
Advanced DYNAMICS and CONTROL

Finn Haugen
TechTeach

August 2010

ISBN 978-82-91748-17-7



2



Contents

I CONTINUOUS-TIME SYSTEMS THEORY 13

1 State-space models 15

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2 A general state-space model . . . . . . . . . . . . . . . . . . . 15

1.3 Linear state-space models . . . . . . . . . . . . . . . . . . . . 18

1.4 Linearization of non-linear models . . . . . . . . . . . . . . . 19

1.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . 19

1.4.2 Deriving the linearization formulas . . . . . . . . . . . 21

2 Frequency response 25

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2 How to calculate frequency response from sinusoidal input
and output . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3 How to calculate frequency response from transfer functions . 28

2.4 Application of frequency response: Signal filters . . . . . . . . 33

2.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . 33

2.4.2 First order lowpass filters . . . . . . . . . . . . . . . . 34

3 Frequency response analysis of feedback control systems 39

3



4

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 Definition of setpoint tracking and disturbance compensation 40

3.3 Definition of characteristic transfer functions . . . . . . . . . 41

3.3.1 The Sensitivity transfer function . . . . . . . . . . . . 41

3.3.2 The Tracking transfer function . . . . . . . . . . . . . 44

3.4 Frequency response analysis of setpoint tracking and distur-
bance compensation . . . . . . . . . . . . . . . . . . . . . . . 45

3.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . 45

3.4.2 Frequency response analysis of setpoint tracking . . . 45

3.4.3 Frequency response analysis of disturbance compen-
sation . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4 Stability analysis of dynamic systems 55

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2 Stability properties and impulse response . . . . . . . . . . . 56

4.3 Stability properties and poles . . . . . . . . . . . . . . . . . . 58

4.4 Stability properties of state-space models . . . . . . . . . . . 64

5 Stability analysis of feedback systems 67

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.2 Pole-based stability analysis of feedback systems . . . . . . . 68

5.3 Nyquist’s stability criterion . . . . . . . . . . . . . . . . . . . 70

5.4 Stability margins . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.4.1 Stability margins in terms of gain margin and phase
margin . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.4.2 Stability margins in terms of maximum sensitivity am-
plitude . . . . . . . . . . . . . . . . . . . . . . . . . . . 79



5

5.5 Stability analysis in a Bode diagram . . . . . . . . . . . . . . 79

5.6 Robustness in term of stability margins . . . . . . . . . . . . 82

II DISCRETE-TIME SYSTEMS THEORY 87

6 Discrete-time signals 89

7 Difference equations 91

7.1 Difference equation models . . . . . . . . . . . . . . . . . . . 91

7.2 Calculating responses from difference equation models . . . . 92

8 Discretizing continuous-time models 93

8.1 Simple discretization methods . . . . . . . . . . . . . . . . . . 93

8.2 Discretizing a simulator of a dynamic system . . . . . . . . . 95

8.3 Discretizing a signal filter . . . . . . . . . . . . . . . . . . . . 97

8.4 Discretizing a PID controller . . . . . . . . . . . . . . . . . . 99

8.4.1 Computer based control loop . . . . . . . . . . . . . . 99

8.4.2 Development of discrete-time PID controller . . . . . . 100

8.4.3 Some practical features of the PID controller . . . . . 102

8.4.4 Selecting the sampling time of the control system . . . 103

9 Discrete-time state space models 105

9.1 General form of discrete-time state space models . . . . . . . 105

9.2 Linear discrete-time state space models . . . . . . . . . . . . 106

9.3 Discretization of continuous-time state space models . . . . . 106

9.3.1 Discretization of non-linear continuous-time state-space
models . . . . . . . . . . . . . . . . . . . . . . . . . . . 106



6

9.3.2 Discretization of linear continuous-time state-space mod-
els . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

10 The z-transform 111

10.1 Definition of the z-transform . . . . . . . . . . . . . . . . . . 111

10.2 Properties of the z-transform . . . . . . . . . . . . . . . . . . 112

10.3 z-transform pairs . . . . . . . . . . . . . . . . . . . . . . . . . 112

10.4 Inverse z-transform . . . . . . . . . . . . . . . . . . . . . . . . 113

11 Discrete-time (or z-) transfer functions 115

11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

11.2 From difference equation to transfer function . . . . . . . . . 115

11.3 From transfer function to difference equation . . . . . . . . . 116

11.4 Calculating time responses for discrete-time transfer functions 117

11.5 Static transfer function and static response . . . . . . . . . . 118

11.6 Poles and zeros . . . . . . . . . . . . . . . . . . . . . . . . . . 119

11.7 From s-transfer functions to z-transfer functions . . . . . . . 119

12 Frequency response of discrete-time systems 123

13 Stability analysis of discrete-time dynamic systems 129

13.1 Definition of stability properties . . . . . . . . . . . . . . . . . 129

13.2 Stability analysis of transfer function models . . . . . . . . . 130

13.3 Stability analysis of state space models . . . . . . . . . . . . . 133

14 Analysis of discrete-time feedback systems 137



7

III STOCHASTIC SIGNALS 143

15 Stochastic signals 145

15.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

15.2 How to characterize stochastic signals . . . . . . . . . . . . . 145

15.2.1 Realizations of stochastic processes . . . . . . . . . . . 145

15.2.2 Probability distribution of a stochastic variable . . . . 146

15.2.3 The expectation value and the mean value . . . . . . . 147

15.2.4 Variance. Standard deviation . . . . . . . . . . . . . . 148

15.2.5 Auto-covariance. Cross-covariance . . . . . . . . . . . 149

15.3 White and coloured noise . . . . . . . . . . . . . . . . . . . . 151

15.3.1 White noise . . . . . . . . . . . . . . . . . . . . . . . . 151

15.3.2 Coloured noise . . . . . . . . . . . . . . . . . . . . . . 153

15.4 Propagation of mean value and co-variance through static
systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

IV ESTIMATION OF PARAMETERS AND STATES 159

16 Estimation of model parameters 161

16.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

16.2 Parameter estimation of static models with the Least squares
(LS) method . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

16.2.1 The standard regression model . . . . . . . . . . . . . 162

16.2.2 The LS problem . . . . . . . . . . . . . . . . . . . . . 164

16.2.3 The LS solution . . . . . . . . . . . . . . . . . . . . . 165

16.2.4 Criterion for convergence of estimate towards the true
value . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168



8

16.2.5 How to compare and select among several candidates? 168

16.3 Parameter estimation of dynamic models . . . . . . . . . . . . 169

16.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . 169

16.3.2 Good excitation is necessary! . . . . . . . . . . . . . . 170

16.3.3 How to check that a model is good? . . . . . . . . . . 172

16.3.4 Estimation of differential equation models using the
LS-method . . . . . . . . . . . . . . . . . . . . . . . . 174

16.3.5 Estimation of black-box models using subspace methods175

17 State estimation with observers 185

17.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

17.2 How the observer works . . . . . . . . . . . . . . . . . . . . . 187

17.3 How to design observers . . . . . . . . . . . . . . . . . . . . . 188

17.3.1 Deriving the estimation error model . . . . . . . . . . 188

17.3.2 Calculation of the observer gain . . . . . . . . . . . . . 191

17.4 Observability test of continuous-time systems . . . . . . . . . 197

17.5 Discrete-time implementation of the observer . . . . . . . . . 200

17.6 Estimating parameters and disturbances with observers . . . 201

17.7 Using observer estimates in controllers . . . . . . . . . . . . . 207

17.8 Using observer for increased robustness of feedback control at
sensor failure . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

18 State estimation with Kalman Filter 215

18.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

18.2 Observability of discrete-time systems . . . . . . . . . . . . . 216

18.3 The Kalman Filter algorithm . . . . . . . . . . . . . . . . . . 218



9

18.3.1 The basic Kalman Filter algorithm . . . . . . . . . . . 218

18.3.2 Practical issues . . . . . . . . . . . . . . . . . . . . . . 227

18.3.3 Features of the Kalman Filter . . . . . . . . . . . . . . 229

18.4 Tuning the Kalman Filter . . . . . . . . . . . . . . . . . . . . 230

18.5 Estimating parameters and disturbances with Kalman Filter . 231

18.6 Using the Kalman Filter estimates in controllers . . . . . . . 239

18.7 Using the Kalman Filter for increased robustness of feedback
control at sensor failure . . . . . . . . . . . . . . . . . . . . . 239

V MODEL-BASED CONTROL 241

19 Testing robustness of model-based control systems with sim-
ulators 243

20 Feedback linearization 245

20.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

20.2 Deriving the control function . . . . . . . . . . . . . . . . . . 246

20.2.1 Case 1: All state variables are controlled . . . . . . . . 246

20.2.2 Case 2: Not all state variables are controlled . . . . . 251

21 LQ (Linear Quadratic) optimal control 257

21.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

21.2 The basic LQ controller . . . . . . . . . . . . . . . . . . . . . 258

21.3 LQ controller with integral action . . . . . . . . . . . . . . . . 268

21.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . 268

21.3.2 Including integrators in the controller . . . . . . . . . 269

21.3.3 Discrete-time implementation of the LQ controller . . 271



10

22 Model-based predictive control (MPC) 273

23 Dead-time compensator (Smith predictor) 285

A Model-based PID tuning with Skogestad’s method 289

A.1 The principle of Skogestad’s method . . . . . . . . . . . . . . 289

A.2 The tuning formulas in Skogestad’s method . . . . . . . . . . 292

A.3 How to find model parameters from experiments . . . . . . . 292

A.4 Transformation from serial to parallel PID settings . . . . . . 293

A.5 When the process has no time-delay . . . . . . . . . . . . . . 294



Preface

This book covers estimation of model parameters and states and
model-based control, and the systems theory required. I have selected the
topics among many possible topics by considering what I assume are the
most relevant topics in an application oriented course about these topics.

It is assumed that you — the reader — has basic knowledge about complex
number, differential equations, and Laplace transform based transfer
functions (s-transfer functions), and also that you have knowledge about
basic control methods, i.e. PID control, feedforward control and cascade
control. A reference for these topics is my book Basic Dynamics and
Control [5].

Supplementary material, as tutorials, ready-to-run simulators, and
instructional videos are available at techteach.no.

This book is available for sale only from the web site http://techteach.no.

It is not allowed to make copies of the book.

If you want to know about my background, please visit my home page
http://techteach.no/adm/fh.

Finn Haugen, MSc

TechTeach

Skien, Norway, August 2010

11



12



Part I

CONTINUOUS-TIME
SYSTEMS THEORY

13





Chapter 1

State-space models

1.1 Introduction

A state-space model is just a structured form or representation of the
differential equations for a system.

State-space models are useful in many situations:

• Linearization of non-linear models

• Calculation of time-responses — both analytically and
numerically

• Using simulation tools: MATLAB, LabVIEW, Octave, and Scilab
have simulation functions that assumes state-space models.

• Analysis of dynamic systems, e.g. stability analysis

• Analysis and design of advanced controllers and estimators:
Controllability and observability analysis; Design of LQ optimal
controllers, Model-based predictive control, and Feedback
linearization control; Design of state estimators (Kalman filters).

1.2 A general state-space model

In general, an n’th order state-space model consists of n first order
differential equations characterized by having the time-derivatives alone on

15



16

the left side. A general n’th order state-space model is

ẋ1 = f1() (1.1)
...

ẋn = fn() (1.2)

where f1(), . . . , fn() are functions (given by the model equations, of
course). The variables which have their time-derivatives in the state-space
model are the state-variables of the model.1 Thus, in the model above the
x-variables are state-variables. x is a common name for state-variable, but
you can use any name. The initial state (at t = 0) are defined by the
values x1(0), . . . , xn(0).

Some times you want to define the output variables of a state-space model.
y is a common name for output variable. A model with m output variables
can be written

y1 = g1() (1.3)
...

ym = gm() (1.4)

where g1(), . . . , gm() are functions. We can use the name state-space
model for (1.1) — (1.2) and for (1.1) — (1.4).

The following example shows an example of a state-space model. A second
order differential equation (which here is the model of a
mass-spring-damper-system) will be written as a second order state-space
model. We do this by defining a variable for each of the variables which
have their time-derivative in the differential equation. These new variables
becomes the state-variables of the state-space model. The same principle is
used also for developing state-space models from higher order differential
equations.

