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Chapter 1

OPTIMIZATION

1.1 The optimization problem

Optimization is about to find the best solution, for example:

• Which model parameter values makes a mathematical model
represent a given real system most accurately?

• Which PI controller settings gives the best performance of a given
control system?

• Which are the best future control signals – or control moves – by a
model-predictive controller?

• Which are the best estimates calculated by a state estimator?

• Which is the feed rate to a biogas reactor that maximizes the biogas
production?

Typically, optimization problems are stated as minimization problems:

Find the value of the optimization variable x that
minimizes the objective function f(x),

taking into account any constraints on x or on some functions of x.
The solution is denoted the optimal solution, xopt.

Figure 1.1 illustrates a minimization problem. Here, the optimization
variable, x, is a vector of two elements. The problem is to calculate the
combined values of x(1) and x(2) so that f is minimized.
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Figure 1.1: The optimization problem.

Mathematical formulation of the optimization problem

There are many different ways of formulating mathematically optimization
(minimization) problems. The following formulation is quite general. (It
complies with the formulation required by the optimization function
fmincon in Matlab.)

For a given mathematical model M , find the value of x that minimizes
some objective function f(x), that is,

min
x
f(x) (1.1)

subject to (often denoted “s.t.”) constraints, which may be in the form of:

• Inequality constraints:
g(x) ≤ 0 (1.2)

where g is a linear or nonlinear function.

• Equality constraints:
h(x) = 0 (1.3)

where h is a linear or nonlinear function of x.

• Lower bounds and upper bounds:

xlb ≤ x ≤ xub (1.4)
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(1.3) and (1.2) define constraints on the relation between the optimization
variables, while (1.4) define constraints or bounds on the ranges of the
optimization variables.

The ranges of the optimization variables in which the optimal solution can
be found constitute the feasible region of the optimization problem. The
constraints define the feasible region.

Some characteristics of the optimal solution

To illustrate some characteristics the optimal solution, we will study a
minimization problem with a scalar optimizaton variable.1 Figure 1.2
shows f as a function of x. The optimization problem is to find the value
of x that minimizes f over the shown interval, which is here 2 ≤ x ≤ 22. In
Example 1.1 the (global) minimum is calculated using the grid search
method, in Example 1.5 the Newton search method is used, in Example
1.3 the steepest descent method is used, and in Example 1.7 the steepest
descent method and Newton’s methods are combined. With any method,
the result is

fmin = 4.77

xopt = 18.8

As illustrated in the upper plot of Figure 1.2, f may have local minima (or
maxima) which are different from the global minimum which is the
minimum that you want to find. When searching for the global minimum,
you must start the search for the minimum sufficiently close to the global
minimum. Otherwise, you may get stuck at the local minimum. We will
address this challenge in Section 1.2.7.

Some important mathematical characteristics of the optimal solution are:

• f is flat, that is, f ′(x) = 0 at x = xopt.

• f is convex, that is, f ′′(x) = 0 at x = xopt.

Above, the optimization variable, x, is a scalar. In general, the
optimization variable is a vector: x = [x(1), x(2),..., x(n)]T.

What about maximization problems?

Suppose the optimization problem is to maximize a function, f . You can
turn that maximization problem into a minimization problem by

1This example is “home-made” for illustration purposes.
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Figure 1.2: Optimization problem: Find x = xopt that minimizes f(x).
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multiplying f by −1. Both problems will have the same solution, xopt, see
Figure 1.3. So, if you can solve minimization problems, you can also solve
maximization problems.

x
xopt

-f1

f1

f1,max

(-f1)min

f1 is concave

-f1 is convex

Figure 1.3: The same xopt maximizes f1 and minimizes −f1.

1.2 How to solve optimization problems

1.2.1 Introduction

There several forms of optimization problems, and there are several
methods for finding the optimal solution [Edgar et al., 2001],
[Nocedal & Wright, 2006]. The following optimization methods are
presented briefly in the following sections:

• The grid search method, which is also denoted the brute force
method.

• The steepest descent search method.

• The Newton search method.
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• A combination of the steepest descent and Newton’s method (to
exploit their benefits, while avoiding their drawbacks).

• Two professional optimization functions, namely fmincon (Matlab)
and sqp (Octave).

1.2.2 The grid search for optimum

Many optimization problems have just a few optimization variables, e.g.
four or less. For such problems, an approximate global optimal solution
may be easily obtained with the grid search method. This is a simple,
straightforward method which can be implemented in any computer
language, and no special optimization tools (algorithms) are needed. The
basic principle is calculating the objective function, f , for all possible
combinations of the optimization variables, x(1), x(2),... , x(n) within
their ranges. Each of these ranges spans a proper number of equally spaced
values of the pertinent optimization variable, for example 100 values or
grid points of each variable. The optimal solution, xopt, is the x-value
which corresponds to the minimum (or maximum) value of f .

The grid search method is simple and easy to implement, but have some
drawbacks, too:

• A limited accuracy of the optimal solution.

• A large computational burden if the number of optimization
variables is large and/or the objective function is computational
demanding. Imagine 5 with 100 grid points for each. The total
number of grid points, combinations, and function calls are then
1005 = 1010 which is a large number.

With a scalar optimization variable, x, the grid search can be implemented
by calculating f for each value of x in one For Loop.

Figure 1.4 illustrates the grid for the case of two optimization variables,
x(1) and x(2) with Nx1 ×Nx2 = 20× 20 = 400 grid points. The grid search
can be implemented with nested For Loops, which in this example means
that for each value of x(1), the objective function f is calculated for all of
the values of x(2), see Figure 1.5.

Example 1.1 Grid search with scalar x
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x1

x2

x2min

x2max

x1min x1max

Nx2=20

Nx1=20

f(x1,x2)

Figure 1.4: Grid with two optimization variables, x(1) and x(2) with 20 ×
20 = 400 grid points.

Two nested For Loops

x(1)i

f[x(1)i, x(2)j]

x(2)j

Figure 1.5: Two nested For Loops. f is calculated for every combination
of the values of x(1) and x(2). Specifically, for each value of x(1), f is
calculated for all of the values of x(2).

The grid search method is here applied to find the global optimal solution
of the function plotted in Figure 1.2. The function is

f(x) = a4x
4 + a3x

3 + a2x
2 + a1x+ a0 (1.5)

with

a4 = 0.00232, a3 = −0.111, a2 = 1.80, a1 = −11.6, a0 = 34.4 (1.6)

The range of the optimization variable is

2 ≤ x ≤ 22

The Matlab script below implements a grid search to find the global
optimal solution. The number of x-values is selected as N = 100, giving a
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resolution of rx = (22− 2)/100 = 0.2. (100 is selected for illustration
purposes.) The computational load is still small even if N was increased to
e.g. 10000 in this simple application. Figure 1.6 shows f(x) and the
optimal solution, which is

fmin = 4.77

xopt = 18.8

xopt

fmin

Figure 1.6: Example 1.1: The optimal result with the grid search method.

Script name: matlab script init grid search.m.

x min=2;

x max=22;

N x=100;

x array=linspace(x min,x max,N x);%Preallocation for plotting

f array=x array*0;%Preallocation for plotting

%Initialization:

f min=inf;

x opt=-inf;

%Creating anonymous function for the objective function:
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f obj=@(x) x^4*0.00232-x^3*0.111+x^2*1.80-x*11.6+34.4;

%For loop than runs through all x-values:

for

k x=1:length(x array)

x=x array(k x);

%Objective function:

f=f obj(x);

%Possibly improving the previous solution:

if f <= f min f min=f;

x opt=x;

end %If

%Storing objective function values for plotting:

f array(k x)=f;

x array(k x)=x;

end %For

disp(’Optimal solution:’)

f min

x opt

The result shown in Matlab is:

Optimal solution:

f min = 4.7664

x opt = 18.7677

[End of Example 1.1]

The following example describes a grid search with two optimization
variables, in the first case without any constraint about the relation
between the optimization variables, and in the second case, with such a
constraint.

Example 1.2 Grid search with vectorial x
- without and with a constraint

First case: No constraints on the relation between the optimization
variables

The optimization problem is:

min
x
f(x) (1.7)
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with
f(x) = (x1 − 1)2 + (x2 − 2)2 + 0.5 (1.8)

The bounds on the optimization variables are:

0 ≤ x1 ≤ 2 (1.9)

1 ≤ x2 ≤ 3 (1.10)

It is apparent from (1.8) that the optimal solution is:

fmin = 0.5 (1.11)

x1opt = 1 (1.12)

x2opt = 2 (1.13)

Figure 1.7 shows a plot of f and the optimal solution. A Matlab script
that implements the grid search is presented below.

Second case: Constraint on the relation between the optimization variables

Assume the following constraints on the relation between the optimization
variables:

x(1)− x(2) + 1.5 ≤ 0 (1.14)

which is on the form of (1.2). The feasible region of the optimization
problem is now given by this inequality together with the ranges (1.9) –
(1.10).

Figure 1.8 shows a plot of f given by (1.8) in the feasible region. As is
often the case when there are constraints on the relation between the
optimization variables, the optimal solution is on the border of the feasible
region.

As found with the Matlab script below, the optimal solution is now

fmin = 0.628 (1.15)

x(1)opt = 0.748 (1.16)

x(2)opt = 2.25 (1.17)

Below is a Matlab script that implements the grid search method for the
second case presented above. This case has the constraint (1.14). The
script also applies for the first case presented above. That case has no
constraint on the relation between x(1) and x(2). The script implements
that case if the following part of the script is removed:
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x(2)opt

x(1)opt

Figure 1.7: Example 1.2: A plot of f and the optimal solution as found with
the grid method.

%Constraint:

if not(x1-x2+1.5 <= 0)

f=inf;

end %if

Script name: matlab script grid search.m.

clear all; close all; format compact;

%Initialization:

x1 min=0;x1 max=2;N x1=100;

x1 array=linspace(x1 min,x1 max,N x1);
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x(1)opt

x(2)opt

fmin

Figure 1.8: The grid method. The horizontal line represents the inequality
constraint (1.14).

x2 min=1;x2 max=3;N x2=100;

x2 array=linspace(x2 min,x2 max,N x2);

f min=inf;

x1 opt=-inf;

x2 opt=-inf;

%Objective function defined as ’anonymous’ function:

fun obj=@(x1,x2) (x1-1)^2+(x2-2)^2+0.5;

for k x1=1:length(x1 array)

x1=x1 array(k x1);

for k x2=1:length(x2 array)
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x2=x2 array(k x2);

%Value of objective function:

f=fun obj(x1,x2);

%Constraint:

if not(x1-x2+1.5 <= 0)

f=inf;

end %if

%Improving the previous solution:

if f <= f min

f min=f;

x1 opt=x1;

x2 opt=x2;

end%if

%Storing objective function values for later plotting:

f matrix(k x1,k x2)=f;

end %for loop of x2

end %for loop of x1

disp(’Optimal solution:’)

f min x1 opt x2 opt

[End of Example 1.2]

1.2.3 Steepest decent search method

The steepest descent method is for solving unconstrained optimization
problems. In the steepest descend method, the optimization variable, x, is
moved so that the value of the objective function is the largest reduction
possible. It is like trying to get to the bottom of a valley by always walking
down as steeply as possible.

Scalar x

In the scalar case (x scalar), the steepest descend iteration is:

xk+1 = xk +∆xk (1.18)

where the step is
∆xk = −Kf ′(xk) (1.19)

where K is a factor which can be used to determine the size or length of the
step, and f ′(xk) is the derivative, or the gradient, of the objective function.
In the standard steepest descend search, the numerical value of K is 1.
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f(x)

x

fmin

xopt

Δxb=-Kf’(xb)

Slope = f’(xa)

Δxa=-Kf’(xa)

xb xa

Slope = f’(xb)

Point ‘a’

Point ‘b’

Figure 1.9: In the steepest descent method the search step size, ∆xk is
proportional to the derivative of the objective function, f ′(xk).

∆xk is proportional to f ′(xk). This is illustrated in Figure 1.9 where two
different values of x are considered. This proportionality implies that the
closer to the optimum (minimum of f), the smaller the step. This sounds
like the minimum will be found. However, it may happen that ∆xk
becomes too large, so that xk+1 will pass xopt, causing the search to
“jump” to other side of the “valley”. Consequently, there may be
oscillations in the search. There are several methods to improve (optimize)
the step size, e.g. conjugate gradient methods [Edgar et al., 2001], and
variants of Newton’s method. It is also possible to just manually set K to
a value less than the default of 1. These are methods that apply also for
the vectorial case (x a vector).

Vectorial x

In the vectorial case, the steepest descend iteration is:

xk+1 = xk +∆xk (1.20)

where the search step is

∆xk = −K∇f(xk) (1.21)

where ∇f(xk) is the gradient of f , calculated at xk. So, the step, ∆xk, is
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taken in the negative direction of the gradient, or – in other words – along
the steepest descent. In the standard steepest descend search, the
numerical value of K is 1, or, which gives the equivalent result, K = I, the
identity matrix. There are several methods to improve (optimize) the step
size and the direction, but we will not discuss these improvements here,
except we will look at Newton’s method in Section 1.2.4.

Numerical calculation of the derivative

The gradient in (1.19) may be calculated analytically or numerically. For
numerical calculation, the center difference approximation is probably
appropriate:

∇f(xk) ≈


f [x(1)k+h,x(2)k,...,x(n)k]−f [x(1)k−h,x(2)k,...,x(n)k]

2h
f [x(1)k,x(2)k+h,...,x(n)k]−f [x(1)k,x(2)k−h,...,x(n)k]

2h
...

f [x(1)k,x(2)k,...,x(n)k+h]−f [x(1)k,x(2)k,...,x(n)k−h]
2h

 (1.22)

where the increment size h can be selected as a very small number, for
example 10−4 (independently of the search step size).

To summarize:

Steepest descent search method for minimization:

1. Make a good guess, xguess, of the optimal solution, and set

x0 = xguess (1.23)

2. Iterate with
xk+1 = xk +∆xk (1.24)

where the increment ∆x(xk) is

∆xk = −K∇f(xk) (1.25)

The standard value of K is 1, but is can be reduced to obtain a
smoother, but slower, search.

