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Exercise 1: Kalman filter 
The system to be estimated is a filling tank system as shown below in Figure 1. 

 

Figure 1: filling tank system (Advanced dynamics and control) 

The parameter to be controlled in this system is the water level in the tank h. This height can be 

modelled as show below. 

𝛿ℎ

𝛿𝑡
=

1

𝐴𝑡𝑎𝑛𝑘
[𝐾𝑝𝑢 − 𝐹𝑜𝑢𝑡(𝑡)] 

With Fout given as a constant 



𝛿𝐹𝑜𝑢𝑡

𝛿𝑡
= 0 

The variables can be written in standard form as follows 

𝑥1 = ℎ 

𝑥2 = 𝐹𝑜𝑢𝑡 
𝛿𝑥1

𝛿𝑡
=

1

𝐴𝑡𝑎𝑛𝑘
[𝐾𝑝𝑢(𝑡) − 𝑥2(𝑡)] 

𝛿𝑥2

𝛿𝑡
= 0 

A simulator was written in Matlab using an Euler forward implementation of the model as shown 

below. 

𝑥1(𝑘 + 1) = 𝑥1(𝑘) +
𝑇𝑠

𝐴𝑡𝑎𝑛𝑘
[𝐾𝑝𝑢(𝑘) − 𝑥2(𝑘)] 

𝑥2(𝑘 + 1) = 𝑥2(𝑘) 

 

The system was implemented with a PI controller. The P and I gains Ti and Kc were choose as 10 and 

showed good stability. A simple simulation with a step response is shown below in Figure 2. 

 

Figure 2: matlab simulator of filling tank system 

 



To get the kalman filter was initiated with an initial guess of xpk = 0.5. The observer then calculated 

the predicted measurement ypk, the innovation variable e and the corrected state estimate xck. Once 

the corrected state has been calculated the prediction for the next step xpk+1 is calculated. The 

process is repeated for the entire simulation, but using xpk+1 values in the calculation of xc for the 

next step. 

The kalman filter requires the Kalman gain to function, which is calculated using the following 

information  

 

𝑸 = [
0.01 0

0 0.0001
] 

𝑅 = 0.0001 𝑚2 

𝐴 = [
1 −

𝑇𝑠

𝐴𝑡𝑎𝑛𝑘

0 1

] = [
1 −1
0 1

] 

𝐺 = 𝐼 = [
1 0
0 1

] 

𝐶 = [1 0] 

The Kalman gain was calculated using the following iterative process 1000 steps with the initial Pp 

set as the 2x2 identity matrix. 

𝐾(𝑘) =
𝑃𝑝(𝑘)𝐶𝑡

[𝐶𝑃𝑝(𝑘)𝐶𝑡 + 𝑅]
 

𝑃𝑐(𝑘) = [𝐼 − 𝐾(𝑘)𝐶]𝑃𝑝(𝑘) 

𝑃𝑝(𝑘 + 1) = 𝐴𝑃𝑐(𝑘)𝐴𝑡 + 𝐺𝑄𝐺𝑡 

 

The simulator was run for different values of Q 

  

FH
Sticky Note
In general, this should be calculated with a matrix inversion since the denominator is a matrix (generally).

FH
Sticky Note
The calculations below should be calculated at each time step (of the simulation), not as a pre-calculation before the simulation starts. This is because the matrixes A and C and G may vary depending on the operating point (which may vary). Also, the user may want to change Q and R during the simulation/experiment. However, if it is intended to have a fixed (steady-state Kalman gain, your implementation is ok.



  
 

It appears that the higher the Q22 is, the more noise comes through to the correction. 

Solution script 

% simulation parameters 

numsteps = 5000;  

dt = 0.1; % seconds 

sensor_noise = 0.01;  

a = 0.05; 

  

  

%PI parameters 

Kc = 10; 

Ti = 10; 

Td = 0; 

PI_max = 5; 

PI_min = -5; 

  

%Process initials 

u = 0; 

h = 0.5; 

h_filtered = 0.5; 

h_max = 1; 

h_min = 0; 

F_out = 0.005; % m^3/s 

bias = F_out; 

set_point = 0.5; 

Kp = 0.002; 

A_tank = 0.1; % m^2 

error_sum = 0; 

  

% kalman initials 

hp0 = h; % predicted h 

Fp0 = 0; 

hp = hp0; 

Fp = Fp0; % kalman starting outflow 

% steady state kalman gain K 

Q0 = 1; 

R = 0.0001; 

A = [1 -dt/A_tank 

    0 1]; 

G = [1 0 

    0 1]; 

C = [1 0]; 

Q = [0.001 0 

    0 0.001]*Q0; 

  

Pp0 = eye(2); % initial Pp0 

K = Pp0*transpose(C)/(C*Pp0*transpose(C)+R); 

Pc = (eye(2)-K*C)*Pp0; 

Pp = A*Pc*transpose(A)+G*Q*transpose(G); 

K = Pp*transpose(C)/(C*Pp*transpose(C)+R); 

for x = 1:1000 

    K = Pp*transpose(C)/(C*Pp*transpose(C)+R); 

    Pc = (eye(2)-K*C)*Pp; 

    Pp = A*Pc*transpose(A)+G*Q*transpose(G); 



end 

%K = [0.9 -0.1]; 

% simulation history 

t = ones(1,numsteps); 

F_out_arr = zeros(1,numsteps); 