Example 1.1 Mass-spring-damper-model written as a state-space
model

Figure 1.1 shows a mass-spring-damper-system.z is position. F is applied
force. D is damping constant. K is spring constant. It is assumed that the
damping force Fd is proportional to the velocity, and that the spring force

1The name state-space model is because the values of the state-variables x1(t), . . . , xn(t)
defines the state of the at any instant of time. These values can be regarded as points in
the state-space.



17

m

K [N/m]

D [N/(m/s)]

F [N]

0 z [m]

Figure 1.1: Mass-spring-damper

Fs is proportional to the position of the mass. The spring force is assumed
to be zero when y is zero. Force balance (Newtons 2. Law) yields

mÿ(t) = F (t)− Fd(t)− Fs(t)

= F (t)−Dẏ(t)−Ky(t) (1.5)

which is a second order differential equation.

We define the following new variables: x1 for position z, x2 for speed ż and
u for force F . Then the model (1.5) can be written as the following
equivalent set of two first order differential equations:

ẋ1 = x2 (1.6)

mẋ2 = −Dx2 −Kfx1 + u (1.7)

which can be written on the standard form (1.1), (1.2):

ẋ1 = x2︸︷︷︸
f1

(1.8)

ẋ2 =
1

m
(−Dx2 −Kfx1 + u)

︸ ︷︷ ︸
f2

(1.9)

Let us regard the position x1 as the output variable y:

y = x1︸︷︷︸
g

(1.10)

The initial position, x1(0), and the initial speed, x2(0), define the initial
state of the system.

(1.8) and (1.9) and (1.10) constitute a second order state-space model
which is equivalent to the original second order differential equation (1.5).

[End of Example 1.1]



18

(1.1) — (1.2) can be written on a matrix-vector model form:

ẋ = f() (1.11)

where ẋ = [ẋ1, ẋ2, . . . , ẋn]
T and f = [f1, f2, . . . , fn]

T . Similarly, (1.3) —
(1.4) can be written

y = g() (1.12)

These compact model forms are convenient when deriving formulas for
numerical calculation of time responses (i.e. devloping simulation
algorithms) and linearization of differential equation models.

1.3 Linear state-space models

Linear state-space models are a special case of the general state-space
model (1.1) — (1.2). Many methods for analysis of differential equation
models, as stability analysis, response calculation and model
transformations, are based on linear state-space models. Let us study a
general second order linear state-space model to see how linear state-space
models are defined. The model has two state-variables, x1 and x2, and two
input variables, u1 and u2:

ẋ1 = a11x1 + a12x2 + b11u1 + b12u2 (1.13)

ẋ2 = a21x1 + a22x2 + b21u1 + b22u2 (1.14)

where the a’s and b’s are parameters (constants).

(1.13), (1.14) can written on matrix-vector form as follows:

[
ẋ1
ẋ2

]

︸ ︷︷ ︸
ẋ

=




a11 a12

a21 a22





︸ ︷︷ ︸
A

[
x1
x2

]

︸ ︷︷ ︸
x

+




b11 b12

b21 b22





︸ ︷︷ ︸
B

[
u1
u2

]

︸ ︷︷ ︸
u

(1.15)

or, more compact:
ẋ = Ax+Bu (1.16)

where x is the state vector and u is the input vector. A is called the
system-matrix, and is square in all cases.

Let us assume that the system has two output variables, which generally
can be functions of both the state variables and the input variables. The
output function can then be written on the form

y1 = c11x1 + c12x2 + d11u1 + d12u2 (1.17)

y2 = c21x1 + c22x2 + d21u1 + d22u2 (1.18)



19

which can be written on matrix-vector form as follows:

[
y1
y2

]

︸ ︷︷ ︸
y

=




c11 c12

c21 c22





︸ ︷︷ ︸
C

[
x1
x2

]

︸ ︷︷ ︸
x

+




d11 d12

d21 d22





︸ ︷︷ ︸
D

[
u1
u2

]

︸ ︷︷ ︸
u

(1.19)

or, more compact:
y = Cx+Du (1.20)

Example 1.2 Mass-spring-damper model written on state-space
form

The state-space model (1.8), (1.9), (1.10) is linear. We get

[
ẋ1
ẋ2

]

︸ ︷︷ ︸
ẋ

=




0 1

−Kf

m −D
m





︸ ︷︷ ︸
A

[
x1
x2

]

︸ ︷︷ ︸
x

+




0

1
m





︸ ︷︷ ︸
B

u (1.21)

y =
[
1 0

]

︸ ︷︷ ︸
C

[
x1
x2

]

︸ ︷︷ ︸
x

+
[
0
]

︸ ︷︷ ︸
D

u (1.22)

[End of Example 1.2]

1.4 Linearization of non-linear models

1.4.1 Introduction

In many cases the mathematical model contains one or more non-linear
differential equations. If the mathematical model is non-linear, there may
be good reasons to linearize it, which means to develop a local linear
model which approximates the original model about a given operating
point. The reasons may be the following:

• We want to study the behavior of the system about an operating
point, which is one specified state where the system can be. It is then
the deviations from this operating point we study. Examples of such
operating points are the level of 8.7 m in a tank, the temperature of
50 degrees Celcius in a heat exchanger, etc. It can be shown (and we
will do it soon) that a model which describes the behavior of the
deviations about the operating point, is approximately linear.



20

• We can use the large number of the methods which are available for
analysis and design of linear systems, e.g. for stability analysis,
frequency response, controller design and signal filter design. The
number of methods for linear models are much larger than for
non-linear models.s

Note: If you have a non-linear model of a (physical) system, do not use
the linearized model for simulation unless you have a good reason for using
it. In stead, use the (original) non-linear model since it gives a more
accurate representation of the system.

Figure 1.2 illustrates the relation between the original non-linear system
and the local linear system (model). The input variable which excites the

Figure 1.2: Illustration of the relation between the original non-linear system
and the local linear system (model)

non-linear system is assumed to be given by

u = u0 +∆u (1.23)

where u0 is the value in the operating point and ∆u is the deviation from
u0. Similarly,

x = x0 +∆x (1.24)

If you are going to experiment with the system to develop or adjust a
linear model about the operating point, you must adjust ∆u and observe
the corresponding response in ∆x (or in the output variable ∆y).



21

1.4.2 Deriving the linearization formulas

We assume that the model is a non-linear state-space model:

ẋ = f(x, u) (1.25)

Suppose that the system is in an operating point defined by

ẋ0 = f(x0, u0) (1.26)

If the input variable u is changed by ∆u from the operating point value u0,
the state-variable x is changed by ∆x from x0. (1.26) can then be written

d(x0 +∆x)

dt
= f(x0 +∆x, u0 +∆u) (1.27)

↓

ẋ0 + ∆̇x ≈ f(x0, u0) +
∂f

∂x

∣∣∣∣
0

∆x+
∂f

∂u

∣∣∣∣
0

∆u (1.28)

On the left side of (1.27) we have applies the summation rule of
differentiation and on the right side we have used a first order Taylor series

expansion of f(·). The expression ∂f
∂x

∣∣∣
0
means the partial time-derivative of

f with respect to x, calculated in the operating point, that is, with x0 and

u0 inserted into ∂f
∂x . The same applies to ∂f

∂u

∣∣∣
0
. Now we will exploit the

fact that ẋ0 is equal f(x0, u0), cf. (1.26). This implies that these two terms
are cancelled against each other in (1.28). (1.28) then becomes

∆ẋ =
∂f

∂x

∣∣∣∣
0︸ ︷︷ ︸

A

∆x+
∂f

∂u

∣∣∣∣
0︸ ︷︷ ︸

B

∆u (1.29)

= A∆x+B∆u (1.30)

or, in more detail,






˙∆x1
˙∆x2
...




 =






∂f1
∂x1

∂f1
∂x2

· · ·
∂f2
∂x1

∂f2
∂x2

· · ·
...

...
. . .






∣∣∣∣∣∣∣
0︸ ︷︷ ︸

A

·






∆x1
∆x2
...




+






∂f1
∂u1

∂f1
∂u2

· · ·
∂f2
∂u1

∂f2
∂u2

· · ·
...

...
. . .






∣∣∣∣∣∣∣
0︸ ︷︷ ︸

B

·






∆u1
∆u2
...






(1.31)
which is the local linear model. A and B becomes Jacobi-matrices (which
are partial derivative matrices) which generally are functions of the
operating point. If the operating point is constant, A and B will be
constant matrices, which can be calculated once and for all.



22

Similarly, linearization of the output equation

y = g(x, u) (1.32)

gives

∆y =
∂g

∂x

∣∣∣∣
0︸ ︷︷ ︸

C

∆x+
∂g

∂u

∣∣∣∣
0︸ ︷︷ ︸

D

∆u = C∆x+D∆u (1.33)

or





∆y1
∆y2
...




 =






∂g1
∂x1

∂g1
∂x2

· · ·
∂g2
∂x1

∂g2
∂x2

· · ·
...

...
. . .






∣∣∣∣∣∣∣
0︸ ︷︷ ︸

C

·






∆x1
∆x2
...




+






∂g1
∂u1

∂g1
∂u2

· · ·
∂g2
∂u1

∂g2
∂u2

· · ·
...

...
. . .






∣∣∣∣∣∣∣
0︸ ︷︷ ︸

D

·






∆u1
∆u2
...






(1.34)

If the operating point is a static equilibrium point, all variables have
constant values and all time-derivatives are zero. Thus,

ẋ0 = 0 = f(x0, u0) (1.35)

The values of the model variables in the static operating point can be
found by solving the algebraic equation (1.35) with respect to the unknown
variables.

Example 1.3 Linearization of a non-linear tank model

Figure 1.3 shows a liquid tank with inlet via a pump and outlet via a valve
with fixed opening. The outflow is assumed to be proportional to the
square root of the pressure drop over the valve, and this pressure is
assumed to be equal to the hydrostatic pressure ρgh at the outlet. The
mass balance becomes

ρAtẋ(t) = ρqi(t)− ρqu(t)

= ρKpu(t)− ρKu

√
ρgx(t)

which can written

ẋ(t) =
Kp

At
u(t)− Ku

At

√
ρgx(t) ≡ f(x, u) (1.36)

We will find a local linear model about the static operating point given by
u = u0 (constant) and x = x0 (constant). Let us first find the relation



23

qi = Kpu [m3/s]

At [m
2]

 [kg/m3]

qu =              [m3/s]

x [m]

0

m [kg]

V [m3]

u [V]

Figure 1.3: Liquid tank with non-linear mathematical model

between u0 and x0 from the static model which get by setting ẋ(t) = 0 in
the dynamic model (1.36):

0 =
Kp

At
u0 −

Ku

At

√
ρgx0 ≡ f(x0, u0) (1.37)

Assume that x0 is specified. The corresponding u0 is found by solving
(1.37) with respect to u0. The result is

u0 =
Ku

Kv

√
ρgx0 (1.38)

Now that we have found the static operating point we can derive the local
linear model. Linearization of (1.36) yields

∆ẋ =
∂f

∂x

∣∣∣∣
0

∆x+
∂f

∂u

∣∣∣∣
0

∆u

= −Ku

At

1

2
√

ρgx0︸ ︷︷ ︸
A

∆x+
Kp

At︸︷︷︸
B

∆u (1.39)

= A∆x+B∆u

[End of Example 1.3]



24



Chapter 2

Frequency response

2.1 Introduction

The frequency response of a system is a frequency dependent function
which expresses how a sinusoidal signal of a given frequency on the system
input is transferred through the system. Time-varying signals — at least
periodical signals — which excite systems, as the reference (setpoint) signal
or a disturbance in a control system or measurement signals which are
inputs signals to signal filters, can be regarded as consisting of a sum of
frequency components. Each frequency component is a sinusoidal signal
having a certain amplitude and a certain frequency. (The Fourier series
expansion or the Fourier transform can be used to express these frequency
components quantitatively.) The frequency response expresses how each of
these frequency components is transferred through the system. Some
components may be amplified, others may be attenuated, and there will be
some phase lag through the system.

The frequency response is an important tool for analysis and design of
signal filters (as lowpass filters and highpass filters), and for analysis, and
to some extent, design, of control systems. Both signal filtering and control
systems applications are described (briefly) later in this chapter.

The definition of the frequency response — which will be given in the next
section — applies only to linear models, but this linear model may very well
be the local linear model about some operating point of a non-linear model.

The frequency response can found experimentally or from a transfer
function model. It can be presented graphically or as a mathematical
function.