Continue the iterations until an appropriate stop condition is
satisfied, e.g.

|f(xk+1)− f(xk)| 6 df (1.26)

When the stop condition is met,

xopt = xk+1 (1.27)



CHAPTER 1. OPTIMIZATION 19

Example 1.3 Steepest descent search - scalar x

We will use Newton search to find the global optimal solution of the
function plotted in Figure 1.2. The function is given in Example 1.1, but is
repeated here for convenience:

f(x) = a4x
4 + a3x

3 + a2x
2 + a1x+ a0 (1.28)

where

a4 = 0.00232, a3 = −0.111, a2 = 1.80, a1 = −11.6, a0 = 34.4 (1.29)

The guessed value is selected as

xguess = 12

Below is a Matlab script that implements the search.

Figure 1.10 shows f , xguess, and xopt.

The results as shown in Matlab are:

x guess = 12

x opt = 18.7476

f min = 4.7662

abs df = 1.7186e-05

[k,grad,dx,x,abs df]

1.0000 -0.3162 0.3162 12.3162 0.1191

2.0000 -0.4369 0.4369 12.7530 0.2267

3.0000 -0.6000 0.6000 13.3530 0.4240

4.0000 -0.8095 0.8095 14.1625 0.7552

5.0000 -1.0456 1.0456 15.2081 1.2028

6.0000 -1.2275 1.2275 16.4356 1.5132

7.0000 -1.1841 1.1841 17.6196 1.2064

8.0000 -0.7877 0.7877 18.4073 0.4362

9.0000 -0.2850 0.2850 18.6923 0.0484

10.0000 -0.0497 0.0497 18.7420 0.0014

11.0000 -0.0056 0.0056 18.7476 0.0000

Note that xguess = 12 is to the right of the maximum point, see Figure
1.10. Since f ′ is monotonically decreasing between the starting point of the
search and the global minimum, the search will approach that minimum.
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Figure 1.10: Example 1.3: Steepest descent search with xguess = 12. xopt is
at global minimum.
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Figure 1.11: Example 1.3: Steepest descent search with xguess = 10. xopt is
at a local minimum.

To demonstrate that the starting point (the guessed value) is crucial for
the result, let us select

xguess = 10

which is to the left of the maximum point, see Figure 1.10. Now, the result
is:

x guess = 10

x opt = 5.9775

f min = 8.6305

which is a local minimum, different from the global minimum. So, the
starting point is crucial for the result of the search.

Script name: matlab script steepest descent scalar.m.
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clear all, close all, format compact

a4=0.00232; a3=-0.111; a2=1.80; a1=-11.6; a0=34.4;

%Creating anonymous function for the objective function:

f obj=@(x) a4*x.^4 + a3*x.^3 + a2*x.^2 + a1*x + a0;

x guess=[10]

x k=x guess;

h=1e-4; %Step size in center difference method

N=1000;%Preset max number of iterations

abs df spec=1e-4;%Stopping criterion

for k=1:N-1

gradient num k=(f obj(x k+h)-f obj(x k-h))/(2*h);

dx k=-gradient num k;

x kp1=x k+dx k;

f k=f obj(x k);

f kp1=f obj(x kp1);

abs df=abs(f kp1-f k);

x k=x kp1;

if abs df < abs df spec

break

end %if

end %for loop

disp(’Result:’)

x opt=x kp1

f min=f obj(x opt)

abs df

[End of Example 1.3]

In the following example, x is vectorial.

Example 1.4 Steepest descent search - vectorial x

We will now make a steepest descent search to solve the optimization
problem already presented in Example 1.2. For convenience, the problem
formulation is repeated here:

min
x
f(x) (1.30)

where
f(x) = [x(1)− 1] 2 + [x(2)− 2] 2 + 0.5 (1.31)

The stop criterion is selected as

|f(xk+1)− f(xk)| ≤ df = 10−4
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The gradient is:

∇f(xk) =

[
2x(1)k − 2
2x(2)k − 4

]
Obviously, the optimal solution is

fmin = 0.5

at

xopt =

[
1
2

]
We calculate the first iteration:

x1 = x0 −∇f(x0) = x0 −
[

2x(1)0 − 2
2x(2)0 − 4

]
=

[
0
1

]
−
[
−2
−2

]
=

[
2
3

]
Checking the stop condition:

|f(x1)− f(x0)| =
∣∣∣∣f ([ 2

3

])
− f

([
0
1

])∣∣∣∣ = |2.5− 2.5| = 0 6 10−4 (Yes!)

So, the stop condition is met after the first iteration since f(x1) = f(x0).
However, optimum is not found! One explanation is that the step size is
too large, as a consequence of the gradient being relatively large.

To approach (much) closer to the optimum, the step size must be reduced.
Although rigorous methods exist (as pointed out in the beginning of this
section), we will here just observe the effect of a reduction of the step size.
Let’s take the iteration as

xk+1 = xk −K∇f(xk)

with
K = 0.1

The result, as calculated with the Matlab script shown below, is now:

fmin = 0.5002

xopt =

[
0.9908
1.9908

]
which is very close to the correct (analytical) result presented above.

The number of iteration until the stop condition is met, is 21.
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A Matlab script implementing the above is shown below.

Script name: matlab script steepest descent 2 vars.m.

%Creating anonymous function for the objective function:

f obj=@(x) (x(1)-1)^2+(x(2)-2)^2+0.5;

x guess=[0,1]’;

%Guess x k=x guess;

N=10000;%Preset max number of iterations

abs df=1e-4;%Stopping criterion

for k=1:N-1

G k=[2*(x k(1)-1), 2*(x k(2)-2)]’; %Gradient:

K=0.1;

dx k=-K*G k

x kp1=x k+dx k;

f k=f obj(x k);

f kp1=f obj(x kp1);

df=f kp1-f k

x k=x kp1;

if abs(df) < abs df

break

end %if

end %for loop

disp(’Result:’)

k

x opt=x kp1

f min=f obj(x opt)

The result is as shown above.

[End of Example 1.4]

1.2.4 The Newton search method

The Newton search method is an iterative method for solving
unconstrained optimization problems. The method does not take into
account any constraints on the form of (1.3) and (1.2). Optimization
methods that do take constraints into account are often denoted Nonlinear
Programming (NLP) methods. Section 1.2.6 introduces two professional
NLP solvers, namely fmincon in Matlab and sqp in Octave. Concepts that
are central in this method are central also in solvers for constrained
problems (NLP solvers).
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The Newton search method will here be introduced assuming only a scalar
optimization variable, x. Thereafter, the Newton search method with a
vectorial optimization variable, x = [x(1), x(2),..., x(n)]T, is presented.

Scalar x

See Figure 1.2. At the minimum of f , f is flat, that is,

f ′(xopt) = 0 (1.32)

Generally, Newton’s method is an iterative method for solving equations
on the form F (x) = 0. In the context of optimization, Newton’s method is
used to solve (1.32) for x. But since minimization points as well as
maximizing points are characterized by f ′ = 0, as illustrated in Figure 1.2,
we can not just take the solution of (1.32) as the minimizing solution. By
solving f ′(x) = 0 for x, we only have a candidate of the optimal x, say
xcand. To ensure that xcand is actually the optimal (minimizing) solution,
we must check that f is convex where f ′(xcand) = 0. f is convex at xcand if
the second order derivative of f is strictly positive at xcand, that is, if

f ′′(xcand) > 0 (1.33)

xcand is the results of a number of Newton iterations. Figure 1.12
illustrates one iteration.

We assume that an estimate, or a candidate, of the optimal x exists at
iteration number k, namely xk, and that both f ′(xk) and f ′′(xk) are
known (at xk). An improved estimate can be obtained graphically as
shown in Figure 1.12. We will now find the formula of xk+1. From Figure
1.12 we find that the slope at xk is

f ′′(xk) =
f ′(xk)− 0

xk − xk+1
(1.34)

Solving for xk+1 gives the Newton iteration expressed as a formula:

xk+1 = xk −
[
f ′′(xk)

]−1
f ′(xk) (1.35)

How many Newton iterations should be calculated? In a computer
program, the Newton iteration can be implemented in a While Loop with
the stop condition of the loop being, for example,

|f(xk+1)− f(xk)| 6 df (1.36)

where df is a constant of an appropriate value. Alternatively, a For Loop
can be used with a fixed, maximum number of iterations (Newton
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Figure 1.12: One iteration in Newton’s method for searching for xopt.
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iterations) and with the possibility to break the loop if (1.36) is satisfied
before the maximum number of iterations is reached.

Once we have found a candidate, xcand = xk+1, of the optimal solution, we
must check that f ′′(xcand) > 0. If this test is passed,

xopt = xcand (1.37)

Note that the Newton’s search method is a local optimizer (minimizer). It
is only if xguess is sufficiently close to the global optimum, that the Newton
search will arrive at the global optimum. As an example, see 1.2. If
xguess = 4, a Newton search will arrive at a local optimum. If xguess = 16,
the Newton search will arrive at the global optimum.

In the Newton’s method, x will be moved towards a point where

f ′(xmax) = 0

However, this point may be a (local) maximum if the initial value of x in
the search is where f is concave. Figure 1.13 illustrates this situation. The
Newton iteration, (1.35), will move x towards xmax. So, it is crucial that
the guessed value of x is where f is not concave, i.e., is convex. This
situation can be avoided by using the steepest descent method in stead of
Newton’s method where f is not concave, cf. Section 1.2.5.

An explanation of why the Newton search is fast

Let’s consider the steepest descent algorithm for the scalar case, (1.18) –
(1.19), which is repeated here for convenience:

xk+1 = xk −Kf ′(xk) (1.38)

where the factor K is included. K can be regarded as the step size. In the
standard steepest descent method, K = 1 (fixed). Now, let’s open for other
values of K. (1.38) can be regarded as a nonlinear discrete-time difference
equation or model with x as the state-variable. It is nonlinear because it
can be assumed that the derivative, or gradient, f ′(x), is a nonlinear
function of x. To analyze the dynamic properties of this model, we can
consider the linearized model. Let’s define dx as the deviation variable
corresponding to x. Linearization of (1.38), which is based on a first order
Taylor series of the nonlinear term, gives the following linear model:

dxk+1 = dxk −Kf ′′(xk)dx =
[
1−Kf ′′(xk)

]
dxk (1.39)

According to systems theory of discrete-time systems, the fastest dynamic
response in dx is obtained with the next state, dxk+1, is assumed zero,
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Figure 1.13: One iteration in Newton’s method when f is concave.

independent of the present state, dxk.2 This dynamics is denoted
dead-beat response. So, dead-beat dynamics is obtained with

1−Kf ′′(xk) = 0

which gives
K =

[
f ′′(xk)

]−1
Inserting this K into (1.39), gives the “dead-beat steepest descent”
algorithm:

xk+1 = xk −
[
f ′′(xk)

]−1
f ′(xk)

which is the Newton search algorithm, (1.35)!

For a quadratic f , the optimum is found in one search iteration!

Assume that f(x) is quadratic, say

f(x) = a1 + a2x
2

2An alternative design based on z-plane theory is as follows: The fastest dynamics of
a discrete-time system is when the z-eigenvalue(s) of the system being zero, i.e. in the
origin of the complex z-plane. The z-eigenvalue is z = 1 −Kf ′′(xk), which is set to 0.
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This implies:
f ′(x) = 2a2x

and
f ′′(x) = 2a2

Inserting these functions in the Newton algorithm, gives:

xk+1 = xk −
[
f ′′(xk)

]−1
f ′(xk) = xk − [2a2]

−1 2a2xk = 0xk

Thus, the Newton algorithm exhibits dead-beat dynamics, and this result
is obtained directly, without any approximate analysis involving
linearization. This implies that for quadratic functions, the search will
arrive at the minimum in just one iteration, whatever is selected as the
starting or guessed value of x of the search. This holds also for
optimization problems where x is vectorial. Example 1.6 gives a
demonstration.

Vectorial x

Assume x a vector:

x =


x(1)
x(2)

...
x(n)


It can be shown [Edgar et al., 2001] that the Newton iteration, (1.35), now
takes the form

xk+1 = xk −
[
∇2f(xk)

]−1∇f(xk) (1.40)

In (1.40),

∇f(xk) =


∂f(xk)
∂x(1)
∂f(xk)
∂x(2)

...
∂f(xk)
∂x(n)

 (1.41)

which is the gradient of f with respect to x. In words, the gradient of f is
a vector of first order partial derivatives of f . In (1.41), ∂f(xk)/∂x(1)
means the partial derivative of f with respect to x(1), calculated at x = xk.

Furthermore in (1.40),

∇2f(xk) ≡ H(xk) =


∂2f

∂x(1)2
∂2f

∂x(1)∂x(2) . . . ∂2f
∂x(1)∂x(n)

∂2f
∂x(2)∂x(1)

∂2f
∂x(2)2

. . . ∂2f
∂x(2)∂x(n)

...
...

. . .
...

∂2f
∂x(n)∂x(1)

∂2f
∂x(n)∂x(2) . . . ∂2f

∂x(n)2

 (1.42)
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which is the Hessian (matrix) of f with respect to x. In words, the
Hessian of f is a matrix of second order partial derivatives of f .

As for the scalar case discussed above, the Newton iteration can be
implemented in a While Loop or For Loop (the latter with a preset
maximum number of iterations) with the stop or break condition of the
loop being

|f(xk+1)− f(xk)| 6 df (1.43)

where df is a constant of an appropriate value.

To verify that xopt minimizes and not maximizes f , we must check that f
is convex at xopt. f is convex if the Hessian is positive definite, which is
ensured if all the eigenvalues of the Hessian are strictly positive
[Edgar et al., 2001]. Hence, xopt minimizes f if

∀ eig∇2f(xcand) > 0 (1.44)

(The symbol ∀ means “for each”.)

Avoiding the inversion of the Hessian

The Newton iteration, 1.40, can be written as

xk+1 = xk +∆xk (1.45)

where
∆xk = −

[
∇2f(xk)

]−1∇f(xk) (1.46)

Generally, the inverse of matrices should not be calculated because the
inverse may be mathematically ill-conditioned, i.e. sensitive to numerical
errors. If possible, you should instead express the unknown as the solution
of an equivalent systems of linear equations, and solve for the unknown,
which in our case is ∆xk, using robust algorithms or functions for solving
systems of linear equations, for example using the “\” operator in Matlab.
By premultiplying (1.46) by the −∇2f(xk) (minus one times the Hessian),
we get the following system of linear equations with ∆xk as the unknown:

−∇2f(xk)∆xk = ∇f(xk) (1.47)

In Matlab, we can solve (1.47) for ∆x(xk) with code like

dx k = -H k\grad k

which is better numerically than
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dx k = -inv(H k)*grad k

Numerical calculation of the gradient and the Hessian

In Example 1.6, both the gradient and the Hessian of f was calculated
analytically. Alternatively, they can be calculated numerically from calculations of
the objective function f only. The center difference approximation to the
derivative, (1.22), may be appropriate.

