
Compulsory assignment 5
Aleksander Hykkerud

Parameter estimation of a DC motor with least squares (LS) method

Figure 1: Actual response to manual manipulation

The system is represented by the differential equation

𝑇 ∗ 𝑆̇ + 𝑆 = 𝐾 ∗ (𝐶 + 𝐿)

Rearranging the equation to get the Response 𝑆̇ on one side

𝑆̇ = 𝐾 ∗
(𝐶 + 𝐿)

𝑇
−

𝑆

𝑇
= 𝐾 ⋅

𝐶

𝑇
+ 𝐾 ⋅

𝐿

𝑇
−

𝑆

𝑇

This is represented by the vector form

𝑌⃗̇ = Φ𝜃

giving

𝑆 = [𝐶, 1, −𝑆̇] [
𝑎
𝑏
𝑐
]

Where

𝑎 = 𝐾

𝑏 = 𝐾 ⋅
𝐿

𝑇

𝑐 =
1

𝑇

This can be solved by the least square method

𝜃 = Φ𝑡Φ Φ𝑡𝑌

The solution was implemented in matlab by importing the experimental data and converting the

different inputs (time, control signal and speed) into column vectors.

Script

formatspec = '%f %f %f';

sizeA = [3 inf];

infile = fopen('logfile1.txt','r');

% time (t), control signal (C), speed (S)

A = fscanf(infile,formatspec,sizeA)';

tstep = A(2)-A(1); % assuming same timestep for all steps

da = (A(2:end,3)-A(1:end-1,3))/tstep;

S = A(1:end-1,3);

C = A(1:end-1,2);

t = A(1:end-1,1);

% C, 1, -S

phi = [C,ones(length(A(1:end-1,1)),1),-S];

% delta = [a,b,c] : a = K/T, b=K*L/T, c = 1/T

delta = inv(phi'*phi)*phi'*da;

T = 1/delta(3);

K = delta(1)*T;

L = delta(2)*(T/K);

plot(t,S,t,C)

legend('Speed','control signal')

%numsteps = int16(3/tstep);

numsteps = length(t);

tstart = 1;

tsim = t;

usim = C;

s_sims = zeros(numsteps,1);

s_sim = 0;

ds_sim = 0;

for step = 2:numsteps

 s_sims(step)=K*(usim(step)+L)-T*ds_sim;

 ds_sim = s_sims(step)-s_sims(step-1);

end

% plot the results

disp(['K=',num2str(K),' L=',num2str(L),' T=',num2str(T)])

plot(tsim,s_sims,tsim,usim,t,S)

legend('s simulated','u','Measured S')

Results
The values estimated for K, L and T are as follows

K=0.88586 L=-0.06248 T=0.30349

The simulated vs the real response show below reveals that the model responds poorly to binary

changes and responds faster than the true reaction.

Figure 2: Real vs simulated response

Parameter estimation of an air heater using the grid optimization

method
The log file was imported and plotted to get a better view of the response and the system. The goal
is to find 𝑇𝑒𝑛𝑣 𝐾ℎ, 𝜃𝑡, 𝜃𝑟 of the system given by

𝜃𝑡 ∗
𝑑(𝑇ℎ𝑒𝑎𝑡)

𝑑𝑡
= −𝑇ℎ𝑒𝑎𝑡 + 𝐾ℎ ∗ 𝑢(𝑡 − 𝜃𝑑)

Figure 3: Heater singnal response

The grid search parameters were set up with constraints of their values.

𝑇𝑒𝑛𝑣 → [15,30]

𝐾ℎ → [0,8]

 𝜃𝑡 → [1,250]

 𝜃𝑟 → [1,8]

For each grid, a simulation was run and the square error sum was calculated and used as a metric for

the goodness of fit. The grid search yielded the following parameters as the best fit in the search

area

𝑇𝑒𝑛𝑣 = 22.5

𝐾ℎ = 3.5

 𝜃𝑡 = 232

 𝜃𝑟 = 2.8

The grid search was performed with the script below. When the search was done, a simulation with

the optimal parameter values were done to get a plot.