25



26

System
u(t) y(t)

Frequency 1

0 t t

Frequency 2

tt

0

00

Excitation Response

Figure 2.1: Sinusoidal signals in the input and the resulting responses on the
output for two different frequencies

2.2 How to calculate frequency response from
sinusoidal input and output

We can find the frequency response of a system by exciting the system
with a sinusoidal signal of amplitude U and frequency ω [rad/s] and
observing the response in the output variable of the system. 1

Mathematically, we set the input signal to

u(t) = U sinωt (2.1)

See Figure 2.1. This input signal will give a transient response (which will
die, eventually) and a steady-state response, ys(t), in the output variable:

ys(t) = Y sin(ωt+ φ) (2.2)

= UA︸︷︷︸
Y

sin(ωt+ φ) (2.3)

Here A is the (amplitude)gain, and φ (phi) is the phase lag in radians. The
frequency of ys(t) will be the same as in u(t). Figure 2.2 shows in detail
u(t) and y(t) for a simulated system. The system which is simulated is

y(s) =
1

s+ 1
u(s) (2.4)

1The correspondance between a given frequency ω in rad/s and the same same fre-
quency f in Hz is ω = 2πf .



27

Figure 2.2: The input signal u(t) and the resulting (sinusoidal) response y(t)
for a simulated system. u(t) has frequency ω = 3 rad/s and amplitude U = 1.
The system is given by (2.4).

(a first order system with gain 1 and time-constant 1). The input signal
u(t) has frequency ω = 3 rad/s and amplitude U = 1.

A is the ratio between the amplitudes of the output signal and the input
signal (in steady-state):

A =
Y

U
(2.5)

For the signals shown in Figure 2.2,

A =
Y

U
=

0.32

1
= 0.32 (2.6)

φ can be calculated by first measuring the time-lag ∆t between u(t) and
ys(t) and then calculating φ as follows:

φ = −ω∆t [rad] (2.7)



28

In Figure 2.2 we find ∆t = 0.41 sec, which gives

φ = −ω∆t = −3 · 0.41 = −1.23 rad (2.8)

The gain A and the phase-lag φ are functions of the frequency. We can use
the following terminology: A(ω) is the gain function, and φ(ω) is the phase
shift function (or more simply: phase function). We say that A(ω) and
φ(ω) expresses the frequency response of the system.

Bode diagram

It is common to present A(ω) and φ(ω) graphically in a Bode diagram,
which consists of two subdiagrams, one for A(ω) and one for φ(ω), where
the phase values are usually plotted in degrees (not radians). Figure 2.3
shows a Bode diagram of the frequency response of the system given by
(2.4). The curves may stem from a number of A-values and φ-values found
in experiments (or simulations) with an sinusoidal input signal of various
frequencies. The curves may also stem from the transfer function of the
system, as described in Section 2.3. The frequency axes usually show the
10-logarithm of the frequency in rad/s or in Hz.

Actually, the system (2.4) is used to generate u(t) and y(t) shown in
Figure 2.2. We have earlier in this chapter calculated A(3) = 0.32 = −10.2
dB (the dB-unit is described below) and phase lag φ(3) = −1.23 rad =
−72 degrees. This gain value and phase lag value are indicated in the Bode
diagram in Figure 2.3.

The A(ω)-axis is usually drawn with decibel (dB) as unit. The decibel
value of a number x is calculated as

x [dB] = 20 log10 x (2.9)

Table 2.1 shows some examples of dB-values.

2.3 How to calculate frequency response from
transfer functions

In Section 2.2 we saw how to find the frequency response from experiments
on the system. No model was assumed. However, if we know a transfer
function model of the system, we can calculate the frequency response from
the transfer function, as explained below.



29

Figure 2.3: The frequency response of the system given by (2.4) presented in
a Bode diagram

Suppose that system has the transfer function H(s) from input u to
output y, that is,

y(s) = H(s)u(s) (2.10)

By setting
s = jω (2.11)

(j is the imaginary unit) into H(s), we get the complex quantity H(jω),
which is the frequency response (function). The gain function is

A(ω) = |H(jω)| (2.12)

and the phase shift function is the angle or argument of H(jω):

φ(ω) = argH(jω) (2.13)

(The formulas (2.12) and (2.13) can be derived using the Laplace
transform.)



30

0 = −∞dB
0.01 = −40dB
0.1 = −20dB
0.2 = −14dB

0.25 = −12dB
0.5 = −6dB
1√
2

= −3dB
1 = 0dB√
2 = 3dB
2 = 6dB√
10 = 10dB
4 = 12dB
5 = 14dB
10 = 20dB

100 = 40dB

Table 2.1: Some dB-values

Example 2.1 Frequency response calculated from a transfer
function

We will find the frequency response for the transfer function

H(s) =
K

Ts+ 1
(2.14)

The frequency response becomes

H(jω) = H(s)|s=jω =
K

Tjω + 1
=

K

1︸︷︷︸
Re

+ j Tω︸︷︷︸
Im

(2.15)

which we write on polar form:

H(jω) =
K

√
12 + (Tω)2ej arctan(

Tω
1 )

(2.16)

=
1

√
1 + (Tω)2

ej[− arctan(Tω)] (2.17)

= |H(jω)| ej argH(jω) (2.18)

Thus, the gain function is

|H(jω)| = K
√
1 + (Tω)2

(2.19)



31

and the phase function is

argH(jω) = − arctan (Tω) [rad] (2.20)

Figure 2.4 shows the curves of |H(jω)| and argH(jω) drawn in a Bode
diagram. The numerical values along the axes assume K = 1 and T = 1.
(The asymptotes indicated in the figure are not explained in this
document.)

Figure 2.4: Bode diagram for the frequency response of the first ordens system
(2.14). The asymptotes are not explained in this document.

To illustrate the use of (2.19) and (2.20), let us calculate the gain and
phase lag values for the frequency ω = 3 rad/s. We assume that K = 1 and
T = 1. (2.19) gives

|H(j3)| = 1√
1 + 32

=
1√
10

= 0.316 = −20 log10
(

1√
10

)
= −10.0 dB

(2.21)



32

(2.20) gives

argH(j3) = −arctan (3) = −1.25 rad = −71.6 degrees (2.22)

[End of Example 2.1]

The next example shows how the frequency response can be found of a
transfer function which consists of several factors in the numerator and/or
the denominator.

Example 2.2 Frequency response of a (more complicated)
transfer function

Given the transfer function

H(s) = K
T1s+ 1

(T2s+ 1) s
e−τs (2.23)

(The term e−τs represents a time-delay of τ sec.) We set s = jω in H(s)
and then sets the individual factors on polar form. Finally, we combine
these factors so that we end up with a polar form of H(jω):

H(jω) = K
T1jω + 1

(T2jω + 1) jω
e−τjω (2.24)

= K

√
12 + (T1ω)

2e
j arctan

(
T1ω
1

)

[√
12 + (T2ω)

2e
j arctan

(
T2ω
1

)] [√
02 + ω2ej

π
2

]e
−τjω (2.25)

=
K
√
1 + (T1ω)

2

√
1 + (T2ω)

2ω
︸ ︷︷ ︸

|H(jω)|

e

j

[
arctan (T1ω)− arctan (T2ω)−

π

2
− τω

]

︸ ︷︷ ︸
argH(jω) (2.26)

So, the amplitude gain function is

A(ω) = |H(jω)| =
K
√
1 + (T1ω)

2

√
1 + (T2ω)

2ω
(2.27)

and the phase shift function is

φ(ω) = argH(jω) = arctan (T1ω)− arctan (T2ω)−
π

2
− τω (2.28)

[End of Example 2.2]



33

2.4 Application of frequency response: Signal
filters

2.4.1 Introduction

A signal filter — or just filter — is used to attenuate (ideally: remove) a
certain frequency interval of frequency components from a signal. These
frequency components are typically noise. For example, a lowpass filter is
used to attenuate high-frequent components (low-frequent components
passes).

Knowledge about filtering functions is crucial in signal processing, but it is
useful also in control engineering because control systems can be regarded
as filters in the sense that the controlled process variable can follow only a
certain range or interval of frequency components in the reference
(setpoint) signal, and it will be only a certain frequency range of process
disturbances that the control system can compensate for effectively.
Furthermore, knowledge about filters can be useful in the analysis and
design of physical processes. For example, a stirred tank in a process line
can act as a lowpass filter since it attentuates low-frequent components in
the inflow to the tank.

In this section we will particularly study lowpass filters, which is the most
commonly used filtering function, but we will also take a look at highpass
filters, bandpass filters and bandstop filters.

Figure 2.5 shows the gain function for ideal filtering functions and for
practical filters (the phase lag functions are not shown). The passband is
the frequency interval where the gain function has value 1, ideally (thus,
frequency components in this frequency interval passes through the filter,
unchanged). The stopband is the frequency interval where the gain
function has value 0, ideally (thus, frequency components in this frequency
interval are stopped through the filter).2

It can be shown that transfer functions for ideal filtering functions will
have infinitely large order. Therefore, ideal filters can not be realized,
neither with analog electronics nor with a filtering algorithm in a computer
program.

2 It is a pity that lowpass filters were not called highstop filters in stead since the main
purpose of a lowpass filter is to stop high-frequency components. Similarly, highpass filters
should have been called lowstop filters, but it is too late now...



34

Frequency

1

0

Amplitude gain

0

Lowpass:

Highpass:

Bandstop:

Bandpass:

PB = passband

SB

SB = stopband

PB SB

PB

SBPB

SB

1

1

1

0

0

0

0

0

0

PB

PB SB

Ideal

Practical

Figure 2.5: The gain functions for ideal filters and for practical filters of various
types.

2.4.2 First order lowpass filters

The most commonly used signal filter is the first order lowpass filter. As
an example, it is the standard measurement filter in a feedback control
system.

The transfer function of a first order lowpass filter with input variable u
and output variable y is usually written as

H(s) =
1

s
ωb

+ 1
(2.29)

where ωb [rad/s] is the bandwidth of the filter. This is a first order transfer



35

function with gain K = 1 and time-constant T = 1/ωb. The frequency
response is

H(jω) =
1

jω
ωb

+ 1
(2.30)

=
1

√(
ω
ωb

)2
+ 1 e

j arctan ω
ωb

=
1

√(
ω
ωb

)2
+ 1

e
j
(
− arctan ω

ωb

)

(2.31)

The gain function is

|H(jω)| = 1
√(

ω
ωb

)2
+ 1

(2.32)

and the phase lag function is

argH(jω) = − arctan
ω

ωb
(2.33)

Figure 2.4 shows exact and asymptotic curves of |H(jω)| and argH(jω)
drawn in a Bode diagram. In the figure, K = 1 and ωb = ωc.

The bandwidth defines the upper limit of the passband. It is common to
say that the bandwidth is the frequency where the filter gain is
1/
√
2 = 0.71 ≈ −3 dB (above the bandwidth the gain is less than 1/

√
2).

This bandwidth is therefore referred to as the “−3 dB-bandwidth”. Now,
what is the −3 dB-bandwidth of a first order lowpass filter? It is the
ω-solution of the equation

|H(jω)| = 1
√(

ω
ωb

)2
+ 1

=
1√
2

(2.34)

The solution is ω = ωb. Therefore, ωb [rad/s] given in (2.29) is the −3
dB-bandwidth in rad/s. In Hertz the bandwidth is

fb =
ωb

2π
(2.35)

Figure 2.6 shows the front panel of a simulator of a first order filter where
the input signal consists of a sum of two sinusoids or frequency
components of frequency less than and greater than, respectively, the
bandwidth. The simulation shows that the low frequent component (0.5
Hz) passes almost unchanged (it is in the passband of the filter), while the
high-frequent component (8 Hz) is attenuated (it lies in the stopband).



36

Figure 2.6: Simulator for a first order lowpass filter where the input signal
consists of a sum of two frequency componens

Example 2.3 The RC-circuit as a lowpass filter

Figure 2.7 shows an RC-circuit (the circuit contains the resistor R and the
capacitor C). The RC-circuit is frequently used as an analogue lowpass
filter: Signals of low frequencies passes approximately unchanged through
the filter, while signals of high frequencies are approximately filtered out
(stopped). v1 is the signal source or input voltage to be filtered, while v2 is
the resulting filtered output voltage.

