therefore a static
analysis may be quite relevant. Static analysis can be executed by hand as
explained below.

1. Given models of the elements of the control loop (process, controller,
sensor, scalings). Substitute the control variable u in the process
model by u from the controller function. The resulting (combined)
model constitute the control system model.

2. If the controller function contains an integrator (as in the PID
controller): Transform the control system model so that the integral
term “disappears” by differentiating the entire model with respect to
time. (The purpose of this is to simplify the mathematical
calculations. It is easier to use a model containing only time
derivatives — and no integrals — in a static analysis.)

3. Derive a static model of the control system by assuming that all
variables have constant values. This assumption implies that the
time-derivatives can be set equal to zero and that time delays can be
neglected.

4. Calculate the static control error, es, from the static model of the
control system.

Before we look at an example, I will emphasize that a static analysis does
not express anything about the stability property or dynamic property of

1Such tools are described in a document available from the home page of the book on
http://techteach.no.
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the system. Therefore we should not use static analysis for controller
design, only for control system analysis. For example, a controller gain
designed from a static control system model so that the control error is
smaller than some specified limit, may cause instability of the control
system.

Example 6.1 Static analysis of wood-chip tank level control
system with P controller

A wood-chip tank with level control system is described in Example 2.3
(page 19). A mathematical model of the tank is developed in Example 2.7
(page 29).

Below we follow the items of the static analysis defined above.

1. The process model is given by (2.20), which is repeated here:

ρAḣ(t) = Ksu(t− τ)− wout(t) (6.1)

Let us use a P controller which has the following controller function:

u(t) = u0 +Kpem(t) = u0 +Kp[hmSP
(t)− hm(t)] (6.2)

where em is the control error in % and hmSP
is level setpoint in %

(the measurement unit). We substitute u(t) in the process model by
u from the controller function:

ρAḣ(t) = Ks[u0 +Kpem(t− τ)]− wout(t) (6.3)

which constitutes a model of the control system.

2. The controller function contains no integral term. Therefore, this
point is not applicable in this example.

3. The static model of the control system becomes (subindex s is for
“static”)

ρAḣs(t)| {z }
0

= Ks(u0 +Kpems)− wouts (6.4)

4. From (6.4) we find

ems =

wouts
Ks
− u0

Kp
[%] (6.5)

Let us calculate the error in meters: The measurement gain is Km,
so ems = Kmes, which inserted into (6.5) yields

es =
wouts

KsKpKm
− u0
KpKm

[m] (6.6)
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Assume that the nominal control value, u0, has the correct value

u0 =
wouts
Ks

(6.7)

(so that u0 compensates for the outflow wouts). Now, the static control
error es in (6.6) becomes zero. This is confirmed by the first part of the
simulation shown in Figure 2.17 (page 36).

Assume now that u0 has an incorrect value. es given by (6.6) is then
different from zero. What is the value of es? The numerical values in (6.6)
are Kp = 1.55, wouts = 1800kg/min, Ks = 33.36(kg/min)/%,
Km = 6.67%/m, u0 = 45.0%, which gives es = 0.87m. Is this in accordance
with the simulated response in Example 2.9? Although Figure 2.17
indicates static control error of es = 0.83m at t = 120s, the actual value as
t→∞ is 0.87m (the responses has not converged completely at t = 120s).
Thus, the calculated value of es is in accordance with the simulated value.

A final question: According to (6.6) the es becomes less if Kp increases. So
why not set Kp to a very large value?2

[End of Example 6.1]

The next example shows how the differential equation based analysis can
be performed when the controller contains an integral term (as in a PID
controller).

Example 6.2 Static analysis of wood-chip tank level control
system with PI controller

The controller is now a PI controller:

u(t) = u0 +Kpem(t) +
Kp
Ti

Z t

0
em(t

∗) dt∗ (6.8)

1. We substitute u(t) in process model (6.1) by u(t) in (6.8):

ρAḣ(t) = Ks

·
u0 +Kpem(t− τ) +

Kp
Ti

Z t−τ

0
e(t∗) dt∗

¸
−wout(t) (6.9)

which is the model of the control system.

2Because the stability of the control system is reduced as Kp is increased, and the
system becomes unstable if Kp is too large.
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2. The controller function contains an integral. To “get rid of” the
integral, we time-differentiate (6.9):

ρAḧ(t) = Ks

·
u̇0 +Kpėm(t− τ) +

Kp
Ti
em(t− τ)

¸
− ˙wout(t) (6.10)

3. We assume that all variables have constant values, so that the
time-derivatives can be set to zero. Furthermore, the time delay can
be neglected. (6.10) now becomes

0 =
KuKp
Ti

ems (6.11)

4. From (6.11) ems = 0, so
es = 0 (6.12)

So we have found that the control error becomes zero (independent of the
value of u0, wout and setpoint hSP ). This is in accordance with the
simulation shown in Figure 2.19.

[End of Example 6.2]

6.3.3 Transfer function based analysis of setpoint tracking
and disturbance compensation

Introduction

If the control system model is linear, whether the model is linear originally
or it is linear due to linearization, it is convenient to base the analysis of
the control system on a transfer function model of the system.

In transfer function based analysis it is normally assumed that the initial
values of the output signals (of the transfer functions) are zero.

Calculation of control error in setpoint tracking and disturbance
compensation. Sensitivity function

We assume that the control system has a transfer function-based block
diagram as shown in Figure 6.3. This block diagram corresponds to the
block diagram shown in Figure 6.1. In the block diagram U0(s) represents
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the Laplace transform of the nominal control variable u0. In practice u0 is
constant, giving

U0(s) =
u0
s

(6.13)

em(s)
Hc(s) Hu1(s)

Hsens(s)

u(s) y(s)

ym(s)

Hm(s)
ymSP(s)ySP(s)

Hv(s)

v(s)

1/Hm(s)

e(s) = ySP(s) - y(s)

Process

Combined
transfer function

Scaling

Controller

[%]

[%]

[%] [%]

Scaling
Disturbance
transfer functionU0(s)

Hs(s)

Scaling Sensor
Measurement

signal

Hm(s)

Hsu(s)
[mA]

Scaling

Hu(s)

Combined
control variable
transfer function

Figure 6.3: Transfer function based block diagram of a control system. (The
units, e.g. %, are typical examples of units.)

We regard the setpoint ySP and the disturbance v as input variables and
the control error e as the output variable of the system. Thus, we will
derive the transfer function from ySP to e and the transfer function from v
to e. From the block diagram we the can write the following expressions
for e(s):

e(s) =
1

Hm(s)
em(s) (6.14)

=
1

Hm(s)
[ymSP

(s)− ym(s)] (6.15)

=
1

Hm(s)
[Hm(s)ySP (s)−Hm(s)y(s)] (6.16)

= ySP (s)− y(s) (6.17)

= Hv(s)v(s)+Hu(s)u0(s)+Hu(s)Hc(s)em(s) (6.18)

= Hv(s)v(s)+Hu(s)u0(s)+Hu(s)Hc(s)Hs(s)e(s) (6.19)
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Solving for e(s) gives

e(s) =
1

1 +Hc(s)Hu(s)Hm(s)
[ySP (s)−Hv(s)v(s)−Hu(s)U0(s)]

=
1

1 + L(s)| {z }
S(s)

[ySP (s)−Hv(s)v(s)−Hu(s)U0(s)] (6.20)

= S(s) [ySP (s)−Hv(s)v(s)−Hu(s)U0(s)] (6.21)

= S(s)ySP (s)| {z }
eSP (s)

−S(s)Hv(s)v(s)| {z }
ev(s)

−S(s)Hu(s)U0(s)| {z }
eu0(s)

(6.22)

= eSP (s) + ev(s) + eu0(s) (6.23)

which is a transfer functions based model of the control system. S(s) is the
sensitivity function:

S(s) =
1

1 + L(s)
(6.24)

where
L(s) ≡ Hc(s)Hu(s)Hm(s) (6.25)

is the loop transfer function which is the product of the transfer functions
in the loop. From (6.22) we can calculate the control error for any setpoint
signal, any disturbance signal and any nominal control signal (assuming we
know their Laplace transform).

In the following we discuss the various terms in (6.23).

• The response in the error due to the setpoint: The response in
the control error due to the setpoint is

eSP (s) = S(s)ySP (s) =
1

1 + L(s)
ySP (s) (6.26)

which gives a quantitative expression of the tracking property of the
control system. The static tracking is given by static error when ySP
is constant. This error can be calculated as follows:3

eSP = lim
t→∞ eSP (t) = lims→0 s · eSP (s) (6.27)

= lim
s→0 s · S(s)ySP (s) = lims→0 s · S(s)

ySPs
s

= S(0)ySPs(6.28)

Roughly speaking that the tracking property of the control system
are good if the sensitivity function N has small (absolute) value —
ideally zero.

3Here the Final Value Theorem of the Laplace transform is used, cf. Appendix B.1.
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• The response in the error due to the disturbance: The
response in the control error due to the disturbance is

ev(s) = −S(s)Hv(s)v(s) = − Hv(s)

1 + L(s)
v(s) (6.29)

which expresses the compensation property of the control system.
The static compensation property is given by

evs = lim
t→∞ ev(t) = lims→0 s · ev(s) (6.30)

= lim
s→0 s · [−S(s)Hv(s)v(s)] (6.31)

= lim
s→0 s ·

h
−S(s)Hv(s)vs

s

i
(6.32)

= −S(0)Hv(0)vs (6.33)

From (6.33) we see that the compensation property is good if the
sensitivity function S has a small (absolute) value (close to zero).

• The response in the error due to the nominal control
variable: The response in the control error due to the nominal
control variable or signal u0 is

eu0(s) = −S(s)Hu(s)U0(s) = −
Hu(s)

1 + L(s)
u0(s) (6.34)

If u0 is constant (which is the typical case), its Laplace transform is

u0(s) =
U0
s

(6.35)

which can be used for u0(s) in (6.34).

The tracking transfer function

The tracking transfer function T (s) — or simply the tracking function — is
the transfer function from the setpoint ySP to the process output variable
y:

y(s) = T (s)ySP (s) (6.36)

From the block diagram in Figure 6.3, or by setting
eySP (s) ≡ ySP (s)− y(s) for eySP (s) in (6.26), we can find the tracking
function T (s) as the transfer function from ySP to y:

y(s)

ySP (s)
= T (s) =

Hc(s)Hu(s)Hm(s)

1 +Hc(s)Hu(s)Hm(s)
=

L(s)

1 + L(s)
= 1− S(s) (6.37)
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The static tracking property is given by the static tracking ratio T (0):

ys = lim
t→∞ y(t) = lims→0 s · y(s) (6.38)

= lim
s→0 s · T (s)ySP (s) = lims→0 s · T (s)

ySPs
s

(6.39)

= T (0)ySPs (6.40)

The tracking property is good if the tracking function T has (absolute)
value equal to or close to 1 (since then y will be equal to or close to ySP ).

In some contexts it is useful to be aware that the sum of the tracking
function and the sensitivity function is always 1:

T (s) + S(s) =
L(s)

1 + L(s)
+

1

1 + L(s)
≡ 1 (6.41)

Example 6.3 Transfer function based analysis of speed control
system

Figure 6.4 shows a block diagram of a speed control system of a motor. We

PI-
controller Motor

Tacho-
meter

u(s) y(s)
Scaling

ySP(s)

[V]

[rpm][rpm] [V]

Hm(s)

Hm(s) Hc(s) Hu(s)
[V]

Figure 6.4: Speed control system of a motor

assume there is no disturbance acting on the motor, and that the nominal
control signal is 0. The speed setpoint is ySPs (constant). The controller is
a PI controller with proper values of Kp and Ti. The controller transfer
function is

Hc(s) = Kp
Tis+ 1

Tis
(6.42)

The motor transfer function is assumed

Hu(s) =
Ku

Tus+ 1
(6.43)
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The measurement transfer function of the sensor (tachometer) is

Hm(s) = Km (6.44)

We shall find the static control error es from (6.28). We start by
calculating the static sensitivity function S(0). (6.28) includes S(s):

S(s) =
1

1 + L(s)
(6.45)

=
1

1 +Kp
Tis+1
Tis

· Ku
Tus+1

·Km
(6.46)

=
TiTus

2 + Tis

TiTus2 + (KpKuKm + 1) s+KpKuKm
(6.47)

The static control error becomes, according to (6.28),

es = lim
t→∞ eySP (t) (6.48)

= lim
t→∞S(s)

ySPLs
s

(6.49)

= 0 (6.50)

Thus, the static tracking property is perfect.

The tracking transfer function becomes

T (s) =
L(s)

1 + L(s)
=

KpKuKm
TiTus2 + (KpKuKm + 1) s+KpKuKm

(6.51)

The static tracking function is

T (0) = 1 (6.52)

Thus,

ys = T (0)ySPs = 1 · ySPs = ySPs (6.53)

So the static error is zero.

Figure 6.5 shows a simulated response in y(t) due to a step in the setpoint
ySP . (The parameter values are Kp = 2, Ti = 0.3, Ku = 1, Tu = 1.) The
simulation confirms that the static error is zero.

[End of Example 6.3]
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Figure 6.5: Example 6.3: Simulated speed response. The setpoint is a step.

The relation between steady-state control error and number of
integrators in the loop

We shall derive a relation between the steady-state control error and the
number of integrators in the control loop. An integrator has the transfer
function of 1s . We assume that the transfer functions in the block diagram
shown in Figure 6.3 are on the following forms:

Hu(s) =
Ku(1 + b1s+ b2s

2 + · · · )
sU (1 + a1s+ a2s2 + · · · ) (6.54)

(The number of integrators is U .)

Hv(s) =
Kv(1 + d1s+ · · · )
sV (1 + c1s+ · · · ) (6.55)

(The number of integrators is V .)

Hc(s) =
Kc(1 + f1s+ · · · )
sC(1 + e1s+ · · · ) (6.56)

(The number of integrators is C.)

Hm(s) = Km (6.57)
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The control error is given by (6.22). By applying the Final Value Theorem
to (6.22), where (6.54), (6.55) and (6.56) is used, we find that the
steady-state (static) control error is

es = lim
t→∞ e(t) = lims→0 se(s) (6.58)

= lim
s→0 s [S(s)ySP (s)− S(s)Hv(s)v(s)− S(s)Hu(s)U0(s)] (6.59)

= lim
s→0 s

s(C+U)

s(C+U) +KL
ySP (s)| {z }

eySP (s)

+ lim
s→0 s

−Kvs(C+U−V )
s(C+U) +KL

v(s)| {z }
ev(s)

(6.60)

+lim
s→0 s

−KusC
sC +KL

U0(s)| {z }
eu0 (s)

(6.61)

where
KL = KcKuKm (the loop gain) (6.62)

In practice the nominal control signal is constant, let us say u0, so that

U0(s) =
u0
s

(6.63)

in (6.61). Using (6.61) we can assume various types of signals in ySP and
v, e.g. step or ramp, and calculate the steady-state control error in each
case.4

Let us concentrate on the most important case, namely that both ySP and
v and u0 have constant values (different from zero). Thus,

ySP (s) =
ySPs
s

and v(s) =
vs
s
and U0(s) =

u0
s

(6.64)

Inserting these values into (6.60) yields

es = lim
s→0

s(C+U)

s(C+U) +KL
ySPs| {z }

eySP (s)

+ lim
s→0
−Kvs(C+U−V )
s(C+U) +KL

vs| {z }
ev(s)

+ lim
s→0

−KusC
sC +KL

u0| {z }
eu0 (s)

(6.65)

From (6.65) we can conclude as follows:

1. A sufficient condition for the static control error to be zero (es = 0)
with constant setpoint, disturbance and nominal control variable, is

C + U − V ≥ 1 (6.66)
4 In some cases we will get expressions as lims→0 s

0, which has value of 1, not 0.
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It is common that there are as many integrations in Hv(s) as in
Hu(s), that is, V = U . In this case, a sufficient condition for the
static control error to be zero ( es = 0) with constant setpoint,
disturbance and nominal control variable, is that the number of
integrations C in Hc(s) (the controller) is at least one. This is
achieved for a PI controller and a PID controller.

One observation from (6.60) is that S(s) has C + U numbers of
factors of the type s in its numerator polynomial. In other words: It
has C + U zeros in origin.

2. (6.65) shows that es will be zero even if there are no integrations
(C = 0) in Hc(s), which corresponds to using a P controller, under
the following conditions: (1) There is at least one integration (U = 1)
in the control variable transfer function Hu(s), and (2) The nominal
control variable is correctly tuned, that is u0 = −vsKv/Ku. However,
in practice condition 2 is not satisfied completely. Consequently,
there will in practice always be a static control error different from
zero when the controller lacks integral action.

In the situations where the static error es is different from zero, this
error will decrease if the loop gain KL is increased, e.g. if the
controller gain Kp is increased. (The drawback of increasing the loop
gain is that the control loop gets reduced stability.)

Example 6.4 Control error in a speed control system

See Example 6.3. The speed setpoint is a step at t = 0. We calculated the
static error es to be zero. Can we confirm this result by using (6.65)? In
Example 6.3, vs = 0 and u0 = 0. The controller has one integrator, thus
R = 1. The transfer function Hu(s) contains no integrator, thus U = 0.
The loop gain is

KL =
KpKuKm

Ti
= 6.67 (6.67)

(6.65) gives

es = lim
s→0

s(C+U)

s(C+U) +KL
ySPs = lim

s→0
s(1+0)

s(1+0) +KL
ySPs = 0 (6.68)

Thus, the result in Example 6.3 is confirmed!

Now, let us assume that the setpoint is a ramp signal :

ySP (t) = K1t (6.69)
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where K1 = 1 is the slope. The Laplace transformed setpoint is

ySP (s) =
K1
s2

(6.70)

What is the steady-state control error? Since the setpoint is a ramp, we
must now use (6.60), not (6.65):

es = lim
s→0 s

s(C+U)

s(C+U) +KL
ySP (s) = lim

s→0 s
s(1+0)

s(1+0) +KL

K1
s2
=
K1
KL

= 0.15

(6.71)
So the steady-state (static) error is different from zero. Figure 6.6 shows a
simulation which which confirms this.[End of Example 6.4]

Figure 6.6: Example 6.4: The speed setpoint ySP and the speed y using a
PI-controller

Example 6.4 demonstrated that the steady-state control error may become
different from zero if the setpoint is more “dynamic” than just a constant
(in the example the setpoint was a ramp). Using (6.71) it can be seen that,
with a ramped setpoint, the error can be zero if the controller has two
integrators (C = 2) in stead of one. But in practice a controller does not
have more than one integrators. It can be shown that using several
integrators requires several differenciators to ensure the stability of the
control loop, and using more than one differenciator should be avoided
since there would be a large amplification of high frequent (measurement)
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noise. One way to obtain zero or small control error when the setpoint is
“dynamic” is to use feedforward from the setpoint. Feedforward control is
described in Chapter 9.1.

6.3.4 Frequency response analysis of setpoint tracking and
disturbance compensation

Introduction

Frequency response analysis of control systems expresses the tracking and
compensation property under the assumption that the setpoint and the
disturbance are sinusoidal signals or frequency components of a compound
signal. The structure of the control system is assumed to be as shown in
Figure 6.3. The Laplace transformed control error is given by (6.22), which
is repeated here:

e(s) = S(s)ySP (s)| {z }
eSP (s)

−S(s)Hv(s)v(s)| {z }
ev(s)

−S(s)Hu(s)U0(s)| {z }
eu0 (s)

(6.72)

where S(s) is the sensitivity function which is given by

S(s) =
1

1 + L(s)
(6.73)

where L(s) is the loop transfer function. In the following we will study
both S(s) and the tracking ratio T (s) which is given by

T (s) =
L(s)

1 + L(s)
=

y(s)

ySP (s)
(6.74)

Frequency response analysis of setpoint tracking

From (6.72) we see we that the response in the control error due to the
setpoint is

eSP (s) = S(s)ySP (s) (6.75)

By plotting the frequency response S(jω) we can easily calculate how large
the error is for a given frequency component in the setpoint: Assume that
the setpoint is a sinusoid of amplitude YSP and frequency ω. Then the
steady-state response in the error is

eSP (t) = YSP |S(jω)| sin [ωt+ argS(jω)] (6.76)
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Thus, the error is small and consequently the tracking property is good if
|S(jω)| ¿ 1, while the error is large and the tracking property poor if
|S(jω)| ≈ 1.