% thetat * d(Theat)/dt = - Theat + Kh * u(t-thetad)

load('airheater_logfile.txt')

t_arr = airheater_logfile(:,1); % time

u_arr = airheater_logfile(:,2); % control signal u

T_out_arr= airheater_logfile(:,3); % Out temperature T_out

plot(t_arr,u_arr,t_arr,T_out_arr)

legend('u','Tout')

% ranges of the parameters

T_env_r = [15,30,0.5]; % T_env

Kh_r = [0,8,0.5]; % K_h

etha_t_r = [1,250,2]; % time constant

etha_d_r = [1,8,0.3]; % time delay

T_env_min = inf;

kh_min = inf;

etha_t_min = inf;

etha_d_min = inf;

timestep = t_arr(5)-t_arr(4);

numsteps = length(t_arr)-int16((etha_d_r(2)-etha_d_r(1))/timestep) % how

many simulationsteps to run

% Must subtract the time delay so there won't be index out of range

issues

min_error = inf; % the square error will be stored here

simcounter = 0; % simple counter for the number of simulations done

for Tenv = T_env_r(1):T_env_r(3):T_env_r(2)

 for Kh = Kh_r(1):Kh_r(3):Kh_r(2)

 for etha_t = etha_t_r(1):etha_t_r(3):etha_t_r(2)

 for etha_d = etha_d_r(1):etha_d_r(3):etha_d_r(2)

 Theat = 0; % initial heating set to zero for each

 Tout = Tenv; % initial Tout equal to the environment

temperature

 errorsum = 0;

 simcounter = simcounter +1;

 for count = 1:numsteps

 if count<=int16(etha_d/timestep)

 dTheat = -Theat/etha_t+Kh*0/etha_t;

 Theat = Theat + dTheat;

 Tout = Tenv + Theat;

 else

 dTheat = -Theat/etha_t+Kh*u_arr(count-

int16(etha_d/timestep))/etha_t;

 Theat = Theat + dTheat;

 Tout = Tenv + Theat;

 end

 errorsum = errorsum+(Tout-T_out_arr(count))^2; % sum

the errors

 end

 % check if the new error is less then the old one, and

save

 % the parameters

 if errorsum < min_error

 min_error = errorsum;

 disp(['found a new min ',num2str(errorsum)])

 T_env_min = Tenv;

 kh_min = Kh;

 etha_t_min = etha_t;

 etha_d_min = etha_d;

 end

 end

 end

 end

end

% Single simulation to display the results

Tenv = T_env_min;

Tout = T_out_arr(1);

Theat = Tout-Tenv; % initial Theat

Kh = kh_min;

theta_t = etha_t_min;

theta_d = etha_d_min;

testarr = zeros(numsteps,1);

testarr2 = zeros(numsteps,1);

testarr3 = zeros(numsteps,1);

testarr4 = zeros(numsteps,1);

for count = 1:numsteps

 if count<=int16(theta_d/timestep)

 dTheat = -Theat/theta_t+Kh*0/theta_t;

 else

 dTheat = -Theat/theta_t+Kh*u_arr(count-

int16(theta_d/timestep))/theta_t;

 end

 Theat = Theat + dTheat;

 Tout = Tenv + Theat;

 testarr2(count)=Tout; % final temperature

 testarr(count)=Theat; % heating value

 testarr3(count)=(T_out_arr(count)-Tout)^2; % errors

 testarr4(count)=T_out_arr(count); % the actual temperature

end

testerror = sum(testarr3);

pt = t_arr(1:numsteps);

plot(pt,testarr,pt,u_arr(1:numsteps),pt,testarr2,pt,testarr3,pt,testarr4)

legend('Theat','u','Tout simulated','error','Tout

real','Location','NorthEastOutside')

T_env_min

kh_min

etha_t_min

etha_d_min

In figure 4 below, the simulation with the real control variables from the experiment is shown. The

result shows good agreement with the real and the simulated response.

Figure 4: simulated vs real response of a real input signal

Parameter estimation of the air heater using the nonlinear least

squares (NLS) method
For the life of me I was unable to implement the fmincon solution with time delay

Comparison of estimation results
For the life of me I was unable to implement the fmincon solution with time delay

Subspace identification of the air heater
For the life of me I was unable to implement the subspace solution with time delay