We will now find a mathematical model relating v2 to v1. First we apply
the Kirchhoff’s voltage law in the circuit which consists the input voltage
terminals, the resistor, and the capacitor (we consider the voltage drops to



37

v2 [V]

++

_ _

v1 [V]
C [F]

i [A]

Input Output

iC

i2+
_

vR [V]

Figure 2.7: RC-circuit

be positive clockwise direction):

−v1 + vR + v2 = 0 (2.36)

(v2 equals the voltage drop over the capacitor.) In (2.36) vR is given by

vR = Ri (2.37)

We assume that there is no current going through the output terminals.
(This is a common assumption, and not unrealistic, since it it typical that
the output terminals are connected to a subsequent circuit which has
approximately infinite input impedance, causing the current into it to be
approximately zero. An operational amplifier is an example of such a
load-circuit.) Therefore,

i = iC = Cv̇2 (2.38)

The final model is achieved by using i as given by (2.38) in (2.37) and then
using vR as given by (2.37) for vR in (2.36). The model becomes

RCv̇2(t) = v1(t)− v2(t) (2.39)

The transfer function from the input voltage v1 to the output voltage v2
becomes

Hv2,v1(s) =
1

RCs+ 1
=

1
s
ωb

+ 1
(2.40)

Thus, the RC-circuit is a first order lowpass filter with bandwidth

ωb =
1

RC
rad/s (2.41)

If for example R = 1 kΩ and C = 10 µF, the bandwidth is
ωb = 1/RC = 100 rad/s. (2.41) can be used to design the RC-circuit
(calculate the R- and C-values).

[End of Example 2.3]



38



Chapter 3

Frequency response analysis
of feedback control systems

3.1 Introduction

With frequency response — using Bode plots — we can analyze dynamic
properties of feedback control systems. These properties refers to

• dynamic setpoint tracking, and

• dynamic disturbance compensation.

By definition, in frequency response analysis all signals in the system are
assumed to be sinusoids. This seems to limit the usefulness of such
analysis because in real systems signals are rarely sinusoids. Still, the
frequency response analysis provides useful insight about the dynamic
properties of a control system because signals are varying more or less, i.e.
the signals can be said to have certain frequency components.

In this chapter the frequency response analysis will be based on the
following two transfer functions of the control system:

• Tracking transfer function, T (s)

• Sensitivity transfer function, S(s)

This analysis assumes a linear model of the control system. However,
practical control systems are nonlinear due to phenomena as saturation,

39



40

hysteresis, stiction, nonlinear signal scaling etc. Such nonlinearities can
influence largely the dynamic behaviour of the control system. To perform
“linear” analysis of a non-linear model, this model must be linearized
about some operating point. Thus, the results of the analysis will be valid
at or close to the operation point where the linearization was made. This
fact limits the usefulness of a theoretical analysis of a given nonlinear
control system using linear systems methods, but the results may still be
useful, particularly if the system most of the time operates close to the
chosen or specified operating point.

Although a “linear” analysis of a given nonlinear control system may have
limited value, you will get much general understanding about the behaviour
of control systems through analysis of examples of linear control systems.

Note: Once you have a mathematical model of a given control system, you
should definitely run simulations as a part of the analysis. This applies for
both linear and nonlinear control systems. Actually, you may get all the
answers you need by just running simulations. The types of answers may
concern response-time, static control error, responses due to process
disturbances and measurement noise, and effects of parameter variations.

3.2 Definition of setpoint tracking and
disturbance compensation

Figure 3.1 shows a principal block diagram of a control system. There are

Process

Sensor

v

yySP u

e

Controller

Control system

Figure 3.1: Principal block diagram of a control system



41

two input signals to the control system, namely the setpoint ySP and the
disturbance v. The value of the control error e is our primary concern (it
should be small, preferably zero). Therefore we can say that e is the
(main) output variable of the control system. The value of e expresses the
performance of the control system: The less e, the higher performance. e is
influenced by ySP and v. Let us therefore define the following two
properties of control systems:

• The setpoint tracking property of the control system concerns
the relation between ySP and e.

• The disturbance compensation property of the control system
concerns the relation between v and e.

Totally, the setpoint tracking and disturbance compensation properties
determine the performance of the control system.

3.3 Definition of characteristic transfer functions

3.3.1 The Sensitivity transfer function

We assume that the control system has a transfer function-based block
diagram as shown in Figure 3.2. In the block diagram U0(s) represents the
Laplace transform of the nominal control variable u0. In the analysis we
will set u0 to zero, because we will focus on the responses of the control
system due to the setpoint and disturbance inputs.

We regard the setpoint ySP and the disturbance v as input variables and
the control error e as the output variable of the system. Thus, we will
derive the transfer function from ySP to e and the transfer function from v
to e. From the block diagram we the can write the following expressions



42

em(s)
Hc(s) Hu1(s)

Hsens(s)

u(s)
y(s)

ym(s)

Hm(s)
ymSP(s)ySP(s)

Hv(s)

v(s)

1/Hm(s)

e(s) = ySP(s) - y(s)

Process

Combined
transfer function

Scaling

Controller

[%]

[%]

[%] [%]

Scaling
Disturbance
transfer functionU0(s)

Hs(s)

Scaling Sensor

Measurement
signal

Hm(s)

Hsu(s)
[mA]

Scaling

Hu(s)

Combined
control variable
transfer function

Figure 3.2: Transfer function based block diagram of a control system. (The
units, e.g. %, are typical examples of units.)

for e(s):

e(s) =
1

Hm(s)
em(s) (3.1)

=
1

Hm(s)
[ymSP

(s)− ym(s)] (3.2)

=
1

Hm(s)
[Hm(s)ySP (s)−Hm(s)y(s)] (3.3)

= ySP (s)− y(s) (3.4)

= ySP (s)− [Hv(s)v(s)+Hu(s)Hc(s)em(s)] (3.5)

= ySP (s)− [Hv(s)v(s) +Hu(s)Hc(s)Hm(s)e(s)] (3.6)

In (3.6), e(s) appears at both the left and the right side. Solving for e(s)



43

gives

e(s) =
1

1 +Hc(s)Hu(s)Hm(s)
[ySP (s)−Hv(s)v(s)]

=
1

1 + L(s)
︸ ︷︷ ︸

S(s)

[ySP (s)−Hv(s)v(s)] (3.7)

= S(s) [ySP (s)−Hv(s)v(s)] (3.8)

= S(s)ySP (s)︸ ︷︷ ︸
eSP (s)

−S(s)Hv(s)v(s)︸ ︷︷ ︸
ev(s)

(3.9)

= eSP (s) + ev(s) (3.10)

which is a transfer functions based model of the control system. S(s) is the
sensitivity transfer function:

S(s) =
1

1 +L(s)
(3.11)

where
L(s) ≡ Hc(s)Hu(s)Hm(s) (3.12)

is the loop transfer function which is the product of the transfer functions
in the loop. From (3.9) we can calculate the control error for any setpoint
signal, any disturbance signal and any nominal control signal (assuming we
know their Laplace transform).

In the following we discuss the various terms in (3.10).

• The response in the error due to the setpoint: The response in
the control error due to the setpoint is

eSP (s) = S(s)ySP (s) =
1

1 + L(s)
ySP (s) (3.13)

which gives a quantitative expression of the tracking property of the
control system. The static tracking is given by static error when ySP
is constant. This error can be calculated as follows:1

eSP = lim
t→∞

eSP (t) = lim
s→0

s · eSP (s) (3.14)

= lim
s→0

s · S(s)ySP (s) = lim
s→0

s · S(s)ySPs
s

= S(0)ySPs(3.15)

Roughly speaking that the tracking property of the control system
are good if the sensitivity function N has small (absolute) value —
ideally zero.

1Here the Final Value Theorem of the Laplace transform is used.



44

• The response in the error due to the disturbance: The
response in the control error due to the disturbance is

ev(s) = −S(s)Hv(s)v(s) = −
Hv(s)

1 + L(s)
v(s) (3.16)

which expresses the compensation property of the control system.
The static compensation property is given by

evs = lim
t→∞

ev(t) = lim
s→0

s · ev(s) (3.17)

= lim
s→0

s · [−S(s)Hv(s)v(s)] (3.18)

= lim
s→0

s ·
[
−S(s)Hv(s)

vs
s

]
(3.19)

= −S(0)Hv(0)vs (3.20)

From (3.20) we see that the compensation property is good if the
sensitivity function S has a small (absolute) value (close to zero).

3.3.2 The Tracking transfer function

The tracking transfer function T (s) — or simply the tracking function — is
the transfer function from the setpoint ySP to the process output variable
y:

y(s) = T (s)ySP (s) (3.21)

From the block diagram in Figure 3.2, or by setting
eySP (s) ≡ ySP (s)− y(s) for eySP (s) in (3.13), we can find the tracking
function T (s) as the transfer function from ySP to y:

y(s)

ySP (s)
= T (s) =

Hc(s)Hu(s)Hm(s)

1 +Hc(s)Hu(s)Hm(s)
=

L(s)

1 + L(s)
= 1− S(s) (3.22)

The static tracking property is given by the static tracking ratio T (0):

ys = lim
t→∞

y(t) = lim
s→0

s · y(s) (3.23)

= lim
s→0

s · T (s)ySP (s) = lim
s→0

s · T (s)ySPs
s

(3.24)

= T (0)ySPs (3.25)

The tracking property is good if the tracking function T has (absolute)
value equal to or close to 1 (since then y will be equal to or close to ySP ).

In some contexts it is useful to be aware that the sum of the tracking
function and the sensitivity function is always 1:

T (s) + S(s) =
L(s)

1 + L(s)
+

1

1 + L(s)
≡ 1 (3.26)



45

3.4 Frequency response analysis of setpoint
tracking and disturbance compensation

3.4.1 Introduction

Frequency response analysis of control systems expresses the tracking and
compensation property under the assumption that the setpoint and the
disturbance are sinusoidal signals or frequency components of a compound
signal. The structure of the control system is assumed to be as shown in
Figure 3.2. The Laplace transformed control error is given by (3.9), which
is repeated here:

e(s) = S(s)ySP (s)︸ ︷︷ ︸
eSP (s)

−S(s)Hv(s)v(s)︸ ︷︷ ︸
ev(s)

(3.27)

where S(s) is the sensitivity function which is given by

S(s) =
1

1 +L(s)
(3.28)

where L(s) is the loop transfer function. In the following we will study
both S(s) and the tracking ratio T (s) which is given by

T (s) =
L(s)

1 + L(s)
=

y(s)

ySP (s)
(3.29)

3.4.2 Frequency response analysis of setpoint tracking

From (3.27) we see we that the response in the control error due to the
setpoint is

eSP (s) = S(s)ySP (s) (3.30)

By plotting the frequency response S(jω) we can easily calculate how large
the error is for a given frequency component in the setpoint: Assume that
the setpoint is a sinusoid of amplitude YSP and frequency ω. Then the
steady-state response in the error is

eSP (t) = YSP |S(jω)| sin [ωt+ argS(jω)] (3.31)

Thus, the error is small and consequently the tracking property is good if
|S(jω)| ≪ 1, while the error is large and the tracking property poor if
|S(jω)| ≈ 1.



46

The tracking property can be indicated by the tracking function T (s), too.
The response in the process output due to the setpoint is

y(s) = T (s)ySP (s) (3.32)

Assume that the setpoint is a sinusoid of amplitude YSP and frequency ω.
Then the steady-state response in the process output due to the setpoint is

y(t) = YSP |T (jω)| sin [ωt+ argT (jω)] (3.33)

Thus, |T (jω)| ≈ 1 indicates that the control system has good tracking
property, while |T (jω)| ≪ 1 indicates poor tracking property.

Since both S(s) and T (s) are functions of the loop transfer function L(s),
cf. (3.28) and (3.29), there is a relation between L(s) and the tracking
property of the control system. Using (3.28) and (3.28) we can conclude as
follows:

Good setpoint tracking: |S(jω)| ≪ 1, |T (jω)| ≈ 1, |L(jω)| ≫ 1 (3.34)

Poor setpoint tracking: |S(jω)| ≈ 1, |T (jω)| ≪ 1, |L(jω)| ≪ 1 (3.35)

Figure 3.3 shows typical Bode plots of |S(jω)|, |T (jω)| and |L(jω)|.
Usually we are interested in the amplitude gains, not the phase lags.
Therefore plots of argS(jω), argT (jω) and argL(jω) are not shown nor
discussed here. The bandwidths indicated in the figure are defined below.