To sum it up:

Newton’s search method method for minimization:

1. Make a good guess, xguess, of the optimal solution, and set

x0 = xguess (1.48)

2. Iterate with
xk+1 = xk +∆xk

where the increment ∆x(xk) may be calculated directly by

∆xk = −
[
∇2f(xk)

]−1∇f(xk) (1.49)

or, preferably, indirectly by solving the following system of linear
equation for ∆x(xk):

−∇2f(xk)∆xk = ∇f(xk) (1.50)

Continue the iterations until an appropriate stop condition is
satisfied, e.g.

|f(xk+1)− f(xk)| 6 df (1.51)

The candidate of the optimal solution is then

xcand = xk+1 (1.52)

3. If f is convex at xcand, the optimal solution has been found, that is,

xopt = xcand = xk+1 (1.53)

To check for convexity: f is convex at xcand if the Hessian ∇2f(xcand)
is positive definite, that is, if

∀eig∇2f(xcand) > 0 (1.54)
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Example 1.5 Newton search - scalar x

We will use Newton search to find the global optimal solution of the
function plotted in Figure 1.2. The function is given in Example 1.1, but is
repeated here for convenience:

f(x) = a4x
4 + a3x

3 + a2x
2 + a1x+ a0 (1.55)

where

a4 = 0.00232, a3 = −0.111, a2 = 1.80, a1 = −11.6, a0 = 34.4 (1.56)

The Matlab script below implements a Newton search to find the global
optimal solution.

Let us at first try the guessed value as

xguess = 12

where f is concave, see Figure 1.14. The figure also shows the result of the
search. The result as shown in Matlab is:

fmax = 10.8309

at
xmax = 11.1624

So, the Newton search has – unfortunately – arrived where f is at
maximum. This illustrates that Newton’s method fails if the search starts
where f is concave.

We will now set
xguess = 16

where f is convex, see Figure 1.15. The figure also shows the result of the
search. The result as shown in Matlab is:

fmin = 4.7662

at
xopt = 18.7483

Now, the Newton search has – correctly – arrived at fmin. This illustrates
that Newton’s method succeeds (only) if the search starts where f is
convex.
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Figure 1.14: Example 1.5: Newton search with xguess = 12. xopt arrives
(unfortunately) at fmax.
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Figure 1.15: Example 1.5: Newton search with xguess = 16. xopt arrives at
fmin.
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Script name: matlab script newton search scalar.m.

clear all, close all, format compact

a4=0.00232; a3=-0.111; a2=1.80; a1=-11.6; a0=34.4;

%Creating anonymous function for the objective function:

f obj=@(x) a4*x.^4 + a3*x.^3 + a2*x.^2 + a1*x + a0;

%Anonymous function for gradient:

grad=@(x) 4*a4*x.^3 + 3*a3*x.^2 + 2*a2*x + a1;

%Anonymous function for Hessian:

hessian=@(x) 12*a4*x.^2 + 6*a3*x + 2*a2;

x guess=12;

x k=x guess;

N=1000;%Preset max number of iterations

abs df spec=1e-4;%Stopping criterion

for k=1:N-1

dx k=-inv(hessian(x k))*grad(x k);

%A numerically better alternative to calc dx k:

%dx k=-hessian(x k)\grad(x k);

x kp1=x k+dx k;

f k=f obj(x k);

f kp1=f obj(x kp1);

abs df=abs(f kp1-f k);

x k=x kp1;

if abs df < abs df spec

break

end %if

end %for loop

disp(’Result:’)

k

x opt=x kp1

f min=f obj(x opt)

abs df

[End of Example 1.5]

Example 1.6 Newton search - vectorial x

We will now make a Newton search to solve the optimization problem
already presented in Section 1.2.2:

min
x
f(x) (1.57)

where
f(x) = [x(1)− 1] 2 + [x(2)− 2] 2 + 0.5 (1.58)
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which is a quadratic objective function.

Let the stop criterion be

|f(xk+1)− f(xk)| ≤ df = 10−4

We follow the procedure given above:

1. A guess:

x0 = xguess =

[
x(1)guess
x(2)guess

]
=

[
0
1

]
2. The first Newton iteration:

x1 = x0 +∆x0

where ∆x0 for simplicity is calculated directly from Eq, (1.49)

∆x0 = −
[
∇2f(x0)

]−1∇f(x0)

Here:

∇f(x0) =

[
∂f(x0)
∂x(1)
∂f(x0)
∂x(2)

]
=

[
2(x(1)0 − 1)
2(x(2)0 − 2)

]
=

[
−2
−2

]
and

∇2f(x0) =

[
∂2f(x0)
∂x(1)2

∂2f(x0)
∂x(1)∂x(2)

∂2f(x0)
∂x(2)∂x(1)

∂2f(x0)
∂x(2)2

]
=

[
2 0
0 2

]
giving

∆x0 = −
[

2 0
0 2

]−1 [ −2
−2

]
=

[
1
1

]
So, the first Newton iteration is

x1 = x0 +∆x0 =

[
0
1

]
+

[
1
1

]
=

[
1
2

]
Checking the stop condition:

|f(x1)− f(x0)| =
∣∣∣∣f ([ 1

2

])
− f

([
0
1

])∣∣∣∣ = |0.5− 2.5| = 2 6 10−4(No!)

The stop condition is not satisfied, so we make the second Newton
iteration:

x1 = x0 +∆x0
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where
∆x1 = −

[
∇2f(x1)

]−1∇f(x1)

where

∇f(x1) =

[
2(x(1)1 − 1)
2(x(2)1 − 2)

]
=

[
0
0

]
and

∇2f(x1) =

[
2 0
0 2

]
giving

∆x1 = −
[

2 0
0 2

]−1 [
0
0

]
=

[
0
0

]
Thus, the second Newton iteration is

x2 = x1 +∆x1 =

[
1
2

]
+

[
0
0

]
=

[
1
2

]
Checking the stop condition:

|f(x2)− f(x1)| =
∣∣∣∣f ([ 1

2

])
− f

([
1
2

])∣∣∣∣ = |0.5− 0.5| = 0 6 10−4

Now, the stop condition is satisfied, so the candidate of the optimal
solution is

xcand = x2 =

[
1
2

]
3. Checking for convexity:

eig∇2f(xcand) = eig

[
2 0
0 2

]
=

[
2
2

]
Both eigenvalues are strictly positive, so f is convex at xcand.
Consequently, the optimal solution is

xopt = xcand = x2 =

[
1
2

]
giving

fmin(xopt) = 0.5

Actually, the optimum was found in just one Newton iteration. This confirms that
the Newton algorithm is exactly a “dead-beat” algorithm for quadratic objective
function, as was explained earlier in this section.

A Matlab script implementing the above is shown below.
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Script name: matlab script newton search.m.

clear all, close all, format compact

%Creating anonymous function for the objective function:

f obj=@(x) (x(1)-1)^2+(x(2)-2)^2+0.5;

x k=[0,1]’;

%Init N=100; %Preset max number of iterations

abs df=1e-4;%Stopping criterion

for k=1:N-1

%Gradient: G k=[2*(x k(1)-1); 2*(x k(2)-2)];

%Hessian: H k=[2,0; 0,2];

%Calculation of increment of x (used in x kp1=x k+dx k):

dx k=-inv(H k)*G k;

%A numerically better alternative to calc dx k:

%dx k=-H k\G k;

x kp1=x k+dx k;

f k=f obj(x k);

f kp1=f obj(x kp1);

df=f kp1-f k;

x k=x kp1;

if abs(df) < abs df

break

end %if

end %for loop

disp(’Result:’)

k x opt=x kp1

f min=f obj(x opt)

The result as shown in Matlab is:

k = 2

x opt = 1 2

f min = 0.5000

[End of Example 1.6]

1.2.5 Combining steepest descent with Newton for robust
search

The steepest descent method, cf. Section 1.2.3, has these typical benefits
and drawbacks:
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• Benefit: It always moves towards a minimum of f , even if f is
concave (f ′′ > 0) at the starting point of the search.

• Drawback: It may behave poorly as the search approaches the
minimum, with oscillations and/or slow convergence.

The Newton’s method, cf. Section 1.2.4, has these typical benefits and
drawbacks:

• Benefit: It converges fast and accurately to the minimum when f is
close to the minimum.

• Drawback: It moves towards a maximum (away from the desired
minimum) if f is concave (f ′′ < 0) at the starting point of the search.

By combining the steepest descent method with Newton’s method, the
benefits of both methods are retained while the drawbacks are omitted.
Theis is summarized in the following.3

Combined steepest descent search and Newton search:

1. Start the search with the steepest descent method:

xk+1 = xk −∇f(xk)

which should eventually bring f into a region where it is convex (if
it is not already convex from the start of the search).

2. When f has become convex, continue the search with Newton’s
method to arrive quickly and smoothly at fmin:

xk+1 = xk −
[
∇2f(xk)

]−1∇f(xk)

To check for f being convex, calculate the eigenvalues of the Hessian,
∇2f(xk). If all of these eigenvalues have strictly positive real parts,
the Hessian is positive definite, and f is convex.

Example 1.7 Combined steepest descend search and Newton
search

3This is one of two strategies to overcome the problem
about the Newton method in a concave region suggested in e.g.
https://courses.maths.ox.ac.uk/node/view material/18818. The second strategy
suggested is to reverse the sign of the Newton step, from minus to plus, when f is
concave.
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The combined method is here applied to the optimization problem
presented in Example 1.3. xguess is set as 12, which is an a concave region
of f . The Matlab script below shows an implementation of the method.

Script name: matlab script combined steepest and newton search.m.

clear all, close all, format compact

a4=0.00232; a3=-0.111; a2=1.80; a1=-11.6; a0=34.4;

%Creating anonymous function for the objective function:

f obj=@(x) a4*x.^4 + a3*x.^3 + a2*x.^2 + a1*x + a0;

%Anonymous function for gradient:

grad=@(x) 4*a4*x.^3 + 3*a3*x.^2 + 2*a2*x + a1;

%Anonymous function for Hessian:

hessian=@(x) 12*a4*x.^2 + 6*a3*x + 2*a2;

x guess=12;

x k=x guess;

N=1000;%Preset max number of iterations

abs df spec=1e-4;%Stopping criterion

for k=1:N-1

if sum((eig(hessian(x k)))<=0)>0,
%convex=0

dx k=-grad(x k)

else

%convex=1

dx k=-inv(hessian(x k))*grad(x k);

%A numerically better alternative to calc dx k:

%dx k=-hessian(x k)\grad(x k);

end %if

x kp1=x k+dx k;

f k=f obj(x k);

f kp1=f obj(x kp1);

abs df=abs(f kp1-f k);

x k=x kp1;

if abs df < abs df spec

break

end %if

end %for loop

disp(’Result:’)

k

x opt=x kp1

f min=f obj(x opt)

abs df
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Figure 1.16: Example 1.7: Steepest descent search with xguess = 12. xopt is
at global minimum.

The result as shown in Matlab, is:

k = 12

x opt = 18.7483

f min = 4.7662

abs df = 1.7086e-08

With the steepest descent search in Example, abs df = 1.7186e-05. So,
the combined method gives here a more accurate final result which
illustrates the benefit of using Newton search in the final stage (that is,
after f has become convex) of the search.

Figure 1.16 illustrates the result.

[End of Example 1.7]
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1.2.6 Two professional NLP optimizers: fmincon and sqp

1.2.6.1 Introduction

In many applications, you need more powerful and flexible optimizers than
one you can implement yourself with e.g. the grid search method and/or
the Newton search method. Many optimization problems can be solved
with Nonlinear Programming (NLP) optimizers, for example, parameter
estimation of nonlinear models, model-predictive control, etc.4 In these
optimizers, constraints on the form of (1.3) and (1.2) are, in principle,
included as “penalty” terms in a modified objective function
[Edgar et al., 2001]:

L(x, λ, u) = f(x) +

r∑
j=1

ujgj(x) +

m∑
i=1

λihi(x) (1.59)

where L is denoted the Lagrangian, and λi and uj are the Lagrange
multipliers of the inequality and equality functions, respectively. The
modified optimization problem is solved from ∇xL = 0.

In the following sections, the practical use of the following two professional
Nonlinear Programming (NLP) optimizers are presented:

• fmincon in Matlab’s Optimization Toolbox. (fmincon = “finds a
constrained minimum of a function of several variables”, cf. Matlab
documentation.)

• sqp in Octave. (Octave5 is free Matlab clone. sqp = “sequential or
successive quadratic programming”.)

Complete examples with Matlab and Octave code are given at the end of
the respective sections.

1.2.6.2 fmincon (Matlab)

The information below is compiled from the documentation about fmincon
in Matlab.6

4“Nonlinear programming” is a traditional term used on optimization algorithms for
solving nonlinear optimization problems.

5http://octave.org
6Where appropriate, I have modified the nomenclature.
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fmincon attempts to solve optimization problems on the form of

min
x
f(x)

subject to:

• Linear constraints7:
A · x ≤ B

Aeq · x = Beq

• Nonlinear inequality (less-than-or-equal) constraints:

gleq(x) ≤ 0

• Nonlinear equality constraints:

heq(x) = 0

• Bounds on the optimization variables:

lb ≤ x ≤ ub

fmincon offers a number of alternative algorithms: interior point, sqp,
active set (default), and trust region reflective. You can choose one
different from the default selection via the option input parameter, see
below.

There are several optional input arguments and output arguments of
fmincon, and they can be omitted in the function call.8 Below is the
function call with a complete set of arguments:

[x,fval,exitflag,output,lambda,grad,hessian] = ...
fmincon(fun,x guess,A,B,Aeq,Beq,lb,ub,nonlcon,options)

The input arguments of fmincon are:

• fun, a user-defined function with x as input argument and the scalar
value of the objective function, f(x), as output. You can pass any
model parameters to fun while fun is invoked by fmincon by using an
anonymous function call in fmincon. This is demonstrated in the
example below.