The tracking property can be indicated by the tracking function T (s), too.
The response in the process output due to the setpoint is

y(s) = T (s)ySP (s) (6.77)

Assume that the setpoint is a sinusoid of amplitude YSP and frequency ω.
Then the steady-state response in the process output due to the setpoint is

y(t) = YSP |T (jω)| sin [ωt+ arg T (jω)] (6.78)

Thus, |T (jω)| ≈ 1 indicates that the control system has good tracking
property, while |T (jω)| ¿ 1 indicates poor tracking property.

Since both S(s) and T (s) are functions of the loop transfer function L(s),
cf. (6.73) and (6.74), there is a relation between L(s) and the tracking
property of the control system. Using (6.73) and (6.73) we can conclude as
follows:

Good setpoint tracking: |S(jω)| ¿ 1, |T (jω)| ≈ 1, |L(jω)| À 1 (6.79)

Poor setpoint tracking: |S(jω)| ≈ 1, |T (jω)| ¿ 1, |L(jω)| ¿ 1 (6.80)

Figure 6.7 shows typical Bode plots of |S(jω)|, |T (jω)| and |L(jω)|.
Usually we are interested in the amplitude gains, not the phase lags.
Therefore plots of argS(jω), arg T (jω) and argL(jω) are not shown nor
discussed here. The bandwidths indicated in the figure are defined below.

The bandwidth of a control system is the frequency which divides the
frequency range of good tracking and poor tracking. From (6.79) and
(6.80) and Figure 6.7 we can list the following three candidates for a
definition of the bandwidth:

• ωt, which is the frequency where the amplitude gain of the tracking
function has value 1/

√
2 ≈ 0.71 = −3 dB. This definition is in

accordance with the usual bandwidth definition of lowpass filters.
The ωt bandwidth is also called the −3 dB bandwidth ω−3dB.

• ωc, which is the frequency where the amplitude gain of the loop
transfer function has value 1 = −0 dB. ωc is called the crossover
frequency of L.
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Frequency ω [rad/s]
(logarithmic scale )

Logarithmic scale

1 = 0 dB
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ωs ωtωc

1-1/sqrt(2) = 0.29 = -11 dB
(approx) Various

bandwidth
definitions

Figure 6.7: Typical Bode plots of |S(jω)|, |T (jω)| and |L(jω)|

• ωs, which is the frequency where the amplitude gain of the sensitivity
function has value 1− 1/√2 ≈ 1− 0.71 ≈ 0.29 ≈ −11 dB. This
definition is derived from the −3 dB bandwidth of the tracking
function: Good tracking corresponds to tracking gain between 1/

√
2

and 1. Now recall that the sensitivity function is the transfer
function from setpoint to control error, cf. (6.75). Expressed in terms
of the control error, we can say that good tracking corresponds to
sensitivity gain |S| less than 1− 1/√2 ≈ −11 dB ≈ 0, 29. The
frequency where |S| is −11 dB is denoted the sensitivity bandwidth,
ωs.

Of the three bandwidth candidates defined above the sensitivity bandwidth
ωs is most closely related to the control error. Therefore ωs may be claimed
to be the most convenient bandwidth definition as far as the tracking
property of a control system concerns. In addition ωs is a convenient
bandwidth related to the compensation property of a control system (this
will be discussed in more detail soon). However, the crossover frequency ωc
and the −3 dB bandwidth are the commonly used bandwidth definitions.

As indicated in Figure 6.7 the numerical values of the various bandwidth
definitions are different (this is demonstrated in Example 6.5).

If you need a (possibly rough) estimate of the response time Tr of a control
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system, which is time it takes for a step response to reach 63% of its
steady-state value, you can use

Tr ≈ k

ωs
[s] (6.81)

where ωs is the −3 dB bandwidth in rad/s.5 k can be set to some value
between 1.5 and 2.0, say 2.0 if you want to be conservative.

Example 6.5 Frequency response analysis of setpoint tracking

See the block diagram in Figure 6.3. Assume the following transfer
functions:

PID controller:

Hc(s) = Kp

µ
1 +

1

Tis
+

Tds

Tfs+ 1

¶
(6.82)

Process transfer functions (second order with time delay):

Figure 6.8: Example 6.5: Simulated responses of the control system. The
setpoint ySP is sinuoid of frequency ω1 = 0.55 rad/s.

Hu(s) =
Ku

(T1s+ 1) (T2s+ 1)
e−τs (6.83)

Hv(s) =
Kv

(T1s+ 1) (T2s+ 1)
e−τs (6.84)

5How can you find the excact value of the response time? Simulate!
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Sensor with scaling:
Hs(s) = Ks (6.85)

The parameter values are Kp = 4.3, Ti = 1.40, Td = 0.35,
Tf = 0.1Td = 0.035, Ku = 1, Kd = 1, T1 = 2, T2 = 0.5, τ = 0.4, Ks = 1.
(The PID parameter values are calculated using the Ziegler-Nichols’ closed
loop method, cf. Section 4.4.) The operation point is at setpoint value
50%, with disturbance v = 10% (constant), and nominal control signal =
40%.

Figure 6.8 shows simulated responses in the process output y and in the
the control error e = ySP − y when the setpoint ySP is a sinusoid of
amplitude 10% (about a bias of 50%) and frequency ω1 = 0.55rad/s. The
frequency of the sinusoidal is chosen equal to the sensitivity bandwidth ωs.
The amplitude of the control error should be 0.29·10% = 2.9%, and this is
actually in accordance with the simulation, see Figure 6.8.

Figure 6.9 shows Bode plots of |S(jω)|, |T (jω)| and |L(jω)|.

Figure 6.9: Example 6.5: Bode plots of |L(jω)|, |T (jω)| and |S(jω)|

Let us compare the various bandwidth definitions. From Figure 6.9 we find

• −3 dB bandwidth: ωt = 3.8 rad/s

• Crossover frequency: ωc = 1.7 rad/s

• Sensitivity bandwidth: ωs = 0.55 rad/s
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These values are actually quite different. (As commented in the text above
this example, it can be argued that the ωs bandwidth gives the most
expressive measure of the control system dynamics.)

Finally, let us read off the response time Tr. Figure 6.10 shows the
response in y due to a step in ySP . From the simulation we read off
Tr ≈ 1.1s. The estimate (6.81) with k = 2 gives Tr ≈ 2/ωt = 2/3.8 = 0.53,
which is about half the value of the real (simulated) value.

Figure 6.10: Example 6.5: Step response in process output y after a step in
setpoint ySP

[End of Example 6.5]

Frequency response analysis of disturbance compensation

(6.72) gives the response in the control error due to the disturbance. It is
repeated here:

ev(s) = −S(s)Hv(s)v(s) (6.86)

Thus, the sensitivity function S(s) is a factor in the transfer function from
v til e for the control system. However, S(s) has an additional meaning
related to the compensation of a disturbance, namely it expresses the
degree of the reduction of the control error due to using closed loop
control. With feedback (i.e. closed loop system) the response in the control
error due to the disturbance is ev(s) = −S(s)Hv(s)v(s). Without feedback
(open loop) this response is ev(s) = −Hv(s)v(s). The ratio between these
responses is

ev(s)with feedback
ev(s)without feedback

=
−S(s)Hv(s)v(s)
−Hv(s)v(s) = S(s) (6.87)
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Assuming that the disturbance is sinusoidal with frequency ω rad/s, (6.87)
with s = jω, that is S(jω), expresses the ratio between sinusoidal
responses.

Again, effective control, which here means effective disturbance
compensation, corresponds to a small value of |S| (value zero or close to
zero), while ineffective control corresponds to |S| close to or greater than 1.
We can define the bandwidth of the control system with respect to its
compensation property. Here are two alternate bandwidth definitions:

• The bandwidth ωs — the sensitivity bandwidth — is the upper limit of
the frequency range of effective compensation. One possible
definition is

|S(jωs)| ≈ 0.29 ≈ −11 dB (6.88)

which means that the amplitude of the error with feedback control is
less than 29% of amplitude without feedback control. The number
0.29 is chosen to have the same bandwidth definition regarding
disturbance compensation as regarding setpoint tracking, cf. page
163.

• The bandwidth ωc is the crossover frequency of the loop transfer
functions ωc, that is,

|L(jωc)| = 0 dB ≈ 1 (6.89)

Note: The feedback does not reduce the control error due to a sinusoidal
disturbance if its frequency is above the bandwidth. But still the
disturbance may be well attenuated through the (control) system. This
attenuation is due to the typical inherent lowpass filtering characteristic of
physical systems (processes). Imagine a liquid tank, which attenuates
high-frequent temperature variations existing in the inflow fluid
temperature or in the environmental temperature. This inherent lowpass
filtering is self regulation.

Example 6.6 Frequency response analysis of disturbance
compensation

This example is based on the control system described in Example 6.5
(page 164).

Figure 6.11 shows simulated responses in the process output y due to a
sinusoidal disturbance v of amplitude 10% (with bias 10%) and frequency
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Figure 6.11: Example 6.6: Simulated responses of the control system. The
disturbance v is sinusoidal with frequency ω1 = 0.55 rad/s. The PID-controller
is in manual mode (i.e. open loop control) the first 40 seconds, and in automatic
mode (closed loop control) thereafter.

ω1 = 0.55rad/s. This frequency is for illustration purpose chosen equal to
the sensitivity bandwidth of the control system, cf. Figure 6.9. The
setpoint ySP is 50%. The control error can be read off as the difference
between ySP and y. In the first 40 seconds of the the simulation the PID
controller is in manual mode, so the control loop is open. In the following
40 seconds the PID controller is in automatic mode, so the control loop is
closed. We clearly see that the feedback control is effective to compensate
for the disturbance at this frequency (0.55rad/s). The amplitude of the
control error is 6.6 without feedback and 1.9 with feedback. Thus, the
ratio between the closed loop error and the open loop error is
1.9/6.6 = 0.29, which is in accordance with the amplitude of the sensitivity
function at this frequency, cf. Figure 6.9.

Figure 6.12 shows the same kind of simulation, but with disturbance
frequency ω1 = 1.7rad/s, which is higher than the sensitivity bandwidth,
which is 0.55rad/s. From the simulations we see that closed loop control at
this relatively high frequency, 1.7rad/s, does not compensate for the
disturbance – actually the open loop works better. This is in accordance
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Figure 6.12: Example 6.6: Simulated responses of the control system. The
disturbance v is sinusoidal with frequency ω1 = 1.7 rad/s. The PID-controller
is in manual mode (i.e. open loop control) the first 40 seconds, and in automatic
mode (closed loop control) thereafter.

with the fact that |S(jω)| is greater than 1 at ω = 1.7rad/s, cf. the Bode
plot in Figure 6.9.

Finally, let us compare the simulated responses shown in Figure 6.12 and
in Figure 6.8. The amplitude of the control error is less in Figure 6.12,
despite the fact that the closed loop or feedback control is not efficient (at
frequency 1.7 rad/s). The relatively small amplitude of the control error is
due to the self regulation of the process, which means that the disturbance
is attenuated through the process, whether the process is controlled or not.

[End of Example 6.6]

In Example 6.6 I did not choose the disturbance frequency, 1.7rad/s, by
random. 1.7rad/s is actually the loop transfer function crossover frequency
of the control system. Thus, the example demonstrates that the crossover
frequency may give a poor measure of the performance of the control
system. The sensitivity bandwidth is a better measure of the performance.
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6.4 Stability analysis of feedback systems

6.4.1 Introduction

A control system must be asymptotically stable. A method for
determination of the stability property of a control system will be
described in the following. The method is based on the frequency response
of the loop transfer function6, L(jω), and it is denoted Nyquist’s stability
criterion. This is a graphical analysis method. There are also algebraic
analysis methods, as the Routh’s stability criterion [4] which is based on
the coefficients of the characteristic polynomial of the control system. Such
stability analysis methods are not described in this book since they have
limited practical importance (the mathematical operations become quite
complicated except for the simplest models).

6.4.2 Review of stability properties

Let us review some basic facts from the stability theory (cf. e.g. [7]).
Figure 6.13 shows the relation between the stability properties and the
impulse response h(t) of the system.

Figure 6.14 shows the relation between the stability properties and the
placement of the transfer function poles in the complex plane. The
relations shown in Figure 6.13 and Figure 6.14 are summarized below.

• Asymptotically stable system: The stationary impulse response
is zero:

lim
t→∞h(t) = 0 (6.90)

All the poles of system’s transfer function lies in the left half plane,
that is, all the poles have strictly negative real parts.

• Marginally stable system: The stationary impulse response is
different from zero, but limited:

0 < lim
t→∞h(t) <∞ (6.91)

One or more poles lie on the imaginary axis, that is, these poles have
real part equal to zero, and none of these poles are multiple. No
poles lies in the right half plane.

6 the product of all the transfer functions in the control loop, cf. (6.25)
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y(t)=h(t)
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0

0
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0

Figure 6.13: Illustration of the different stability properties expressed by the
impulse response of the system

• Unstable system: The stationary impulse response is unlimited:
lim
t→∞h(t) =∞ (6.92)

At least one of the poles lies in the right half plane, that is, has real
part larger than zero. Or: There are multiple poles on the imaginary
axis.

Which is the transfer function to be used to determine the stability
analysis of control systems? See Figure 6.3 (page 152). We must select a
transfer function from one of the input signals to the closed loop to one of
the output signals from the loop. Let us select the transfer function from
the setpoint ymSP to the process measurement ym. This transfer function is

ym(s)

ymSP
(s)

=
Hc(s)Hu(s)Hm(s)

1 +Hc(s)Hu(s)Hm(s)
=

L(s)

1 + L(s)
= T (s) (6.93)

which is the tracking transfer function of the control system. (If we had
selected some other transfer function, for example the transfer function
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Figure 6.14: Relation between stability properties and pole placement in the
complex plane

from the disturbance to the process output variable, the result of the
analysis would have been the same.) L(s) is the loop transfer function of
the control system:

L(s) = Hc(s)Hu(s)Hm(s) (6.94)

Figure 6.15 shows a compact block diagram of a control system. The
transfer function from ymSP

to ym is the tracking function:

ymSP ym
L(s)

Figure 6.15: Compact block diagram of a control system with setpoint ymSP

as input variable and process measurement Ym as output variable

T (s) =
L(s)

1 + L(s)
=

nL(s)
dL(s)

1 + nL(s)
dL(s)

=
nL(s)

dL(s) + nL(s)
(6.95)

where nL(s) and dL(s) are the numerator and denominator polynomials of
L(s), respectively. The characteristic polynomial of the tracking function is

c(s) = dL(s) + nL(s) (6.96)
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The stability of the control system is determined by the placement of the
roots of (6.96) in the complex plan.

6.4.3 Nyquist’s stability criterion

The Nyquist’s stability criterion will now be derived. We start with a little
rewriting: The roots of (6.96) are the same as the roots of

dL(s) + nL(s)

dL(s)
= 1 +

nL(s)

dL(s)
= 1 + L(s) = 0 (6.97)

which, therefore, too can be denoted the characteristic equation of the
control system. (6.97) is the equation from which the Nyquist’s stability
criterion will be derived. In the derivation we will use the Argument
variation principle:

Argument variation principle: Given a function f(s) where s is a
complex number. Then f(s) is a complex number, too. As with all
complex numbers, f(s) has an angle or argument. If s follows a
closed contour Γ (gamma) in the complex s-plane which encircles a
number of poles and a number of zeros of f(s), see Figure 6.16, then
the following applies:

arg
Γ
f(s) = 360◦·(number of zeros minus number of poles of f(s) inside Γ)

(6.98)
where argΓ f(s) means the change of the angle of f(s) when s has
followed Γ once in positive direction of circulation (i.e. clockwise).

For our purpose, we let the function f(s) in the Argument variation
principle be

f(s) = 1 + L(s) (6.99)

The Γ contour must encircle the entire right half s-plane, so that we are
certain that all poles and zeros of 1 + L(s) are encircled. From the
Argument Variation Principle we have:
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Figure 6.16: s shall follow the Γ contour once in positive direction (counter
clockwise).

arg
Γ
[1 + L(s)] = arg

Γ

dL(s) + nL(s)

dL(s)
(6.100)

= 360◦ · (number of roots of (dL + nL) in RHP
minus number roots of dL in RHP) (6.101)

= 360◦ · (number poles of closed loop system in RHP

minus number poles of open system in RHP)

= 360◦ · (PCL − POL) (6.102)

where RHP means right half plane. By “open system” we mean the
(imaginary) system having transfer function L(s) = nL(s)/dL(s), i.e., the
original feedback system with the feedback broken. The poles of the open
system are the roots of dL(s) = 0.

Finally, we can formulate the Nyquist’s stability criterion. But before we
do that, we should remind ourselves what we are after, namely to be able
to determine the number poles PCL of the closed loop system in RHP. It
those poles which determines whether the closed loop system (the control
system) is asymptotically stable or not. If PCL = 0 the closed loop system
is asymptotically stable.
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Nyquist’s stability criterion: Let POL be the number of poles of the
open system in the right half plane, and let argΓ L(s) be the angular
change of the vector L(s) as s have followed the Γ contour once in
positive direction of circulation. Then, the number poles PCL of the
closed loop system in the right half plane, is

PCL =
argΓ L(s)

360◦
+ POL (6.103)

If PCL = 0, the closed loop system is asymptotically stable.

Let us take a closer look at the terms on the right side of (6.103): POL are
the roots of dL(s), and there should not be any problem calculating these
roots. To determine the angular change of the vector 1 + L(s). Figure 6.17
shows how the vector (or complex number) 1 + L(s) appears in a Nyquist
diagram for a typical plot of L(s). A Nyquist diagram is simply a
Cartesian diagram of the complex plane in which L is plotted. 1 + L(s) is
the vector from the point (−1, 0j), which is denoted the critical point, to
the Nyquist curve of L(s).

Re L(s)

Im L(s)

1

1 + L(s)

The 
critical 
point

Decreasing ω

Positive ω

Negative ω

Infinite ω

0

Nyquist 
curve of 
L(s)

Figure 6.17: Typical Nyquist curve of L(s). The vector 1 + L(s) is drawn.

More about the Nyquist curve of L(jω)

Let us take a more detailed look at the Nyquist curve of L as s follows the
Γ contour in the s-plane, see Figure 6.16. In practice, the denominator
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polynomial of L(s) has higher order than the numerator polynomial. This
implies that L(s) is mapped to the origin of the Nyquist diagram when
|s| =∞. Thus, the whole semicircular part of the Γ contour is mapped to
the origin.

The imaginary axis constitutes the rest of the Γ contour. How is the
mapping of L(s) as s runs along the imaginary axis? On the imaginary
axis s = jω, which implies that L(s) = L(jω), which is the frequency
response of L(s). A consequence of this is that we can in principle
determine the stability property of a feedback system by just looking at
the frequency response of the open system, L(jω).

ω has negative values when s = jω is on the negative imaginary axis. For
ω < 0 the frequency response has a mathematical meaning. From general
properties of complex functions,

|L(−jω)| = |L(jω)| (6.104)

and
6 L(−jω) = −6 L(jω) (6.105)

Therefore the Nyquist curve of L(s) for ω < 0 will be identical to the
Nyquist curve of ω > 0, but mirrored about the real axis. Thus, we only
need to know how L(jω) is mapped for ω ≥ 0. The rest of the Nyquist
curve then comes by itself! Actually we need not draw more of the Nyquist
curve (for ω > 0) than what is sufficient for determining if the critical
point is encircled or not.