The bandwidth of a control system is the frequency which divides the
frequency range of good tracking and poor tracking. From (3.34) and
(3.35) and Figure 3.3 we can list the following three candidates for a
definition of the bandwidth:

• ωt, which is the frequency where the amplitude gain of the tracking
function has value 1/

√
2 ≈ 0.71 = −3 dB. This definition is in

accordance with the usual bandwidth definition of lowpass filters.
The ωt bandwidth is also called the −3 dB bandwidth ω−3dB.

• ωc, which is the frequency where the amplitude gain of the loop
transfer function has value 1 = −0 dB. ωc is called the crossover
frequency of L.

• ωs, which is the frequency where the amplitude gain of the sensitivity
function has value 1− 1/

√
2 ≈ 1− 0.71 ≈ 0.29 ≈ −11 dB. This

definition is derived from the −3 dB bandwidth of the tracking
function: Good tracking corresponds to tracking gain between 1/

√
2



47

Frequency ω [rad/s]

(logarithmic scale )

Logarithmic scale

1 = 0 dB

L

S

T

1/sqrt(2) = 0.71 = -3 dB
(approx)

ωs ωtωc

1-1/sqrt(2) = 0.29 = -11 dB
(approx) Various

bandwidth
definitions

Figure 3.3: Typical Bode plots of |S(jω)|, |T (jω)| and |L(jω)|

and 1. Now recall that the sensitivity function is the transfer
function from setpoint to control error, cf. (3.30). Expressed in terms
of the control error, we can say that good tracking corresponds to
sensitivity gain |S| less than 1− 1/

√
2 ≈ −11 dB ≈ 0, 29. The

frequency where |S| is −11 dB is denoted the sensitivity bandwidth,
ωs.

Of the three bandwidth candidates defined above the sensitivity bandwidth
ωs is most closely related to the control error. Therefore ωs may be claimed
to be the most convenient bandwidth definition as far as the tracking
property of a control system concerns. In addition ωs is a convenient
bandwidth related to the compensation property of a control system (this
will be discussed in more detail soon). However, the crossover frequency ωc

and the −3 dB bandwidth are the commonly used bandwidth definitions.

As indicated in Figure 3.3 the numerical values of the various bandwidth
definitions are different (this is demonstrated in Example 3.1).

If you need a (possibly rough) estimate of the response time Tr of a control
system, which is time it takes for a step response to reach 63% of its
steady-state value, you can use

Tr ≈
k

ωt
[s] (3.36)



48

where ωt is the −3 dB bandwidth in rad/s.2 k can be set to some value
between 1.5 and 2.0, say 2.0 if you want to be conservative.

Example 3.1 Frequency response analysis of setpoint tracking

See the block diagram in Figure 3.2. Assume the following transfer
functions:

PID controller:

Hc(s) = Kp

(
1 +

1

Tis
+

Tds

Tfs+ 1

)
(3.37)

Process transfer functions (second order with time delay):

Figure 3.4: Example 3.1: Simulated responses of the control system. The
setpoint ySP is sinuoid of frequency ω1 = 0.55 rad/s.

Hu(s) =
Ku

(T1s+ 1) (T2s+ 1)
e−τs (3.38)

Hv(s) =
Kv

(T1s+ 1) (T2s+ 1)
e−τs (3.39)

Sensor with scaling:
Hs(s) = Ks (3.40)

The parameter values are Kp = 4.3, Ti = 1.40, Td = 0.35,
Tf = 0.1Td = 0.035, Ku = 1, Kd = 1, T1 = 2, T2 = 0.5, τ = 0.4, Ks = 1.

2How can you find the excact value of the response time? Simulate!



49

(The PID parameter values are calculated using the Ziegler-Nichols’ closed
loop method.) The operation point is at setpoint value 50%, with
disturbance v = 10% (constant), and nominal control signal = 40%.

Figure 3.4 shows simulated responses in the process output y and in the
the control error e = ySP − y when the setpoint ySP is a sinusoid of
amplitude 10% (about a bias of 50%) and frequency ω1 = 0.55rad/s. The
frequency of the sinusoidal is chosen equal to the sensitivity bandwidth ωs.
The amplitude of the control error should be 0.29·10% = 2.9%, and this is
actually in accordance with the simulation, see Figure 3.4.

Figure 3.5 shows Bode plots of |S(jω)|, |T (jω)| and |L(jω)|.

Figure 3.5: Example 3.1: Bode plots of |L(jω)|, |T (jω)| and |S(jω)|

Let us compare the various bandwidth definitions. From Figure 3.5 we find

• −3 dB bandwidth: ωt = 3.8 rad/s

• Crossover frequency: ωc = 1.7 rad/s

• Sensitivity bandwidth: ωs = 0.55 rad/s

These values are actually quite different. (As commented in the text above
this example, it can be argued that the ωs bandwidth gives the most
expressive measure of the control system dynamics.)

Finally, let us read off the response time Tr. Figure 3.6 shows the response
in y due to a step in ySP . From the simulation we read off Tr ≈ 1.1s. The



50

estimate (3.36) with k = 2 gives Tr ≈ 2/ωt = 2/3.8 = 0.53, which is about
half the value of the real (simulated) value.

Figure 3.6: Example 3.1: Step response in process output y after a step in
setpoint ySP

[End of Example 3.1]

3.4.3 Frequency response analysis of disturbance
compensation

(3.27) gives the response in the control error due to the disturbance. It is
repeated here:

ev(s) = −S(s)Hv(s)v(s) (3.41)

Thus, the sensitivity function S(s) is a factor in the transfer function from
v til e for the control system. However, S(s) has an additional meaning
related to the compensation of a disturbance, namely it expresses the
degree of the reduction of the control error due to using closed loop
control. With feedback (i.e. closed loop system) the response in the control
error due to the disturbance is ev(s) = −S(s)Hv(s)v(s). Without feedback
(open loop) this response is ev(s) = −Hv(s)v(s). The ratio between these
responses is

ev(s)with feedback

ev(s)without feedback
=
−S(s)Hv(s)v(s)

−Hv(s)v(s)
= S(s) (3.42)

Assuming that the disturbance is sinusoidal with frequency ω rad/s, (3.42)
with s = jω, that is S(jω), expresses the ratio between sinusoidal
responses.



51

Again, effective control, which here means effective disturbance
compensation, corresponds to a small value of |S| (value zero or close to
zero), while ineffective control corresponds to |S| close to or greater than 1.
We can define the bandwidth of the control system with respect to its
compensation property. Here are two alternate bandwidth definitions:

• The bandwidth ωs — the sensitivity bandwidth — is the upper limit of
the frequency range of effective compensation. One possible
definition is

|S(jωs)| ≈ 0.29 ≈ −11 dB (3.43)

which means that the amplitude of the error with feedback control is
less than 29% of amplitude without feedback control. The number
0.29 is chosen to have the same bandwidth definition regarding
disturbance compensation as regarding setpoint tracking, cf. page 46.

• The bandwidth ωc is the crossover frequency of the loop transfer
functions ωc, that is,

|L(jωc)| = 0 dB ≈ 1 (3.44)

Note: The feedback does not reduce the control error due to a sinusoidal
disturbance if its frequency is above the bandwidth. But still the
disturbance may be well attenuated through the (control) system. This
attenuation is due to the typical inherent lowpass filtering characteristic of
physical systems (processes). Imagine a liquid tank, which attenuates
high-frequent temperature variations existing in the inflow fluid
temperature or in the environmental temperature. This inherent lowpass
filtering is self regulation.

Example 3.2 Frequency response analysis of disturbance
compensation

This example is based on the control system described in Example 3.1
(page 48).

Figure 3.7 shows simulated responses in the process output y due to a
sinusoidal disturbance v of amplitude 10% (with bias 10%) and frequency
ω1 = 0.55rad/s. This frequency is for illustration purpose chosen equal to
the sensitivity bandwidth of the control system, cf. Figure 3.5. The
setpoint ySP is 50%. The control error can be read off as the difference
between ySP and y. In the first 40 seconds of the the simulation the PID
controller is in manual mode, so the control loop is open. In the following



52

Figure 3.7: Example 3.2: Simulated responses of the control system. The
disturbance v is sinusoidal with frequency ω1 = 0.55 rad/s. The PID-controller
is in manual mode (i.e. open loop control) the first 40 seconds, and in automatic
mode (closed loop control) thereafter.

40 seconds the PID controller is in automatic mode, so the control loop is
closed. We clearly see that the feedback control is effective to compensate
for the disturbance at this frequency (0.55 rad/s). The amplitude of the
control error is 6.6 without feedback and 1.9 with feedback. Thus, the
ratio between the closed loop error and the open loop error is
1.9/6.6 = 0.29, which is in accordance with the amplitude of the sensitivity
function at this frequency, cf. Figure 3.5.

Figure 3.8 shows the same kind of simulation, but with disturbance
frequency ω1 = 1.7 rad/s, which is higher than the sensitivity bandwidth,
which is 0.55 rad/s. From the simulations we see that closed loop control
at this relatively high frequency, 1.7 rad/s, does not compensate for the
disturbance – actually the open loop works better. This is in accordance
with the fact that |S(jω)| is greater than 1 at ω = 1.7 rad/s, cf. the Bode
plot in Figure 3.5.

Finally, let us compare the simulated responses shown in Figure 3.8 and in
Figure 3.4. The amplitude of the control error is less in Figure 3.8, despite



53

Figure 3.8: Example 3.2: Simulated responses of the control system. The
disturbance v is sinusoidal with frequency ω1 = 1.7 rad/s. The PID-controller
is in manual mode (i.e. open loop control) the first 40 seconds, and in automatic
mode (closed loop control) thereafter.

the fact that the closed loop or feedback control is not efficient (at
frequency 1.7 rad/s). The relatively small amplitude of the control error is
due to the self regulation of the process, which means that the disturbance
is attenuated through the process, whether the process is controlled or not.

[End of Example 3.2]

In Example 3.2 I did not choose the disturbance frequency, 1.7 rad/s, by
random. 1.7 rad/s is actually the loop transfer function crossover frequency
of the control system. Thus, the example demonstrates that the crossover
frequency may give a poor measure of the performance of the control
system. The sensitivity bandwidth is a better measure of the performance.



54



Chapter 4

Stability analysis of dynamic
systems

4.1 Introduction

In some situations we want to determine if a dynamic system is stable or
unstable. Particularly in the control theory, stability analysis is important,
since feedback control systems may become unstable if the controller
parameters have been given erroneous values. In this chapter, different
stability properties will be defined in terms of the placement of the pole or
eigenvalues of the system in the complex plane.

Traditionally Routh’s stability criterion has been taught as a tool for
stability analysis. Routh’s criterion is a method for determining the
correspondence between stability properties and values of system (model)
parameters, without calculating the actual poles or eigenvalues. But, since
it is my clear impression and experience that Routh’s stability criterion
does not play an important role in practical stability analysis of dynamic
systems, so I have decided not to include the method in this book. (One
reference is [1].)

There exists a special graphical method – the Nyquist’s stability criterion
– for stability analysis of feedback systems (as control systems) based on
the frequency response. This method is presented in Chapter 5.

55



56

4.2 Stability properties and impulse response

This section defines the different stability properties that a dynamic
system can have in terms of impulse response of the system. Then, the
corresponding transfer function pole locations in the complex plane are
derived. In Section 5.2, and subsequent sections, these results are applied
to feedback (control) systems, which are a special case of dynamic systems.

The different stability properties can be defined in several ways. I have
chosen to use the impulse response of the system as the basis for definition
of the stability properties. The impulse response is the time-response in
output variable of the system due to an impulse on the input. Using the
impulse response makes it relatively simple to relate stability properties to
the poles of the system (this is because the impulse response and the poles
are closely connected), as you will see soon.

Some words about the impulse signal: It is a time-signal which in principle
has infinitely short duration and infinite amplitude, but so that the integral
of the signal — the integral is equal to the area under the time-function of
the signal — is finite. This area is also called the strength of the impulse.
An impulse of strength one is called a unit impulse, δ(t). The square pulse
in Figure 4.1 approaches an impulse function as ∆ goes to zero.

t

A

Figure 4.1: The square pulse approaches an impulse function as ∆ goes to zero.

Here are the stability definitions: A dynamic system has one of the
following stability properties:



57

• Asymptotically stable system: The stationary impulse response,
h(t), is zero:

lim
t→∞

h(t) = 0 (4.1)

• Marginally stable system: The stationary impulse response is
different from zero, but limited:

0 < lim
t→∞

h(t) <∞ (4.2)

• Unstable system: The stationary impulse response is unlimited:

lim
t→∞

h(t) =∞ (4.3)

A system is stable if it is either asymptotically stable or marginally stable.
Figure 4.2 depicts the different stability properties.