7Alternatively, these linear constraints may be defined with the functions gleq and heq.
8Personally, I use the complete list of arguments, but typically setting some of the

arguments as empty, that is, ’[ ]’.
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• x guess, your guessed value of xopt (the optimal solution).

• A, the matrix in the linear equality constraints.

• B, the vector in the linear equality constraints.

• Aeq, the matrix in the linear inequality constraints.

• Beq, the vector in the linear equality constraints.

• lb, the lower bound on x. For example, in the case of three
optimization variables: lb = [x1 lb, x2 lb, x3 lb] (assuming numerical
values of x1 lb etc. are already set). Inf (infinity) can be used as a
value of a bound.

• ub, the upper bound on x.

• nonlcon, a user-defined function with x as input argument and
vectors g leq and h eq as output vectors calculated (in the function)
as the left-hand part of the nonlinear inequalities and equalities,
respectively. fmincon calculates the minimum such that each of the
elements of the vector g leq is ≤ 0, and similarly h eq = 0. If no
bounds exists, set g leq = [ ] and/or h eq = [ ].)
You can pass any model parameters to nonlcon by using an
anonymous function call in fmincon. This is demonstrated in the
example below.

• options: Various options can be set as pairs of properties and values.
Example: To set the solver algorithm to sqp and the maximum
number of iterations to 500:
options =
optimoptions(@fmincon,’Algorithm’,’sqp’,’MaxIterations’,500);
The default settings of the above two properties corresponds to:
options = optimoptions(@fmincon,’Algorithm’,’interior-
point’,’MaxIterations’,1000);
Default settings apply if the options input argument is omitted in the
fmincon call, or if options is set as:
options = optimoptions(@fmincon);

The output arguments of fmincon are:

• x = xopt (the optimal solution).

• fval = f(xopt).

• exitflag, which is an integer expressing various exit conditions.
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• output which is a Matlab struct with information about the number
of iterations, the number of function calls, etc.

• lambda, which are the Langrange multipliers at xopt.

• grad = ∇f(xopt), which is a vector of zeros at (the exact) optimum.

• hessian = ∇2f(xopt), which is positive definite matrix at optimum.

Example 1.8 fmincon (Matlab)

We will see how fmincon can be used to solve the following optimization
problem, which is the same problem that we solved with the grid search
method in Section 1.2.2.

min
x
f(x) (1.60)

where
f(x) = (x1 − p1)2 + (x2 − p2)2 + p3 (1.61)

where p1 = 1, p2 = 2, p3 = 0.5 are model parameters.

Inequality (less-than-or-equal) constraint:

gleq(x) = x(1)− x(2) + 1.5 ≤ 0 (1.62)

Bounds on the optimization variables:

0 ≤ x1 ≤ 2 (1.63)

1 ≤ x2 ≤ 3 (1.64)

The guess of the optimal solution is

xguess =

[
0
1

]

Below is a Matlab script that finds the optimum. Note: The objective
function and the constraints function are defined as local functions within
the script, and they exist only within the script. Local functions are
supported from Matlab version R2016b.

Script name: script fmincon matlab.m.

clear all;

format compact;
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%Model params:

p1 = 1;

p2 = 2;

p3 = 0.5;

params model.p1 = p1;%params model is a struct. p1 is a field.

params model.p2 = p2;

params model.p3 = p3;

%Inputs to fmincon:

x guess = [0,1]’;

Aineq = [];

Bineq = [];

Aeq = [];

Beq = [];

x lb = [0,2]’;

x ub = [1,3]’;

fun objective handle = @(x)fun objective(x,params model);

%fun objective is def as a local function at end of script.

fun constraints handle = @(x)fun constraints(x,params model);

%fun constraints is def as a local function at end of

script.

my optim options = optimoptions(’fmincon’);

options.display = ’off’;

%options.algorithm = ’sqp’;

%Executing fmincon:

[x opt,fval,exitflag,output,lambda,grad,hessian] =...

fmincon(fun objective handle,x guess,Aineq,Bineq,Aeq,Beq,x lb,x ub,...

fun constraints handle,my optim options);

%Results:

disp(’Results:’)

fval

x opt

%Defining local functions:

function f = fun objective(x,params model)

p1 = params model.p1;

p2 = params model.p2;

p3 = params model.p3;

f = (x(1)-p1)^2+(x(2)-p2)^2+p3;
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end %function

function [g leq,h eq] = fun constraints(x,params model)

p1 = params model.p1;

p2 = params model.p2;

p3 = params model.p3;

g leq = x(1)-x(2)+1.5; %Left side of "less than or equal"

nonlin in

h eq = []; %Left side of nonlinear equalities.

end %function

The result shown in Matlab is:

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is

non-decreasing in feasible directions, to within the default

value of the optimality tolerance, and constraints are

satisfied to within the default value of the constraint

tolerance.

<stopping criteria details>

Optimal solution:

fval =

0.6250

x opt =

0.7500

2.2500

which is very similar to the result as found with the grid search method in
Section 1.2.2. (With a finer grid in the grid method, the grid solution will
become even closer to the fmincon solution.)

[End of Example 1.8]

1.2.6.3 sqp (Octave)

The information below is compiled from Octave’s documentation about the
sqp function.9

The sqp function implements an NLP (Nonlinear Programming) optimizer
using a sequential (or successive) quadratic programming algorithm.

9Where appropriate, I have modified the nomenclature.
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The optimization problem to be solved is:

min
x
f(x)

subject to:

• Nonlinear inequality (greater-than-or-equal) constraints:10

ggeq(x) ≥ 0

• Nonlinear equality constraints:

heq(x) = 0

• Bounds on the optimization variables:

lb ≤ x ≤ ub

Example 1.9 sqp (Octave)

Below is an Octave script that solves the same optimization problem as
was solved with Matlab’s fmincon optimizer in Example 1.8. In the script,
the sqp function invokes three functions, namely fun objective,
fun constr h eq, and fun constr g g These functions are defined in separate
function files (m-files).11 The function files are shown below the script.

Script name: octave script sqp.m.

clear all, close all, format compact

% Model params:

p1 = 1;

p2 = 2;

p3 = 0.5;

params model.p1 = p1;%params model is a struct. p1 is a field.

params model.p2 = p2;

params model.p3 = p3;

%Inputs to sqp:

10Note that in the sqp function, the nonlinear inequality is a greater-than-or-equal
inequality, while in fmincon, the nonlinear inequality is a less-than-or-equal inequality.

11Local functions like in Matlab are not supported in Octave.
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x guess = [0,1]’;

fun objective handle = @(x)fun objective(x,params model);

fun constr h eq handle = @(x)fun constr h eq(x,params model);

fun constr g geq handle = @(x)fun constr g geq(x,params model);

x lb = [0,2]’;

x ub = [1,3]’;

%Executing sqp:

[x opt,fval,info,output,lambda] =...

sqp(x guess,fun objective handle,fun constr h eq handle,...

fun constr g geq handle,x lb,x ub);

%Results:

fval

x opt

Contents of function files (m-files):

fun objective.m:

function f = fun objective(x,params model)

p1 = params model.p1;

p2 = params model.p2;

p3 = params model.p3;

f = (x(1)-p1)^2+(x(2)-p2)^2+p3;

endfunction

fun constr h m:

function h eq = fun constr h eq(x,params model)

h eq = [ ];
endfunction

fun constr g gm:

function g geq = fun constr g geq(x,params model)

p1 = params model.p1;

p2 = params model.p2;

p3 = params model.p3;

g geq = -x(1)+x(2)-1.5; %Left side of nonlinear in: g leq >=
0.

endfunction

The result of running the script script sqp octave.m is:
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fval = 0.62500

x opt =

0.75000

2.25000

which is the same as with fmincon in Matlab.

[End of Example 1.9]

1.2.7 Global optimization

The grid search method with a sufficiently small resolution (search step) is
a global optimizer, but the method may arrive at an inaccurate value of
the global optimum. The Newton search method will arrive at an accurate
value of the local optimum. These two methods can be combined into an
accurate global optimizer as follows:

1. Do a grid search. The optimal solution from this search is here
denoted xgrid.

2. Use the optimum from the grid search as the optimal guess in the
Newton search, that is,

xguess = xgrid

As an alternative to the second item above (a Newton search), a new grid
search can be made around the solution from the first grid search and with
a (much) smaller resolution. For example, the range of x(1) can be set to

[x(1)grid −∆x(1), x(1)xgrid + ∆x(1)]

where x(1)grid is the solution for x1 from the first grid search, and ∆x(1) is
the resolution. The same applies to x(2).

Dedicated global optimization methods exist, for example the so-called
genetic algorithms, cf. the Global Optimization Toolbox for Matlab,
and/or [Edgar et al., 2001].

1.3 Some applications of optimization

1.3.1 Introduction

Optimization methods can be used to solve different kinds of problems, as:
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• Controller tuning

• Parameter estimation

• State estimation

• Model-based control

• Process optimization

The clue is, of course, to state the problem as an optimization – typically a
minimization – problem,

min
x
f(x)

and then solve this problem with one of the methods described in Section
1.1, or with other methods. Some typical problems of the kinds listed
above are presented in the following sections.

1.3.2 PI controller tuning

To appear.

1.3.3 Parameter estimation of static and dynamic models
using nonlinear optimization

You can use optimization methods for estimation of parameters in a
mathematical model. The model can be static or dynamic. Dynamic
models may be in the form of:

• Differential equations (continuous-time models), linear or nonlinear,
possibly in the form of a state space model

• Difference equations (discrete-time models), linear or nonlinear,
possibly in the form of a state space model

• Transfer functions - Laplace-transform based (continuous-time
transfer functions) or Z-transform based (discrete-time transfer
functions)

The formulation of the parameter estimation problem as an optimization
problem can be done as follows:
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• The objective function to be minimized is the sum of squared
prediction errors:

SSPE =

N∑
k=1

e(k)2 (1.65)

where e is the prediction error which is the difference between the
(real, observed) measurements and the model-based predicted or
calculated measurements (there are N measurement samples):

e = ymeas − ypred (1.66)

ypred is calculated in simulations, using the model. Therefore, ypred is
a function of the parameters to be estimated, and SSPE is a also a
function of the parameters.

• The parameters to be estimated are used as optimization variables.
All the parameters may be collected in a parameter vector:

P = [p(1), p(2), ..., p(r)]T (1.67)

• In each iteration, the optimizer runs a simulation with parameter
values that are adjusted based on previous iterations (simulations).
The iterations stops when when the parameter values that minimizes
the SSPE, are found. Those values are the ultimate, estimated
parameter values.

Mathematically, the optimization problem can be stated as:

min
P=[p(1),p(2),...,p(r)]

SSPE

s.t. (subject to) the given mathematical model.

Figure 1.17 illustrates the principle of optimization-based parameter
estimation.

Any nonlinear optimizer can be used to implement the parameter
estimation. In the following example, the fmincon optimizer in Matlab is
used.

Model validation. Roughly said, even a model with wrong structure –
i.e. a poorly structured model – can be fitted to given data in a least
square sense (mimimizing SSPE). How can you check if the adapted model
is actually representing the real system well, or accurately? Such a check is
denoted model validation. It may be done as follows. Divide the original
data series in two parts, typically of equal sizes:
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Figure 1.17: The principle of parameter estimation using optimization. The
ultimate (estimated) parameter values are those that minimize SSPE. (SSPE
= sum of squared prediction errors.)

• Model adaptation part : This part is used for the parameter
estimation.

• Model validation part : This part is used for checking if the model is
valid or accurate.

So, do not use the data used for model adaptation also for model
validation. A new, different data set must be used for the validation.

The model validation can be realized by comparing a simulated response
with the real response. In that simulation, the model with the estimated
parameters is used, and the simulation is driven by the input data series in
the validation data set. If there is only one model (only one model
candidate), the model validation is just a visual check to convince yourself
that the model reasonably well fits the real motor, as represented by the
given data series.

In some applications there are several candidates of models, for example, a
first order differential equation and a second order differential equation
that are both assumed to represent the real system. You can select the
best model as the one that minimizes a numerical measure (and not just a
visual check). A typical measure to be minimized is the SSPE index, cf.
Eq. (1.65), based on the validation data set. Then, the ultimate model is
the one with the smallest SSPE.
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Recursive (online) parameter estimation. The parameter
estimation described in this section is a batch implementation since it
operates on the whole data series available. An alternative term is full
information estimation. If the parameters may change continuously, you
may consider online parameter estimation where the estimates are updated
continuously based on the most recent process measurement available.

Two methods for online parameter estimation are:

• Moving horizon estimation (MHE) which is presented in Section
1.3.4.

• Kalman filtering which is presented in Chapter ... (ref to be added).

In both methods, the parameters are estimated as state variables. The
original state vector is augmented with parameter states. Therefore, the
Kalman filter used for parameter estimation is denoted augmented Kalman
filter, and the MHE may similarly be denoted augmented MHE.

Among those two alternatives, I generally recommend Kalman filtering
since it is easier to implement, executes faster, and the performance is
typically comparable with that of a successful implementation of MHE.12

Example 1.10 Parameter estimation of a DC motor using
fmincom (Matlab)

In this example, two parameters of a mathematical model of a real DC
motor, see Figure 1.18, are estimated (with batch estimation) with the
fmincon optimizer in Matlab. There is only one model candidate, so the
model validation is in the form of just a visual check.

The control signal, u [V], is the input signal. The rotational speed of the
motor is measured with a tachometer, which produces a voltage that is
proportional to the speed. The measurement signal, S [V], is regarded as
the output signal. A mathematical model of the motor can be developed
from electrical and mechanical laws. However, under reasonable
assumptions, this model can be approximated with the following time
constant model which represents the dynamics of the motor:

T Ṡ = −S +Ku+ L (1.68)

12My own experience is that MHE may actually fail to estimate parameters (expect for
simple models) while the Kalman filter works well.
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(AC/DC 
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Servo amplifier

+/-18V DC
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Open circuit = Stop)

Mains (220V AC)

Figure 1.18: DC motor. (http://techteach.no/tekdok/dcmotor)

where K [V/V] is the gain and T [s] is the time constant. K and T are to
be estimated from experimental data. L [V] represents the load torque on
the motor. In this example it is assumed that L can be neglected.

A series of data of u and S have been recorded from an experiment. These
data are available at http://techteach.no/tekdok/dcmotor/.

Below is a Matlab script that implements the parameter estimation of K
and T . Comments are included throughout the script.