We must do some extra considerations if some of the poles in L(s), which
are the poles of the open loop system, lie in the origin. This corresponds to
pure integrators in control loop, which is a common situation in feedback
control systems because the controller usually has integral action, as in a
PI or PID controller. If L(s) contains integrators, the Γ contour must go
outside the origo. But to the left or to the right? We choose to the right,
see Figure 6.18. (We have thereby decided that the origin belongs to the
left half plane. This implies that POL does not count these poles.) The
radius of the semicircle around origin is arbitrarily small. The Nyquist
curve then becomes as shown in the diagram to the right in the same
figure. The arbitrarily small semicircle in the s-plane is mapped to an
infinitely large semicircle in the L-plane. The is because as s→ 0, the loop
transfer function is approximately

L(s) ≈ K
s

(if we assume one pole in the origin). On the small semicircle,

s = rejθ (6.106)
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Re(s)

Im(s)

Re L(s)

Im L(s)

1

1 + L(s)

0
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origin

0

Figure 6.18: Left diagram: If L(s) has a pole in origin, the Γ contour must
pass the origin along an arbitrarily small semicircle to the right. Right diagram:
A typical Nyquist curve of L.

which gives

L(s) ≈ K
r
e−jθ (6.107)

When r → 0 and when simultaneously θ goes from +90◦ via 0◦ to −90◦,
the Nyquist curve becomes an infinitely large semicircle, as shown.

The Nyquist’s stability criterion for non-rational transfer
functions

The Nyquist’s stability criterion gives information about the poles of
feedback systems. So far it has been assumed that the loop transfer
function L(s) is a rational transfer function. What if L(s) is irrational?
Here is one example:

L(s) =
1

s
e−τs (6.108)

where e−τs represents time delay. In such cases the tracking ratio T (s) will
also be irrational, and the definition of poles does not apply to such
irrational transfer functions. Actually, the Nyquist’s stability criterion can
be used as a graphical method for determining the stability property on
basis of the frequency response L(jω).
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Nyquist’s special stability criterion

In most cases the open system is stable, that is, POL = 0. (6.103) then
becomes

PCL =
argΓ[L(s)]

360◦
(6.109)

This implies that the feedback system is asymptotically stable if the
Nyquist curve does not encircle the critical point. This is the Nyquist’s
special stability criterion or the Nyquist’s stability criterion for open stable
systems.

The Nyquist’s special stability criterion can also be formulated as follows:
The feedback system is asymptotically stable if the Nyquist curve of L has
the critical point on its left side for increasing ω.

Another way to formulate Nyquist’s special stability criterion involves the
amplitude crossover frequency ωc and the phase crossover frequency ω180.
ωc is the frequency at which the L(jω) curve crosses the unit circle, while
ω180 is the frequency at which the L(jω) curve crosses the negative real
axis. In other words:

|L(jωc)| = 1 (6.110)

and
argL(jω180) = −180◦ (6.111)

See Figure 6.19. Note: The Nyquist diagram contains no explicit frequency
axis. We can now determine the stability properties from the relation
between these two crossover frequencies:

• Asymptotically stable closed loop system: ωc < ω180

• Marginally stable closed loop system: ωc = ω180

• Unstable closed loop system: ωc > ω180

Stability margins in terms of gain margin GM and phase margin
PM

An asymptotically stable feedback system may become marginally stable if
the loop transfer function changes. The gain margin GM and the phase
margin PM [radians or degrees] are stability margins which in their own
ways expresses how large parameter changes can be tolerated before an
asymptotically stable system becomes marginally stable. Figure 6.20 shows
the stability margins defined in the Nyquist diagram. GM is the
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Re L(s)

Im L(s)

1

Decreasing ω
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0
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j

L(jω180)

L(jωc)

Figure 6.19: Definition of amplitude crossover frequency ωc and phase crossover
frequency ω180

(multiplicative, not additive) increase of the gain that L can tolerate at
ω180 before the L curve (in the Nyquist diagram) passes through the
critical point. Thus,

|L(jω180)| ·GM = 1 (6.112)

which gives

GM =
1

|L(jω180)| =
1

|ReL(jω180)| (6.113)

(The latter expression in (6.113) is because at ω180, ImL = 0 so that the
amplitude is equal to the absolute value of the real part.)

If we use decibel as the unit (like in the Bode diagram which we will soon
encounter), then

GM [dB] = − |L(jω180)| [dB] (6.114)

The phase margin PM is the phase reduction that the L curve can tolerate
at ωc before the L curve passes through the critical point. Thus,

argL(jωc)− PM = −180◦ (6.115)

which gives
PM = 180◦ + argL(jωc) (6.116)
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Figure 6.20: Gain margin GM and phase margin PM defined in the Nyquist
diagram

We can now state as follows: The feedback (closed) system is
asymptotically stable if

GM > 0dB = 1 and PM > 0◦ (6.117)

This criterion is often denoted the Bode-Nyquist stability criterion.

Reasonable ranges of the stability margins are

2 ≈ 6dB ≤ GM ≤ 4 ≈ 12dB (6.118)

and
30◦ ≤ PM ≤ 60◦ (6.119)

The larger values, the better stability, but at the same time the system
becomes more sluggish, dynamically. If you are to use the stability margins
as design criterias, you can use the following values (unless you have
reasons for specifying other values):

GM ≥ 2.5 ≈ 8dB and PM ≥ 45◦ (6.120)

For example, the controller gain, Kp, can be adjusted until one of the
inequalities becomes an equality.7

7But you should definitely check the behaviour of the control system by simulation, if
possible.
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It can be shown8 that for PM ≤ 70◦, the damping of the feedback system
approximately corresponds to that of a second order system with relative
damping factor

ζ ≈ PM

100◦
(6.121)

For example, PM = 50◦ ∼ ζ = 0.5.

Stability margins in terms of maximum sensitivity amplitude,
|S(jω)|max

An alternative quantity of a stability margin, is the minimum distance
from the L(jω) curve to the critical point. This distance is |1 + L(jω)|, see
Figure 6.21. So, we can use the minimal value of |1 + L(jω)| as a stability

Re L(s)

Im L(s)

1
0

L(jω)

|1+L(jωc)|min

= |S(jωc)|max

Figure 6.21: The minimum distance between the L(jω) curve and the critical
point can be interpreted as a stability margin. This distance is |1 + L|min =
|S|max.

margin. However, it is more common to take the inverse of the distance:
Thus, a stability margin is the maximum value of 1/ |1 + L(jω)|. And
since 1/[1 + L(s)] is the sensitivity function S(s), then |S(jω)|max
represents a stability margin. Reasonable values are in the range

1.5 ≈ 3.5dB ≤ |S(jω)|max ≤ 3.0 ≈ 9.5dB (6.122)

If you use |S(jω)|max as a criterion for adjusting controller parameters, you
can use the following criterion (unless you have reasons for some other

8The result is based on the assumption that the loop transfer function is L(s) =
ω20/ [(s+ 2ζω0)s] which gives tracking transfer function T (s) = L(s)/[1 + L(s)] =
ω20/

£
s2 + 2ζω0s+ ω20

¤
. The phase margin PM can be calculated from L(s).
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specification):
|S(jω)|max = 2.0 ≈ 6dB (6.123)

Frequency of the sustained oscillations

There are sustained oscillations in a marginally stable system. The
frequency of these oscillations is ωc = ω180.This can be explained as
follows: In a marginally stable system, L(±jω180) = L(±jωc) = −1.
Therefore, dL(±jω180) + nL(±jω180) = 0, which is the characteristic
equation of the closed loop system with ±jω180 inserted for s. Therefore,
the system has ±jω180 among its poles. The system usually have
additional poles, but they lie in the left half plane. The poles ±jω180 leads
to sustained sinusoidal oscillations. Thus, ω180 (or ωc) is the frequency of
the sustained oscillations in a marginally stable system.

6.4.4 Stability analysis in a Bode diagram

It is most common to use a Bode diagram for frequency response based
stability analysis of closed loop systems. The Nyquist’s Stability Criterion
says: The closed loop system is marginally stable if the Nyquist curve (of
L) goes through the critical point, which is the point (−1, 0). But where is
the critical point in the Bode diagram? The critical point has phase
(angle) −180◦ and amplitude 1 = 0dB. The critical point therefore
constitutes two lines in a Bode diagram: The 0dB line in the amplitude
diagram and the −180◦ line in the phase diagram. Figure 6.22 shows
typical L curves for an asymptotically stable closed loop system. In the
figure, GM , PM , ωc and ω180 are indicated.

Example 6.7 Stability analysis of a feedback control system

Given a feedback control system with structure as shown in Figure 6.23.
The loop transfer function is

L(s) = Hc(s)Hp(s) = Kp|{z}
Hc(s)

1

(s+ 1)2 s| {z }
Hp(s)

=
Kp

(s+ 1)2 s
=
nL(s)

dL(s)
(6.124)

We will determine the stability property of the control system for different
values of the controller gain Kp in three ways: Pole placement, Nyquist’s
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ω
(logarithmic)

ω180

ωc

|L(jω)|

arg L(jω)

[dB]

[degrees]

0 dB

-180
PM

GM

Figure 6.22: Typical L curves of an asymptotically stable closed loop system
with GM , PM , ωc and ω180 indicated

Stability Criterion, and simulation. The tracking transfer function is

T (s) =
ym(s)

ymSP (s)
=

L(s)

1 + L(s)
=

nL(s)

dL(s) + nL(s)
=

Kp
s3 + 2s2 + s+Kp

(6.125)
The characteristic polynomial is

c(s) = s3 + 2s2 + s+Kp (6.126)

Figures 6.24 — 6.26 show the step response after a step in the setpoint, the
poles, the Bode diagram and Nyquist diagram for three Kp values which
result in different stability properties. The detailed results are shown
below.

• Kp = 1: Asymptotically stable system, see Figure 6.24. From the
Bode diagram we read off stability margins GM = 6.0dB = 2.0 and
PM = 21◦. we see also that |S(jω)|max = 11 dB = 3.5 (a large value,
but it corresponds with the small the phase margin of PM = 20◦).

• Kp = 2: Marginally stable system, see Figure 6.25. From the Bode
diagram, ωc = ω180. The L curve goes through the critical point in
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ymSP
ym

Hc(s) Hp(s)

Controller

Process with
measurement
and scaling

Figure 6.23: Example 6.7: Block diagram of feedback control system

the Nyquist diagram. |S|max has infinitely large value (since the
minimum distance, 1/|S|max, between |L| and the critical point is
zero).

Let us calculate the period Tp of the undamped oscillations: Since
ω180 = 1.0rad/s, the period is Tp = 2π/ω180 = 6.28s, which fits well
with the simulation shown in Figure 6.25.

• Kp = 4: Unstable system, see Figure 6.26. From the Bode diagram,
ωc > ω180. From the Nyquist diagram we see that the L curve passes
outside the critical point. (The frequency response curves of M and
N have no physical meaning in this the case.)

[End of Example 6.7]

6.4.5 Stability margins and robustness

Per definition the stability margins expresses the robustness of the
feedback control system against certain parameter changes in the loop
transfer function:

• The gain margin GM is how much the loop gain, K, can increase
before the system becomes unstable. For example, is GM = 2 when
K = 1.5, the control system becomes unstable for K larger than
1.5 · 2 = 3.0.

• The phase margin PM is how much the phase lag function of the
loop can be reduced before the loop becomes unstable. One reason of
reduced phase is that the time delay in control loop is increased. A
change of the time delay by ∆τ introduces the factor e−∆τs in L(s)
and contributes to argL with −∆τ · ω [rad] or −∆τ · ω 180◦π [deg]. |L|
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is however not influenced because the amplitude function of e−τs is 1,
independent of the value of τ . The system becomes unstable if the
time delay have increased by ∆τmax such that9

PM = ∆τmax · ωc180
◦

π
[deg] (6.127)

which gives the following maximum change of the time delay:

∆τmax =
PM

ωc

π

180◦
(6.128)

If you want to calculate how much the phase margin PM is reduced
if the time delay is increased by ∆τ , you can use the following
formula which stems from (6.127):

∆PM = ∆τ · ωc 180
◦

π
[deg] (6.129)

For example, assume that a given control system has
ωc = 0.2rad/min and PM = 50◦. If the time delay increases by 1min,
the phase margin is reduced by ∆PM = 1 · 0.2180◦π = 11.4◦, i.e. from
50◦ to 38.6◦.

9Remember that PM is found at ωc.
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Figure 6.24: Example 6.7: Step response (step in setpoint), poles, Bode dia-
gram and Nyquist diagram with Kp = 1. The control system is asymptotically
stable.
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Figure 6.25: Example 6.7: Step response (step in setpoint), poles, Bode di-
agram and Nyquist diagram with Kp = 2. The control system is marginally
stable.
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Figure 6.26: Example 6.7: Step response (step in setpoint), poles, Bode dia-
gram and Nyquist diagram with Kp = 4. The control system is unstable.



Chapter 7

Transfer function based PID
tuning

7.1 Introduction

This chapter describes PID tuning methods based on transfer function
models of the process to be controlled. It is assumed that the control
system has a transfer function block diagram as shown in Figure 7.1. As a

em(s)
Hr(s) Hu(s)

Hm(s)

u(s) y(s)

ym(s)

Hm(s)
ymSP(s)ySP(s)

Hv(s)

v(s)Process

Sensor and
scaling

Scaling

Controller
U0(s)

Process
output

Setpoint

Figure 7.1: Transfer function based block diagram of the control system

basis for the design of the controllers we will work with the combined,

189



190 Finn Haugen: PID Control

equivalent block diagram shown in Figure 7.2. The sensor and scaling
block is combined with the process blocks. The two combined process
transfer functions then becomes

ym(s)

u(s)
= Hu(s) ·Hm(s)| {z }

Hp(s)

(7.1)

and
ym(s)

v(s)
= Hv(s) ·Hm(s)| {z }

Hvm(s)

(7.2)

em(s)
Hc(s) Hp(s)u(s) ym(s)ymSP(s)

Hvm(s)

v(s)Process

Controller
U0(s)

Figure 7.2: Combined, equivalent block diagram of the control system showing
the process measurement as the variable to be controlled (cf. Figure 7.1)

Some comments about the disturbance acting on the process: In most
processes the dominating disturbance influences the process in the same
way, dynamically, as the control variable. Such a disturbance is called an
input disturbance . Here are a few examples:

• Liquid tank: The control variable controls the inflow. The outflow is
a disturbance.

• Motor: The control variable controls the motor torque. The load
torque is a disturbance.

• Thermal process: The control variable controls the power supply via
an heating element. The power loss via heat transfer through the
walls and heat outflow through the outlet are disturbances.
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In the cases above (with input disturbances) the dynamic properties
represented by Hp(s) and Hvm(s) are similar. For example, the following
transfer functions represents the same dynamics if the time constants T
and Tvm are equal:

Hp(s) =
K

Ts+ 1
(7.3)

Hvm(s) =
Kvm

Tvms+ 1
=

Kvm
Ts+ 1

(7.4)

In the simulations shown in this chapter, it is assumed that the
disturbance is an input disturbance type, with as described above.

Let us repeat some basic relations: For a control system as shown in
Figure 7.2, the Laplace transform of the control error is, cf. Section 6.3.3,

em(s) = S(s)ymSP (s)| {z }
eymSP (s)

−S(s)Hvm(s)v(s)| {z }
evm(s)

(7.5)

where S(s) is the sensitivity function given by

S(s) =
1

1 + L(s)
(7.6)

where L(s) is the loop transfer function, here given by

L(s) = Hc(s)Hp(s) (7.7)

The tracking transfer function is

T (s) =
L(s)

1 + L(s)
(7.8)

In most control systems the controller should have integral action, since it
brings the static (steady-state) control error to zero for a constant setpoint
and a constant disturbance, cf. Section 6.3.3. Therefore we will consider
only PI and PID controllers (not P and PD controllers) in this chapter.

In this chapter formulas for the controller parameters will be presented.
Remember to always check that the control system behaves as expected by
running simulations. The model used in the simulator should include
nonlinearities, as saturation limits, which have been neglected in the
controller design.
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7.2 Controller tuning from specified
characteristic polynomial

7.2.1 Introduction

The subsequent sections explain controller tuning based on specifications
of the characteristic polynomial of the control system. Using this method
you can shape the dynamic properties of the control system quite freely.
However, the method is in practice applicable only to processes of low order
due to the mathematical operations involved, and here only integrator
processes and first order (time constant) process will be considered.

If the process order is high, or if the process contains time delay, you
should consider using the Ziegler-Nichols’ tuning methods, cf. Chapter 4
(Ziegler-Nichols’ tuning methods actually can not be used for integrators
or first order processes since the parameters needed in the methods, as the
ultimate gain, can not be found or is infinitely large for these processes).

For all the processes that we soon will encounter (integrator and first order
system), Skogestad’s method, cf. Section 7.5, can be used. Although this
tuning method certainly works fine, the method is based on some model
approximations. In some cases it is useful to be able to perform an exact
controller design. One important example is the level controller design for
a liquid tank, cf. Example 7.2.

7.2.2 Tuning a controller for an integrator process

The process transfer function is

Hp(s) =
K

s
(7.9)

and the disturbance transfer function is

Hvm(s) =
Kvm
s

(7.10)

One example of such a process is a liquid tank where the level h is to be
controlled by controlling the outflow wout from the tank. The transfer
function from wout to level measurement hm is on the form (7.9). (This
example is described in detail in Example 7.1 (page 194).)

We will use a PI controller (the derivative term in the PID controller
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serves no purpose for this process), which has transfer function

Hc(s) = Kp
Tis+ 1

Tis
(7.11)

The controller parameters Kp and Ti will be calculated from a specified
bandwidth, which represents the speed of the control system. In addition
we must require that the control system has acceptable stability. We start
by finding the tracking transfer function T (s), which is given by (7.8)
where the loop transfer function is

L(s) = Hc(s)Hp(s) = Kp
Tis+ 1

Tis
· K
s

(7.12)

From (7.8) we get

T (s) =
L(s)

1 + L(s)
=

KpK
³
s+ 1

Ti

´
s2 +KpKs+

KpK

Ti| {z }
c(s)

(7.13)

where c(s) is the characteristic polynomial of the control system. We write
it as a standard second order polynomial:

c(s) = s2 +KpKs+
KpK

Ti
= s2 + 2ζω0s+ ω0

2 (7.14)

where ω0 is the undamped resonance frequency and ζ is the relative
damping factor [7]. Comparison of coefficients between the two
polynomials in (7.14) gives the following identities:

KpK ≡ 2ζω0 and KpK
Ti
≡ ω0

2 (7.15)

Solving for Kp and Ti gives the following formulas for the controller
parameters:

Kp =
2ζω0
K

(7.16)

Ti =
2ζ

ω0
(7.17)

Using (7.16) and (7.17), T (s) can be written as

T (s) =
KpK

³
s+ 1

Ti

´
s2 +KpKs+

KpK
Ti

=
2ζω0s+ ω0

2

s2 + 2ζω0s+ ω02
(7.18)
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ω0 can be interpreted as the bandwidth of the tracking function (7.18). A
rough estimate of the response time1 of the control system is

Tr ≈ 1

ω0
(7.19)

A reasonable choice of ζ is
ζ = 0.5 (7.20)

which gives step responses with well damped oscillations. If larger damping
of the time responses is desired, ζ can be given a larger value (closer to 1).

Example 7.1 PI control of an integrator process

Figure 7.3: Example 7.1: Simulated responses in the control system

Assume that K = 1 and Kvm = 1 in (7.9) and (7.10). We specify ω0 = 1
and ζ = 0.5. (7.16) and (7.17) gives

Kp = 1; Ti = 1 (7.21)

Figure 7.3 shows simulated responses in a control system with transfer
functions (7.9) and (7.10). There is a setpoint step and a disturbance step.
The simulations indicates that the stability of the control system is

1The response time can be regarded as an approximate time constant.
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acceptable. The response time is read off as Tr ≈ 0.9s which is quite
similar to the estimate Tr = 1/ω0 = 1/1 = 1s according to (7.19).