System
y(t)=h(t)

Impulse,

t

t

h(t)
Asymtotically stable system

Marginally stable system

Unstable system

0

0

Impulse
response

Figure 4.2: Different stability properties

In the definition above it is assumed that the impulse in the input u starts
from zero and that the impulse response in the output y has zero initial
value. In practice these initial values may be different from zero if the



58

system initially is some other operating point than the “zero” operating
point.

One problem with the ideal impulse function is it can not be generated
fully in practice, but in practice there is hardly ever a need to perform
impulse response experiments to determine stability properties. It is more
useful as a conceptual definition of stability, cf. the next section.

4.3 Stability properties and poles

In many cases it would be quite impractical if the only way to determine
the stability property of a system was to do experiments or to run
simulations, to obtain the impulse response (or the step response).
Fortunately, we can conclude about the stationary part of the impulse
response, and hence conclude about the stability property, by just
analyzing the mathematical model of the system. This is because the
stationary impulse response is a function of the poles of the system. The
connection between the impulse response and the poles is derived in the
following.

Let us assume that the mathematical model of the system is a transfer
function, H(s), from input signal u to output signal y:

y(s) = H(s)u(s) (4.4)

The input u will be a unit impulse, that is, u(t) = δ(t). It can be shown
that the Laplace transform of δ(t) is 1. Let us denote the impulse response
h(t). The Laplace transform of h(t) is

h(s) = H(s)L{δ(t)} = H(s) · 1 = H(s) (4.5)

Thus, the Laplace transform of the impulse response equals the transfer
function of the system. We need the impulse response time-function h(t)
since it is the basis for the definitions of the different stability properties.

With results from Laplace transform theory, h(t) can be calculated using
the following formula:

h(t) =
∑

i

lim
s→pi

1

(m−1)!






dm−1

dsm−1




(s−pi)

m H(s)
︸︷︷︸
h(s)

est










(4.6)

=
∑

i

lim
s→pi





(s− pi)H(s)

︸︷︷︸
h(s)

est





if m = 1 (4.7)



59

{pi} is the set of poles in H(s), and hence the roots of the denominator of
H(s). m is the multiplicity of the poles (so-called simple poles have
m = 1). The denominator polynomial of H(s) is called the characteristic
polynomial,, a(s). The poles are the roots of a(s). Consequently, the poles
are the solutions of the characteristic equation

a(s) = 0 (4.8)

An example: Transfer function

H(s) =
1

(s+ 2)(s+ 3)
(4.9)

has the poles p1 = −2 and p2 = −3, and the characteristic polynomial is

a(s) = (s+ 2)(s+ 3) = s2 + 5s+ 6 (4.10)

We will now use (4.6) and (4.7) to connect the different stability properties
to the pole placement in the complex plane. Let us first assume that the
poles of H(s) are simple. Then m = 1, and h(t) is given by (4.7). A pole is
generally a complex number:

pi = ai + jbi (4.11)

where ai is the real part and bi is the imaginary part of the pole. (4.7)
implies that h(t) is equal to the sum of the i partial responses of the total
impulse response:

h(t) =
∑

i

hi(t) (4.12)

where
hi(t) = kie

pit = kie
(ai+jbi)t = kie

aitejbit (4.13)

Here ki is some constant. The term ejbit is a complex number on the unity
circle and therefore it has absolute value equal to 1.1 Thus, it is the term
eait which determines the steady-state (t→∞) absolute value of the
partial response hi(t) according to the following analysis:

• Suppose that the real part, ai, of the pole is strictly negative, that is,
ai < 0, which means that the pole lies in the left half plane. This
implies eait → 0, and therefore hi(t)→ 0 as t→∞.

1 If a pole has a imaginary part b differen from zero, there must be a complex conjugate
pole with imaginary part −b. However, this fact does not influate the conclusions of the
analysis we are performing.



60

• Suppose that the real part, ai, of the pole is zero, that is ai = 0,
which means that the pole lies on the imaginary axis. This implies
eait = 1, and therefore hi(t) goes towards a constant value different
from zero as t→∞.

• Suppose that the real part, ai, of the pole is strictly positive, that is,
ai > 0, which means that the pole lies in the right half plane. This
implies eait →∞, and therefore hi(t)→∞ as t→∞.

From the above analysis we can conclude as follows for transfer functions
having pole multiplicity one: (1) If each of the poles lies in the left half
plane, the system is asymptotically stable, because then each of the partial
impulse response terms, hi(t), goes towards 0 as t→∞. (2) If one pole lies
on the imaginary axis while the rest of the poles lies on the left half plane,
the system is marginally stable, because then one of the hi(t)-terms goes
towards a constant value different from 0 as t→∞. (3) If at least one of
the poles lies in the right half plane, the system is unstable, because then
at least one term hi(t) goes to ∞ as t→∞.

Multiple poles: It would have been nice to conclude about stability and
pole placement now, but we have to look closer at the case of multiple
poles of H(s). The impulse response h(t) is given by (4.6). Suppose that
that the multiplicity of the pole pi is m = 2. The corresponding partial
impulse response becomes

hi(t) = lim
s→pi

{
d

ds

[
(s−pi)

2H(s)est
]}

(4.14)

Here, the term d
ds(e

st) is equal to test, which means that hi(t) will contain
terms as tepit. By performing the same analysis as for simple poles, we will
find the following: (1) hi(t)→ 0 for a pole with negative real part (since
tepit goes towards zero because epit decreases faster than t increases). (2)
hi(t)→∞ for a pole on the imaginary axis (tepit equals t). (3) hi(t)→∞
for a pole having positive real part. We will get the same results if the
multiplicity m is greater than two.

Now we can conclude by stating the following correspondence between
stability and pole placement:

• Asymptotically stable system: Each of the poles of the transfer
function lies strictly in the left half plane (has strictly negative real
part).

• Marginally stable system: One or more poles lies on the
imaginary axis (have real part equal to zero), and all these poles are
distinct. Besides, no poles lie in the right half plane.



61

• Unstable system: At least one pole lies in the right half plane (has
real part greater than zero). Or: There are multiple poles on the
imaginary axis.

Figure 4.3 gives a illustration of the relation between stability property
and pole placement.

Re

Im

U
ns

ta
bl

e 
po

le
 a

re
a

Right half planeLeft half plane

A
sy

m
pt

o
tic

al
ly

 st
ab

le
po

le
 a

re
a

Figure 4.3: The relation between stability property and pole placement

Example 4.1 Stability property of some simple dynamic systems

The first order transfer function

H1(s) =
1

s+ 1
(4.15)

has pole p = −1 which lies in the left half plane. Thus, the system is
asymptotically stable.

The transfer function
H2(s) =

1

s
(4.16)

(which is the transfer function of an integrator) has pole p = 0, which lies
on the imaginary axis and has multiplicity one. So, the system is
marginally stable.

The transfer function
H3(s) =

1

s2
(4.17)



62

have poles p = 0, which is on the imaginary axis with multiplicity two.
The system is therefore unstable.

The transfer function
H4(s) =

1

s− 1
(4.18)

has pole p = +1, which lies in the right half plane. The system is therefore
unstable.

[End of Example 4.1]

Example 4.2 Stability property of a mass-spring-damper

Figure 4.4 shows a mass-spring-damper-system.y is position. F is applied

m

K [N/m]

D [N/(m/s)]

F [N]

0 y [m]

Figure 4.4: Mass-spring-damper

force. D is damping constant. K is spring constant. Newton’s 2. Law
gives the following mathematical model:

mÿ(t) = F (t)−Dẏ(t)−Ky(t) (4.19)

The transfer function from the force F to position y is

H(s) =
y(s)

F (s)
=

1

ms2 +Ds+K
(4.20)

Assume that m = 20 kg, D = 4 N/(m/s), and K = 2 N/m. What is the
stability property of the system? The characteristic polynomial becomes

a(s) = ms2 +Ds+K = 20s2 + 4s+ 2 (4.21)

which has roots

p1, p1 =
−4±

√
42 − 4 · 20 · 2
2 · 20 = −0.1± j0.3 (4.22)

which are the poles of H(s). Both these poles have strictly negative real
parts (−0.1). The system is therefore asymptotically stable. Figure 4.5



63

Figure 4.5: The poles of a mass-spring-damper plotted in the complex plane.
The poles are p1,2 = −0, 1± j0, 3.

Figure 4.6: The impulse response for a mass-spring-damper with m = 20 kg,
D = 4 N/(m/s) and Kf = 2 N/m. The systemet is asymptotically stable.

shows the poles (marked as crosses) in the complex plane. Figure 4.6
shows the impulse response.

Assume now that the damper is removed so that D = 0. Then the
characteristic polynomial is

a(s) = ms2 +K (4.23)

and the poles are

p1, p1 = ±j

√
K

m
= ±j0.32 (4.24)

which lies on the imaginary axis, and they have multiplicity one. The
system is then marginally stable. Figure 4.7 shows the impulse response.



64

Figure 4.7: The impulse response of the mass-spring-damper with m = 20 kg,
D = 0 N/(m/s) og Kf = 2 N/m. The system is marginally stabile.

[End of Example 4.2]

4.4 Stability properties of state-space models

In Section 4.3 the different stability properties were related to the poles of
the transfer function of a system. If the model originally is given as a
state-space model,

ẋ = Ax+Bu (4.25)

y = Cx+Du (4.26)

we can determine the stability by finding the corresponding transfer
function from u to y. We can derive the transfer function as follows: Take
the Laplace transform of (4.25) — (4.26) to get (I is the identity matrix of
equal dimension as of A)

sIx(s)− x0 = Ax(s) +Bu(s) (4.27)

y(s) = Cx(s) +Du(s) (4.28)

We neglect x0. Solving (4.27) for x(s) gives

x(s) = (sI −A)−1Bu(s) (4.29)

Inserting this x(s) into (4.28) gives

y(s) =
[
C(sI −A)−1B +D

]
u(s) (4.30)

So the transfer function is

H(s) =
y(s)

u(s)
= C(sI −A)−1B +D ≡ C

adj(sI −A)

det(sI −A)
B +D (4.31)



65

The stability property can now be determined from the poles of this
transfer function. The poles are the roots of the characteristic equation:

a(s) = det(sI −A) = 0 (4.32)

But (4.32) defines the eigenvalues of A!2 So, the poles of the transfer
function are the same as the eigenvalues of A. Consequently, we can just
calculate these eigenvalues and conclude about the stability from the
placement of the eigenvalues in the complex plane. Just substitute pole by
eigenvalue in the criteria for asymptotic stability, marginal stability and
instability on page 4.3.

Here is a small modification: In some state-space models factors of type
(s− pi) in the denominator can be cancelled against factors (s− zi) in the
numerator of the transfer function. Such pole/zero-cancellations implies
that some of the poles (and zeros) “disappears” from the transfer function.
Consequently, the set of poles will then be just a subset of the set of
eigenvalues. Thus, there may exist eigenvalues which are not poles, so that
stability analysis based on eigenvalues placement (in the complex plane)
may give a different result than stability analysis based on pole placement.

2 In mathematics litterature it is more common to use the symbol λ in stead of s for
eigenvalues.



66



Chapter 5

Stability analysis of feedback
systems

5.1 Introduction

A control system must be asymptotically stable. Two of the most relevant
methods to determine the stability property of a control system are:

• Pole-based stability analysis, which is based on calculating the
poles of the control system. The correspondence between the
stability property and the poles placement in the complex plane is
developed in Chapter 4.

• Nyquist’s stability criterion which is based on the frequency
response of the loop transfer function1, L(jω).

Both of these methods are described in the present chapter.

There is an algebraic analysis method named Routh’s stability criterion [1]
which is based on the coefficients of the characteristic polynomial of the
control system. This method is not described in this book since it has
limited practical importance, and the mathematical operations become
quite complicated except for the simplest models.

