
19

3.4 Discretizing a PID controller

3.4.1 Computer based control loop

Figure 3.2 shows a control loop where controller is implemented in a
computer. The computer registers the process measurement signal via an
AD converter (from analog to digital). The AD converter produces a
numerical value which represents the measurement. As indicated in the
block diagram this value may also be scaled, for example from volts to
percent. The resulting digital signal, y(tk), is used in the control function,
which is in the form of a computer algorithm or program calculating the
value of the control signal, u(tk).

Process

Sensor

v
yu(t)Discrete-time

PID controller
Scaling and

DA-converter
with signal holding

AD-converter
and scaling

Samplingh

u(tk)e(tk)r(tk)

y(tk)

tk=kh
h

r(tk)

tk

e(tk)

tk

u(tk) u(t)

t t

y(t)

tk

y(tk)

t

Measured
y(t)

Figure 3.2: Control loop where the controller function is implemented in a
computer

The control signal is scaled, for example from percent to milliamperes, and
sent to the DA converter (from digital to analog) where it is held constant
during the present time step. Consequently the control signal becomes a
staircase signal. The time step or the sampling interval, h [s], is usually
small compared to the time constant of the actuator (e.g. a valve) so the
actuator does not feel the staircase form of the control signal. A typical
value of h in commercial controllers is 0.1 s.



20

3.4.2 Development of discrete-time PID controller

The starting point of deriving the discrete-time PID controller is the
continuous-time PID (proportional + integral + derivate) controller:

u(t) = Kpe(t) +
Kp

Ti

Z t

0
e dτ +KpTdėf (t) (3.19)

where u is the controller output (the control variable), e is the control
error:

e(t) = r(t)− y(t) (3.20)

where r is the reference or setpoint, and y is the process measurement. ef
is the filtered control error. It is the output of the following lowpass filter:

ef (s) =
1

Tfs+ 1
e(s) (3.21)

where Tf is the filter time-constant, which is typically selected as

Tf = aTd (3.22)

where typically a = 0.1.

We will now derive a discrete-time formula for u(tk), the value of the
control signal for the present time step. The discretization can be
performed in a number of ways. Probably the simplest way is as follows:
Differentiating both sides of (3.19) gives2

u̇(t) = Kpė(t) +
Kp

Ti
e(t) +KpTdëf (t) (3.23)

Applying the Backward differentiation method (3.2) to u̇, ė, and ëf gives

u(tk)− u(tk−1)
h

= Kp
e(tk)− e(tk−1)

h
+

Kp

Ti
e(tk) +KpTd

ėf (tk)− ėf (tk−1)
h

(3.24)
Applying the Backward differentiation method on ėf (tk) and ėf (tk−1) in
(3.24) gives

u(tk)− u(tk−1)
h

= Kp
e(tk)− e(tk−1)

h
(3.25)

+
Kp

Ti
e(tk) (3.26)

+KpTd

ef (tk)−ef (tk−1)
h − ef (tk−1)−ef (tk−2)

h

h
(3.27)

2The time derivative of an integral is the integrand.



21

Solving for u(tk) finally gives the discrete-time PID controller:

u(tk) = u(tk−1) +Kp [e(tk)− e(tk−1)] +
Kph

Ti
e(tk) (3.28)

+
KpTd
h

[ef (tk)− 2ef (tk−1) + ef (tk−2)] (3.29)

The discrete version of the filter (3.21) can be derived as described in
Section 3.3.

The discrete-time PID controller algorithm (3.28) is denoted the absolute
or positional algorithm. Automation devices typically implements the
incremental or velocity algorithm. because it has some benefits. The
incremental algorithm is based on splitting the calculation of the control
value into two steps:

1. First the incremental control value ∆u(tk) is calculated.

2. Then the total or absolute control value is calculated with
u(tk) = u(tk−1) +∆u(tk−1).

Thus, the incremental PID algorithm is

∆u(tk) = Kp [e(tk)− e(tk−1)] +
Kph

Ti
e(tk) (3.30)

+
KpTd
h

[ef (tk)− 2ef (tk−1) + ef (tk−2)] (3.31)

u(tk) = u(tk−1) +∆u(tk) (3.32)

The summation (3.32) implements the (numerical) integral action of the
PID controller.