[End of Example 7.1]

Tuning the controller for sluggish control

The aim of controller tuning is not always fast control, but in stead
sluggish control! This is the case for a level controlled liquid tank in a
process line. The tank is an integrator, dynamically. The level control
system ensures the mass balance. In addition the control system behaves
like a lowpass filter between the (free) inflow win and the outflow wout. To
obtain enough attenuation of inflow variations through the system, the
level control system must be sluggish! Example 7.2 goes into the details.

Example 7.2 Level control of buffer tank

Figure 7.4 shows the front panel of a simulator for buffer tank with level
control system.2 (The simulated responses are explained later in this
example.)The control system has two aims:

• To keep the level on or close to a level setpoint.

• To attenuate variations in the outflow so that it becomes smoother
than the inflow.

We need a mathematical process model: Mass balance is

ρAḣ = win −wout|{z}
Kuu

(7.22)

Laplace transformation of (7.22) is

ρAh(s) = win(s)−Kuu(s) (7.23)

Solving for h(s) gives the following transfer function model:

h(s) =
1

ρAs
win(s)− Ku

ρAs
u(s) (7.24)

2The system may be in e.g. a production line in a factory.
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Figure 7.4: Example 7.2: Front panel of simulator for level control system

The transfer function from level h to level measurement hm is

hm(s) = Kmh(s) (7.25)

Combining (7.24) and (7.25) gives the following model:

hm(s) =
Km
ρAs

win(s)− KmKu
ρAs

u(s) (7.26)

The transfer function from u to hm is

Hp(s) =
hm(s)

u(s)
= − Ku

ρAs
= −K

s
(7.27)

where

K =
KuKm
ρA

(7.28)
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is the process gain. Figure 7.5 shows a block diagram of the level control
system.

-Hc(s)

Km

u h

hm

hSP

Controller
win

KuKm

hmSP wout

ρAs
1

Figure 7.5: Example 7.2: Block diagram of the level control system

The level controller is a PI controller. The integral term ensures zero static
control error. The transfer function of the PI controller is

Hc(s) = Kp
Tis+ 1

Tis
(7.29)

What is the reason for the negative sign ahead of the controller transfer
function Hc(s) in the block diagram in Figure (7.5)? The negative sign
means that the controller in effect has negative gain. Negative controller
gain is here necessary since the process gain is negative, cf. Section 2.6.8.

The tracking transfer function of the control system is given by (7.18),
which is repeated here:

hm(s)

hmSP (s)
= T (s) (7.30)

=
L(s)

1 + L(s)
(7.31)

=
Hc(s)Hp(s)

1 +Hc(s)Hp(s)
(7.32)

=
KpK

³
s+ 1

Ti

´
s2 +KpKs+

KpK
Ti

(7.33)

=
2ζω0s+ ω0

2

s2 + 2ζω0s+ ω02
(7.34)

Once ζ and ω0 is specified, the controller parameters are given by (7.16)
and (7.17). Below we will specify ζ and ω0 from a specification to the
attenuation of the mass flow through the tank.
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The relation between the inflow win and the outflow wut can be expressed
by the transfer function from win to wout. From the block diagram in
Figure 7.5 we see that the relation between win and wout is identical to the
relation between the level setpoint hSP and the level h, which implies that
the transfer function from win to wout is the same as the tracking transfer
function! Thus,

wout(s)

win(s)
=

h(s)

hm(s)
= T (s) (7.35)

=
KpK

³
s+ 1

Ti

´
s2 +KpKs+

KpK
Ti

(7.36)

=
2ζω0s+ ω0

2

s2 + 2ζω0s+ ω02
(7.37)

By giving values to ζ and ω0 we determine the dynamic properties of the
controlled tank. Let us set

ζ = 0.5 (7.38)

What about ω0? It can roughly be regarded as the bandwidth of the
lowpass filter (7.35). A Bode plot of the amplitude function |T (jω)| gives a
good picture of the filtering properties, see Figure 7.6 which shows |T (jω)|
with controller parameters as calculated later in this example. In the figure
the frequency unit is Hz. The relation between a frequency f1 in Hz and
the corresponding frequency ω1 in rad/s is

2πf1 = ω1 (7.39)

Let us specify that a frequency component in win of frequency
fin = 0.05Hz is attenuated by a factor of 5 — or in other words: amplified
by factor 0.2 which is approximately −14dB. This means that the
amplitude gain of T at this frequency must be

|T (s)|s=j2πfin (7.40)

= |T (j2πfin)| (7.41)

=

¯̄̄̄
¯ 2ζω0s+ ω0

2

s2 + 2ζω0s+ ω02

¯̄̄̄
s=j2πfin=j2π·0.05

¯̄̄̄
¯ = 0.2 = −14dB (7.42)

Here we use (7.38). In principle we can now solve (7.42) for ω0 (to be used
in (7.16) and (7.17) for calculating the PI parameters). Although it is
possible to solve (7.42) for ω0, it is a bit difficult operation. If we have a
computer tool for plotting Bode diagrams, it is easier to iterate on plotting
|T | for varying ω0 until |T | = 0.2. The result is

ω0 = 0.06rad/s
ˆ
= 0.0095Hz (7.43)
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Using (7.38) and (7.43) in (7.16) and (7.17) gives

Kp = 0.60; Ti = 16.7s (7.44)

Figure 7.6 shows a Bode plot of |T (jω)| with the controller parameters
(7.44). We read off |T | = −14.0dB = 0.20.

Figure 7.6: Example 7.2: Bode plot of |T (ω)| with the calculated PI parameters

Figure 7.4 shows simulated responses in the control system with parameter
values defined above. An accurate reading from the simulations shows that
the amplitude of wout is 4.0kg/s (in steady-state). The amplitude of win is
20kg/s. Thus, the amplitude ratio is 4.0/20 = 0.20 = −14.0dB, which is in
accordance with the Bode plot, see Figure 7.6.

[End of Example 7.2]
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Strange phenomenon with PI control of integrator process

From (7.15) we get

ω0 =

r
KpK

Ti
(7.45)

and
ζ =

1

2

p
KpKTi (7.46)

(7.46) shows that the stability of the control system is reduced if the
controller gain, Kp, for some reason is reduced (smaller ζ implies less
damping and hence less stability). This explains a somewhat surprising
observation in control systems where an integrator process is controlled by
a PI controller, since in general the stability of control systems is increased
when the gain is decreased. One example of such a control system is a level
control system of a level tank as shown in Figure 7.4. In addition to the
reduced stability, the responses in the control system are more sluggish
since ω0 is reduced with decreased Kp.

Let us look at a few simulations which will illustrate the above. Assume
given a process with the following transfer function:

Hp(s) =
y(s)

u (s)
=
K

s
(7.47)

with K = 1. The process is controlled by a PI controller. We specify
ω0 = 1 and ζ = 0.5. (7.16) and (7.17) gives Kp = 1 and Ti = 1. Figure 7.7
shows the response in the process measurement ym due to a step in the
setpoint ymSP

. Figure 7.8 shows the response with Kp reduced to 0.1.

Figure 7.7: Response in process measurement ym due to a step in the setpoint
ymSP

with PI parameters Kp = 1 and Ti = 1 (normal design)
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Figure 7.8: Response in ym with Kp = 0.1 (reduced value compared to normal
design) and Ti = 1

Compared to the response shown in Figure 7.7 it is clear that the reduced
Kp value implies reduced stability of the control system. The oscillations
are less damped, and they have smaller frequency. (Note the difference in
the time scalings between the figures.)

7.2.3 Tuning a controller for a first order process

See Figure 7.1. The process transfer function is now

Hp(s) =
K

Ts+ 1
(7.48)

and the disturbance transfer function is

Hvm(s) =
Kvm

Tvms+ 1
=

Kvm
Ts+ 1

(7.49)

Here are examples of processes having a first order model (approximately):

• A stirred tank (with homogenous contents) with continuous flow
through the tank where the concentration, say cA, of a material, A, is
to be controlled by controlling the inflow, qA, to the tank.

• A liquid tank (with homogenous contents) continuous flow through
the tank where the temperature Tt is to be controlled by controlling
the supplied power P .

• An electrical motor where the rotational speed n is to be controlled
by controlling the input motor voltage v.
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A PI controller is proper for controlling a first order process. The
controller transfer function is

Hc(s) = Kp
Tis+ 1

Tis
(7.50)

The tracking transfer function becomes

T (s) =
L(s)

1 + L(s)
=

Hc(s)Hp(s)

1 +Hc(s)Hp(s)
(7.51)

=

KpK
TiT

(Tis+ 1)

s2 +
KpK+1
T s+

KpK
TiT

=

KpK
TiT

(Tis+ 1)

s2 + 2ζω0s+ ω02
(7.52)

The characteristic polynomial c(s) of the control system is a second order
polynomial:

c(s) = s2 +
KpK + 1

T
s+

KpK

TiT
= s2 + 2ζω0s+ ω0

2 (7.53)

where ω0 is the undamped resonance frequency and ζ is the relative
damping factor [7]. You have to specify ω0 and ζ for the control system.
Roughly, ω0 is the bandwidth of T (s). A reasonable value of ζ may be

ζ = 0.5 (7.54)

which gives step responses with well damped oscillations. If larger damping
of the time responses is desired, ζ can be given a larger value (closer to 1).

Comparison of coefficients between the two polynomials in (7.53) gives the
following identities:

KpK + 1

T
≡ 2ζω0 and KpK

TiT
≡ ω0

2 (7.55)

Solving for Kp and Ti gives the following formulas for the controller
parameters:

Kp =
2ζω0T − 1

K
(7.56)

Ti =
2ζω0T − 1

ω02T
(7.57)

An estimate of the response time3 of the control system

Tr ≈ 1

ω0
(7.58)

Example 7.3 PI control of a first order process
3The response time can be regarded as an approximate time constant.
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Assume given a process model (7.48) and (7.49) with the following
parameters: K = 1, Kvm = 1, T = Tvm = 5. Let us specify ω0 = 1 and
ζ = 0.5. Then (7.56) and (7.57) gives the following PI parameters:

Kp = 4; Ti = 0.8 (7.59)

Figure 7.9 shows the simulated responses in the control system. There is a
setpoint step and a disturbance step. The responses are ok.

Figure 7.9: Example 7.3: Simulated responses in the control system

[End of Example 7.3]

Pole-zero cancellation as an alternative controller tuning method

An alternative way to calculate the PI controller parameters for a first
order process, is pole-zero cancellation. Look at the loop transfer function:

L(s) = Hc(s)Hp(s) = Kp
Tis+ 1

Tis
· K

Ts+ 1
(7.60)

Here we set the integral time equal to the process time constant :

Ti = T (7.61)
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The factor (Tis+ 1) can now be cancelled against the factor (Ts+ 1) in
L(s), which gives

L(s) =
KpK

Ts
(7.62)

The tracking transfer function becomes

T (s) =
L(s)

1 + L(s)
=

1
T

KpK
s+ 1

=
1

TMs+ 1
(7.63)

which is just a first order transfer function with time constant (response
time)

TM =
T

KpK
(7.64)

We have to specify TM . Then the controller gain is given by

Kp =
T

TMK
(7.65)

To sum up: The PI parameter formulas are (7.65) and (7.61).

One possible drawback with this simple PI controller tuning method is
that Ti becomes large if T is large (since they are equal). For a sluggish
process, having large T , the integral action can be slow, resulting in slow
disturbance compensation. However, the setpoint tracking may be fast
since this response is given by time constant TM which we can specify. In
general it is safer to calculate Kp and Ti from specification of ω0 and ζ in
the second order characteristic polynomial since this may give fast
disturbance compensation (in addition to fast setpoint tracking.

Example 7.4 PI controller tuning using pole-zero cancellation

Given the same process as in Example 7.3. We specify TM = 1. (7.65) and
(7.61) gives

Kp = 5; Ti = 5 (7.66)

Figure 7.10 shows simulated responses in the control system. The setpoint
tracking is as expected: Like the step response of a first order system with
time constant TM = 1. The disturbance compensation is however much
slower than in Example 7.3. This demonstrates that the pole-zero
cancelling may be a bad tuning method if the process time constant is
large.

[End of Example 7.4]
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Figure 7.10: Example 7.4: Simulated responses in the control system. The
controller is tuned using pole-zero cancellation.

7.3 Controller design using the direct method

The direct method for designing a controller is in principle a very simple
method, but there is no guarantee that the controller becomes a PID
controller. Non PID controllers may be difficult to implement in standard
commercial control equipment, but in flexible and mathematical tools as
MATLAB, SIMULINK and LabVIEW such controllers are straightforward
to implement.

The direct method is based on a specified tracking function T (s), or a
specified sensitivity function S(s). (The direct method is the basis of the
dead-time compensator described in Section 7.4 and Skogestad’s method
described in Section 7.5.)

Assume given the tracking function T (s). From (7.8) we get

L(s) = Hc(s)Hp(s) =
T (s)

1− T (s) (7.67)

which gives the following controller transfer function:

Hc(s) =
1

Hp(s)
· T (s)

1− T (s) (7.68)
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If in stead the sensitivity function S(s) is specified, the controller is found
from (7.6) as

Hc(s) =
1

Hp(s)
· 1− S(s)
S(s)

(7.69)

Example 7.5 The direct method for controller design

Given the process

Hp(s) =
K

Tps+ 1
(7.70)

We specify the tracking function as

T (s) =
1

Tts+ 1
(7.71)

where Tt is the time constant of the tracking function or of the control
system. Inserting (7.71) into (7.68) gives

Hc(s) =
1

Hp(s)
· T (s)

1− T (s) =
1
K

Tps+1

·
1

Tts+1

1− 1
Tts+1

=
Tps+ 1

KTts
(7.72)

which happens to be a PI controller with

Kp =
Tp
KTt

; Ti = Tp (7.73)

[End of Example 7.5]

Why feedback?

Above we specified the tracking transfer function T (s) and calculated the
controller transfer function Hc(s), assuming that the control system is a
feedback system. Suppose we drop the assumption about feedback, and
that we just want to achieve T (s) by placing a compensating transfer
function, Hsc(s), in front and in series with the process, as shown in Figure
7.11.This is an open loop control strategy (or feedforward control). No
sensor is needed. We can calculate Hsc(s) by requiring

Hsc(s)Hu(s) = T (s) (7.74)

Solving for Hsc(s) gives

Hsc(s) =
T (s)

Hu(s)
(7.75)
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Hu(s)
u(s) y(s)

Hsc(s)
ySP(s)

Hv(s)

v(s)Process

Series
compensator

Controller
U0(s)

Process
output

Setpoint

Figure 7.11: Compensating transfer function, Hsc(s), in series with the process

Assume as an example that

Hu(s) =
Ku

Tus+ 1
(7.76)

We specify the tracking function as

T (s) =
1

Tts+ 1
(7.77)

Now (7.75) gives

Hsc(s) =
T (s)

Hu(s)
=

1
Tts+1
Ku

Tus+1

=
1

Ku

Tus+ 1

Tts+ 1
(7.78)

which will give the same T (s) as in Example 7.5 where feedback was
assumed. So, why not choose the open loop solution, since we can then
drop the sensor? Due to model errors and disturbances the control error
may be different from zero, and since there is no feedback from the actual
process output signal, no automatic adjustment of the control signal (as a
function of the control error) can take place, so the control error may be
(too) large.

The open loop control shown in Figure 7.11 is actually feedforward control.
Feedforward control may be used in combination with feedback control, cf.
Section 9.1.
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7.4 Dead-time compensator (Smith predictor)

The dead-time compensator — also called the Smith predictor4 — is a
control method particularly designed for processes with dead-time (time
delay). Compared to ordinary feedback control with a PI(D) controller,
dead-time compensation gives improved setpoint tracking in all cases, and
it may under certain conditions give improved disturbance compensation.

It is assumed that the process to be controlled has a mathematical model
on the following transfer function form:

Hp(s) = Hu(s)e
−τs (7.79)

where Hu(s) is a partial transfer function without time delay, and e−τs is
the transfer function of the time delay.

Simply stated, with dead-time compensation the bandwidth (quickness) of
the control system is independent of the dead-time, and relatively high
bandwidth can be achieved. However, the controller function is more
complicated than the ordinary PID controller since it contains a transfer
function model of the process. A dead-time compensator are implemented
in several controller products.5

Figure 7.12 shows the structure of the control system based on dead-time
compensation. In the figure ymp is a predicted value of ym — therefore the
name Smith predictor. ym1p is a predicted value of the non time delayed
internal process variable ym1. There is a feedback from the predicted or
calculated value ym1. The PID controller is the controller for the non
delayed process, Hu(s), and it is tuned for this process.6 The bandwidth of
this loop can be made (much) larger compared to the bandwidth if the
time delay were included in the loop. The latter corresponds to the
ordinary feedback control structure, cf. Figure 7.1.

As long as the model predicts a correct value of ym, the prediction error ep
is zero, and the signal in the outer feedback is zero. But if ep is different
from zero (due to modeling errors), there will be a compensation for this
error via the outer feedback.

What is the tracking transfer function, T (s), of the control system? To
make it simple, we will assume that there are no modeling errors. From

4After the originator, O. J. M. Smith.
5E.g. in the Provox system by Fisher.
6The controller tuning can be made using any standard method, e.g. the Skogestad’s

method described in Section 7.5.
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Figure 7.12: Structure of a control system based on dead-time compensation

the block diagram in Figure 7.12 the following can be found:

T (s) =
ym(s)

ymSP (s)
=

Hpid(s)Hu(s)

1 +Hpid(s)Hu(s)
e−τs =

L(s)

1 + L(s)
e−τs (7.80)

where
L(s) = Hpid(s)Hu(s) (7.81)

is the loop transfer function of the loop consisting of the PID controller
and the partial non time delayed process Hu(s).7

How is the setpoint tracking and the disturbance compensation
performance of the control system?

• Setpoint tracking is as if the feedback loop did not have time
delay, and therefore faster setpoint tracking can be achieved with a
dead-time compensator than with ordinary feedback control (with

7Actually, the controller having ymSP as setpoint, ym as measurement signal fed back
to the conroller, and u as control signal (shown in the dashed frame in Figure 7.12) can
be derived by the direct controller design method described in Section 7.3 with (7.80) as
the specified tracking function.
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PID controller). However, the time delay of the response in the
process measurement can not be avoided with a dead-time
compensator.

• Disturbance compensation: In [13] the disturbance compensation
with a dead-time compensating control system is investigated for a
first order with time delay process. It was found that dead-time
compensation gave better disturbance compensation (assuming a
step in the disturbance) compared to ordinary feedback control only
if the time delay (dead-time) τ is larger than the time constant T of
the process.

Example 7.6 Dead-time compensator

Given a process with the following transfer functions (cf. Figure 7.12):

Hp(s) =
Ku

Tus+ 1| {z }
Hu(s)

e−τs (7.82)

Hv(s) =
Kv

Tvs+ 1
(7.83)

where
Ku = 1; Tu = 0.5; Kv = 1; Tv = 0.5; τ = 2 (7.84)

The following two control systems are simulated:

• Dead-time compensator for the process defined above. The internal
controller, Hpid(s), is a PI controller with the following parameter
values:

Kp = 2.0; Ti = 0.36 (7.85)

These PI parameters are calculated using Skogestad’s method, cf.
Table 7.2, with TC = 0.25 (= T/2) and k1 = 1.44.

• Ordinary feedback control with PI controller for the process defined
above. The control system has a structure as in Figure 7.1. The PI
controller, Hpid(s), is a PI controller with the following parameter
values:

Kp = 0.12; Ti = 0.5 (7.86)

These PI parameters are calculated using Skogestad’s method, cf.
Table 7.1, with TC = 2 (= τ) and k1 = 1.44.
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Figure 7.13 shows the simulated responses for the two control systems due
to a setpoint step and a disturbance step. The dead-time compensator
gives better setpoint tracking and better disturbance compensation than
ordinary feedback control does.

Figure 7.13: Example 7.6: Simulated responses for the two control systems due
to a setpoint step and a disturbance step

[End of Example 7.6]

The dead-time compensator is model-based since the controller includes a
model of the process. Consequently, the stability and performance
robustness of the control system depend on the accuracy of the model.
Running a sequence of simulations with a varied process model (changed
model parameters) in each run is one way to investigate the robustness.