The original data series is cut in two of equal sizes:

• The first part (first half of the time interval) is used for the
parameter estimation, or in more general terms: model adaptation.

• The second part is used for model validation.

The result of the estimation is

Kest = 0.865 (1.69)

Test = 0.270 (1.70)

Figure 1.19 shows the real u and the real S and the simulated S with
estimated K and T . The simulation is run with both adaptation
(estimation) data and validation data. Since the simulated S fits well with
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Figure 1.19: Example: 1.10: Real and simulated data with estimated model
parameters.

the real S from the validation data, we can conclude that the model is
valid (accurate).

Script name: script dc motor model adapt fmincon.m.

%----------------------------------------------------------

%Parameter estimation of a gain & time-constant model of DC motor

%from experimental data using nonlinear optimation

%with fmincon() in Matlab.

%----------------------------------------------------------
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%Model (gain & time-constant model):

%

%dSdt(t) = (1/T)*[K*u(t)-S(t)]

%

%where:

%S [V] is rotational speed measurement.

%u [V] is control signal.

%K [V/V] is gain (to be estimated).

%T [s] is time-constant (to be estimated).

%--------------------------------------------------

clear all

close all

format compact

commandwindow

%--------------------------------------------------

%Loading logfile, and assigning the data to a matrix:

data series = load(’logfile1.txt’);

Ts = 0.02; %Sampling interval

L = length(data series);

%First fraction (portion) of logfile

%to be used for model adaptation:

F = 0.5;

N = floor(L*F);

%Extracts data for estimation (model adaptation):

t real estim = Ts*[1:N]; %Time array

u real estim = data series(1:N,2);
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S real estim = data series(1:N,3);

%Data for model validation:

t real valid = Ts*[N+1:L];

u real valid = data series(N+1:L,2);

S real valid = data series(N+1:L,3);

%Total data:

t real total = Ts*[1:L];

u real total = data series(1:L,2);

S real total = data series(1:L,3);

%--------------------------------------------------

%Upper and lower bounds of optim variables (parameters):

K max = 2; %[V/V]

T max = 1; % [s]

K min = 0.2;

T min = 0.05;

p ub = [K max, T max];

p lb = [K min, T min];

%--------------------------------------------------

%Guessed values of optim vars (params):

p guess = [0.1, 0.2];

%--------------------------------------------------

%Known parameter values (if any):

p known = [];

%--------------------------------------------------

%Initialization of simulation:

S sim init = S real total(1);
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S sim k = S sim init;

%--------------------------------------------------

%Preallocation of array used in plotting:

S sim plot array = t real total*0;

%--------------------------------------------------

%Optimization (calculating optim param values) with fmincon:

%Linear inequalities and equalities,

%set empty since not used in this application:

Aineq = []; Bineq = []; Aeq = []; Beq = [];

%Defining function handle:

fun objective handle = ...

@(p)fun objective(p,p known,t real estim,...

u real estim,S real estim,S sim init,Ts);

%Defining function handle:

fun constraints handle = ...

@(p)fun constraints(p,p known,t real estim,...

u real estim,S real estim,S sim init,Ts);

my optimoptions = optimoptions(@fmincon); %Using default options

%my optimoptions = optimoptions(@fmincon,’Algorithm’,’sqp’);

[p opt,fval,exitflag,output,lambda,grad,hessian] = ...

fmincon(fun objective handle,p guess,Aineq,Bineq,Aeq,Beq,...

p lb,p ub,fun constraints handle,my optimoptions);

%--------------------------------------------------

%Displaying the optimal solution:

disp(’-------------------’)

disp(’Optimal parameter estimates:’)
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K estim = p opt(1)

T estim = p opt(2)

%--------------------------------------------------

%Simulation with adapted model over whole interval,

%and comparing with real data.

%Using estiated param values:

K = K estim;

T = T estim;

%Initialization:

S sim init = S real total(1);

S sim k = S sim init;

%Simulation loop:

for k sim = 1:length(t real total)

%Integration with Euler forward:

dS sim dt k = (1/T)*(-S sim k + K*u real total(k sim));

S sim kp1 = S sim k + Ts*dS sim dt k;

%Updating array used in plotting:

S sim plot array(k sim) = S sim k;

%Time shift:

S sim k = S sim kp1;

end

%--------------------------------------------------

%Plotting:

h = figure; %Getting figure handle

fig posleft = 8;fig posbottom = 1.5;fig width = 24;fig height = 20;

fig pos size 1 = [fig posleft,fig posbottom,fig width,fig height];
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set(gcf,’Units’,’centimeters’,’Position’,fig pos size 1);

figtext = ’Estimation of model params of DC motor’;

set(gcf,’Name’,figtext,’NumberTitle’,’on’)

figure(1)

subplot(2,1,1)

plot(t real total,S sim plot array,’r’,t real total,S real total,’b’,...

t real estim,t real estim*0-4,’g*’,...

t real valid,t real valid*0-4,’m*’)

axis([t real total(1),t real total(end),-4,4])

grid minor

title({’Real S = blue. Sim S with adapted model = red. ’;...

’Interval for adaptation = green. Validation = magenta.’})

xlabel(’t [s]’)

ylabel(’[V]’)

subplot(2,1,2)

plot(t real total,u real total,’b’,...

t real estim,t real estim*0-4,’g*’,...

t real valid,t real valid*0-4,’m*’)

axis([t real total(1),t real total(end),-4,4])

grid minor

title({’Control sigal, u, applied to both real and sim process.

’;...

’Interval for adaptation = green. Validation = magenta.’})

xlabel(’t [s]’)

ylabel(’[V]’)

%--------------------------------------------------
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%Saving plot figure as pdf file (for inclusion in document):

saveas(h,’example dcmotor param estim’,’pdf’)

%--------------------------------------------------

%Defining local functions used by fmincon:

%(local functions must be defined at the end of the script)

%--------------------------------------------------

function f = fun objective(p,p known,t real estim,...

u real estim,S real estim,S sim init,Ts)

%Parameters (optim variables) used by fmincon

K = p(1);

T = p(2);

%Initialization:

S sim k = S sim init;

sspe km1 = 0;

%Simulation loop:

for k sim = 1:length(t real estim)

%Integration with Euler forward:

dS sim dt k = (1/T)*(-S sim k + K*u real estim(k sim));

S sim kp1 = S sim k + Ts*dS sim dt k;

%Updating sspe:

d sspe k = (S real estim(k sim) - S sim k)^2;

sspe k = sspe km1 + d sspe k;

%Time shift in sim loop:

S sim k = S sim kp1;

sspe km1 = sspe k;

end
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%Objective function (to be minimized):

f = sspe k;

end

%--------------------------------------------------

%fun constraints (this function is actually not used):

function [cineq, ceq] = fun constraints(p,p known,t real estim,...

u real estim,y real estim,y sim init,Ts)

cineq = []; % Compute nonlinear inequalities.

ceq = []; % Compute nonlinear equalities.

end

[End of Example 1.10]

1.3.4 Moving horizon estimation

Moving horizon estimation (MHE) [Robertson et al., 1996]13 is a method
for state estimation of dynamic systems that can be regarded as an
alternative to Kalman Filtering. The principle is to continuously use the
present and the previous measurements of the system and known inputs to
the system over a fixed-length historical time horizon, together with an
assumed mathematical model of the system to calculate the optimal (best)
present state of the system. This is illustrated in Figure 1.20.

It is assumed that the model of the pertinent system is given as a discrete
time state space model on the following form:

xk+1 = f(xk, ·) + wk (1.71)

yk = g(xk, ·) + vk (1.72)

where:

• k is the discrete time index, so that the actual time is tk = kTs where
Ts is the time-step or sampling time.

13A good presentation of MHE and several other topics in state estimation is given in
[Boegli, 2014].
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Timetktk-1tk-2tk-N tk-(N-1)

y, known

u, known

d, known

x, unknown

Estimation horizon (N+1 points of time)

Main aim is to estimate xk = x(tk)

= ?

Present 

point of 

timeHistory

Figure 1.20: Principle of Moving horizon estimation (MHE). x is state. y is
measurement. u is control signal. d is disturbance.
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• x is the state vector to be estimated. More precisely, it is the value of
x at time (index) k that we want to estimate. x is a vector of n
scalar state variables:

x =


x(1)
x(2)

...
x(n)

 (1.73)

• f is a vectorial function. It is a vector of n nonlinear, or linear,
functions of xk:

f =


f1(xk, ·)
f2(xk, ·)

...
fn(xk, ·)

 (1.74)

There may be additional arguments of f , as the control variable
(vector) uk, the process disturbance (vector), dk, and parameters
(vector), p. These additional arguments are represented by the dots
in Eq. (1.71), and we assume they have known values. (Estimation of
unknown disturbances or parameters is described in Section 1.3.4.)

• wk represents the non-modeled or unknown process disturbance,
acting on the state, at time index k. wk may alternatively be
interpreted as a model error since wk represents the error of the
prediction of the state at the next time-step. Any known disturbance
is represented by dk, cf. the above item. It is not necessary to
assume any paricular statistical properties of wk, however, it may be
reasonable to assume it is a random signal – “white noise” – with a
specified covariance matrix, say Q, just as in the Kalman Filter. We
may then use Q in the objective function of MHE, as described
below.

• y is the system output vector of m elements assumed being measured
and therefore having known value.

• g is a vectorial function. It is a vector of m nonlinear, or linear,
functions of x and possibly of additional variables and parameters,
represented by dots:

g =


g1(xk, ·)
g2(xk, ·)

...
gm(xk, ·)

 (1.75)

• vk is the measurement error. It is not necessary to assume any
paricular statistical properties of vk, however, it may be reasonable
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to assume it is a random signal – “white noise” – with a specified
covariance matrix, say R, just as in the Kalman Filter. We may then
use R in the objective function of MHE, as described below.

The optimization problem in MHE to be solved continuously, to
continuously calculate the state estimate, is:

min
X

J (1.76)

J is the objective function. It is defined below. X is a matrix containing
the state at each point of time of the estimation horizon:

X =
[
xk−N , xk−(N−1), xk−1, xk

]

=


x(1)k−N x(1)k−(N−1) · · · x(1)k−1 x(1)k
x(2)k−N x(2)k−(N−1) · · · x(2)k−1 x(2)k

...
... · · ·

...
...

x(n)k−N x(n)k−(N−1) · · · x(n)k−1 x(n)k


(1.77)

X can be denoted the total state matrix. X will be the solution of the
MHE optimization problem. From this X,

xk =


x(1)k
x(2)k

...
x(n)k


is used as the applied present state estimate. As an example, assume the
model has n = 3 state variables and the horizon length is 5, the number of
optimization variables n(N + 1) = 3 · 6 = 18.

Before we look at the details of J , the optimization function to be
minimized, let’s review the mathematical term norms since J contain
norms.

About norms. A norm is a measure of the length of a vector. There
are various kinds of norms, but the most common one is the quadratic
norm and variations of such. For a given vector z, the expression ‖z‖2M is
the square of the M -quadratic norm of z.14 In detail, ‖z‖2M is

14Quadratic norms are also denoted l2-norms or Euclidian distance.
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‖z‖2M = zTMz

=
[
z(1), · · · , z(r)

]  M11

. . .

Mrr


 z(1)

...
z(r)


= M11z(1)2 + · · ·+Mrrz(r)

2

If M=I , the identity matrix, the M -quadratic norm is the square of the
well-known length of the vector, since the length is√
zT z =

√
z(1)2 + · · ·+ z(r)2.

The optimization function. The optimization function to be
minimized, cf. Eq. (1.76), is

J =
k−1∑

i=k−N
‖xi+1 − f(xi, ·)‖ 2Q−1 +

k∑
i=k−N

‖yi − g(xi, ·)‖ 2R−1 (1.78)

Based on Eqs. (1.71) and (1.72), J can also be written as

J =
k−1∑

i=k−N
‖wi‖ 2Q−1 +

k∑
i=k−N

‖vi‖ 2R−1 (1.79)

or

J =

k−1∑
i=k−N

wT
i Q
−1wi +

k∑
i=k−N

vTi R
−1vi (1.80)

where:

The process disturbance vector:

wi =

 w(1)i
...

w(n)i


The measurement vector:

vi =

 v(1)i
...

v(m)i


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Q−1 is a weight matrix:

Q−1 =


1

Q11
0

. . .

0 1
Qnn


Assuming that w is random, Q can be interpreted as the inverse of the
process disturbance covariance matrix.

R−1 is a weight matrix:

R−1 =


1

R11
0

. . .

0 1
Rmm


Assuming that v is random, R can be interpreted as the inverse of the
measurement error covariance matrix.

Now, Eq. (1.80) can be written in detail as

J =

k−1∑
i=k−N

[
w(1)2i
Q11

+ · · ·+ w(n)2i
Qnn

]
+

k∑
i=k−N

[
v(1)2i
R11

+ · · ·+ v(m)2i
Rmm

]

Roughly said, MHE minimizes, in a least squares sense, the measurement
errors and the non-measured process disturbances (or model errors) over
the estimation horizon. In other words, MHE utilizes the measurements
(by minimizing the influence of the measurement errors) and the model (by
minimizing the model errors) to calculate the state estimate.

Typically, the objective function is presented with an additive term
denoted the arrival cost15, a:

J =
k−1∑

i=k−N
‖wi‖ 2Q−1 +

k∑
i=k−N

‖vi‖ 2R−1 + a (1.81)

where
a = ‖xk−N − xk−N‖ 2P−1 (1.82)

where xk−N is the actual state at the start of the horizon, and P−1 is the
corresponding weight or cost matrix. The actual state is not known, so it
is problematic to give it a value. This uncertainty can be expressed with a
very large P , causing a to vanish. Furthermore, an estimate of xk−N will
actually be provided since xk−N is included in the first term of Eq. (1.78).
Consequently, it is probably ok to omit the arrival cost term from the
objective function, i.e. a can be set to zero in Eq. (1.81).

15Maybe a better name would have been the departure cost?
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Constraints. The MHE optimization problem can also include
constraints on X (the optimization variables). For example, if the liquid
level in a tank is one state variable, it is natural to define the maximum
possible level as an upper bound and the minimum possible level as the
lower bound on X.

