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1 The Kalman Filter algorithm

Predicted measurement estimate:

yp(k) = g [xp(k)] (1)

Innovation variable:

e(k) = y(k)− yp(k) (2)

Corrected state estimate (used as estimate in applications):

xc(k) = xp(k) +Ke(k) (3)

Predicted state estimate:

xp(k + 1) = f [xc(k), u(k)] (4)

It will be assumed that K is the steady-state Kalman Filter gain. The
information needed to compute the steady-state Kalman Filter gain is
shown in Figure 1. It can be calculated with e.g. the Kalman Gain
function in LabVIEW Control Design Toolkit, or with the kalman
function in LabVIEW MathScript or with the dlqe function in Matlab.

2 Application of Kalman Filter: Estimation of
outflow

Figure 2 shows a liquid tank.
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Figure 1: Illustration of what information is needed to compute the steady-state
Kalman Filter gain, Ks.

We will design a steady state Kalman Filter to estimate the outflow Fout.
The level h is measured.

Mass balance of the liquid in the tank is (mass is ρAh)

ρAtankḣ(t) = ρKpu− ρFout(t) (5)

= ρKpu− ρFout(t) (6)

After cancelling the density ρ the model is

ḣ(t) =
1

Atank
[Kpu− Fout(t)] (7)

We assume that the unknown outflow is slowly changing, almost constant.
We define the following augmentative model:

Ḟout(t) = 0 (8)

The model of the system is given by (7) — (8). Although it is not necessary,
it is convenient to rename the state variables using standard names. So we
define

x1 = h (9)

x2 = Fout (10)

The model (7) — (8) is now

ẋ1(t) =
1

Atank
[Kpu(t)− x2(t)] (11)

ẋ2(t) = 0 (12)

Applying Euler Forward discretization with time step T and including
white disturbance noise in the resulting difference equations yields

x1(k + 1) = x1(k) +
T

Atank
[Kpu(k)− x2(k)]| {z }
f1(·)

+ w1(k) (13)
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Figure 2: Liquid tank with Kalman Filter (and with level control system)

x2(k + 1) = x2(k)| {z }
f2(·)

+ w2(k) (14)

or
x(k + 1) = f [x(k), u(k)] + w(k) (15)

w1 and w2 are independent (uncorrelated) white process noises with
assumed variances Rw1(L) = Q1δ(L) and Rw2(L) = Q2δ(L) respectively.
Here, Q1 and Q2 are variances. The multivariable noise model is then

w =

·
w1
w2

¸
(16)

with auto-covariance
Rw(L) = Qδ(L) (17)

where

Q =

·
Q11 0
0 Q22

¸
(18)

Assuming that the level x1 is measured, we add the following measurement
equation to the state space model:

y(k) = g [xp(k), u(k)] + v(k) = x1(k) + v(k) (19)
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where v is white measurement noise with assumed variance

Rv(L) = Rδ(L) (20)

where R is the measurement variance.

The following numerical values are used:

Sampling time: T = 0.1 s (21)

Atank = 0.1 m
2 (22)

Kp = 0.001 (m
3/s)/V (23)

Q =

·
0.01 0
0 0.01

¸
(initally, may be adjusted) (24)

R = 0.0001 m2 (Gaussian white noise) (25)

We will set the initial estimates as follows:

x1p(0) = x1(0) = y(0) (from the sensor) (26)

x2p(0) = 0 (assuming no information about initial value (27)

The Kalman Filter algorithm is as follows: The predicted level
measurement is calculated according to (1):

yp(k) = g [xp(k), u(k)] = x1p(k) (28)

with initial value as given by (26). The innovation variable is calculated
according to (2), where y is the level measurement:

e(k) = y(k)− yp(k) (29)

The corrected state estimate is calculated according to (3):

xc(k) = xp(k) +Ke(k) (30)

or, in detail: ·
x1c(k)
x2c(k)

¸
=

·
x1p(k)
x2p(k)

¸
+

·
K11

K21

¸
| {z }

K

e(k) (31)

This is the applied esimate!

The predicted state estimate for the next time step, xp(k+1), is calculated
according to (4):

xp(k + 1) = f [xc(k), u(k)] (32)
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or, in detail:·
x1p(k + 1)
x2p(k + 1)

¸
=

·
f1
f2

¸
=

·
x1c(k) +

T
Atank

[Kpu(k)− x2c(k)]

x2c(k)

¸
(33)

To calculate the steady state Kalman Filter gain Ks the following
information is needed, cf. Figure 1:

A =
∂f(·)
∂x

¯̄̄̄
xp(k), u(k)

(34)

=

 ∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2


¯̄̄̄
¯̄̄
xp(k), u(k)

(35)

=

 1 − T
Atank

0 1

 (36)

G =

·
1 0
0 1

¸
= I2 (identity matrix) (37)

C =
∂g(·)
∂x

¯̄̄̄
xp(k), u(k)

(38)

=
£
1 0

¤
(39)

Q =

·
0.01 0
0 0.01

¸
(initially, may be adjusted) (40)

R = 0.001 m2 (41)

Figure 2 shows the front panel of a LabVIEW simulator of this example.
The outflow Fout = x2 was changed during the simulation, and the Kalman
Filter estimates the correct steady state value (the estimate is however
noisy). During the simulations, I found that (40) gave too noise estimate
of x2 = Fout. I ended up with

Q =

·
0.01 0
0 10−6

¸
(42)

as a proper value.

Figure 3 shows how the steady state Kalman Filter gain Ks is calculated
using the Kalman Gain function. The figure also shows how to check for
observability with the Observability Matrix function. Figure 4 shows
the implementation of the Kalman Filter equations in a Formula Node in
LabVIEW.
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Figure 3: Calculation of the steady state Kalman Filter gain with the Kalman
Gain function, and checking for observability with the Observability Matrix func-
tion.
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Figure 4: Implementation of the Kalman Filter equations in a Formula Node.
(The Kalman Filter gain is fetched from the While loop in the Block diagram
using local variables.)
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