7.5 Skogestad’s method

7.5.1 Introduction

[17] describes controller tuning for several types of transfer function
processes — with and without time delay (dead-time). It is assumed that
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the block diagram of the control system is as shown in Figure 7.2. The
method, which can be denoted Skogestad’s method after the originator8, is
based on the direct method described in Section 7.3: The control system
tracking function T (s) is specified as a first order transfer function with
time delay:

T (s) =
ym(s)

ymSP (s)
=

1

TCs+ 1
e−τs (7.87)

where TC is the time constant of the control system which the user must
specify, and τ is the process time delay which is given by the process
model (the method can however be used for processes without time delay,
too). Figure 7.14 shows the step response for (7.87).

Figure 7.14: Step response of the specified tracking transfer function (7.87) in
Skogestad’s PID tuning method

The method is based on initially calculating the controller transfer
function, Hc(s), by (7.68) which is repeated here:

Hc(s) =
1

Hp(s)
· T (s)

1− T (s) (7.88)

The process transfer function Hp(s) may be of higher order than T (s).
Therefore, the specification (7.87) implies pole-zero cancellations in the
control system loop transfer function, L(s) = Hc(s)Hp(s). It is assumed

8Prof. Sigurd Skogestad
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that the process Hp(s) contains a time delay, e−τs. The controller Hc(s)
according to (7.88) will contain the term e−τs. This term is in Hc(s)
approximated by a first order Taylor series expansion which is 1− τs, and
it turns out that the controller is a PI controller or a PID controller
(depending on the process to be controlled).

Skogestad’s method is in principle the same as dead-time compensation,
which is described in Section 7.4, but in the latter there is no
approximation of the time delay term. As with dead-time compensation
Skogestad’s method gives good setpoint tracking. The method gives
formulas for the integral time, Ti, which are supposed to avoid slow
disturbance compensation. In other controller design methods based on
pole-zero cancellations there is a danger of slow disturbance compensation
if the cancelled pole is close to zero (corresponding to cancellation of a
large process time constant using a large Ti). This problem was
demonstrated in Section 7.2.3.

The PID controller is assumed to be on serial form:

Hc(s) = Kp
(Tis+ 1)(Tds+ 1)

Tis(Tfs+ 1)
(7.89)

If the PID controller you are going to apply is actually on parallel form,

Hc(s) = Kp +
Kp
Tis

+
KpTds

Tfs+ 1
(7.90)

you should consider transforming the PID parameters from serial form to
parallel form to be sure that your parallel controller behaves like a serial
controller. The transformation formulas are (2.51) — (2.53). (If the
controller is a P or a PI controller, the transformation formulas need not
be applied since in that case the serial and the parallel form are identical.)

7.5.2 Skogestad’s tuning formulas

Skogestad’s tuning formulas for several processes are shown in Table 7.1.9

According to [17] the factor k1 in Table 7.1 is 4, but there may be reasons
to give it a different value, as argued on page 216. For the second order the
process in Table 7.1 T1 is the largest and T2 is the smallest time constant.10

9 [17] describes controller tuning for one additional process, namely a pure time delay,
and the resulting controller is an I controller (Integral controller). However, a pure time
delay can be approximated by a first order system with a small time constant (compared
to the time delay), and this process is one of the processes in Table 7.1.
10 [17] also describes methods for model reduction so that more complicated models can

be approximated with one of the models shown in Table 7.1.



214 Finn Haugen: PID Control

Hp(s) (process) Kp Ti Td
K
s e
−τs 1

K(TC+τ)
k1 (TC + τ) 0

K
Ts+1e

−τs T
K(TC+τ)

min [T , k1 (TC + τ)] 0
K

(Ts+1)se
−τs 1

K(TC+τ)
k1 (TC + τ) T

K
(T1s+1)(T2s+1)

e−τs T1
K(TC+τ)

min [T1, k1 (TC + τ)] T2
K
s2
e−τs 1

4K(TC+τ)
2 4 (TC + τ) 4 (TC + τ)

Table 7.1: Skogestad’s formulas for PI(D) tuning. Standard value of k1 is 4,
but a smaller value, e.g. k1 = 1.44 can give faster disturbance compensation.
For the second order the process T1 is the largest and and T2 is the smallest
time constant. (min means the minimum value.)

Unless you have reasons for a different specification, [17] suggests

TC = τ (7.91)

to be used for TC in Table 7.1.

The Ziegler-Nichols’ closed loop method may be applied to most of the
processes in Table 7.1 (since the processes have time delay). Generally,
Skogestad’s method results in better tracking property of the control
system (without the quite large overshoot in the response after a step in
the setpoint which is typical with Ziegler-Nichols’ method), but the
disturbance compensation may for some processes become more sluggish
than with the Ziegler-Nichols’ method. This sluggish compensation can
however be speeded up by selecting a smaller value of k1, cf. the discussion
on page 216. It is here assumed that the disturbance is an input
disturbance as explained on page 190.

Example 7.7 Control of first order system with time delay

Let us try Skogestad’s method and Ziegler-Nichols’ closed loop method for
tuning a PI controller for the process

Hp(s) =
K

Ts+ 1
e−τs (7.92)

where
K = 1; T = 0.5; τ = 1 (7.93)

(The time delay is relatively large compared to the time constant.) The
controller parameters are as follows:



Finn Haugen: PID Control 215

• Skogestad’s method, cf. Table 7.1 with (7.91) and k = 4:
Kp = 0.25; Ti = 0.5 (7.94)

• Ziegler-Nichols’ closed loop method:
Kp = 0.68; Ti = 2.43 (7.95)

Figure 7.15 shows control system responses for the two controller tunings.
Skogestad’s method works clearly better than Ziegler-Nichols’ method,
both with respect to setpoint tracking and disturbance compensation.

Figure 7.15: Example 7.7: Simulated responses in the control system for two
different controller tunings

[End of Example 7.7]
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7.5.3 Skogestad’s method with faster disturbance
compensation

According to [17], k1 is 4 in Table 7.1. However, through simulations I
have observed that k1 = 4 in several cases gives quite sluggish disturbance
compensation, although the parameter formulas in Table 7.1 are developed
to avoid unnecessary sluggish compensation. A reduced k1 value, as
k1 = 1.44, can give considerably faster disturbance compensation (since the
integral time Ti is reduced).11 A drawback of this modification of
Skogestad’s method is that there will be somewhat larger overshoot in the
response after setpoint step, but in most cases such an increased overshoot
is acceptable (if the setpoint is constant, which is typical, there is no
overshoot, of course). Another drawback of the modification is that the
stability robustness of the loop is somewhat reduced because of the
reduced Ti.

Example 7.8 PI control of integrator with time delay

The process

Hp(s) =
K

s
e−τs (7.96)

where
K = 1; τ = 0.5 (7.97)

will be controlled by a PI controller. (The wood-chip tank described in
Example 2.3 has such a transfer function model.) Below are the PI
parameters according to various tuning methods:

• Skogestad’s method, cf. Table 7.1, with (7.91) and k1 = 4:
Kp = 1; Ti = 4 (7.98)

• Skogestad’s method, cf. Table 7.1, with (7.91) and k1 = 1.44:
Kp = 1; Ti = 1.44 (7.99)

11According to [17] the standard value k1 = 4 gives a transfer function from disturbance
v to process measurement ym in the control system with characteristic polynomial as of
a critically damped second order system, i.e. the relative damping factor is ζ = 1. This
is quite a conservative choice. Faster but less damped dynamics is obtained with ζ < 1.
Simulations shows that ζ = 0.6 is a reasonable value. It gives almost 3 times smaller Ti
and therefore faster disturbance compensation. ζ = 0.6 is obtained with k1 = 1.44. It
can be shown that the phase margin, PM , of a loop having second order characteristic
polynomial is approximately equal to 100◦ · ζ. With ζ = 0.6 this equals 60◦ — a reasonable
value in most cases.
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• Ziegler-Nichols’ closed loop method:
Kp = 1.3; Ti = 1.78 (7.100)

Figure 7.16 shows simulated responses in the control system for the three
different sets of PI parameter values. Skogestad’s method with k1 = 4
seems to give the best set point tracking, but there are no oscillations,
indicating good (too good?) stability. The disturbance compensation with
Skogestad’s method with k1 = 4 is clearly the slowest of the three
alternatives.

Figure 7.16: Example 7.8: Simulated responses in the control system for various
PI tunings

[End of Example 7.8]

Example 7.7 demonstrated that it may be beneficial to set k1 = 1.44 in
stead of the standard value k1 = 4 because faster disturbance is then
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obtained. Let us review Example 7.7 which demonstrated that k1 = 4 gave
fast and properly damped disturbance compensation. Since k1 = 4 worked
well in that example, will the disturbance compensation in that example
be worse with k1 = 1.44 than with k1 = 4? The answer is no, because: Kp
is in any case independent of k1, so it has value 0.25. However, Ti is
dependent of k1. According to Table 7.1,
Ti = min [T , k1 (TC + τ)] = min [T , 2k1τ ], but this minimum value is 0.5
no matter if k1 is 4 or 1.44. So, this example has indicated that even if
k1 = 4 works fine, the suggestion k1 = 1.44 makes no harm in this case.

7.5.4 Skogestad’s method for processes without time delay

Each of the processes in Table 7.1 has time delay (τ > 0). Can Skogestad’s
method be applied to processes without time delay? Yes, but in such cases
we can not specify TC according to (7.91) since τ is zero. We must specify
TC larger than zero. The controller parameter formulas are as shown in
Table 7.2 (which is equal to Table 7.1 with τ = 0).

Hp(s) (process) Kp Ti Td
K
s

1
KTC

k1TC 0
K

Ts+1
T

KTC
min [T , k1TC ] 0

K
(Ts+1)s

1
KTC

k1TC T
K

(T1s+1)(T2s+1)
T1
KTC

min [T1, k1TC ] T2
K
s2

1
4K(TC)

2 4TC 4TC

Table 7.2: Skogestad’s formulas for PID tuning for processes without time delay.
Standard value of k1 is 4, but a smaller value, e.g. k1 = 1.44 can give faster
disturbance compensation. For the second order the process T1 is the largest
and and T2 is the smallest time constant. (min means the minimum value.)

Example 7.9 PI control of first order system without time delay

Given the following process:

Hp(s) =
K

Ts+ 1
(7.101)

where
K = 1; T = 5 (7.102)

Let us specify TC = 1. We try both k1 = 4 (the standard value) and
k1 = 1.44 (which may give faster disturbance compensation). According to
Table 7.2 the controller parameters (of a PI controller) are as follows:
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• Skogestad’s method, cf. Table 7.2, with TC = 1 and k1 = 4:
Kp = 5; Ti = 4 (7.103)

• Skogestad’s method, cf. Table 7.2, with TC = 1 and k1 = 1.44:
Kp = 1; Ti = 1.44 (7.104)

Figure 7.17 shows simulated responses in the control system with the PI
parameters values given above. We see that k1 = 1.44 gives somewhat
faster setpoint tracking, but with some overshoot, and in addition better
disturbance compensation than with k1 = 4.

Figure 7.17: Example 7.9: Simulated responses in the control system for two
different PI tunings

[End of Example 7.9]
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7.6 Controllers with two degrees of freedom

Earlier in this chapter we have used one controller function to obtain
(hopefully) both satisfactory setpoint tracking and disturbance
compensation. In general we can not just expect one controller to satisfy
independent requirements. In cases where this is a problem a solution is to
use two controller functions, or a controller with two degrees of freedom .
Figure 7.18 shows a block diagram for such a controller. The partial PID
controller may be tuned so that the control loop gives optimal disturbance
compensation, while the setpoint signal filter is designed so that the
setpoint tracking property for the combined system consisting of the filter
in series with the control loop becomes optimal. Such a structure is
implemented in some commercial controllers.

PID Processu yyrSP

v

Setpoint 
signal
filter

ySP

Sensor 
and 

scaling

Controller with two degrees of freedom
(setpoint signal filter and PID controller )

Figure 7.18: Controller with two degrees of freedom (consisting of setpoint
signal filter and PID controller)

Figure 7.19 shows an alternative structure which also have two degrees of
freedom. Now a feedforward controller couples directly from the setpoint
to the control variable. Feedforward control is described in detail in
Section 9.1.
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PID Process
u y

v
Feed-

forward

ySP

Controller with two degrees of freedom
(feedforward controller and PID controller )

Sensor 
and 

scaling

Figure 7.19: Controller with two degrees of freedom (including feedforward
controller and PID controller)
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Chapter 8

Frequency response based
PID tuning

8.1 Introduction

In this chapter you will see how PID parameters can be tuned from
frequency response plots in Bode diagram. The basic method is the
Ziegler-Nichols’ closed loop method interpreted in the frequency domain.
The resulting method — the Ziegler-Nichols’ frequency response method —
can be used to tune PID controllers from the frequency response, Hp(jω),
of the process to be controlled (Hp(s) is the transfer function from control
variable u to process measurement ym).

You will also see how the PID controller parameters can be adjusted or fine
tuned from requirements about the frequency response, L(jω), of the loop
transfer function. The starting point for the adjustment is a set of PID
parameters already tuned with some tuning method, for example one of
the Ziegler-Nichols’ methods, cf. Chapter 4, or Skogestad’s method or
some other transfer function based tuning method, cf. Section 7.5.

In this chapter it is assumed that the PID controller is on serial form, cf.
Section 2.6.7. The serial form is more convenient in frequency response
design of control systems than is the parallel form. This is due to the
factorized form of the serial controllers’ transfer function. If the PID
controller you actually use has parallel form, you can transform the serial
parameters to corresponding parallel parameters using the transformation
formulas (2.51)—(2.53) so that your parallel controller behaves like a serial
controller.

223
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Frequency response based controller design is computational demanding,
so you should use software tools1.

8.2 Useful facts about frequency response of a
control loop

8.2.1 Frequency response of the loop transfer function

In this chapter we will assume that the mathematical model of the control
system is represented by the transfer function based block diagram shown
in Figure 8.1. In Chapter 6 we saw that the loop transfer function L(s) is

em(s)
Hc(s) Hp(s)u(s) ym(s)ymSP(s)

Hvm(s)

v(s)Process

Controller
U0(s)

Process
measurement

Setpoint

Figure 8.1: Block diagram of control system

crucial in stability analysis and in analysis of setpoint tracking and
disturbance compensation of a control function. L(s) is

L(s) = Hc(s)Hp(s) (8.1)

In the following sections the frequency response of L(s) is used. (8.1)
implies the following relation for the amplitude gain function of L(s):

|L(jω)| = |Hc(jω)||Hp(jω)| (8.2)

or, in decibel:

|L(jω)|[dB] = |Hc(jω)|[dB] + |Hp(jω)|[dB] (8.3)
1For example Control System Toolbox in MATLAB or Control Design Toolkit in Lab-

VIEW.



Finn Haugen: PID Control 225

And for the phase lag function we have:

argL(jω) = argHc(jω) + argHp(jω) (8.4)

How do we get Hc(jω) and Hp(jω)? Hc(jω) can easily be found from the
controller transfer function. For example, a PI controller has the following
transfer function:

Hc(s) = Kp
Tis+ 1

Tis
(8.5)

Its frequency response becomes

Hc(jω) = Kp
Tijω + 1

Tijω
(8.6)

The process frequency response, Hp(jω), can be found in one of the
following ways:

• The transfer function Hp(s) may be derived from the mathematical
model of the process — either directly from the model if the model is
linear, or from a linearized model if the model is nonlinear. Then,

Hp(jω) = Hp(s) with s = jω (8.7)

• Hp(jω) may stem from a discrete-time transfer function, Hpd(z)
2

which may have been found by discretizing the continuous-time
transfer function Hp(s) or from model identification based on
experimental time series of control signal u and process measurement
ym.3 Once Hp(s) exists, Hp(jω) can be found by

Hp(jω) = Hpd(z) with z = e
−jωTs (8.8)

where Ts is the sampling interval.4

• Hp(jω) can be found from experimental time series of u and ym
directly using Fourier Transform based methods.

8.2.2 Frequency response of PID and PI controller

In frequency response based analysis and design of control systems, it is
useful to know the shape of the asymptotical and exact frequency response

2z is here the z-variable in discrete-time systems theory.
3Model identification may be performed with for example System Identification Toolbox

in MATLAB or System Identification Toolkit in LabVIEW.
4Discrete-time systems theory is described in documents available on

http://techteach.no.
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of a PID controller and a PI controller. These frequency responses are
described in the following. In Section 8.3.3 the PID controller and the PI
controller are compared with respect to frequency response characteristics
of a control system.

Frequency response of PID controller

As mentioned in the introduction to this chapter, it is assumed that the
PID controller is on serial form with the following transfer function:

Hc(s) = Kp
(Tis+ 1)(Tds+ 1)

Tis(Tfs+ 1)
(8.9)

A serial PID controller has corner frequencies in a Bode diagram which are
easily determined. The corner frequencies are 1/Ti, 1/Td and 1/Tf .

From (8.9) we find

|Hc(jω)| = |Hc(s)s=jω| = Kp
p
(Tiω)2 + 1

p
(Tdω)2 + 1

Tiω
p
(Tfω)2 + 1

(8.10)

and

argHc(jω) = arg [Hc(s)s=jω] (8.11)

= arctan(Tiω) + arctan(Tdω)− arctan(Tfω)− 90◦(8.12)
These expressions can be used for manual calculation (or for programming
of the calculation) of the controller frequency response.5

I most cases — as when using one of the Ziegler-Nichols’ methods — the
order of the corner frequencies from small to high frequency is 1/Ti, 1/Td
and 1/Tf . Figure 8.2 shows asymptotic and exact amplitude and phase
curves of the PID controller (8.9). (The PID parameters are Kp = 1,
Ti = 1, Td = 0.1, Tf = 0.01.) Below are comments to the frequency
response:

• At low frequencies, that is, below the corner frequency 1/Ti, the PID
controller has dominating integral action. This ensures zero static
control error.

• The integral term gives negative phase contribution to |L(jω)|, which
in itself reduces the phase margin. This is counteracted by the
positive phase of the derivative term, see below.

5However, it may be time efficient to use functions in Control System Toolbox in
MATLAB or in Control Design Toolkit in LabVIEW.
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Figure 8.2: Asymptotic and exact Bode plots of the amplitude gain and the
phase lag of the PID controller (8.9). (The PID parameters are Kp = 1, Ti = 1,
Td = 0.1, Tf = 0.01.)

• At frequencies between the corner frequencies 1/Td and 1/Tf the
PID controller has a dominating derivative action. This gives the
possibility to obtain improved stability or higher bandwidth, see
below.

• The maximum phase, argHc(jω), is positive. The positive angle is
due to the derivative term. Think about the transfer function of a
derivator, which is s. Its frequency response is jω which have angle
+90◦.

• Typically argHc(jω) is between 40◦ and 50◦, but it depends on the
ratio of the corner frequencies. argHc(jω) occurs near the
logarithmic mean of 1/Td and 1/Tf , which is 1/

p
TdTf .

• The positive phase gives positive phase contribution to argL(jω),
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which can be used to stabilize the control loop (since positive phase
contribution increases the phase margin) or to increase the bandwidth
(crossover frequency ωc of L) without a reduction of the stability.
But the derivative term also increases the amplitude of L (observe
the positive slope of the amplitude curve), and if Td becomes too
large, |L| may become too large at ωc, and the stability margins may
become small.

Frequency response of PI controller

The PI controller is a special case of the PID controller: We set Td = 0 and
Tf = 0 in (8.9), which gives the PI controller transfer function:

Hc(s) = Kp
Tis+ 1

Tis
(8.13)

From (8.13) we find

|Hc(jω)| = |Hc(s)s=jω| = Kp
p
(Tiω)2 + 1

Tiω
(8.14)

and

argHc(jω) = argHc(s)s=jω = arctan(Tiω)− 90◦ (8.15)

Figure 8.3 shows asymptotic and exact amplitude and phase curves of the
PI controller. (The PI parameters are Kp = 1 and Ti = 1.)