Guessed value of X. When solving the optimization problem, it is
necessary that the optimizer is supplied with a good guess of the
optimization variable, X. As a good value of Xguess at time index k, here
denoted Xguessk , we can use the pertinent portion of Xoptk−1

, the optimal
solution found at time index k − 1 (the previous point of time). However,
in Xoptk−1

, we must leave out the state xoptk−1
while we insert a guessed

value for time index k. Lets us denote the latter guessed state by xguessk .
How to select xguessk ? It is here suggested that a model-predicted value of
x based on xoptk−1

is used to calculate xguessk , as follows:

xguessk = xpredk = f(xoptk−1
, uk, dk)

To summarize, Xguessk can be selected as

Xguessk =
[
Xopt(2:k−1)

, xpredk

]
(1.83)

where (2:k-1) is Matlab-like notation.

No linearization. In MHE, no linearization of the state space model is
needed. Hence, it is a “nonlinear” state estimation method. This is
contrary to Extended Kalman Filtering, which requires linearization of the
state space model to obtain the Kalman gain.

Estimation of model parameters and state disturbances. In state
estimation, it is often a wish to estimate model parameters and/or process
disturbances in addition to the “ordinary” states that stem from the
principles of mechanistic modeling, i.e. material balances, energy balances,
impulse balances (laws of motion) etc. Such parameters or disturbances
can be estimated in a straighforward way with MHE (as with a Kalman
Filter) if we model them as state variables. Remember that a state
variable is represented by its time derivative, i.e, a differential equation, in
a continuous-time state space model. It is common to assume that a
parameter or a disturbance to be estimated is constant. What is the time
derivative of a constant? Zero! Therefore, a model parameter p can be
represented by the differential equation

ṗ = 0 (1.84)
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The corresponding difference equation to be included in the discrete time
state space model of MHE, is

pk+1 = pk + wp (1.85)

where w is model error pertinent to this parameter state variable. The
original state space model has now been augmented with this difference
equation. p is an augmentation state variable. The original state vector
has been augmented, to become:

xaug =

[
xoriginal

p

]
(1.86)

Similary, a state disturbance can be estimated by augmenting the original
model with the following difference equation

dk+1 = dk + wd (1.87)

Tuning factors of MHE. The main tuning factors of MHE are:

• The estimation horizon length, N . The larger N , the “safer” optimal
solution can be expected, but on the expense of more computational
demand. A typical value of N seems to be between 5 and 20,
assuming an appropriate time step length (which may be e.g. 1/5 of
smallest time-constant-like dynamics represented by the model).

• The covariance matrix, R, of the measurement error. Increasing the
value of Rjj , which is the variance of measurement error of variable
y(j), implies higher influence of y(j) on the state estimate, but at the
expense of measurement noise v(j) also influencing more on the
estimate. Although you may use R as a tuning factor, it may be
reasonable to fix it to the variance of an appropriate measurement
series of the real process measurement. If you do not have any
measurement series at hand, you may set it to the square of 1/100 of
an assumed value of the measurement (which corresponds to the
standard deviation of the measurement error assumed as 1/100 of the
measurement value), i.e.

R(j, j) =

[
y(j)assumed

100

]2
(1.88)

• The covariance matrix, Q, of the non-modelled process disturbance.
It is not easy to set a proper value of Q, but the following starting
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value may be selected for Q(j, j) – the covariance of the
non-modelled process disturbance acting on state x(j):

Q(j, j) =

[
x(j)assumed

1000

]2
(1.89)

If you increase Q(j, j), the estimate of x(j) may approach to its
“true” value faster, but at the expense of the estimate becoming
more noisy. This can be seen from Eq. (1.79): If element Q(j, j) is
increased, it is implicitly assumed that the pertinent non-modelled
process disturbance wj is increased, which calls for a more
“aggressive” update of the state estimate by the MHE.

Example 1.11 Moving Horizon Estimation with fmincon
(Matlab)

Below is a Matlab script that implements MHE for the following
continuous-time model (which will be discretized):

ẋ(1) = x(2)
ẋ(2) = [−x(2) +Ku] /T + d
y = x(1)

where K is the gain and T is the time constant. d is a process disturbance
which is to be estimated along with x(1) and x(2). The measurement is
y = x(1). u is the control signal. Figure 1.21 shows the results of a
simulation. The MHE is started when the simulation has run for as long as
the length of the estimation horizon, which is here 10 time-steps
corresponding to 5 s. We see that the MHE estimates the states, including
the disturbance, well.

Below is a Matlab script, including comments, that implements the MHE
using the fmincon optimizer. fmincon is described in Section 1.2.6.2.

Notes about the Matlab implementation:

• The optimization variable in the MHE optimization problem is the
total state matrix, X, cf. Eq. (1.77). You can represent X with a
Matlab matrix in fmincon! Thus, it is not necessary to transform
this matrix to an array for fmincon.

• The objective function and the constraints function are defined as
local functions within the script, and they exist only within the
script. Local functions are supported from Matlab version R2016b.
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Figure 1.21: Example 1.11: MHE estimation.



CHAPTER 1. OPTIMIZATION 73

Script name: script mhe fmincon.m.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Finn Aakre Haugen

%15 04 2018

%MHE with model with 2 state variables and 1 disturbance as

augmented state:

%dx1 dt = x2 + w1

%dx2/dt = (-x2 + K*u + d)/T + w2

%y = x1 + v

%where d = x3 is to be estimated.

%

%Note 1: Using matrix as optim variable.

%Note 2: Objective and constraints functions for fmincon are

defined

%as local functions at the end of this script.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

disp(’-------------------------------’);

disp(’Moving Horizon Estimator for:’)

disp(’dx1 dt=x2; dx2/dt=(-x2+K*u)/T;’);

disp(’x1, x2, x3 = d are estimated.’);

disp(’y=x1 is measured.’);

disp(’’);

%-------------------------------------------

close all

clear all

format compact

commandwindow
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%-------------------------------------------

%Model params:

K = 1; %Gain

T = 2;%s Time constant

n = 3;%Number of state variables

model params.K = K;

model params.T = T;%model params is struct. K is field.

cov process disturb w1 = .001;

cov process disturb w2 = .001;

cov process disturb w3 = .001;

cov process disturb w = ...

diag([cov process disturb w1,cov process disturb w2,...

cov process disturb w3]);

cov meas noise v1 = .01;

cov meas noise v = diag([cov meas noise v1]);

%--------------------------

%Time settings:

Ts = 0.5;%s

t start = 0;%s

t stop = 20;%s

t array = [t start:Ts:(t stop-Ts)];%Array for storage

N = length(t array);

t mhe = 5

N mhe = floor(t mhe/Ts)

number optim vars = n*N mhe

%-----------------------------------
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%Preallocation of arrays for storage:

u sim array = t array*0;

x1 sim array = t array*0;

x2 sim array = t array*0;

x3 sim array = t array*0;

y1 sim array = t array*0;

x1 est optim plot array = t array*0;

x2 est optim plot array = t array*0;

x3 est optim plot array = t array*0;

%-----------------------------------

%Sim initialization:

x1 sim init = 2;

x2 sim init = 3;

x1 sim k = x1 sim init;

x2 sim k = x2 sim init;

%-----------------------------------

%MHE initialization:

mhe array = zeros(1,N mhe);

x1 est init guess = 0;

x2 est init guess = 0;

x3 est init guess = 2;

x1 est optim array = zeros(1,N mhe) + x1 est init guess;

x2 est optim array = zeros(1,N mhe) + x2 est init guess;

x3 est optim array = zeros(1,N mhe) + x3 est init guess;

x est guess matrix = ...

[x1 est optim array;x2 est optim array;x3 est optim array];
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u mhe array = mhe array*0;

y1 meas mhe array = mhe array*0;

%-----------------------------------

%Figure size etc.:

fig posleft=8;fig posbottom=2;fig width=24;fig height=18;

fig pos size 1=[fig posleft,fig posbottom,fig width,fig height];

h = figure(1);

set(gcf,’Units’,’centimeters’,’Position’,fig pos size 1);

figtext=’Moving Horizon Estimator’;

set(gcf,’Name’,figtext,’NumberTitle’,’on’)

%-----------------------------------

%Sim loop:

for k = 1:N

t k = k*Ts;

%-----------------------------

%Process simulator:

if t k < 2

u k = 2;

d k = 1;

end

if t k >= 2 %Change of u

u k = 2;

end

if t k >= 8 %Change of d

d k = 1;

end
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if t k >= 10 %Change of u

u k = 6;

end

if t k >= 15 %Change of d

d k = 2;

end

%Derivatives:

dx1 sim dt k = x2 sim k;

dx2 sim dt k = (-x2 sim k + K*u k + d k)/T;

f1 sim k = x1 sim k + Ts*dx1 sim dt k;

f2 sim k = x2 sim k + Ts*dx2 sim dt k;

%Integration and adding disturbance:

w1 sim k = sqrt(cov process disturb w1)*randn;

w2 sim k = sqrt(cov process disturb w2)*randn;

x1 sim kp1 = f1 sim k + w1 sim k;

x2 sim kp1 = f2 sim k + w2 sim k;

%Calculating output and adding meas noise:

v1 sim k = sqrt(cov meas noise v1)*randn;

y1 sim k = x1 sim k + v1 sim k;

%Storage:

t array(k) = t k;

u sim array(k) = u k;

x1 sim array(k) = x1 sim k;

x2 sim array(k) = x2 sim k;

x3 sim array(k) = d k;

y1 sim array(k) = y1 sim k;
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%Preparing for time shift:

x1 sim k = x1 sim kp1;

x2 sim k = x2 sim kp1;

%Updating u and y for use in MHE:

u mhe array = [u mhe array(2:N mhe),u k];

y1 meas mhe array = [y1 meas mhe array(2:N mhe),y1 sim k];

y meas mhe array = [y1 meas mhe array];

%--------------------------------------------------------------------

if k > N mhe

Q = cov process disturb w;

R = cov meas noise v;

covars.Q = Q;

covars.R = R;

%Matrices defining linear constraints for use in fmincon:

A ineq = []; B ineq = []; A eq = []; B eq = [];

%fmincon initialization:

x1 est init error = 0;

x2 est init error = 0;

x3 est init error = 0;

x est init error=[x1 est init error;x2 est init error;x3 est init error];

%Guessed optim states:

%Guessed present state (x k) is needed to calculate optimal present

meas

%(y k). Model is used in prediction:

x1 km1 = x1 est optim array(N mhe);

x2 km1 = x2 est optim array(N mhe);
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x3 km1 = x3 est optim array(N mhe);

dx1 dt km1 = x2 km1;

dx2 dt km1 = (-x2 km1 + K*u k + x3 km1)/T;

dx3 dt km1 = 0;

x1 pred k = x1 km1 + Ts*dx1 dt km1;

x2 pred k = x2 km1 + Ts*dx2 dt km1;

x3 pred k = x3 km1 + Ts*dx3 dt km1;

%Now, guessed optimal states are:

x1 est guess array = ...

[x1 est optim array(2:N mhe),x1 pred k];

x2 est guess array = ...

[x2 est optim array(2:N mhe),x2 pred k];

x3 est guess array = ...

[x3 est optim array(2:N mhe),x3 pred k];

x est guess matrix = ...

[x1 est guess array;x2 est guess array;x3 est guess array];

%Lower and upper limits of optim variables:

x1 est max = 100;

x2 est max = 10;

x3 est max = 10;

x1 est max array = zeros(1,N mhe) + x1 est max;

x2 est max array = zeros(1,N mhe) + x2 est max;

x3 est max array = zeros(1,N mhe) + x3 est max;

x1 est min = -100;

x2 est min = -10;

x3 est min = -10;
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x1 est min array = zeros(1,N mhe) + x1 est min;

x2 est min array = zeros(1,N mhe) + x2 est min;

x3 est min array = zeros(1,N mhe) + x3 est min;

x est ub matrix = [x1 est max array;x2 est max array;x3 est max array];

x est lb matrix = [x1 est min array;x2 est min array;x3 est min array];

%Creating function handles:

fun objective handle = ...

@(x est matrix) fun objective mhe(x est matrix,...

y meas mhe array,u mhe array,model params,covars,x est init error,n,N mhe,Ts);

fun constraints handle = ...

@(x est matrix) fun constraints mhe(x est matrix,...

y meas mhe array,u mhe array,model params,covars,x est init error,n,N mhe,Ts);

%Calculating MHE estimate using fmincon:

%fmincon options = optimoptions(@fmincon);

fmincon options = optimoptions(@fmincon,’display’,’none’);

% fmincon options =

optimoptions(@fmincon,’algorithm’,’sqp’,’display’,’none’);

[x est optim matrix,fval,exitflag,output,lambda,grad,hessian] = ...

fmincon(fun objective handle,x est guess matrix,A ineq,...

B ineq,A eq,B eq,x est lb matrix,x est ub matrix,...

fun constraints handle,fmincon options);

x1 est optim array = x est optim matrix(1,:);

x2 est optim array = x est optim matrix(2,:);

x3 est optim array = x est optim matrix(3,:);

% fval

end %if
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x1 est optim plot array(k) = x1 est optim array(end);

x2 est optim plot array(k) = x2 est optim array(end);

x3 est optim plot array(k) = x3 est optim array(end);

%Continuous plotting:

x lim array=[t start,t stop];

if (k>1 & k<N)

if k < N mhe

pause(1);

else

pause(0);

end

subplot(4,1,1)

plot([t array(k-1),t array(k)],...

[u sim array(k-1),u sim array(k)],’b-o’);

if k==2

hold on

grid minor

xlim(x lim array);

ylim([0 10]);

title(’u’)

%ylabel(’[m]’)

%xlabel(’t [s]’)

end

subplot(4,1,2)

plot([t array(k-1),t array(k)],...

[x1 est optim plot array(k-1),x1 est optim plot array(k)],’r-o’,...
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[t array(k-1),t array(k)],...

[x1 sim array(k-1),x1 sim array(k)],’b-o’);

if k==2

hold on

grid minor

xlim(x lim array);

ylim([0 100]);

title(’x1\ sim = blue. x1\ mhe\ est = red.’)

%ylabel(’[m]’)

%xlabel(’t [s]’)

end

subplot(4,1,3)

plot([t array(k-1),t array(k)],...

[x2 est optim plot array(k-1),x2 est optim plot array(k)],’r-o’,...

[t array(k-1),t array(k)],...

[x2 sim array(k-1),x2 sim array(k)],’b-o’);

if k==2

hold on

grid minor

xlim(x lim array);

ylim([0 10]);

title(’x2\ sim = blue. x2\ mhe\ est = red.’)