1 the product of all the transfer functions in the control loop, cf. (3.12)

67



68

5.2 Pole-based stability analysis of feedback
systems

Which is the transfer function to be used to determine the stability analysis
of feedback systems, e.g. control systems? Let’s start with Figure 3.2 which
shows a block diagram of a feedback control system. We must select a
transfer function from one of the input signals to the closed loop to one of
the output signals from the loop. Let us select the transfer function from
the setpoint ymSP

to the process measurement ym. This transfer function is

ym(s)

ymSP
(s)

=
Hc(s)Hu(s)Hm(s)

1 +Hc(s)Hu(s)Hm(s)
=

L(s)

1 + L(s)
= T (s) (5.1)

which is the tracking transfer function of the control system. (If we had
selected some other transfer function, for example the transfer function
from the disturbance to the process output variable, the result of the
analysis would have been the same.) L(s) is the loop transfer function of
the control system:

L(s) = Hc(s)Hu(s)Hm(s) (5.2)

Figure 5.1 shows a compact block diagram of a control system. The
transfer function from ymSP

to ym is the tracking function:

ymSP ym
L(s)

Figure 5.1: Compact block diagram of a control system with setpoint ymSP
as

input variable and process measurement Ym as output variable

T (s) =
L(s)

1 + L(s)
=

nL(s)
dL(s)

1 + nL(s)
dL(s)

=
nL(s)

dL(s) + nL(s)
(5.3)

where nL(s) and dL(s) are the numerator and denominator polynomials of
L(s), respectively. The characteristic polynomial of the tracking function is

c(s) = dL(s) + nL(s) (5.4)

The stability of the control system is determined by the placement of the
roots of (5.4) in the complex plane.



69

Kp = 1 (asympt. stable) Kp = 2 (marg. stable) Kp = 4 (unstable)
p1 = −1.75 p1 = −2 p1 = −2.31
p2 = −0.12 + j0.74 p2 = j p2 = 0.16 + j1.31

p3 = −0.12− j0.74 p3 = −j p3 = 0.16− j1.31

Table 5.1: Poles of the tracking transfer function for various Kp-values

Example 5.1 Stability of a feedback control system

See Figure ?? which shows a block diagram (transfer function based) of a
control system. We assume that the individual transfer functions with
parameter values are as follows:

Hsm(s) = Ksm = 1 (5.5)

Hs(s) = Ks = 1 (5.6)

Hc(s) = Kp (proportional controller) (5.7)

Hu(s) =
1

(s+ 1)2 s
(5.8)

Hd(s) =
−1

(s+ 1)2 s
(5.9)

The stability property of the control system can be determined from the
placement of the poles of the tracking transfer function, T (s), which is the
transfer function from the reference ySP to the process output variable y.
The tracking transfer function is

T (s) =
y(s)

ySP (s)
=

Hsm(s)Hc(s)Hu(s)

1 +Hs(s)Hc(s)Hu(s)
(5.10)

Inserting (5.5) — (5.9) gives

Hyr ,y(s) =
Kp

s3 + 2s2 + s+Kp
(5.11)

The characteristic polynomial of T (s) is

a(s) = s3 + 2s2 + s+Kp (5.12)

Table 5.1 shows the poles for three different Kp-values.2

Figure 5.2 shows the step response in y for the three Kp-values (it is a unit
step in r).

[End of Example 5.1]
2The poles can be calculated using the MATLAB-function roots or pzmap or pole or

using the LabVIEW-function Complex Polynomial Roots.



70

Figure 5.2: Example 5.1: Step response in the process output variable y for
three different Kp-values

5.3 Nyquist’s stability criterion

The Nyquist’s stability criterion will now be derived. We start with a little
rewriting: The roots of (5.4) are the same as the roots of

dL(s) + nL(s)

dL(s)
= 1 +

nL(s)

dL(s)
= 1 + L(s) = 0 (5.13)

which, therefore, too can be denoted the characteristic equation of the
control system. (5.13) is the equation from which the Nyquist’s stability
criterion will be derived. In the derivation we will use the Argument
variation principle:

Argument variation principle: Given a function f(s) where s is a
complex number. Then f(s) is a complex number, too. As with all
complex numbers, f(s) has an angle or argument. If s follows a
closed contour Γ (gamma) in the complex s-plane which encircles a
number of poles and a number of zeros of f(s), see Figure 5.3, then



71

Re(s)

Im(s)
PCL poles of
closed loop system in
right half plane

P
OL

poles of
open loop system in
right half plane

Positive
direction of
circulation

Γ contour

R
ig

ht
 h

al
f p

la
ne

Figure 5.3: s shall follow the Γ contour once in positive direction (counter
clockwise).

the following applies:

arg
Γ

f(s) = 360◦·(number of zeros minus number of poles of f(s) inside Γ)

(5.14)
where argΓ f(s) means the change of the angle of f(s) when s has
followed Γ once in positive direction of circulation (i.e. clockwise).

For our purpose, we let the function f(s) in the Argument variation
principle be

f(s) = 1 + L(s) (5.15)

The Γ contour must encircle the entire right half s-plane, so that we are
certain that all poles and zeros of 1 + L(s) are encircled. From the
Argument Variation Principle we have:



72

arg
Γ
[1 + L(s)] = arg

Γ

dL(s) + nL(s)

dL(s)
(5.16)

= 360◦ · (number of roots of (dL + nL) in RHP

minus number roots of dL in RHP) (5.17)

= 360◦ · (number poles of closed loop system in RHP

minus number poles of open system in RHP)

= 360◦ · (PCL − POL) (5.18)

where RHP means right half plane. By “open system” we mean the
(imaginary) system having transfer function L(s) = nL(s)/dL(s), i.e., the
original feedback system with the feedback broken. The poles of the open
system are the roots of dL(s) = 0.

Finally, we can formulate the Nyquist’s stability criterion. But before we
do that, we should remind ourselves what we are after, namely to be able
to determine the number poles PCL of the closed loop system in RHP. It
those poles which determines whether the closed loop system (the control
system) is asymptotically stable or not. If PCL = 0 the closed loop system
is asymptotically stable.

Nyquist’s stability criterion: Let POL be the number of poles of the
open system in the right half plane, and let argΓL(s) be the angular
change of the vector L(s) as s have followed the Γ contour once in
positive direction of circulation. Then, the number poles PCL of the
closed loop system in the right half plane, is

PCL =
argΓL(s)

360◦
+ POL (5.19)

If PCL = 0, the closed loop system is asymptotically stable.

Let us take a closer look at the terms on the right side of (5.19): POL are
the roots of dL(s), and there should not be any problem calculating these
roots. To determine the angular change of the vector 1 + L(s). Figure 5.4
shows how the vector (or complex number) 1 + L(s) appears in a Nyquist
diagram for a typical plot of L(s). A Nyquist diagram is simply a
Cartesian diagram of the complex plane in which L is plotted. 1 + L(s) is
the vector from the point (−1, 0j), which is denoted the critical point, to
the Nyquist curve of L(s).



73

Re L(s)

Im L(s)

1

1 + L(s)

The 
critical 
point

Decreasing ω

Positive ω

Negative ω

Infinite ω

0

Nyquist 
curve of 
L(s)

Figure 5.4: Typical Nyquist curve of L(s). The vector 1 + L(s) is drawn.

More about the Nyquist curve of L(jω)

Let us take a more detailed look at the Nyquist curve of L as s follows the
Γ contour in the s-plane, see Figure 5.3. In practice, the denominator
polynomial of L(s) has higher order than the numerator polynomial. This
implies that L(s) is mapped to the origin of the Nyquist diagram when
|s| =∞. Thus, the whole semicircular part of the Γ contour is mapped to
the origin.

The imaginary axis constitutes the rest of the Γ contour. How is the
mapping of L(s) as s runs along the imaginary axis? On the imaginary
axis s = jω, which implies that L(s) = L(jω), which is the frequency
response of L(s). A consequence of this is that we can in principle
determine the stability property of a feedback system by just looking at
the frequency response of the open system, L(jω).

ω has negative values when s = jω is on the negative imaginary axis. For
ω < 0 the frequency response has a mathematical meaning. From general
properties of complex functions,

|L(−jω)| = |L(jω)| (5.20)

and
� L(−jω) = −� L(jω) (5.21)

Therefore the Nyquist curve of L(s) for ω < 0 will be identical to the
Nyquist curve of ω > 0, but mirrored about the real axis. Thus, we only



74

need to know how L(jω) is mapped for ω ≥ 0. The rest of the Nyquist
curve then comes by itself! Actually we need not draw more of the Nyquist
curve (for ω > 0) than what is sufficient for determining if the critical
point is encircled or not.

We must do some extra considerations if some of the poles in L(s), which
are the poles of the open loop system, lie in the origin. This corresponds to
pure integrators in control loop, which is a common situation in feedback
control systems because the controller usually has integral action, as in a
PI or PID controller. If L(s) contains integrators, the Γ contour must go
outside the origo. But to the left or to the right? We choose to the right,
see Figure 5.5. (We have thereby decided that the origin belongs to the left

Re(s)

Im(s)

Re L(s)

Im L(s)

1

1 + L(s)

0

Infinetely small
radius

Infinitely large
radius from 
origin

0

Figure 5.5: Left diagram: If L(s) has a pole in origin, the Γ contour must pass
the origin along an arbitrarily small semicircle to the right. Right diagram: A
typical Nyquist curve of L.

half plane. This implies that POL does not count these poles.) The radius
of the semicircle around origin is arbitrarily small. The Nyquist curve then
becomes as shown in the diagram to the right in the same figure. The
arbitrarily small semicircle in the s-plane is mapped to an infinitely large
semicircle in the L-plane. The is because as s→ 0, the loop transfer
function is approximately

L(s) ≈ K

s

(if we assume one pole in the origin). On the small semicircle,

s = rejθ (5.22)

which gives

L(s) ≈ K

r
e−jθ (5.23)



75

When r → 0 and when simultaneously θ goes from +90◦ via 0◦ to −90◦,
the Nyquist curve becomes an infinitely large semicircle, as shown.

The Nyquist’s stability criterion for non-rational transfer
functions

The Nyquist’s stability criterion gives information about the poles of
feedback systems. So far it has been assumed that the loop transfer
function L(s) is a rational transfer function. What if L(s) is irrational?
Here is one example:

L(s) =
1

s
e−τs (5.24)

where e−τs represents time delay. In such cases the tracking ratio T (s) will
also be irrational, and the definition of poles does not apply to such
irrational transfer functions. Actually, the Nyquist’s stability criterion can
be used as a graphical method for determining the stability property on
basis of the frequency response L(jω).

Nyquist’s special stability criterion

In most cases the open system is stable, that is, POL = 0. (5.19) then
becomes

PCL =
argΓ[L(s)]

360◦
(5.25)

This implies that the feedback system is asymptotically stable if the
Nyquist curve does not encircle the critical point. This is the Nyquist’s
special stability criterion or the Nyquist’s stability criterion for open stable
systems.

The Nyquist’s special stability criterion can also be formulated as follows:
The feedback system is asymptotically stable if the Nyquist curve of L has
the critical point on its left side for increasing ω.

Another way to formulate Nyquist’s special stability criterion involves the
amplitude crossover frequency ωc and the phase crossover frequency ω180.
ωc is the frequency at which the L(jω) curve crosses the unit circle, while
ω180 is the frequency at which the L(jω) curve crosses the negative real
axis. In other words:

|L(jωc)| = 1 (5.26)

and
argL(jω180) = −180◦ (5.27)



76

See Figure 5.6. Note: The Nyquist diagram contains no explicit frequency
axis. We can now determine the stability properties from the relation

Re L(s)

Im L(s)

1

Decreasing ω
Positive ω

0

Unit circle
j

L(jω180)

L(jωc)

Figure 5.6: Definition of amplitude crossover frequency ωc and phase crossover
frequency ω180

between these two crossover frequencies:

• Asymptotically stable closed loop system: ωc < ω180

• Marginally stable closed loop system: ωc = ω180

• Unstable closed loop system: ωc > ω180

The frequency of the sustained oscillations

There are sustained oscillations in a marginally stable system. The
frequency of these oscillations is ωc = ω180.This can be explained as
follows: In a marginally stable system, L(±jω180) = L(±jωc) = −1.
Therefore, dL(±jω180) + nL(±jω180) = 0, which is the characteristic
equation of the closed loop system with ±jω180 inserted for s. Therefore,
the system has ±jω180 among its poles. The system usually have
additional poles, but they lie in the left half plane. The poles ±jω180 leads
to sustained sinusoidal oscillations. Thus, ω180 (or ωc) is the frequency of
the sustained oscillations in a marginally stable system.