Below are comments to the frequency response:

• At low frequencies, that is, below the corner frequency 1/Ti, the PI
controller has dominating integral action, as for the PID controller.
This ensures zero static control error.

• The integral term gives negative phase contribution to |L(jω)|, which
reduces the phase margin. Compared to using a PID controller: To
maintain the stability margins, the decrease of the phase margin the
must be counteracted by reducing the loop gain, causing reduction of
the crossover frequency ωc and hence a reduction of the bandwidth of
the control system.
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Figure 8.3: Asymptotic and exact Bode plots of the amplitude gain and the
phase lag of the PI controller (8.13). (The PI parameters are Kp = 1, Ti = 1.)

8.3 Ziegler-Nichols’ frequency response method

8.3.1 Introduction

Ziegler-Nichols’ closed loop method, which is described in Section 4.4, can
be interpreted in the frequency domain, and it is convenient to use the
name Ziegler-Nichols’ frequency response method. The point is that the
ultimate controller gain, Kpu , and the ultimate period, Tu, are found from
frequency response plots, typically in a Bode diagram. Once Kpu and Tu
are known, the controller parameters can be calculated using the
Ziegler-Nichols’ formulas shown in Table 4.1 (page 95).

The Ziegler-Nichols’ frequency response method can be used only if the
control system can be brought to the stability limit with a P controller. In
other words: It is necessary that argL(jω), which is equal to argHp(jω)
when the controller is a P controller, crosses the −180◦ line at some finite
frequency. This requirement is not satisfied neither for integrators, first
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order processes, nor second order processes. For such processes transfer
function based tuning may be used, cf. Chapter 7.

8.3.2 Tuning procedure

The Ziegler-Nichols’ frequency response method is as follows:

1. Given a plot of the process frequency response Hp(jω) in a Bode
diagram.

2. Let the controller be a P controller. The loop transfer function
frequency response L(jω) is in this case

L(jω) = Hc(jω)Hp(jω) = KpHp(jω) (8.16)

which is Hp(jω) multiplied by Kp. This implies that
|L(jω)| = Kp |Hp(jω)| or

|L(jω)| [dB] = Kp[dB]+ |Hp(jω)| [dB] (8.17)

and
argL(jω) = argHp(jω) (8.18)

Initially, set
Kp = 1 = 0dB (8.19)

Find the ultimate gain Kpu as the Kp value which makes the closed
loop system marginally stable6. In other words: Find Kp so that
ωc = ω180, cf. Chapter 6.4.

A few words about how to do the above operations in a Bode
diagram: An increase/decrease of Kp from the initial value of
1 = 0dB implies that |L(jω)| is raised/lowered the amount of the
change of Kp in dB. But, in stead of drawing a new |L(jω)| plot for a
new Kp value, it is easier to lower/raise the 0dB line of the Bode plot
of |Hp(jω)| to get new |L(jω)| plots.

3. The ultimate period Tu is the period of the sustained oscillations in
the closed loop method. In Chapter 6.4 it was shown that Tu is equal
to Tu = 2π/ω180 where ω180 is the phase crossover frequency of argL.
But since the controller is a P controller, ω180 of L(jω) is identical to
ω180 of argHp(jω). So,

Tu =
2π

ω180
(8.20)

where ω180 is the phase crossover frequency of argHp(jω).
6This corresponds to the sustained oscillations in the closed loop method.
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4. Calculate the controller parameters from Table 4.1. The derivative
filter time constant Tf of the PID controller can be set to

Tf = aTd (8.21)

where a may be set to 0.1, cf. page 44.

5. Draw a Bode plot of L(jω) and observe if the stability margins are
acceptable. GM should be 6 and 12dB, PM between 30 and 60
degrees, alternatively |S(jω)|max between 3dB = 1.4 and 6dB = 2.0.
If the stability margins are too small (large), try decreasing
(increasing) Kp. Adjustment of Ti and Td may also be tried (such
adjustments are described in Section 8.4).

6. If possible: Simulate the control system to verify that the theoretical
design gives acceptable results.

Example 8.1 Ziegler-Nichols’ frequency response method for PID
tuning

See the block diagram shown in Figure 8.1. Assume that the transfer
functions in the block diagram are as follows:

Hp(s) =
K

(T1s+ 1) (T2s+ 1)
e−τs (8.22)

Hvm(s) =
Kvm

(T1s+ 1) (T2s+ 1)
e−τs (8.23)

where
K = 1; Kvm = 1; T1 = 1s; T2 = 0.5s; τ = 0.5s (8.24)

Figure 8.4 shows a Bode plot of Hp(jω) which is L(jω) with P controller
with Kp = 1. From the Bode plot we read off ω180 = 2.27rad/s and
Kpu = 11.5dB = 3.76. According to (8.20) Tu = 2.78s.

7 Inserting Kpu and
Tu into Table 4.1 gives the following PID parameters (the filter time
constant Tf has been given the typical value of 0.1Td):

Kp = 0.6Kpu = 0.6 · 3.76 = 2.26 (8.25)

Ti =
Tu
2
=
2.78

2
= 1.39s (8.26)

Td =
Tu
8
=
2.78

8
= 0.35s (8.27)

Tf = 0.1Td = 0.035s (8.28)

Figure 8.5 shows several Bode plots together with simulated responses for
the control system with PID controller tuned above. You can check if (8.3)

7 I tried the Ziegler-Nichols’ closed loop method on the system — with the same values
of Kpu and Tu.
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Figure 8.4: Bode plot of Hp(jω), which is L(jω) with Kp = 1. We read off
ω180 = 2.3rad/s and Kpu = 11.5dB.

and (8.4) is confirmed in this example.

From Figure 8.5 we read off the following characteristic frequencies and
stability margins:

ωc = 1.85rad/s (8.29)

ωs = 0.50rad/s (8.30)

ω180 = 2.78rad/s (8.31)

GM = 3.9dB (8.32)

PM = 30.3◦ (8.33)

|S|max = 10.3dB (8.34)

ωc (loop transfer function crossover frequency) and ωs (the sensitivity
bandwidth) are two possible bandwidths, cf. Section 6.3.4.
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Figure 8.5: Example 8.1: Bode plots and simulated responses of the PID control
system

GM has a small value, and |S|max has a large value — hence the stability
margins are small. The simulated responses show an amplitude decay ratio
of approximately 1/4 which is a typical value for Ziegler-Nichols’ methods.

[End of Example 8.1]

8.3.3 Comparing PID and PI tuning in frequency domain

In several examples in previous chapters we have seen that the PID
controller may give faster control than the PI controller. The following
example will demonstrate this using frequency domain characteristics. We
will see that the PID controller gives larger bandwidth of the control
system, and hence faster control.

Example 8.2 Comparing PI and PID tuning in frequency domain
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In Example 8.1 we tuned a PID controller. Tuning a PI controller in stead
(using the Ziegler-Nichols’ frequency response method) gives the following
controller parameters:

Kp = 1.69; Ti = 2.31s (8.35)

Figure 8.6 shows several Bode plots for the control system with PI
controller tuned above, together with simulated responses (with a setpoint
step and a disturbance step). For comparison, Figure 8.7 shows Bode

Figure 8.6: Example 8.2: Bode plots and simulated responses of the PI control
system

plots of Hp(jω), Hc(jω), and L(jω) with indications of gain margins (GM)
and phase margins (PM) for the PI control system and the PID control
system.

From Figure 8.5 we read off characteristic frequencies and stability margins
as shown in Table 8.1. (Some of the values, namely ωc, ω180, GM and
PM , can alternatively be read off from Figure 8.7.)

From the values in Table 8.1 we can conclude as follows:

• With PID controller, the bandwidth is higher (this applies to both ωc
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Figure 8.7: Example 8.2: Bode plots with indications of gain margins and phase
margins for PI control system and the PID control system

and ωs), and therefore the control action is quicker.

• With PI controller, the stability is better (GM and PM are larger,
and |S|max is smaller).

The above results are actually quite typical of control systems where
Ziegler-Nichols’ method has been used. But, it is of course possible to
re-tune the controllers to obtain certain specifications. For example, larger
stability margins can be obtained by reducing Kp. Controller parameter
adjustment is the topic of the following section.

[End of Example 8.2]
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PID PI
ωc 1.85rad/s 1.18rad/s
ωs 0.50rad/s 0.25rad/s
ω180 2.78rad/s 2.04rad/s
GM 3.9dB 5.48dB
PM 30.3◦ 45.6◦

|S|max 10.3dB 7.8dB

Table 8.1: Frequency domain characteristics of PID and PI controller tuned
with the Ziegler-Nichols’ frequency response method

8.4 Frequency response based adjustment of PID
parameters

8.4.1 Introduction

In this section we will observe how the PID parameters Kp, Ti and Td
influence the stability and bandwidth properties of a control system. This
knowledge can be used to adjust or re-fine PID parameters from frequency
response considerations until specifications regarding bandwidth and
stability margins are met. In most cases the first parameter to try to
adjust is the proportional gain, Kp, and may be this is the only adjustment
needed.

The PID controller may already have been tuned with e.g. Ziegler-Nichols’
closed loop method (cf. Chapter 4.4) or Ziegler-Nichols’ frequency
response method (cf. Section 8.3) or with a transfer function based
method (Chapter 7). We will here concentrate on the PID controller. The
P, PI and PD controllers are special cases of the PID controller.

A concrete case will demonstrate how the stability and the bandwidth of a
control system typically are influenced by changes of the PID parameters
Kp, Ti and Td. This knowledge may be useful for adjusting PID
parameters in general. However, there is (of course) no guaranty that the
results of the parameter adjustments are as observed in the case. The case
is the same as in Example 8.1. The block diagram of the control system is
as shown in Figure 8.1. The transfer functions in the block diagram are
repeated here for convenience:

Hp(s) =
K

(T1s+ 1) (T2s+ 1)
e−τs (8.36)

Hvm(s) =
Kvm

(T1s+ 1) (T2s+ 1)
e−τs (8.37)
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with parameter values

K = 1; Kvm = 1; T1 = 1s; T2 = 0.5s; τ = 0.5s (8.38)

Hvm(s) is not a part of the loop and has therefore no impact on the
stability or the bandwidth of the control loop. The Ziegler-Nichols’
frequency response method gives the following PID parameters (they were
found in Example 8.1):

Kp = 2.26; Ti = 1.39s; Td = 0.35s; Tf = 0.035s (8.39)

Figure 8.8 shows several Bode plots of the control system, including
asymptotes of the frequency response of the controller, and simulated
responses (due to a setpoint step and a disturbance step). From the Bode

Figure 8.8: Bode plots and simulated responses (due to setpoint step and
disturbance step) of the control system with nominal PID parameter values.

plots in Figure 8.8 we read off several characteristic frequencies and
stability margins. These values are denoted “original” in the tables shown
in the following sections.
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8.4.2 Adjusting Kp

The plots shown in Figure indicates that the stability margin of the control
system is somewhat small, since GM = 3.9dB (small) and |S|max = 10.3dB
(large). If we want to obtain better stability, the first adjustment to try is
to decrease Kp. Let us here decrease Kp from the original value of 2.26 in
(8.39) to its half value: 1.13. Thus, the PID parameters are

Kp = 1.13; Ti = 1.39s; Td = 0.35s; Tf = 0.035s (8.40)

Figure 8.9 shows several Bode plots, including asymptotes of the frequency
response of the controller, and simulated responses. From the Bode plots

Figure 8.9: Bode plots and simulated responses of the control system with
decreased Kp.

in Figure 8.9 we read off the characteristic frequencies and stability
margins as shown in the table below:
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Decreased Kp Original param.
ωc 0.93rad/s 1.85rad/s
ωs 0.25rad/s 0.50rad/s
ω180 2.74rad/s 2.78rad/s
GM 9.9dB 3.9dB
PM 63.8◦ 30.3◦

|S|max 4.2dB 10.3dB

From the above table we observe that the effect of decreasing Kp is

• better stability (larger stability margins),
• more sluggish responses (smaller bandwidths).

By fine-tuning Kp we can obtain a specified value of e.g. |S|max. For
example, it can be shown that Kp = 1.52 yields |S|max = 6.0dB.

Above, we have seen what happens if Kp is decreased. The typical
consequences of increasing Kp are the reverse of the above observations,
namely reduced stability and quicker and more oscillating responses.

8.4.3 Adjusting Ti

Let us try decreasing Ti from the original value of 1.39 in (8.39) to 0.90.
Thus, the PID parameters are

Kp = 2.26; Ti = 0.90s; Td = 0.35s; Tf = 0.035s (8.41)

Figure 8.10 shows several Bode plots of the control system, including
asymptotes of the frequency response of the controller, and simulated
responses. From the Bode plots in Figure 8.10 we read off the
characteristic frequencies and stability margins as shown in the table
below:

Decreased Ti Original param.
ωc 1.97rad/s 1.85rad/s
ωs 0.60rad/s 0.50rad/s
ω180 2.51rad/s 2.78rad/s
GM 2.6dB 3.9dB
PM 16.5◦ 30.3◦

|S|max 14.1dB 10.3dB
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Figure 8.10: Bode plots and simulated responses of the control system with
reduced Ti.

From this table we observe that the effect of decreasing Ti is

• reduced stability (smaller stability margins),

• quicker responses (larger bandwidths), but more oscillating responses
(due to reduced stability).

One explanation of the reduced stability as Ti is reduced is that the corner
frequency 1/Ti (of the asymptotic frequency response of the controller) is
increased, thereby increasing the frequency range where the PID controller
has dominating integral action. An integrator has negative phase (angle).
Therefore the PID controller, Hc, contributes with a more negative phase
to the phase of the loop transfer function, L, causing decreased phase
margin.
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One explanation of the increased bandwidth as Ti is reduced is that the
more dominating integral action (due to reduced Ti) increases the
contribution from Hc to the gain of L, and when the loop gain increases
the bandwidth increases.

We have seen what happens if Ti is decreased. The typical consequences of
increasing Ti are the reverse, namely somewhat better stability and slower
responses.

8.4.4 Adjusting Td

Let us try increasing Td from the original value of 0.35 in (8.39) to 0.70
(the filter time constant Tf is increased proportionally from 0.035 to 0.07).
Thus, the PID parameters are

Kp = 2.26; Ti = 1.39s; Td = 0.70s; Tf = 0.070s (8.42)

Figure 8.11 shows Bode plots and simulated responses for the control
system. From the Bode plot in Figure 8.11 we read off the characteristic
frequencies and stability margins as shown in the table below:

Increased Td Original param.
ωc 2.75rad/s 1.85rad/s
ωs 0.55rad/s 0.50rad/s
ω180 3.15rad/s 2.78rad/s
GM 1.0dB 3.9dB
PM 14.2◦ 30.3◦

|S|max 19.8dB 10.3dB

From the above table we observe that the effect of increasing Td is

• reduced stability (smaller stability margins),
• quicker responses (larger bandwidths), but more oscillating responses
(due to reduced stability).

One explanation of the reduced stability as Td is increased is that the
corner frequency 1/Td (and 1/Tf ) are decreased so that the amplitude
contribution from |Hc| to |L| around the phase crossover frequency ω180 is
increased, which tends to decrease the gain margin. Simultaneously, argHc
contributes positively to argL, which in itself increases the phase margin,
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Figure 8.11: Bode plots and simulated responses of the control system with
increased Td.

but in this example, and it is typical at least for systems containing time
delay, the decrease of the gain margin is “stronger” than the increase of
the phase margin, resulting in overall decreased stability. In systems not
including time delay the stability need not be reduced when increasing Td,
but remember from Section 2.6.7 the problem of the controller’s increased
sensitivity to measurement noise as Td is increased.

An explanation of the increased bandwidth as Td is increased is that the
loop gain |L| is increase due to the positive amplitude contribution of Hc.

What are the consequences of reducing Td from its original value? The
stability of the control system may be reduced. This is because argL will
decrease, and hence the phase margin will decrease, because the positive
phase contribution to argL is reduced. In our example, it can be found
that setting Td = 0, which means that the derivative term has been
removed completely (without re-tuning the controller), causes poor
stability as GM is as small as 1.63dB and |S|max is as large as 17.6dB.
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8.4.5 Summary

We can sum up our observations in the examples above as follows (the
statements apply to most control systems):

• Decreasing Kp decreases bandwidth and improves stability.
(Increasing Kp has the opposite effects.)

• Decreasing Ti increases bandwidth and reduces stability. (Increasing
Kp has the opposite effects.)

• Increasing Td increases bandwidth and may reduce stability.
Decreasing Td (from a nominal value) reduces stability.
Consequently, you should be careful about adjusting Td in either
direction once it has been tuned.
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Chapter 9

Various control methods and
control structures

This chapter describes various control methods and control structures and
for industrial applications. Most of the structures involves one or more
PID control loops.

9.1 Feedforward control

9.1.1 Introduction

We know from previous chapters that feedback control can bring the
process output variable to or close to the setpoint. Feedback control is in
most cases a sufficiently good control method. But improvements can be
made, if required. A problem with feedback is that it is no adjustment of
the control variable before the control error is different from zero, since the
control variable is adjusted as a function of the control error. This problem
does not exist in feedforward control, which may be used as the only
control method, or, more typically, as a supplement to feedback control.

In feedforward control there is a coupling from the setpoint and/or from
the disturbance directly to the control variable, that is, a coupling from an
input signal to the control variable. The control variable adjustment is not
error-based. In stead it is based on knowledge about the process in the
form of a mathematical model of the process and knowledge about or
measurements of the process disturbances.

245
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Perfect feedforward control gives zero control error for all types of signals
(e.g. a sinusoid and a ramp) in the setpoint and in the disturbance. This
sounds good, but feedforward control may be difficult to implement since it
assumes or is based on a mathematical process model and that all
variables of the model at any instant of time must have known values
through measurements or in some other way. These requirements are never
completely satisfied, and therefore in practice the control error becomes
different from zero. We can however assume that the control error becomes
smaller with imperfect feedforward control than without feedforward
control.

If feedforward control is used, it is typically used together with feedback
control. Figure 9.1 shows the structure of a control system with both
feedforward and feedback control. The purpose of feedback control is to

Process

M

v

yySP ue PID-
control

MfFfSP Ffd

Feedforward
function, Ff

Feedforward
from setpoint

Feedforward
from disturbance

uf

ufb

Feedback

ufdufSP

Figure 9.1: Control system with both feedforward and feedback control

reduce the control error due to the inevitable imperfect feedforward
control. Practical feedforward control can never be perfect, because of
model errors and imprecise measurements.

One interpretation of feedforward control is that it introduces an artificial
connection from the disturbance to the process output variable. The
purpose of this artificial connection is to counteract the natural connection
(from the disturbance to the process output variable).

The feedforward function Ff , which usually consists of a sum of partial
functions FfSP and Ffd as shown in Figure 9.1, can be developed from a
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differential equations model or a transfer functions model of the process.
Both ways are described in the following sections of this chapter. In both
cases the principle is to solve the process model with respect to control
variable u with the setpoint ySP substituted for the process output
variable y. This control variable, u, is then the additive contribution of the
control variable uf to the total control variable u, cf. Figure 9.1.

The feedforward function Ff can be interpreted as a continuously
calculated nominal control signal, that is, that uf (t) = u0(t), cf. e.g.
Figure 2.11.

Using feedforward together with feedback does not influence the stability
of the feedback loop because the feedforward does not introduce new
dynamics in the loop.

9.1.2 Designing feedforward control from differential
equation models

The feedforward function Ff can be derived quite easily from a differential
equations model of the process to be controlled. As mentioned in Section
9.1.1 the principle is to solve for the control output variable in the process
model with the setpoint substituted for the process output variable (which is
the variable to be controlled). The model may be linear or non-linear. (In
Section9.1.3 we will derive feedforward functions from transfer function
models.)

