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1 The Kalman Filter algorithm

Predicted measurement estimate:
Yp(k) = g [zp(F)]

Innovation variable:

e(k) = y(k) — yp(k)

Corrected state estimate (used as estimate in applications):
ze(k) = (k) + Ke(k)

Predicted state estimate:

:Ep(k + 1) = f[l'c(k:)a u(k)]

It will be assumed that K is the steady-state Kalman Filter gain. The
information needed to compute the steady-state Kalman Filter gain is
shown in Figure 1. It can be calculated with e.g. the Kalman Gain
function in LabVIEW Control Design Toolkit, or with the kalman
function in LabVIEW MathScript or with the dlge function in Matlab.

2 Application of Kalman Filter: Estimation of
outflow

Figure 2 shows a liquid tank.
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Figure 1: lllustration of what information is needed to compute the steady-state
Kalman Filter gain, K.

We will design a steady state Kalman Filter to estimate the outflow Fpz.
The level h is measured.

Mass balance of the liquid in the tank is (mass is pAh)

pAtankh(t) = pKpu— pFout (1) (5)
= pKpu— pFou(t) (6)

After cancelling the density p the model is

h(t) = T [Epu = Fou(t)] (7)
tank
We assume that the unknown outflow is slowly changing, almost constant.

We define the following augmentative model:
Fou(t) =0 (8)

The model of the system is given by (7) — (8). Although it is not necessary,

it is convenient to rename the state variables using standard names. So we
define

r1 = h (9)
T2 = Fout (10)
The model (7) — (8) is now
1(8) = 7 [Kyult) - za(t) (1)
i9(t) =0 (12)

Applying Euler Forward discretization with time step 1" and including
white disturbance noise in the resulting difference equations yields

w1k +1) = (k) + [Kpu(k) — z2(k)] + wi (k) (13)

J/

Atank

fi()

2



Ka I m a n Fi Ite r This simulator runs 4 times Faster than real time,

Finn Haugen, 2. March 2008
“Weh page with information and exercises:

http: ftechteach.no/simvievkalmarFiter] Level setpoint, y5» N | 050
uf¥] Measured level, x1 = v BN | 0.52
FIOSSNELE oot () P61 Kp [{ma/s)iv] dlevel
oukput {u, m3js, {
Ao P rangep Kp Estimated level, x1c “ 0,52

u gvooz

‘ \;)IIU Ma [V]
Al [sec] 1) 5
Man o hin[v]
uman LC[V]  Td[sec] A
g e @

Level b [m]
h_5P [m] 1-

0.50

1) - I L N R A A N AR A AR AR RN A
7079 7090 7100 71107120 7130 7140 7150 7160 71707179
Simulation Time 5]

Ackual x2 = F_out m 0.0072
Estimated x2 = F_out E 0,0070

:) 0 0.9-

Lc :

0.8

Measurement signal, b 07t
Lb Estimated x1=h 0.6
—- 3

Kalman Filker

Estimated x2=F_aut E
- - 0.4

Control signal, u :
2 0,37
Measurement k

r Process disturbance gain, & Obssrvable? noise U‘ZE
g0 1o oo Applied noise 012
000 1.00 w variance :
’:J @ 40,0001 o
Kalman gains: "J) . A_tank [m2]
Pracess noise variance, Q K11l ’) 0.1
5 = Time-step o=
;J ooooow oo N 7051 Simulation Time [s]
00 LOES 3 h_inik [m]
2 : : K21 o1 7\
") 0 3 ) 0.5
- -0.0093% -

Measurement noise variance, R

' Matrix & in linear model Matrix C in linear model
g) 0 o000t

o o |
f) 2 Iu_ll_ r) 0.00724¢

Figure 2: Liquid tank with Kalman Filter (and with level control system)

zo(k+1) = 1‘\2@—0— wa (k) (14)

f2()
or
z(k+1) = flz(k),u(k)] +wk) (15)
wi and wg are independent (uncorrelated) white process noises with
assumed variances Ry, (L) = Q10(L) and Ry, (L) = Q20(L) respectively.
Here, ()1 and Q2 are variances. The multivariable noise model is then

w = [wl] (16)

w2

with auto-covariance
Ry(L) = Q4(L) (17)

where

Quu O

Q= 0 Qo2 (18)

Assuming that the level 1 is measured, we add the following measurement
equation to the state space model:

y(k) = g [p(k), u(k)] + v(k) = 21 (k) + v(k) (19)



where v is white measurement noise with assumed variance
Ry(L) = R(L) (20)
where R is the measurement variance.

The following numerical values are used:

Sampling time: T'= 0.1 s (21)
Agant, = 0.1 m? (22)
K, = 0.001 (m®/s)/V (23)
0.01 O .. .
Q= [ 0 0.0l } (initally, may be adjusted) (24)
R =0.0001 m? (Gaussian white noise) (25)

We will set the initial estimates as follows:
r1,(0) = £1(0) = y(0) (from the sensor) (26)

72,(0) = 0 (assuming no information about initial value (27)

The Kalman Filter algorithm is as follows: The predicted level
measurement is calculated according to (1):

yp(k) = g [zp(k), u(k)] = 21, () (28)

with initial value as given by (26). The innovation variable is calculated
according to (2), where y is the level measurement:

e(k) = y(k) = yp(K) (29)
The corrected state estimate is calculated according to (3):

zo(k) = xp(k) + Ke(k) (30)

[ 223 } N [ 2:83 } + [ 21 }E(k) (31)

This is the applied esimate!

or, in detail:

The predicted state estimate for the next time step, x,(k + 1), is calculated
according to (4):
wp(k +1) = flae(k), u(k)] (32)
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or, in detail:

e Y B B R

To calculate the steady state Kalman Filter gain K the following
information is needed, cf. Figure 1:

A = % (34)
0T L 1), ulh)
oh oA
oz Oz
= (35)
o Of
Oz 022 1lap(k), u(k)
T
1 _Atank
= (36)
0 1
10 . . .
G = [ 01 ] = [5 (identity matrix) (37)
C = _ag(-) (38)
T lap(h), u(k)
= [10] (39)
001 O o .
Q= [ 0 0.0l ] (initially, may be adjusted) (40)
R =0.001 m? (41)

Figure 2 shows the front panel of a LabVIEW simulator of this example.
The outflow F,,; = xo was changed during the simulation, and the Kalman
Filter estimates the correct steady state value (the estimate is however
noisy). During the simulations, I found that (40) gave too noise estimate
of xo = Fyye. I ended up with

0.01 O } (42)

Q_{ 0 1076

as a proper value.

Figure 3 shows how the steady state Kalman Filter gain K is calculated
using the Kalman Gain function. The figure also shows how to check for
observability with the Observability Matrix function. Figure 4 shows
the implementation of the Kalman Filter equations in a Formula Node in
LabVIEW.
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Figure 3: Calculation of the steady state Kalman Filter gain with the Kalman

Gain function, and checking for observability with the Observability Matrix func-
tion.
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Figure 4: Implementation of the Kalman Filter equations in a Formula Node.
(The Kalman Filter gain is fetched from the While loop in the Block diagram
using local variables.)