%ylabel(’[m]’)

%xlabel(’t [s]’)

end

subplot(4,1,4)
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plot([t array(k-1),t array(k)],...

[x3 est optim plot array(k-1),x3 est optim plot array(k)],’r-o’,...

[t array(k-1),t array(k)],...

[x3 sim array(k-1),x3 sim array(k)],’b-o’);

if k==2

hold on

grid minor

xlim(x lim array);

ylim([0 3]);

title(’x3\ sim = K\ sim = blue. x3\ mhe\ est = d\ mhe\ est = red.’)

%ylabel(’[m]’)

xlabel(’t [s]’)

end

end %if (k>1 & k<N)

end %sim loop

%----------------------------------------------------

%Printing figure as pdf file:

saveas(h,’example mhe’,’pdf’)

%----------------------------------------------------

%Defining local functions:

%----------------------------------------------------

function f = fun objective mhe(x est matrix,...

y meas mhe array,u mhe array,model params,...

covars,x est init error,n,N mhe,Ts)

K = model params.K;

T = model params.T;
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Q = covars.Q;

R = covars.R;

J km1 = 0;

y1 meas mhe array = y meas mhe array(1,:);

for k = 1:N mhe

u k = u mhe array(1,k);

x k = x est matrix(:,k);

x1 k = x k(1);

x2 k = x k(2);

x3 k = x k(3);

h1 k = x1 k;

y1 meas k = y1 meas mhe array(1,k);

v1 k = y1 meas k - h1 k;

v k = [v1 k];

if k <= N mhe-1

x kp1 = x est matrix(:,k+1);

x1 kp1 = x kp1(1);

x2 kp1 = x kp1(2);

x3 kp1 = x kp1(3);

dx1 dt k = x2 k;

dx2 dt k = (-x2 k + K*u k + x3 k)/T;

dx3 dt k = 0;

f1 k = x1 k + Ts*dx1 dt k;

f2 k = x2 k + Ts*dx2 dt k;

f3 k = x3 k + Ts*dx3 dt k;

w1 k = x1 kp1 - f1 k;
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w2 k = x2 kp1 - f2 k;

w3 k = x3 kp1 - f3 k;

w k = [w1 k,w2 k,w3 k]’;

end

dJ k = w k’*inv(Q)*w k + v k’*inv(R)*v k;

J k = J km1 + dJ k;

%Time shift:

J km1 = J k;

end %for k=1:N mhe

f = J k;

end

%------------------------------------------------

function [cineq,ceq]=fun constraints mhe(x est matrix,...

y meas mhe array,u mhe array,model params,covars,x est init error,n,N,Ts)

cineq = []; % Compute nonlinear inequalities. Calculated below.

ceq = []; % Compute nonlinear equalities.

end

%------------------------------------------------

[End of Example 1.11]

1.3.5 Model-predictive control

Model-predictive control (MPC) is the dominant model-based control
method. In [Maciejowski, 2002], it is argued that “MPC is the only
advanced control technique that is more advanced than standard PID to
have a significant and widespread impact on industrial process control”.
The history of MPC may be traced back to Dynamic Matrix Control
(DMC) method implemented by Cutler and Ramaker at Shell Oil in 1973
[Cutler & Ramaker, 1980]. A standard overview over MPC technology is
given in [Qin & Badgwell, 2003]. A more recent overview is given in
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[Lee, 2011].

MPC is available in various professional and industrial software tools, e.g.
DeltaV Predict (Emerson Process), 800xA APC (ABB), PCS7 (Siemens),
MPC Toolbox of Matlab and Simulink (Mathworks), and Control Design
Toolkit of LabVIEW (National Instruments).

As a mathematical problem, MPC and MHE are almost identical: Both
exploits a mathematical model which is run (basically simulated) over a
time horizon. However, they can also be regarded as opposites of each
other: MPC looks into the future, while MHE looks into the past. And, in
MPC, the process measurement is an input (to the MPC), and the control
signal is an output, while in MHE, the situation is opposite – the process
measurement is an output (from the MHE), and the control signal is an
input.

MPC exists in different versions. Here, nonlinear MPC is presented. The
term “nonlinear” is used because the underlying mathematical model of
the process to be controlled, is a nonlinear state space model. The model
may be multivariable and may contain time delays. Nonlinear MPC can of
course be applied to linear models, too, since linear state space models are
just a special case of nonlinear state space models.

The principle of MPC is continuously calculation of the optimal (“best”)
control signal sequence over a future or prediction time horizon using the
following information:

• A process model. The model is used by the optimizer to simulate the
process over the prediction horizon.

• The current process state as obtained from measurements and/or
state estimates from a state estimator which typically is in the form
of a Kalman filter.

• Setpoint values and process disturbance values known over the
prediction horizon.

• Constraints (maximum and minimum values) on the control signal,
the process variable, and state variables.

It can be claimed that MPC resembles closely how a human controls a
process, like driving a car: The driver looks ahead to take into account
future disturbances like other cars, pedestrians and other obstacles, and
future speed setpoints as shown on the signs ahead, while manipulating the
various actuators (throttle, break, steering wheel, gear).
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The predictions/simulations in the MPC can be based on any model that
is representative of the process to be controlled. A particularly flexible
model form is a discrete time nonlinear state space model:

xk+1 = f(xk, uk,, dk, ·) (1.90)

yk = g(xk, ·) (1.91)

where x is the state vector, y is the process output variable vector, u is the
control signal vector, and d is the process disturbance vector. f and g are
nonlinear (or linear) vectorial functions. This model form is described in
more detail in Section 1.3.4.

Figure 1.22 illustrates the principle of MPC. The predicted values are
found by successive simulations over the prediction horizon performed by
the optimizer until the optimal solution (optimal control signal sequence)
has been found. The optimal control sequence or array (or matrix in the
multivariable case), uopt is calculated as the solution of an optimization
problem where typically the future (predicted) control errors and control
signal changes are minimized in a least squares sense. And from this
optimal future control sequence, the first element is picked out and applied
as control signal to the process, i.e.

u(tk) = u(k) = uopt(1) (1.92)

The optimization function to be minimized in MPC may be stated as
follows:

min
U
J (1.93)

J is the objective function. It is defined below. U is a matrix containing
the r control signals at each point of time of the prediction horizon:

U =
[
uk, uk+1, · · · , uk+(N−1), uN

]

=


u(1)k u(1)k+1 · · · u(1)k+(N−1) u(1)k+N

u(2)k u(2)k+1 · · · u(2)k+(N−1) u(2)k+N
...

... · · ·
...

...
u(r)k u(r)k+1 · · · u(r)k+(N−1) u(r)k+N


(1.94)

The number of optimization variables is the number of elements of U . The
number is r(N + 1).

U can be denoted the total control signal matrix. U will be the solution of
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Timetk tk+1 tk+Ntk+(N-1)

y (predicted by model)

uopt (predicted)

d (assumed)

 x(tk) (known from 

meas or estimator)

Prediction horizon (N+1 points of time)

Main aim is to calculate

uopt(tk) = uopt(1)
= ?

Present 

point of 

time Future

ysp (known)

Ts

 y(tk) (known from 

meas or estimator)

 d(tk) (known from meas 

or estimator or assumed)

x (predicted by model)

Figure 1.22: The principle of MPC.

the MPC optimization problem. From this U ,

uk =


u(1)k
u(2)k

...
u(r)k


is used as the control signal applied to the process actuator.16

The optimization function to be minimized, cf. Eq. (1.93), is

J =

k+N∑
i=k

(
‖e‖ 2Ce

+ ‖du‖ 2Cdu

)
(1.95)

where expressions like ‖·‖M means M -quadratic norm, see Page 66. In
more detail, Eq. (1.95) is

J =
k+N∑
i=k

(
eTi Ceei + duTi Cdudui

)
(1.96)

The symbols in Eq. (1.96) are described below.

16You can represent U with a Matlab matrix in fmincon. So it is not necessary to
transform this matrix to an array for fmincon.
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The control error vector:

ei =

 e(1)i
...

e(m)i

 (1.97)

where e(j)i is the control error related to process output no. j at
time-index i:

e(j)i = y(j)spi − y(j)i (1.98)

The control signal change vector:

dui =

 du(1)i
...

du(r)i

 (1.99)

where du(j)i is the control signal change relative to the control signal at
the previous point of time:

du(j)i = u(j)i − u(j)i−1 (1.100)

The matrixes Ce and Cdu in Eq. (1.95) are cost (or weight) matrixes which
typically are set as constant matrixes:

Ce =

 Ce(1, 1) 0
. . .

0 Ce(m,m)

 (1.101)

Cdu =

 Cdu(1, 1) 0
. . .

0 Cdu(r, r)

 (1.102)

Ce and Cdu are tuning factors in MPC.

Now, Eq. (1.96) can be written in detail as

J =

k+N∑
i=k

[
Ce(1, 1)e(1)2i + · · ·+ Ce(m,m)e(m)2i

]
+
[
Cdu(1, 1)du(1)2i + · · ·+ Cdu(r, r)du(r)2i

]
(1.103)

Roughly said, MPC produces the control signal that gives the optimal
comprimise between control errors and control signal changes. It is not
possible to obtain both very small control errors and very small control
signal changes. Hence, a comprimise will always exist.
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Constraints. You may include constraints in the MPC optimization
problem: Typically, upper and lower bounds are set for the control signal.
Furthermore, you can set limits on the process output variable and on
certain state variables. For example, if the liquid level in a tank is one
state variable, it is natural to define a maximum level limit and a
minimum level limit.

Guessed value of U . When solving the optimization problem, it is
necessary that the optimizer is supplied with a good guess of the
optimization variable, U . As a good value of Uguess at time index k, here
denoted Uguessk , we can use the optimal solution found at time index k − 1
(the previous point of time):

Uguessk = Uoptk−1
(1.104)

No linearization. In MPC as described above, no linearization of the
model is needed. This is contrary to the traditional Linear Quadratic
Regulator (LQR), which has several similarities with MPC, as LQR
assumes a linear state space model.

The need for a state estimator. The optimizer in MPC uses
successive simulations for the prediction. For the simulations to become
accurate, it is necessary that the initial state of the simulations are close to
the present state, xk, of the process to be controlled. Typically, not all the
states are measured, and if so, a state estimator – most often a Kalman
Filter – is used to provide an estimate of xk. Even if all the states are
estimated, state estimator can be useful for several reasons:

• The estimates are typically less noisy than the (raw) measurements.

• If a process sensor fails, and this failure is detected, the state
estimator may be configures to continue providing a representative
state estimate despite the lack of measurement-based update or
correction of the estimate. This enhances the robustness of the MPC.

• A state estimator may be used to estimate disturbances and/or
model parameters. This may increases the robustness of the MPC as
the process model underlying the MPC becomes more accurate.
Disturbances and model parameters can be estimated as augmented
state variables modelled as constants, i.e. as state variables having
time-derivatives equal to zero but with an additive random
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disturbance/noise. This augmentation is explained in detail on Page
91.

Tuning factors of MPC. The main tuning factors of MPC are:

• The prediction horizon length, N . The larger N , the better ability to
take into account future setpoints and disturbances. A drawback of
selecting a large N, is the increase of the computational demand
which is due to the more challenging optimization problem (more
optimization variables to be optimized) and longer simulations. A
typical value of N for simple applications seems to be between 5 and
50, assuming an appropriate time step length (which may be e.g. 1/5
of smallest time-constant-like dynamics represented by the model).
To reduce the computional burden, control signal blocking can be
considered, as explained earlier in this section.

• The control error cost matrix, Ce. Increasing the value of Ce(j, j),
forces the pertinent control error, e(j), to become smaller17, but at
the expense of larger variation in the control signal. Initially, you
may try setting Ce(j, j) equal to the square of inverse of the
maximum expected absolute value of the control error:

Ce(j, j) =
1

[|e(j)|max]2
(1.105)

This implies a normalization of the error terms in the objective
function. For example, the first error term in Eq. (1.103) becomes

Ce(1, 1)e(1)2i =
e(1)2i

[|e(1)|max]2

Then, you may try using only Cdu as a tuning parameter (cf. next
item). In the scalar case, i.e. m = 1 and r = 1, you may simply set
Ce = 1 since it is only the ratio between Ce and Cdu that counts for
the tuning.

• The control signal change cost matrix, Cdu,. Also the terms in Cdu

may be normalized before the tuning. Initially, you may try setting
Cdu(j, j) equal to the square of inverse of the maximum change
(between two time steps) of the control signal:

Cdu(j, j) =
1

[|du(j)|max]2
(1.106)

17The higher cost of something, the less of it is bought/used.
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Timetk tk+1 tk+Ntk+(N-1)

Prediction horizon (N+1 points of time)

= ?

Future

Ts

tk tk+1 tk+Ntk+(N-1)

Control blocking: 3 intervals of fixed u.

Ts

u

u

No blocking: 9 intervals of u.

= ?

Figure 1.23: Control blocking.

For example, the first control signal change term in Eq. (1.103)
becomes

Cdu(1, 1)du(1)2i = kdu(1,1)
du(1)2i

[|du(1)|max]2

where the factor kdu(1,1) with the default value of 1 has been included
for tuning purposes. Then, you can try tuning kdu(1,1): Increasing it
gives smoother control signal (less change). Decreasing gives more
abrupt changes in the control signal.

Control blocking. Control blocking can be used to reduce the number
of optimization variables. Control blocking is to fix the control signal in
time-blocks in the predition horizon, see Figure 1.23. My experience from
is that using as small number as 3 intervals may not detoriate the
performance of the MPC. I have even tried using only one interval (i.e.
constant u throughout the horizon), with acceptable performance. Control
blocking, as other settings, should be tested in simulations before being
applied to a real process.

Example 1.12 Model-predictive control with fmincon (Matlab)
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Figure 1.24: Air heater.

This example is about MPC for a simulated air heater lab station. The
physical air heater is described on http://home-usn.no/finnh/air heater.
Figure 1.24 shows the air heater.18

The continuous-time model assumed representing the air heater is:

θtṪheat(t) = −Theat(t) +Kh [u(t− θd) + d] (1.107)

Tout(t) = Theat(t) + Tenv (1.108)

Variables and parameters and assumed parameter values are defined in
Table 1.1. The model (1.107)-(1.108) can be characterized as a
“time-constant with time-delay” model.