Example 9.1 Feedforward control of a thermal process

Figure 9.2 shows a heated liquid tank where the temperature T shall be
controlled using feedback with PID controller in combination with
feedforward control. We assume the following process model, which is
based on energy balance:

cρV Ṫ (t) = Khu(t)| {z }
P

+ cw [Tin(t)− T (t)] + U [Te(t)− T (t)] (9.1)

where T [K] is the temperature of the liquid in the tank, Tin [K] is the
inlet temperature, Te [K] is environmental temperature, c [J/(kg K)] is
specific heat capacity, w [kg/s] is mass flow (same in as out), V [m3] is the
liquid volume, ρ [kg/m3] is the liquid density, U [(J/s)/K] is the total heat
transfer coefficient, P = Khu [J/min] is supplied power via heating element
where Kh is a parameter (gain) and u [%] is the control signal applied to
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Figure 9.2: Example 9.1: Heated liquid tank where the temperature T shall
be controlled with feedforward control in addition to feedback control. TY
represents a computing element.

the heating element. cρV T is the (temperature dependent) energy of the
liquid in the tank. We can consider Tin and Te as disturbances, but the
derivation of the feedforward function Ff is not dependent of such a
classification. In the following we assume for simplicity that the heat
transfer coefficient U is zero so that the heat transport through the walls is
zero.

Now, let us derive the feedforward function from the process model (9.1).
First, we substitute the temperature T by the temperature setpoint TSP :

cρV ṪSP (t) = Khu(t) + cw [Tin(t)− TSP (t)] (9.2)
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We solve (9.2) for the control variable u to get the feedforward control
variable uf:

uf (t) =
1

Kh

n
cρV ṪSP (t)− cw [Tin(t)− TSP (t)]

o
(9.3)

=
1

Kh

h
cρV ṪSP (t) + cwTSP (t)

i
| {z }

ufSP

+
1

Kh
[−cwTin(t)]| {z }
ufd

(9.4)

We see that calculation of feedforward control signal uf requires
measurement or knowledge of the following five quantities: c, ρ, V , h, w,
Kh and Tin, in addition to the setpoint time-derivative, ṪSP .

The following cases are simulated:

• Without feedforward control, but with feedback control with PI
controller with parameters Kp = 4 and Ti = 5min. TSP is changed as
a ramp of slope 0.5K/min. See Figure 9.3. Accurate reading of the
steady-state control error shows es = 0.88K.

Figure 9.3: Example 9.1: Simulation of temperature control system without
feedforward control, but with feedback control with PI-controller

• With feedforward control according to (9.4) together with
feedback control with PI controller. See Figure 9.4. The steady-state
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Figure 9.4: Example 9.1: Simulation of temperature control system with feed-
forward control and with feedback control with PI-controller

control error now goes towards zero with increasing time.

• With feedforward control according to (9.4) together with
feedback control with PI controller. The setpoint is now constant,
but there are steps in the disturbance Tin (the inlet temperature),
see Figure 9.5. We see that the control variable compensates
immediately for the variations in the disturbance, which is due to the
direct control action inherent in feedforward control. The control
error is (in principle) always zero.1

[End of Example 9.1]

9.1.3 Designing feedforward control from transfer function
models

All linear process models can be written on the form

y(s) = Hu(s)u(s) +Hv(s)v(s) (9.5)
1 In this simulaton the control error is a little different from zero due to numerical

inaccuracies in the way I have implemented the simulator.
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Figure 9.5: Example 9.1: Simulation of temperature control system with feed-
forward control together with feedback control with PI-controller. There is a
step change in Tin.

where u is the control variable, v is the disturbance and y is the process
output variable. We shall find the feedforward function which gives zero
control error for any setpoint signal ySP and any disturbance signal v. We
start by setting ySP (s) for y(s) in the process model (9.5), and then solve
for the control variable u(s). The result is

uf (s) =
1

Hu(s)| {z }
HfSP (s)

ySP (s) +
−Hv(s)
Hu(s)| {z }
Hfd(s)

v(s) (9.6)

= HfSP (s)ySP (s) +Hfd(s)v(s) (9.7)

where uf (s) is the control variable in feedforward control. HfSP (s) and
Hfd(s) are transfer functions which realize feedforward from the setpoint
and the disturbance, respectively. (Hfd(s) includes the transfer function of
the sensor used to measure v.)

Feedforward can be combined with feedback. The purpose of feedback is to
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reduce the control error due to imperfect feedforward. Figure 9.6 shows a
control system with both feedforward and feedback.

Hm(s)

v

yySP ue

HfSP(s)

uf

ufb

Feedback

ufvufSP
Hfv(s)

HPID(s) Hu(s)

Hv(s)Feedforward
Process

Sensor

Figure 9.6: Transfer function based block diagram of control system with feed-
forward and feedback

It is not always possible or desirable to implement the dynamic
feedforward functions HfSP (s) and Hff (s) fully. A simplified solution is to
implement what we can call the low-frequent dynamic part of the transfer
functions. This means that we neglect higher order parts or terms. If we
choose to neglect all dynamic terms in HfSP (s) and Hd(s), only the static
feedforward functions remains:

HfSPs = HfSP (0) = lim
s→0HfSP (s) (9.8)

and
Hfds = Hfd(0) = lim

s→0Hfd(s) (9.9)

Simulations may be used to show if such simplifications give acceptable
responses.

Example 9.2 Feedforward from disturbance

Given the following transfer functions process model:

y(s) =
Ku

Tus+ 1| {z }
Hu(s)

u(s) +
Kv

Tvs+ 1| {z }
Hv(s)

v(s) (9.10)



Finn Haugen: PID Control 253

Inserting the above two transfer functions into (9.6) yields the following
feedforward transfer function:

Hf (s) =
ufd(s)

v(s)
=
−Hv(s)
Hu(s)

= −Kv
Ku

· Tus+ 1
Tvs+ 1

(9.11)

which is a lead-lag-function, which is available as a functional block in most
commercial controllers. If Tu > Tv the transfer function has lead-effect
because the phase function of the frequency response has positive value
which means that the response of the lead-lag function is phase leading (is
ahead in phase). If Tu < Tv the transfer function has lag-effect because the
phase function of the frequency response has negative value which means
that the response of the function is phase lagging (is behind in phase).

[End of Example 9.2]

Example 9.3 Feedforward control from the setpoint

For DC-motors the transfer function from the control variable u to the
angular velocity y is approximately

y(s)

u(s)
= Hu(s) =

K

(Ts+ 1) s
(9.12)

(that is, a first order system with integrator). The feedforward function
HfSP (s) in (9.6) becomes

HfSP (s) =
ufSP (s)

(s)
=

1

Hu(s)
=
(Ts+ 1) s

K
=
T

K
s2 +

1

K
s (9.13)

which in the time-domain corresponds to

ufSP (t) =
T

K
ÿSP (t) +

1

K
ẏSP (t) (9.14)

To avoid numerical problems of calculating the derivatives in (9.14) the
setpoint ySP may be chosen to be sufficiently smooth. For example,
setpoint changes could be in the form of parabolic functions of time since
this signal has a continuous second order time derivative. Another solution
is to use a lowpass filter in the setpoint path, as shown in Figure 7.18.

[End of Example 9.3]

9.2 Cascade control

From earlier chapters we know that a control loop compensates for
disturbances so that the control error is small despite the disturbances. If
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the controller has integral action the steady-state control error is zero.
What more can we wish? In some applications it may be desirable if the
transient time progression of the error is faster, so that e.g. the IAE index,
cf. Section 2.8, is smaller. This can be achieved by cascade control , see
Figure 9.7.

In a cascade control system there is one or more control loops inside the
primary loop, and the controllers are in cascade. There is usually one, but

Mr C1 C2 P2 P1

M2

M1

u y

v

ymSP eySP u1

Scaling

ym

y2

Sensors with scalings

Disturbance
Primary

controller
Secondary
controller

Primary loop

Secondary loop

Secondary
output

Primary
output

Process

Figure 9.7: Cascade control system

there may be two and even three internal loops inside the primary loop.
The (first) loop inside the primary loop is called the secondary loop, and
the controller in this loop is called the secondary controller (or slave
controller). The outer loop is called the primary loop, and the controller in
this loop is called the primary controller (or master-controller). The
control signal calculated by the primary controller is the setpoint of the
secondary controller.

In most applications the purpose of the secondary loop is to compensate
quickly for the disturbance so that its response in the primary output
variable of the process is small. For this to happen the secondary loop must
register the disturbance. This is done with the sensor M2 in Figure 9.7.

In addition to getting better disturbance compensation cascade control
may give a more linear relation between the variables u1 and y2, see Figure
9.7 than with usual single loop control. In many applications process part
2 (P2 in Figure 9.7) is the actuator. In this case the secondary loop can be
regarded as a new actuator having better linearity (or proportionality).
One example is a control valve where the secondary loop is a flow control
loop. With this secondary loop there is a more linear relation between the
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control signal and the flow than without such a loop. The better linearity
may make the tuning of the primary controller (performing e.g. level or
temperature control) easier and with more robust stability properties.

The improved control with cascade control can be explained by the
increased information about the process — there is at least one more
measurement. It is a general principle that the more information you have
about the process to be controlled, the better it can be controlled. Note
however, that there is still only one control variable to the process, but it
is based on two or more measurements.

Since cascade control requires at least two sensors a cascade control system
is somewhat more expensive than a single loop control system. Except for
cheap control equipment, commercial control equipment are typically
prepared for cascade control, so no extra control hardware or software is
required.

In which frequency range is the secondary loop effective for compensation
for disturbances? This is given by the bandwidth of the secondary loop. A
proper bandwidth definition here is the −11 dB-the bandwidth ωs of the
sensitivity function, S2(s), of the secondary loop, cf. Chapter 6.3.4. S2(s)
is

S2(s) =
1

1 + L2(s)
=

1

1 +Hc2(s)Hu2(s)Hm2(s)
(9.15)

where L2(s) is the loop transfer function of the secondary loop. Hc2(s) is
the transfer function of the secondary controller. Hu2(s) is the transfer
function from the control variable to the secondary process output variable,
y2. Hm2(s) is the measurement transfer function of the secondary sensor.

As explained above cascade control can give substantial compensation
improvement. Cascade control can also give improved tracking of a varying
setpoint, but only if the secondary loop has faster dynamics than the
process part P2 itself, cf. Figure 9.7, so that the primary controller “sees”
a faster process. If there is a time delay in P2, the secondary loop will not
be faster than P2 (this is demonstrated in Example 9.4). In most
applications improved compensation — not improved tracking — is the main
purpose of cascade control.

The secondary controller is typically a P controller or a PI controller. The
derivative action is usually not needed to speed up the secondary loop
since process part 2 anyway has faster dynamics than process part 1, so
the secondary loop becomes fast enough. And in general the noise sensitive
derivative term is a drawback. The primary controller is typically a PID
controller or a PI controller.
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In the secondary controller the P- and the D-term should not have reduced
setpoint weights, cf. Section 2.7.1. Why?2

How do you tune the controllers of a cascade control? You can follow this
procedure:

• First the secondary controller is tuned, with the primary controller in
manual mode.

• Then the primary controller is tuned, the secondary controller in
automatic mode.

Controller tuning can be made using a standard tuning method, e.g. the
Ziegler-Nichols’ closed loop method, cf. Section 4.4.

Example 9.4 Cascade control (simulation)

In this example the following two control systems are simulated
simultaneously (in parallel):

• A cascade control system consisting of two control loops.

• An ordinary single loop control system, which is simulated for
comparison.

The process to be controlled is the same in both control systems, and they
have the same setpoint, ySP , and the same disturbance, v. The process
consists of two partial processes in series, cf. Figure 9.7:

• Process P1:
y(s) = HP1(s)y2(s) (9.16)

where

HP1(s) =
K³

s
ω0

´2
+ 2ζ s

ω0
+ 1

e−τs (9.17)

with
K = 1; ω0 = 0.2rad/s; ζ = 1; τ = 1s (9.18)

2Because attenuating or removing the time-varying setpoint (which is equal to the
control signal produced by the primary controller) of the secondary loop will reduce the
ability of the secondary loop to track these setpoint changes, causing slower tracking of
the total control system.
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• Process P2:
y2(s) = HP2(s)u(s) + v(s) (9.19)

where

HP2(s) =
K³

s
ω0

´2
+ 2ζ s

ω0
+ 1

e−τs (9.20)

with
K = 1; ω0 = 2rad/s; ζ = 1; τ = 0.1s (9.21)

Simply stated, process P2 has ten times quicker dynamics than process P1
has. The controllers have been tuned according to the Ziegler-Nichols’
closed loop method with some fine-tuning to avoid too aggressive control
action (increase of Ti from 0.69 to 1). The controller parameter settings
are as follows:

• Cascade control system: Primary controller, C1 (PID):

Kp = 2.1; Ti = 4.0; Td = 1.0 (9.22)

• Cascade control system: Secondary controller, C2 (PI):

Kp = 1.5; Ti = 1.0; Td = 0 (9.23)

• Single loop control system: Controller, C (PID):

Kp = 1.9; Ti = 4.0; Td = 1.0 (9.24)

Figure 9.8 shows simulated responses with a step in the setpoint. IAE
values for the two control systems are shown in Table 9.1. The IAE values

Cascade control Single loop control
Setpoint step IAE = 17.18 IAE = 26.85
Disturbance step IAE = 7.80 IAE = 84.13

Table 9.1: IAE values for cascade control system and for single loop control
system

show that the setpoint tracking is better in the cascade control system, but
not substantially better.

Figure 9.9 shows simulated responses with a step in the disturbance. The
IAE values in Table 9.1 show that the disturbance compensation is much
better in the cascade control system.
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Figure 9.8: Example 9.4: Simulated responses with a step in the setpoint

Figure 9.9 shows that the control variable of the cascade control system
works much more aggressively than in the single loop control system,
which is due to the relatively quick secondary loop.

[End of Example 9.4]

Cascade control is frequently used in the industry. A few examples are
described in the following.

Example 9.5 Cascade control of the level in wood-chip tank

Level control of a wood-chip tank has been a frequent example in this
book. In the real level control system3 cascade control is used, although
not described in the previous examples. The primary loop performs level
control. The secondary loop is a control loop for the mass flow on the

3at Södra Cell Tofte in Norway
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Figure 9.9: Example 9.4: Simulated responses with a step in the disturbance

conveyor belt, see Figure 9.10. The mass flow is measured by a flow sensor
(which actually is based on a weight measurement of the belt with chip
between two rollers). The purpose of the secondary loop is to give a quick
compensation for disturbances in the chip flow due to variations in the
chip consistency since the production is switched between spruce, pine and
eucalyptus. In addition to this compensation the secondary loop gives a
more linear or proportional relation between the control variable u and the
mass flow ws into the conveyor belt (at the flow sensor).

[End of Example 9.5]

Example 9.6 Cascade control of a heat exchanger

Figure 9.11 shows a temperature control system for a heat exchanger. The
control variable controls the opening of the hot water valve. The primary
loop controls the product temperature. The secondary loop controls the
heat flow to compensate for flow variations (disturbances). The valve with
flow control system can be regarded a new valve with an approximate
proportional relation between the control variable and the heat flow.

[End of Example 9.6]

There are many other examples of cascade control, e.g.:

• DC-motor:

— Primary loop: Speed control based on measurement of the
rotational speed using a tachometer as speed sensor.
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Figure 9.10: Example 9.5: Level control system of a wood-chip tank where
the primary loop performs level control, and the secondary loop performs mass
flow control. (FT = Flow Transmitter. FC = Flow Controller. LT = Level
Transmitter. LC = Level Controller.)

— Secondary loop: Control of armature current which
compensates for nonlinearities of the motor, which in turn may
give more linear speed control.

• Hydraulic motor:

— Primary loop: Positional control of the cylinder

— Secondary loop: Control of the servo valve position (the servo
valve controls the direction of oil flow into the cylinder), which
results in a more linear valve movement, which in turn gives a
more precise control of the cylinder.

• Control valve:

— The primary loop: Flow control of the liquid or the gas through
the valve.

— Secondary loop: Positional control of the valve stem, which
gives a proportional valve movement, which in turn may give a
more precise flow control. Such an internal positional control
system is called positioner.
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FT TC TTFC
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(process fluid)
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Figure 9.11: Example 9.6: Cascade control of the product temperature of a heat
exchanger. (TC = Temperature Controller. TT = Temperature Transmitter.
FC = Flow Controller. FT = Flow Transmitter.)

9.3 Ratio control and quality and product flow
control

9.3.1 Ratio control

Process

FT1

FC2FT2

MULT

K (specified
ratio)

K F1 = F2SP  (setpoint for F2)

F1

Measured
F1

F2

Wild stream

FC1

Figure 9.12: Ratio control

The purpose of ratio control is to control a mass flow, say F2, so that the
ratio between this flow and another flow, say F1, is

F2 = KF1 (9.25)

where K is a specified ratio which may have been calculated as an optimal
ratio from a process model. One example is the calculation of the ratio
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between oil inflow and air inflow to a burner to obtain optimal operating
condition for the burner. Another example is the nitric acid factory where
ammonia and air must be fed to the reactor in a given ratio.

Figure 9.12 shows the structure of ratio control. The setpoint of the flow
F2 is calculated as K times the measured value of F1, which is denoted the
“wild stream”. The figure shows a control loop of F1. The setpoint of F1
(the setpoint is not shown explicitly in the figure) can be calculated from a
specified production rate of the process. The ratio control will then ensure
the ratio between the flows as specified.

An alternative way to implement ratio control is to calculate the actual
ratio as

Kactual =
F2
F1

(9.26)

Then Kactual is used as a measurement signal to a ratio controller with the
specified K as the setpoint and F2 as the control variable, cf. Figure 9.13.

Process

FT1

FFCFT2

DIV

K (setpoint)
Kactual =F2 / F1

F1

F2

FC1

Figure 9.13: An alternative ratio control structure based on measurement of
the actual ratio. (FFC = Flow Fraction Controller.)

Although this control structure is logical, it is a drawback that the loop
gain, in which Kactual is a factor, is a function of the measurements of F2
and F1. Hence, this solution is not encouraged[16].

9.3.2 Quality and production rate control

Earlier in this section it was mentioned that the ratio K may origin from
an analysis of optimal process operation, say from a specified product
quality quantity, say QSP . Imagine however that there are disturbances so
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that key components in one of or in both flows F1 or F2 vary somewhat.
Due to such disturbances it may well happen that the actual product
quality is different from QSP . Such disturbances may also cause the actual
product flow to differ from a flow setpoint. These problems can be solved
by implementing

• a quality control loop based on feedback from measured quality Q to
the ratio parameter K, and

• a product flow control loop based on feedback from measured flow F
to one of the feed flows.

Figure 9.14 shows the resulting quality and production rate control system.

Process

FT1

FC2FT2

MULT

K

K F1 = F2SP

F1

Measured
F1

F2

Wild stream

FC1

QT

QC

Quality control loop

Quality
setpoint

QSP

FT

FC
FSP

Product

Flow control loop

Figure 9.14: Control of quality and product flow. (QT = Quality Transmitter.
QC = Quality Controller.)

9.4 Split-range control

In split-range control one controller controls two actuators in different
ranges of the control signal span, which here is assumed to be 0 — 100%.
See Figure 9.15. Figure 9.16 shows an example of split-range temperature
control of a thermal process. Two valves are controlled — one for cooling
and one for heating, as in a reactor. The temperature controller controls
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50 % 100 %0 %

Open

Control variable, u

Closed

Valve position

Valve Vc Valve Vh

Valve VcValve Vh

Figure 9.15: Split-range control of two valves

the cold water valve for control signals in the range 0—50%, and it controls
the hot water valve for control signals in the range 50—100%, cf. Figure
9.15.

In Figure 9.15 it is indicated that one of the valves are open while the
other is active. However in certain applications one valve can still be open
while the other is active, see Figure 9.17. One application is pressure
control of a process: When the pressure drop compensation is small (as
when the process load is small), valve V1 is active and valve V2 is closed.
And when the pressure drop compensation is is large (as when the process
load is large), valve V1 is open and valve V2 is still active.