The incremental PID control function is particularly useful if the actuator
is controlled by an incremental signal. A step-motor is such an actuator.
The motor itself implements the numerical integration (3.32). It is (only)
∆u(tk) that is sent to the motor.

3.4.3 Some practical features of the PID controller

A practical PID controller must have certain features to be functional:

• Integrator anti windup: Large excitations of the control system,
typically large disturbances or large setpoint changes, may cause the



22

control signal to reach its maximum or minimum limits with the
control error being different from zero. The summation in (3.32),
which is actually a numerical integration, will then cause u to
increase (or descrease) steadily — this is denoted integral windup — so
that u may get a very high (or low) value. When the excitations are
back to normal values, it may take a very long time before the large
value of u is integrated back to a normal value (i.e. within 0 — 100%),
causing the process output to deviate largely from the setpoint.

Preventing the windup is (not surprisingly) denoted anti windup, and
it can realized as follows:

1. Calculate an intermediate value of the control variable u(tk)
according to (3.32), but do not send this value to the DA
(Digital-to-Analog) converter.

2. Check if this intermediate value is greater than the maximum
value umax (typically 100%) or less than the minimum value
umin (typically 0%). If it exceeds one of these limits, set ∆u(tk)
in (3.32) to zero.

3. Write u(tk) to the DA converter.

• Bumpless transfer: Suppose the controller is switched from
automatic to manual mode, or from manual to automatic mode (this
will happen during maintenance, for example). The transfer between
modes should be bumpless, ideally. Bumpless transfer can be realized
as follows:

— Bumpless transfer from automatic to manual mode: In manual
mode it is the manual (or nominal) control signal u0 that
controls the process. We assume here that the control signal
u(tk) in (3.32) has a proper value, say ugood, so that the control
error is small, immediately before the switch to manual mode.
To implement bumpless transfer, set u0 equal to ugood at the
switching moment.

— Bumpless transfer from manual to automatic mode: While the
controller is in manual mode, ∆u(tk) in (3.32) is set (forced) to
zero, and both u(tk) and u(tk−1) are set to u0, the manual
control value (which may be changed during the manual mode,
of course). After the switching from manual to automatic mode
allow ∆u(tk) to be calculated according to (3.30) (hence, do not
force ∆u(tk) to be zero any longer).



23

3.4.4 Selecting the sampling time of the control system

The DA converter (digital to analog) which is always between the
discrete-time control function and the continuous-time process to be
controlled, implements holding of the calculated control signal during the
time-step (sampling interval). This holding implies that the control signal
is time delayed approximately h/2, see Figure 3.3. The delay influences the

t

h/2

u

The original signal time-delayed h /2
= average stair-formed signal

Original discrete-time signal

The signal 
held fixed

Figure 3.3: The DA-converter holds the calculated control signal throyghout
the sampling interval, thereby introducing an approximate time-delay of h/2.

stability of the control loop. Suppose we have tuned a continuous-time
PID controller, and apply these PID parameters on a discrete-time PID
controller. Then the control loop will get reduced stability because of the
approximate delay of h/2. As a rule of thumb (this can be confirmed from
a frequency response based analysis), the stability reduction is small and
tolerable if the time delay is less than one tenth of the response-time of the
control system as it would have been with a continuous-time controller or a
controller having very small sampling time:

h

2
≤ Tr
10

(3.33)

which gives

h ≤ Tr
5

(3.34)

The response time is here the 63% rise time which can be read off from the
setpoint step response. For a system the having dominating time constant
T , the response-time is approximately equal to this time constant.