F_out_arr = F_out_arr+F_out; 

h_arr = zeros(1,numsteps); 

h_measured_arr = zeros(1,numsteps); 

h_filtered_arr = zeros(1,numsteps); 

perror_arr = zeros(1,numsteps); 

set_point_arr = zeros(1,numsteps); 

set_point_arr(:) = set_point; 

hp_arr = zeros(1,numsteps); 

  

% set steps in setpoint 

set_point_arr(numsteps/2:end)=0.3; 

  

  

for step = 1:numsteps 

    t(step)=step*dt; 

     

    % sensor fetch 

    h_measured = h + normrnd(0,sensor_noise*h_max); 

    h_measured_arr(step)=h_measured; 

    % filter 

    h_filtered = (1-a)*h_filtered + a*h_measured; 

    h_filtered_arr(step)=h_filtered; 

     

    % process error 

    perror = set_point_arr(step)-h_measured; 

    perror_arr(step) = perror; 

    % PI(D) 

    P = Kc*perror; 

     

    error_sum = error_sum+perror; 

    I = Kc/Ti*error_sum*dt; 

     

    u = P+I;  

     

    % kalman observer 

    % predicted measurement 

    h_measured_predicted = hp; % predicted measured h 

     

    % innovation variable 

    innovation = h_measured - h_measured_predicted; 

     

    % corrected state estimate 

    hp_arr(step) = hp; 

    hc = hp+K(1)*innovation; 

    Fc = Fp+K(2)*innovation; 

     

    % predicted state estimate for next 

    hp = hc+(dt/A_tank)*(Kp*u-Fc); 

    Fp = Fc; 

    % change reality 

    F_in = bias + u*Kp; 

    dh = (1/A_tank)*(F_in-F_out)*dt; 

    h = h+dh; 

    h_arr(step) = h; 

end 

  

figure() 

plot(t,hp_arr,t,h_arr) 

legend('h predicted','h') 

title('Q11='+string(Q(1))+'  Q22='+string(Q(4))) 

ylim([0 1]) 

 

 

  



Kalman filter b. 
 

The model can start out with the same physical relationship as the the one in a. with dh as a starting 

point. 

𝛿ℎ

𝛿𝑡
=

1

𝐴𝑡𝑎𝑛𝑘
[𝐾𝑝𝑢 − 𝐹𝑜𝑢𝑡(𝑡)] 

But in this case the Fout isn’t constant.  

𝐹𝑜𝑢𝑡 = 𝐾𝑣 ∗ 𝑓(𝑧) ∗ √
𝑝

𝐺
 

𝛿𝐹𝑜𝑢𝑡

𝛿ℎ
= 𝐾𝑣 ∗ √

𝑝(ℎ)̇

𝐺
 

𝛿𝑝

𝛿ℎ
= 𝑃𝑘

𝛿ℎ

𝑑𝑡
 

Where Pk is a constant related to the hydrostatic pressure of the water above the outlet. The model 

will not be linear as the parameters become dependent of eachother (dh is fed back from itself due 

to Fout increasing with increasing h). 

 

 

2 Moving Horizon estimation 
 

Unable to figure out how to modify this script to estimate the K instead of the d. 

 

3 Model predictive control 
 

FH
Sticky Note
The point was to define Kv as a state variable, x2, which then can be estimated with the Kalman Filter. The model would then be:dx1/dt = Kp*u - f(z)*x2*sqrt(rho*g*x1/G)dx2/dt = 0(which is a nonlinear state space model)



a. Block diagram 

 
Figure 3: block diagram of heater simulator with MPC 

 

 

b. Running the script 
The script runs. The initial control is poor, but this is probably due to startup conditions (heater takes 

some time to heat up) and from the fact that the MPC needs some time to be able to estimate the 

parameters correctly. 

 

Figure 4: Simulator with MPC 
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FH
Sticky Note
Seems you assume MPC is a state estimator. MPC is a controller. (Maybe you mix MPC and MHE. The latter is a state estimator.) The MPC should replace the PID in your block diagram.



c. Understanding 
 

The script creates a horizon to look at (16 steps). The horizon is used to predict the behavior of the 

system and use this to both calculate an optimal control signal and estimate the disturbances. It 

creates fixed step point changes that are saved in arrays for plotting and simulation purposes.  

For each simulation step the script uses fmincon to minimize the error using u based on simulations 

of a horizon giving an estimate of the disturbance. To save calculation the previous solution is used 

as the initial guess for the next step. 

 

d. Playing around 
By reducing the horizon time to 2, the simulation because marginally unstable. 

 

Figure 5: Short horizon experiment 

Increasing the horizon yielded stable results and great disturbance estimation, but highly increased 

the computation time of the simulation. The system also seems to lose some responsiveness as well, 

taking longer to reach setpoint than under a horizon of 8 seconds.  

 



 

Figure 6: Long horizon experiment 

 

 

 

e. Adding gain 
 

I added a gain of +4. 

 

By adding gain to the function, the control signal and the setpoint tracking is different than what we 

get previously, but the program still tracks the disturbances quite well. 

FH
Sticky Note
Maybe you have added 4 to d_est as used in the MPC algorithm?It can explain the effset from setpoint. If so, this addition should not be done. (There should be no offset, since d_est will capture the change in d and provide the correct" value of d to the MPC.)



 

Figure 7: added gain simulation results 

 