9.5 Control of product flow and mass balance in
a plant

In the process industry products are created after treatment of the
materials in a number of stages in series, which are typically unit processes
as blending or heated tanks, buffer tanks, distillation columns, absorbers,
reactors etc. The basic control requirements of such a production line are
as follows:

• The mass flow of a key component must be controlled, that is, to
follow a given production rate or flow setpoint.
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Process

TTTC

Valve
Vc

Vh

Cold water

Hot water

Figure 9.16: Split-range temperature control using two control valves

50 % 100 %0 %

Open

Control signal, u

Closed

Valve position

Valve V1

Valve V2

Figure 9.17: In split-range control one valve can be active while another valve
is open simultaneuously.

• The mass balance in each process unit (tank etc.) must be
maintained — otherwise e.g. the tank may go full or empty.

Figure 9.18 shows the principal control system structure to satisfy these
requirements. (It is assumed that the mass is proportional to the level.)
The position of the production flow control in the figure is just one
example. It may be placed earlier (or later) in the line depending on where
the key component(s) are added.

Note that the mass balance of an upstream tank (relative to the
production flow control) is controlled by manipulating the mass inflow to
the tank, while the mass balance of a downstream tank is controlled by
manipulating the mass outflow to the tank.
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FT

Production flow or rate
setpoint

LC

LT

LC

LT

FC

LC

LT

LC

LT

Downstream tanksUpstream tanks

Figure 9.18: Control of a production line to maintain product flow (rate) and
mass balances

In Figure 9.18 the mass balances are maintained using level control. If the
tanks contains vapours, the mass balances are maintained using pressure
control. Then pressure sensors (PT = Pressure Transmitter) takes the
places of the level sensors (LT = Level Transmitters), and pressure
controllers (PC = Pressure Controller) takes the place of level controllers
(LC = Level Controller) in Figure 9.18.

Example 9.7 Control of production line

Figure 9.19 shows the front panel of a simulator of a general production
line. The level controllers are PI controllers which are tuned so that the
control loops get proper speed and stability (the parameters may be
calculated as explained in Chapter 7.2.2). The production flow F is here
controlled using a PI controller. Figure 9.19 shows how the level control
loops maintain the mass balances (in steady-state) by compensating for a
disturbance which is here caused by a change of the production flow. Note
that controller LC2 must have negative gain (i.e. direct action, cf. Section
2.6.8) — why?4

[End of Example 9.7]

4Because the process has negative gain, as an increase of the control signal gives a
reduction of the level/level measurement.
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Figure 9.19: Example 9.7: The level control loops maintain the mass balances
(in steady-state).

9.6 Multivariable control

9.6.1 Introduction

Multivariable processes has more than one input variables or ore than one
output variables. Here are a few examples of multivariable processes:

• A heated liquid tank where both the level and the temperature shall
be controlled.

• A distillation column where the top and bottom concentration shall
be controlled.

• A robot manipulator where the positions of the manipulators (arms)
shall be controlled.

• A chemical reactor where the concentration and the temperature
shall be controlled.
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• A head box (in a paper factory) where the bottom pressure and the
paper mass level in the head box shall be controlled.

To each variable (process output variable) which is to be controlled a
setpoint is given. To control these variables a number of control variables
are available for manipulation by the controller function.

Multivariable processes can be difficult to control if there are cross
couplings in the process, that is, if one control variable gives a response in
several process output variables. There are mainly two problems of
controlling a multivariable process if these cross couplings are not
counteracted by the multivariable controller:

• A change in one setpoint will cause a response in each of the process
output variables, not only in the output variable corresponding to
the setpoint.

• Assuming that ordinary single loop PID control is used, a controller
will “observe” a complicated dynamic system which consists of the
multivariable process with all control loops! This can make it difficult
to tune each of the PID controllers, and the stability robustness of
the control system may be small.

The following sections describe the most common ways to control
multivariable processes.

9.6.2 Single loop control with PID controllers

The simplest yet most common way to control a multivariable process is
using single loop control with PID controllers. There is one control loop
for each process output variable which is to be controlled. The control
system structure is shown in Figure 9.20, where subsystems are
represented by transfer functions although these subsystems are generally
non-linear dynamic systems. Since this process has two control variables
and two process output variables, we say that the process is a 2x2
multivariable process.

Pairing of process output variables and control variables

In single loop control of a multivariable process we must determine the
pairing of process output variable (its measurement) and control variable
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H11(s)

H12(s)

H21(s)

H22(s)

Hc1(s)

Hm2(s)

Hm2(s)

Hm1(s)

Process

Measurement function
(sensor with scaling )

y1SPm

y2SPm

y1

y2

v11

v12

v21

v22

u1

u2

Controller C 1

Controller C2

Hm1(s)
y1SP

Scaling

y1m

y2m

y2SP

Hc2(s)

Scaling

Figure 9.20: Single loop control of a 2x2 multivariable process

(via the PID controller). A natural rule for choosing this pairing is as
follows: The strong process couplings (from control variable to process
output variable) should be contained in the control loops. Following this
rule is an effective use of the control variable, and supports stability
robustness against variations of the dynamic properties in other parts of
the control system. Figure 9.20 shows the correct control system structure
if there are strong couplings in H11(s) and in H22(s).

In most cases it is easy to determine the strong pairings. One example is a
heated liquid tank where both level and temperature is to be controlled.
The two control variables are power supply via a heating element and
liquid supply. This process is multivariable with cross couplings since both
power supply (control variable 1) and liquid supply (control variable 2)
influences both process output variables (level and temperature). (The
level is influenced by the power supply through liquid expansion due to
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temperature increase.) In this case the process output variable/control
variable pairing is obvious: Level ↔ Power and Temperature ↔ Liquid
flow, right?5

There are model based methods for analysis of process couplings, as
RGA-analysis (Relative Gain Array) and singular value analysis [15].

Controller tuning

In the tuning procedures below you can try the Ziegler-Nichols’ closed loop
method or the P-I-D tuning method, cf. Chapter 4.

According to [15] a widely used procedure for tuning the PID controllers in
single loop multivariable control is as follows:

Procedure 1:

1. Tune the controller in each of the loops in turn with all the other
controllers in manual mode.

2. Close all the loops (set all controllers in automatic mode).

3. If there are stability problems, reduce the gain and/or increase the
integral time of the controllers in the least important loops.

An alternative procedure [15] for cases where the control of one specific
process variable is more important than the control of other variables is as
follows:

Procedure 2:

1. Tune the controller of the most important loop. The other controllers
are set in manual mode.

2. Tune the other controllers in sequence, with the tuned controllers set
in automatic mode.

3. If there are stability problems, reduce the gain and/or increase the
integral time of the controllers in the least important loops.

5Wrong :-)
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Example 9.8 Single loop multivariable control

See Figure 9.20. The process transfer functions are on the form

Hij(s) =
yi(s)

uj(s)
=

Kij
Tijs+ 1

e−τ ijs (9.27)

with these parameters:

K11 = 1; T11 = 1; τ11 = 0.5 (9.28)

K12 = 0.5; T12 = 1; τ12 = 0.5 (9.29)

K21 = 0.5; T21 = 1; τ21 = 0.5 (9.30)

K22 = 1; T22 = 1; τ22 = 0.5 (9.31)

Thus, there are cross couplings “both ways” in the process since both K12
and K21 are different from zero.

The measurement transfer functions are Hm1(s) = 1 = Hm2(s). The
controllers are PID controllers tuned according to Procedure 1 described
above (with the Ziegler-Nichols’ closed loop method). The tuning gives

Kp1 = 2.0; Ti1 = 0.9; Td1 = 0.23 (9.32)

Kp2 = 2.0; Ti2 = 0.9; Td2 = 0.23 (9.33)

However, simulations shows that the multivariable control system actually
is unstable using the above PID settings. So, re-tuning was necessary.
Decreasing the proportional gains from 2.0 to 1.4 was sufficient in this
case. The final settings are

Kp1 = 1.4; Ti1 = 0.9; Td1 = 0.23 (9.34)

Kp2 = 1.4; Ti2 = 0.9; Td2 = 0.23 (9.35)

Figure 9.21 shows simulated responses in y1m and y2m due to a step in
y1SPm . As expected, the setpoint step gives a cross response in y2m . The
stability of the control system seems to be acceptable.

[End of Example 9.8]
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Figure 9.21: Example 9.8: Single loop multivariable control. Simulated re-
sponses in y1m and y2m due to a step in the setpoint y1SPm .

9.6.3 Single loop PID control combined with decoupling

If the interaction between the control loops in a multivariable control
system is problematic (as if the cross responses are too large or if there are
stability problems), you may consider using a decoupler together with the
PID controllers. With decoupling the controller counteracts the cross
couplings in the process so that there are no interaction between the
control loops. Thus, the control loops are decoupled, but the process cross
couplings are still there, of course.

Several methods of decoupled control exist. Here a method called linear
decoupling is described. Figure 9.22 shows a block diagram of a
multivariable control system with decoupling. The controller consists of
two parts:

• A decoupler in series with the process. The purpose of the decoupler
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Figure 9.22: Multivariable control system with decoupler and single loop PID-
controllers

is to counteract the cross couplings in the process.

• A controller consisting of two independent PID controllers which
controls the combination of decoupler and process.

The decoupler transfer functions D1(s) and D2(s) must be designed so
that the cross couplings via H12(s) and H21(s) in the process are
counteracted. If this is achieved, each of the PID controllers sees just one
monovariable process, and there will be no interacting control loops. z1
and z2 is transformed control variables for the “new” decoupled process.
The physical control variables are however still u1 and u2.

Let us derive the decoupler transfer functions D1(s) and D2(s). We start
with D1(s). It will be derived from the requirement that the net effect that
z1 has on y1 is zero. Mathematically, cf. the block diagram in Figure 9.22,
we require:

D1(s)H22(s)z1(s) +H21(s)z1(s)
!
= 0 (9.36)
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for all values of z1. This is satisfied with

D1(s) = −H21(s)
H22(s)

(9.37)

Similarly, D2(s) becomes

D2(s) = −H12(s)
H11(s)

(9.38)

Example 9.9 Decoupling

Assume given the same process model as in Example 9.8. (9.37) and (9.38)
becomes

D1(s) = −H21(s)
H22(s)

= −
K21

T21s+1
e−τ21s

K22
T22s+1

e−τ22s
= −K21

K22

T22s+ 1

T21s+ 1
e(τ22−τ21)s = −0.5

(9.39)

D2(s) = −K12
K11

T11s+ 1

T12s+ 1
e(τ11−τ12)s = −0.5 (9.40)

The PID controllers are tuned with the Ziegler-Nichols’ closed loop
method (with the decoupler in action):

Kp1 = 2.7; Ti1 = 0.9; Td1 = 0.23 (9.41)

Kp2 = 2.7; Ti2 = 0.9; Td2 = 0.23 (9.42)

Figure 9.23 shows simulated responses in y1m and y2m due to a step in the
setpoint y1SPm . Ideally there is no cross response in y2m .

6

[End of Example 9.9]

9.6.4 Model-based predictive control

Model-based predictive control or MPC has become an important control
method, and it can be regarded as the next most important control
method in the industry, next to PID control. Commercial MPC products
are available as separate products or as modules included in automation
products. MPC can be applied to multivariable and non-linear processes.
The controller function is based on a continuous calculation of the optimal

6The simulation shows a (very) small response in y2m , but this is due to imperfect
numerical conditions in the simulator.
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Figure 9.23: Exampe 9.9: Single loop PID-control with decoupling: Simulated
responses in y1m and y2m due to a step in the setpoint y1SPm .

sequence or time-series of the control variable. The optimization criterion
which is to be minimized is typically stated as follows:

J =
NX
j=1

©
[ySP (tk+j)− y(tk+j |tk)]2 + λ(j)[u(tk+j−1)]2

ª
(9.43)

where ySP is the setpoint, y is the process output variable and u is the
control variable. In general these variables can be vectors. λ is a weight
function. tk is the present time. N is the prediction horizon, a number of
future time steps over which J is defined. This optimization criterion
defines the criterion of “good control”: The less value of J , the better
control.

The optimization criterion must have a constraint, which is the process
model including physical constraints of the control variable and the state
variables. The process model form are one of the following (different MPC
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implementations may assume different model forms):

• Impulse response model (which can be derived from simple
experiments on the process)

• Step response model (same comment as above)
• Transfer function model (which is a general linear dynamic model
form than the impulse response model and the step response model)

• State-space model (which is the most general model form since it
may include nonlinearities and it may be valid over a broad
operating range)

Figure 9.24 illustrates how predictive control works.

tk

ySP

y

tk

u(tk|tk)

u(tk+L|tk)

tNtk+Ltk+1tk-1 tk

u

Figure 9.24: How predictive control works

Predictive control is based on the following calculations, which are
executed at each time step:
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1. The (future) control signal sequence u(tk+j−1|tk) for j = 1, · · · , N ,
that is, u(tk), u(tk+1),..., u(tk+N−1), is calculated to be the control
variable sequence which minimizes J (the sequence is therefore
optimal). Terms as u(tk+L|tk) gives the value of u for time tk+L
calculated from data available at time tk. The same applies to
y(tk+L|tk), which is calculated (predicted) using the process model.

2. Of the optimal control signal sequence, the first term, u(tk|tk), is
used to actually control the process.

3. At the next time step the points above are repeated.

Above it was assumed that the MPC-controller calculates directly the
control variable to the process. However the MPC-controller may also
calculate setpoints for local PID controllers, see Figure 9.25. This structure

MPC

PID
1

PID
2

PID
3

Process 1

Process 2

Process 3

Figure 9.25: The MPC-controller may calculate setpoints for local PID-
controllers.

ensures that the process can still be controlled with conventional PID
controllers in periods when the MPC-controller is inactive (due to
configuration or maintenance). Using PID controllers locally may enhance
operation safety.
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Appendix A

Codes and symbols used in
Process & Instrumentation
Diagrams

This appendix gives a brief overview over codes and symbols used in
Process & Instrumentation Diagrams — P&IDs. The standards ISA S5.1
(USA) and ISO 3511-1 (International) define the these diagrams. There
are also factory internal standards.

A.1 Letter codes

Table A.1 shows the most commonly used letter codes used in Process &
Instrumentation Diagrams.

A.2 Instrumentation symbols used in P&IDs

The following figures show common symbols used in
Process&Instrumentation Diagrams (P&IDs).

279



280 Finn Haugen: PID Control

As first letter As subsequent letter
A Alarm
C Controller
D Density. Difference
F Flow. Fraction (ratio)
G Position
H Hand controlled
I Indicator
L Level
P Pressure
Q Quality
S Speed
T Temperature Transmitter (sensor)
V Viscosity Valve
Y Function (e.g. mathematical)
Z Secure control (e.g. interlock)

Table A.1: Common instrumentation codes used in Process&Instrumentation
Diagrams

Instrument mounted locally

Instrument mounted in a central

FC
123

FC
123

Figure A.1: Main instrument symbols (FC123 is one example of instrument
code.) The numbering is based on running numbers, e.g. FC123, TC124 etc.,
but so that a specific control loop has a fixed number, e.g. FT123, TT124.

General signal

Pneumatic signal

Electric signal

Process fluid

General signal

Figure A.2: Symbols of conductors and pipes
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Hand operated (manual) valve

Valve with membrane actuator

Valve with fixed opening

 

Valve with solenoid actuator (on/off)

 

Valve with electric motor actuator

Three-way valve

Figure A.3: Valve symbols

Sentrifugal pump

Pump (general symbol)

Compressor

Turbine

Figure A.4: Symbols of pumps, compressors and turbines
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Heat exchanger
(general symbol)

Shell-and-tube
heat exchanger

Tube fluid

Shell fluid

Figure A.5: Symbols of heat exchangers
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Open tank

Closed tank

Vessel

Reactor

Absorber/stripping
column

Destillation column

Figure A.6: Symbols of tanks and columns
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Appendix B

The Laplace transform

In the ordinary chapters of this book the same symbol (letter) is used for
the time-function, say f(t), and the Laplace transform of f(t), that is,
f(s). However, in this appendix a unique symbol, namely the
corresponding capital letter, is used for the Laplace transform of f(t) that
is, F (s), to avoid misunderstandings.

B.1 Properties of the Laplace transform

Below are several important properties of the Laplace transform relevant
for this book.

Linear combination:

k1F1(s) + k2F2(s)⇐⇒ k1f1(t) + k2f2(t) (B.1)

Special case:
kF (s)↔ kf(t) (B.2)

Time delay:
F (s)e−τs ⇐⇒ f(t− τ) (B.3)

Differentiation:

snF (s)− sn−1f(0)− sn−2ḟ(0)− . . .−
(n−1)
f (0) ⇐⇒

(n)

f(t) (B.4)

Special case: Zero initial conditions:

snF (s) ⇐⇒
(n)

f (t) (B.5)

285
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Integration:
1

s
F (s) ⇐⇒

Z t

0
f(τ)dτ (B.6)

Convolution:

F1(s)F2(s) ⇐⇒ f1(t) ∗ f2(t) =
Z t

0
f1(t− τ)f2(τ)dτ (B.7)

Initial value theorem:

lim
s→∞ sF (s) ⇐⇒ lim

t→0 f(t) (B.8)

Final Value Theorem:

lim
s→0 sF (s) ⇐⇒ lim

t→∞ f(t) (B.9)

B.2 Transform pairs

Below are some useful Laplace transform pairs, F (s)⇐⇒ f(t). The given
time-functions are defined for t ≥ 0, and it is assumed that f(t) = 0 when
t < 0.

When taking the inverse Laplace transform using the transform pairs listed
below, we usually need the linearity rules (B.1) or (B.2) in combination
with the transform pair.

Note: You can “remove” factors of type Ts+ 1 in F (s) by setting T = 0.
This corresponds to e−t/T = 0 in the time-function.

F (s) = k ⇐⇒ f(t) = kδ(t) (impulse of strength or area k) (B.10)

k

s
⇐⇒ k (step of amplitude k) (B.11)

k

s2
⇐⇒ kt (ramp of slope k) (B.12)

k
n!

sn+1
⇐⇒ ktn (B.13)
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k

Ts+ 1
⇐⇒ ke−t/T

T
(B.14)

k

(Ts+ 1)n
⇐⇒ k

Tn(n− 1)!t
n−1e−t/T (B.15)

k

(Ts+ 1)s
⇐⇒ k

³
1− e−t/T

´
(B.16)

k

(T1s+ 1)(T2s+ 1)
⇐⇒ k

T1 − T2
³
e−t/T1 − e−t/T2

´
(B.17)

k

(Ts+ 1)2s
⇐⇒ k

·
1−

µ
1 +

t

T

¶
e−t/T

¸
(B.18)

k

(T1s+ 1)(T2s+ 1)s
⇐⇒ k

·
1 +

1

T2 − T1
³
T1e

−t/T1 − T2e−t/T2
´¸
(B.19)

k
T1s+ 1

(T2s+ 1)s
⇐⇒ k

·
1 +

µ
T1
T2
− 1
¶
e−t/T2

¸
(B.20)

k

·
s+ d

(s+ a)(s+ b)(s+ c)

¸
(B.21)

⇐⇒ k

·
(d− a)e−at
(b− a)(c− a) +

(d− b)e−bt
(c− b)(a− b) +

(d− c)e−ct
(a− c)(b− c)

¸

k³
s
ω0

´2
+ 2ζ s

ω0
+ 1

⇐⇒ k
ω0p
1− ζ2

e−ζω0t sin
µq

1− ζ2ω0t

¶
(0 ≤ ζ < 1)

(B.22)

k·³
s
ω0

´2
+ 2ζ s

ω0
+ 1

¸
s

(B.23)

⇐⇒ k

"
1− 1p

1− ζ2
e−ζω0t cos

µq
1− ζ2 ω0t− ϕ

¶#
(0 ≤ ζ < 1)
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where
ϕ = arcsin ζ (B.24)

kω

s2 + ω2
⇐⇒ k sinωt (B.25)

ks

s2 + ω2
⇐⇒ k cosωt (B.26)
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