Figure 1.25 shows the results with the MPC applied to a simulated air
heater. The simulator and the MPC, including a state estimator in the
form of an augmented Kalman Filter for estimation of Theat, d, and Tout,
using the (simulated) measurement of Tout as process measurement. MPC

18University College of Southeast Norway, Porsgrunn, has 26 of identical units of this
lab station, being used in several control courses in both bachelor and master programmes
in technology.
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Table 1.1: Nomenclature of the mathematical model of the air heater.

Symbol Unit Value (default) Description

Kh [oC/V] 3.5 Heater gain.

Tenv [oC] 25 The environmental, or
ambient, temperature. It is
the temperature in the outlet
air of the air tube when the
control signal to the heater
has been set to zero for
relatively long time (some
minutes).

Theat [oC] - The additive contribution to
the total temperature Tout

due to the heater.

Tout [oC] - Temperature of the air
flowing out of tube.
Measured by a sensor.

u [V] - Control signal to heater.

d [V] -0.5 Input disturbance (added to
the control signal).

θd [s] 3.0 Time-delay representing air
transportation and
sluggishness of heater.

θt [s] 23.0 Time-constant representing
sluggishness of heater.
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Figure 1.25: Example 1.12: Control of the outlet temperture of the air
heater with MPC.

is implemented in Matlab with fmincon as optimizer. Control blocking is
not implemented.

Below is a Matlab script, including comments, that implements the air
heater simulator with MPC and Kalman Filter, using the fmincon
optimizer. fmincon is described in Section 1.2.6.2.

Notes about the Matlab implementation:

• The objective function and the constraints function are defined as
local functions within the script, and they exist only within the
script. Local functions are supported from Matlab version R2016b.
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Comments to the results:

• The MPC seems to work very well as the control is accurate, without
excessive changes in the control signal.

• The MPC starts increasing the control signal before the point of time
of the setpoint change. This illustrates well the predictive nature of
the MPC.

• The tracking of the setpoint ramp and sinusoid is accurate. Although
not shown here, with a well tuned PI controller, the control error
remains non-zero during the setpoint ramp, and the error is
substantial during the sinusoidal setpoint.

Script name: script mpc airheater fmincon.m.

%Finn Aakre Haugen, USN

%18 April 2018

%MPC control of simulated air heater

%http://home.usn.no/finnh/air heater/

%----------------------------------

clear all

close all

format short

%----------------------------------

%Process params:

gain = 3.5; %[deg C]/[V]

theta const = 23; %[s]

theta delay = 3; %[s]

model params.gain = gain;

model params.theta const = theta const;

model params.theta delay = theta delay;

Temp env k = 25; %[deg C]
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%----------------------------------

%Time settings:

Ts = 0.5; %Time-step [s]

t pred horizon = 8;

N pred = t pred horizon/Ts;

t start = 0;

t stop = 300;

N sim = (t stop-t start)/Ts;

t = [t start:Ts:t stop-Ts];

%-----------------------

%MPC costs:

C e = 1;

C du = 20;

mpc costs.C e = C e;

mpc costs.C du = C du;

%----------------------------------

%Defining sequence for temp out setpoint:

Temp sp const = 30; %[C]

Ampl step = 2; %[C]

Slope = -0.04; %[C/s]

Ampl sine = 1; %[C]

T period = 50; %[s]

t const start = t start;t const stop = 100;

t step start = t const stop;t step stop = 150;

t ramp start = t step stop;t ramp stop = 200;

t sine start = t ramp stop;t sine stop = 250;
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t const2 start = t sine stop;t const2 stop = t stop;

for k = 1:N sim

if (t(k) >= t const start & t(k) < t const stop),

Temp sp array(k) = Temp sp const;

end

if (t(k) >= t step start & t(k) < t step stop),

Temp sp array(k)=Temp sp const + Ampl step;

end

if (t(k) >= t ramp start & t(k) < t ramp stop),

Temp sp array(k) = Temp sp const+Ampl step+Slope*(t(k)-t ramp start);

end

if (t(k) >= t sine start & t(k) < t sine stop),

Temp sp array(k) = ...

Temp sp const+Ampl sine*sin(2*pi*(1/T period)*(t(k)-t sine start));

end

if (t(k) >= t const2 start),

Temp sp array(k) = Temp sp const;

end

end

%----------------------------------

%Initialization:

u init = 0;

N delay = floor(theta delay/Ts) + 1;

delay array = zeros(1,N delay) + u init;

%----------------------------------

%Initial guessed optimal control sequence:
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Temp heat sim k = 0; %[C]

Temp out sim k = 28; %[C]

d sim k = -0.5;

%----------------------------------

%Initial values of Kalman Filter:

Temp heat est k = 0; %[C]

Temp out est k = 25; %[C]

d est k = 1; %[V]

x est pred k = [Temp heat est k; d est k]; %Initial pred state estim

n states = length(x est pred k);

%Covar of pred estim error:

P est error Temp heat = (0.01^2);

P est error d = (0.01^2);

P est pred k = diag([0.1*P est error Temp heat, 0.1*P est error d]);

%----------------------------------

%Tuning of Kalman Filter:

cov w Temp heat = 0.01^2;

cov w d = 0.01^2;

Q = diag([1*cov w Temp heat, 1*cov w d]);

cov v Temp out = 0.01^2;

R = diag([1*cov v Temp out]);

%----------------------------------

%Initial guessed optimal control sequence:

u guess = zeros(N pred,1) + u init;

%----------------------------------

%Initial value of previous optimal value:
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u opt km1 = u init;

%----------------------------------

%Defining arrays for plotting:

t plot array = zeros(1,N sim);

Temp out sp plot array = zeros(1,N sim);

Temp out sim plot array = zeros(1,N sim);

u plot array = zeros(1,N sim);

d est plot array = zeros(1,N sim);

d sim plot array = zeros(1,N sim);

%----------------------------------

%Matrices defining linear constraints for use in fmincon:

A = [];

B = [];

Aeq = [];

Beq = [];

%----------------------------------

%Lower and upper limits of optim variable for use in fmincon:

u max = 5;

u min = 0;

u ub = zeros(1,N pred) + u max;

u lb = zeros(1,N pred) + u min;

u delayed k = 2;

%-----------------------------------

%Figure settings:

fig posleft=8;fig posbottom=2;fig width=24;fig height=18;

fig pos size 1=[fig posleft,fig posbottom,fig width,fig height];
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h = figure(1);

set(gcf,’Units’,’centimeters’,’Position’,fig pos size 1);

figtext=’MPC control of air heater’;

set(gcf,’Name’,figtext,’NumberTitle’,’on’)

%----------------------------------

%For-loop for MPC of simulated process incl Kalman Filter:

tic

for k = 1:(N sim-N pred)

t k = t(k);

t plot array(k)= t k;

%-----------------------

%Kalman Filter for estimating states Temp heat and d using meas of

Temp out.

%Also, Temp out is estimated. All these estimates are used by the

MPC.

%Note: The time-delayed u is used as control signal here.

%Matrices in linearized model:

A cont = [-1/theta const, gain/theta const; 0,0];

C cont = [1 0];

A disc = eye(n states) + Ts*A cont;

C disc = C cont;

%Kalman gain:

K k = P est pred k*C disc’*inv(C disc*P est pred k*C disc’ + R);

%Innovation process:

e est k = Temp out sim k - Temp out est k;

%Measurement-based correction of estimate = the applied estimate:

x est corr k = x est pred k + K k*e est k;
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Temp heat est k = x est corr k(1,1);

d est k = x est corr k(2,1);

%Applied estimated process meas:

Temp out est k = Temp heat est k + Temp env k;

%Prediction of state estimate for next time-step:

dTemp heat est corr dt k = ...

(1/theta const)*(-Temp heat est k + gain*(u delayed k + d est k))...

+ K k(1,1)*e est k;

dd est corr dt k = 0 + K k(2,1)*e est k;

dx est corr dt k = [dTemp heat est corr dt k; dd est corr dt k];

x est pred kp1 = x est corr k + Ts*dx est corr dt k;

%Auto-covariance of error of corrected estimate:

P est corr k = (eye(n states)-K k*C disc)*P est pred k;

%Auto-covariance of error of predicted estimate of next time step:

P pred kp1 = A disc*P est corr k*A disc’ + Q;

%Time shift:

P est pred k = P pred kp1;

x est pred k = x est pred kp1;

%-----------------------

%Storage for plotting:

Temp out est plot array(k) = Temp out est k;

d est plot array(k) = d est k;

%-----------------------

%Setpoint array to optimizer:

Temp sp to mpc array = Temp sp array(k:k+N pred);

Temp out sp plot array(k) = Temp sp array(k);
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%-----------------------

%Estimated state to optimizer:

state est.Temp heat est k = Temp heat est k;

state est.d est k = d est k;

%-----------------------

%Calculating optimal control sequence:

fun handle = @(u) fun objectfunction mpc airheater...

(u,state est,Temp env k,Temp sp to mpc array,...

model params,mpc costs,N pred,Ts);

fmincon options = optimoptions(@fmincon,’display’,’none’);

% fmincon options =

optimoptions(@fmincon,’algorithm’,’active-set’,’display’,’none’);

% fmincon options =

optimoptions(@fmincon,’algorithm’,’sqp’,’display’,’none’);

[u opt,fval,exitflag,output,lambda,grad,hessian] =...

fmincon(fun handle,u guess,A,B,Aeq,Beq,u lb,u ub,@fun constraints mpc airheater,fmincon options);

u guess = u opt; %Optimal solution to be used as guessed solution in

next iteration.

u k = u opt(1); %Optimal control signal (sample) to be applied

u plot array(k) = u k; %Storage for plotting

u opt km1 = u opt(1);

%------------------------------

%Applying optimal control signal to simulated process:

d sim k = -0.5;

d sim plot array(k) = d sim k;

u delayed k = delay array(N delay);

u nondelayed k = u k;
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delay array = [u nondelayed k,delay array(1:end-1)];

dTemp heat sim dt k = ...

(1/theta const)*(-Temp heat sim k + gain*(u delayed k + d sim k));

Temp heat sim kp1 = Temp heat sim k + Ts*dTemp heat sim dt k;

Temp out sim k = Temp heat sim k + Temp env k;

Temp out sim plot array(k) = Temp out sim k;%Storage for plotting

%------------------------------

%Time shift for simulator:

Temp heat sim k = Temp heat sim kp1;

%------------------------------

%Continuous plotting:

x lim array = [t start,t stop];

if (k>1 & k<N sim)

pause(0.0);

subplot(3,1,1)

plot([t plot array(k-1),t plot array(k)],...

[Temp out sp plot array(k-1),Temp out sp plot array(k)],’r-’,...

[t plot array(k-1),t plot array(k)],...

[Temp out sim plot array(k-1),Temp out sim plot array(k)],’b-’,...

[t plot array(k-1),t plot array(k)],...

[Temp out est plot array(k-1),Temp out est plot array(k)],’m-’);

if k==2

hold on

grid minor

xlim(x lim array);

ylim([28 33]);
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title(’Temp\ out\ sp = red. Temp\ out\ sim = blue. Temp\ out\ est =

magenta.’)

ylabel(’[deg C]’)

xlabel(’t [s]’)

end

subplot(3,1,2)

plot([t plot array(k-1),t plot array(k)],...

[u plot array(k-1),u plot array(k)],’b-’);

if k==2

hold on

grid minor

xlim(x lim array);

ylim([0 5]);

title(’Control signal u’)

ylabel(’[V]’)

xlabel(’t [s]’)

end

subplot(3,1,3)

plot([t plot array(k-1),t plot array(k)],...

[d est plot array(k-1),d est plot array(k)],’r-’,...

[t plot array(k-1),t plot array(k)],...

[d sim plot array(k-1),d sim plot array(k)],’b-’);

if k==2

hold on

grid minor

xlim(x lim array);
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ylim([-1 1]);

title(’d\ est = red. d\ sim = blue.’)

%ylabel(’[m]’)

xlabel(’t [s]’)

end

end %if (k>1 & k<N)

end

%Elapsed total time and avg loop time:

toc total=toc

toc loop=toc total/k

%----------------------------------------------------

%Printing figure as pdf file:

% saveas(h,’example mpc air heater’,’pdf’)

%----------------------------------------------------

%Functions defined as local functions:

function f =

fun objectfunction mpc airheater(u,state est,Temp env k,...

Temp sp to mpc array,model params,mpc costs,N pred,Ts)

gain = model params.gain;

theta const = model params.theta const;

theta delay = model params.theta delay;

C e = mpc costs.C e;

C du = mpc costs.C du;

Temp heat k = state est.Temp heat est k;

d k = state est.d est k;

N delay = floor(theta delay/Ts) + 1;



CHAPTER 1. OPTIMIZATION 107

delay array = zeros(1,N delay) + u(1);

u km1 = u(1);

J km1 = 0;

%Applying optimal control signal to simulated process using explicit

Euler:

for k = 1:N pred

u k = u(k);

Temp sp k = Temp sp to mpc array(k);

%Time delay:

u delayed k = delay array(N delay);

u nondelayed k = u k;

delay array = [u nondelayed k,delay array(1:end-1)];

%Solving diff eq:

dTemp heat dt k = ...

(1/theta const)*(-Temp heat k + gain*(u delayed k + d k));

Temp heat kp1 = Temp heat k + Ts*dTemp heat dt k;

Temp out k = Temp heat k + Temp env k;

%Updating objective function:

e k = Temp sp k - Temp out k;

du k = (u k - u km1)/Ts;

J k = J km1 + Ts*(C e*e k^2 + C du*du k^2);

%Time shift:

Temp heat k = Temp heat kp1;

u km1 = u k;

J km1 = J k;

end
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Table 1.2: Abbreviations

Abbreviation Meaning

DMC Dynamic matrix control

LS Least squares (method)

MHE Moving horizon estimation (or -estimator)

MPC Model-predictive control (or -controller)

NLS Nonlinear least squares (method)

SSPE Sum of squared prediction errors

f = J k;

end

%--------------------------------

function

[cineq,ceq]=fun constraints mpc airheater(u,state est,Temp env k,...

Temp sp to mpc array,model params,mpc costs,N pred,Ts)

cineq = []; % Compute nonlinear inequalities.

ceq = []; % Compute nonlinear equalities.

end

[End of Example 1.12]

1.3.6 Process optimization

To appear

1.4 Nomenclature

1.4.1 Abbreviations

Table 1.2 defines abbreviations used in this document.
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1.4.2 Mathematical symbols

To appear.
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