77

5.4 Stability margins

5.4.1 Stability margins in terms of gain margin and phase
margin

An asymptotically stable feedback system may become marginally stable if
the loop transfer function changes. The gain margin GM and the phase
margin PM [radians or degrees] are stability margins which in their own
ways expresses how large parameter changes can be tolerated before an
asymptotically stable system becomes marginally stable. Figure 5.7 shows
the stability margins defined in the Nyquist diagram. GM is the

Re L(s)

Im L(s)

1
0

Unity circle
j

L(jω180)

L(jωc)

1/GM

PM

Figure 5.7: Gain margin GM and phase margin PM defined in the Nyquist
diagram

(multiplicative, not additive) increase of the gain that L can tolerate at
ω180 before the L curve (in the Nyquist diagram) passes through the
critical point. Thus,

|L(jω180)| ·GM = 1 (5.28)

which gives

GM =
1

|L(jω180)|
=

1

|ReL(jω180)|
(5.29)

(The latter expression in (5.29) is because at ω180, ImL = 0 so that the
amplitude is equal to the absolute value of the real part.)



78

If we use decibel as the unit (like in the Bode diagram which we will soon
encounter), then

GM [dB] = −|L(jω180)| [dB] (5.30)

The phase margin PM is the phase reduction that the L curve can tolerate
at ωc before the L curve passes through the critical point. Thus,

argL(jωc)− PM = −180◦ (5.31)

which gives
PM = 180◦ + argL(jωc) (5.32)

We can now state as follows: The feedback (closed) system is
asymptotically stable if

GM > 0dB = 1 and PM > 0◦ (5.33)

This criterion is often denoted the Bode-Nyquist stability criterion.

Reasonable ranges of the stability margins are

2 ≈ 6dB ≤ GM ≤ 4 ≈ 12dB (5.34)

and
30◦ ≤ PM ≤ 60◦ (5.35)

The larger values, the better stability, but at the same time the system
becomes more sluggish, dynamically. If you are to use the stability margins
as design criterias, you can use the following values (unless you have
reasons for specifying other values):

GM ≥ 2.5 ≈ 8dB and PM ≥ 45◦ (5.36)

For example, the controller gain, Kp, can be adjusted until one of the
inequalities becomes an equality.3

It can be shown4 that for PM ≤ 70◦, the damping of the feedback system
approximately corresponds to that of a second order system with relative
damping factor

ζ ≈ PM

100◦
(5.37)

For example, PM = 50◦ ∼ ζ = 0.5.
3But you should definitely check the behaviour of the control system by simulation, if

possible.
4The result is based on the assumption that the loop transfer function is L(s) =

ω20/ [(s+ 2ζω0)s] which gives tracking transfer function T (s) = L(s)/[1 + L(s)] =
ω20/

[
s2 + 2ζω0s+ ω

2
0

]
. The phase margin PM can be calculated from L(s).



79

5.4.2 Stability margins in terms of maximum sensitivity
amplitude

An alternative quantity of a stability margin is the minimum distance from
the L(jω) curve to the critical point. This distance is |1 + L(jω)|, see
Figure 5.8. We can use the minimal value of |1 +L(jω)| as a stability

Re L(s)

Im L(s)

1
0

L(jω)

|1+L(jω)|

|1+L(jω)|min

Figure 5.8: The distance between the L(jω) curve and the critical point is
|1 +L|. The minimum of this distance is related to the stability margin.

margin. However, it is more common to take the inverse of the distance:
Thus, a stability margin is the maximum value of 1/ |1 + L(jω)|. And
since 1/[1 + L(s)] is the sensitivity function S(s), then |S(jω)|max
represents a stability margin. Reasonable values are in the range

1.5 ≈ 3.5 dB ≤ |S(jω)|max ≤ 3.0 ≈ 9.5 dB (5.38)

If you use |S(jω)|max as a criterion for adjusting controller parameters, you
can use the following criterion (unless you have reasons for some other
specification):

|S(jω)|max = 2.0 ≈ 6 dB (5.39)

5.5 Stability analysis in a Bode diagram

It is most common to use a Bode diagram for frequency response based
stability analysis of closed loop systems. The Nyquist’s Stability Criterion
says: The closed loop system is marginally stable if the Nyquist curve (of
L) goes through the critical point, which is the point (−1, 0). But where is
the critical point in the Bode diagram? The critical point has phase
(angle) −180◦ and amplitude 1 = 0dB. The critical point therefore



80

constitutes two lines in a Bode diagram: The 0dB line in the amplitude
diagram and the −180◦ line in the phase diagram. Figure 5.9 shows typical
L curves for an asymptotically stable closed loop system. In the figure,
GM , PM , ωc and ω180 are indicated.

ω
(logarithmic)

ω180

ωc

|L(jω)|

arg L(jω)

[dB]

[degrees]

0 dB

-180

PM

GM

Figure 5.9: Typical L curves of an asymptotically stable closed loop system
with GM , PM , ωc and ω180 indicated

Example 5.2 Stability analysis of a feedback control system

Given a feedback control system with structure as shown in Figure 5.10.
The loop transfer function is

L(s) = Hc(s)Hp(s) = Kp︸︷︷︸
Hc(s)

1

(s+ 1)2 s
︸ ︷︷ ︸

Hp(s)

=
Kp

(s+ 1)2 s
=

nL(s)

dL(s)
(5.40)

We will determine the stability property of the control system for different
values of the controller gain Kp in three ways: Pole placement, Nyquist’s
Stability Criterion, and simulation. The tracking transfer function is

T (s) =
ym(s)

ymSP
(s)

=
L(s)

1 +L(s)
=

nL(s)

dL(s) + nL(s)
=

Kp

s3 + 2s2 + s+Kp
(5.41)



81

ymSP
y

m
Hc(s) Hp(s)

Controller

Process with
measurement
and scaling

Figure 5.10: Example 5.2: Block diagram of feedback control system

The characteristic polynomial is

c(s) = s3 + 2s2 + s+Kp (5.42)

Figures 5.11 — 5.13 show the step response after a step in the setpoint, the
poles, the Bode diagram and Nyquist diagram for three Kp values which
result in different stability properties. The detailed results are shown
below.

• Kp = 1: Asymptotically stable system, see Figure 5.11. From the
Bode diagram we read off stability margins GM = 6.0dB = 2.0 and
PM = 21◦. we see also that |S(jω)|max = 11 dB = 3.5 (a large value,
but it corresponds with the small the phase margin of PM = 20◦).

• Kp = 2: Marginally stable system, see Figure 5.12. From the Bode
diagram, ωc = ω180. The L curve goes through the critical point in
the Nyquist diagram. |S|max has infinitely large value (since the
minimum distance, 1/|S|max, between |L| and the critical point is
zero).

Let us calculate the period Tp of the undamped oscillations: Since
ω180 = 1.0rad/s, the period is Tp = 2π/ω180 = 6.28s, which fits well
with the simulation shown in Figure 5.12.

• Kp = 4: Unstable system, see Figure 5.13. From the Bode diagram,
ωc > ω180. From the Nyquist diagram we see that the L curve passes
outside the critical point. (The frequency response curves of M and
N have no physical meaning in this the case.)

[End of Example 5.2]



82

5.6 Robustness in term of stability margins

Per definition the stability margins expresses the robustness of the
feedback control system against certain parameter changes in the loop
transfer function:

• The gain margin GM is how much the loop gain, K, can increase
before the system becomes unstable. For example, is GM = 2 when
K = 1.5, the control system becomes unstable for K larger than
1.5 · 2 = 3.0.

• The phase margin PM is how much the phase lag function of the
loop can be reduced before the loop becomes unstable. One reason of
reduced phase is that the time delay in control loop is increased. A
change of the time delay by ∆τ introduces the factor e−∆τs in L(s)
and contributes to argL with −∆τ · ω [rad] or −∆τ · ω 180◦π [deg]. |L|
is however not influenced because the amplitude function of e−τs is 1,
independent of the value of τ . The system becomes unstable if the
time delay have increased by ∆τmax such that5

PM = ∆τmax · ωc
180◦

π
[deg] (5.43)

which gives the following maximum change of the time delay:

∆τmax =
PM

ωc

π

180◦
(5.44)

If you want to calculate how much the phase margin PM is reduced
if the time delay is increased by ∆τ , you can use the following
formula which stems from (5.43):

∆PM = ∆τ · ωc
180◦

π
[deg] (5.45)

For example, assume that a given control system has
ωc = 0.2rad/min and PM = 50◦. If the time delay increases by 1min,
the phase margin is reduced by ∆PM = 1 · 0.2180◦π = 11.4◦, i.e. from
50◦ to 38.6◦.

5Remember that PM is found at ωc.



83

Figure 5.11: Example 5.2: Step response (step in setpoint), poles, Bode dia-
gram and Nyquist diagram with Kp = 1. The control system is asymptotically
stable.



84

Figure 5.12: Example 5.2: Step response (step in setpoint), poles, Bode di-
agram and Nyquist diagram with Kp = 2. The control system is marginally
stable.



85

Figure 5.13: Example 5.2: Step response (step in setpoint), poles, Bode dia-
gram and Nyquist diagram with Kp = 4. The control system is unstable.



86



Part II

DISCRETE-TIME
SYSTEMS THEORY

87





Chapter 6

Discrete-time signals

Assume that an AD-converter (analog-digital) at discrete points of time
converts an analog signal ya(t), which can be a voltage signal from a
temperature or speed sensor, to an equivalent digital signal, yd(tk), in the
form of a number to be used in operations in the computer, see Figure 6.1.

ya(t) yd(tk)

fs [Hz] = 1/Ts

AD-converter
with samplingContinuous-time,

analog signal
Discrete-time,
digital signal

tkt

Figure 6.1: Sampling. Ts is the time step between the samplings, or the
sampling interval.

(The AD-converter is a part of the interface between the computer and the
external equipment, e.g. sensors.) As indicated in Figure 6.1 the resulting
discrete-time signal is a sequence or a series of signal values defined in
discrete points of time. Ts is the time step between the samplings, or the
sampling interval. Figure 6.2 shows this signal in more detail. The discrete
points of time may be denoted tk where k is an integer time index. The
time series can be written in various ways:

{x(tk)} = {x(kTs)} = {x(k)} = x(0), x(1), x(2), . . . (6.1)

89



90

0 1 2 3 4 5 6

yk = y(kTs)

0,0

0,5

1,0

1,5

2,0

k

Ts=0.2

0.0 0.2 0.4 0.6 0.8 1.21.0 tk = t [s]

Figure 6.2: Discrete-time signal

To make the notation simple, we can write the signal in one of the
following ways:

x(tk) (6.2)

x(kTs) (6.3)

x(k) (6.4)

xk (6.5)

In the example above, the discrete-time signal originated from sampling of
a continuous-time signal. However, discrete-time signals exists in many
other circumstances, for example,

• the output signal from a discrete-time (computer-based) signal filter,
for example a lowpass filter,

• the output from a discrete-time (computer-based) controller which
controls a physical process,

• the response in a dynamic system as calculated by a
(computer-based) simulator.



Chapter 7

Difference equations

7.1 Difference equation models

The basic model type of continuous-time dynamic systems is the
differential equation. Analogously, the basic model type of discrete-time
dynamic systems is the difference equation. Here is an example of a linear
second order difference equation with u as input variable and y as output
variable:

y(tk+2) + a1y(tk+1) + a0y(tk) = b0u(tk) (7.1)

which may be written somewhat simpler as

y(k + 2) + a1y(k + 1) + a0y(k) = b0u(k) (7.2)

where ai and bj are coefficients of the difference equation, or model
parameters. Note that this difference equation has unique coefficients since
the coefficient of y(k + 2) is 1.

One equivalent form (7.2) is

y(k) + a1y(k − 1) + a0y(k − 2) = b0u(k − 2) (7.3)

where there are no time delayed terms (no negative time indexes), only
time advanced terms (positive or zero time indexes). This form can be
obtained from (7.2) by increasing each time index in (7.2) by 2.

In most cases we want to write the difference equation as a formula for the
output variable. In our example the formula for the output y(k) can be
obtained by solving for y(k) from (7.3):

y(k) = −a1y(k − 1)− a0y(k − 2) + b0u(k − 2) (7.4)

91



92

(7.4) says that the output y(k) is given as a linear combination of the
output one time step back in time, y(k − 1), the output two time steps
back in time, y(k− 2), and the input two time steps back in time, u(k− 2).

7.2 Calculating responses from difference
equation models

For example, (7.4) is a formula for calculating dynamic (time-varying)
responses in the output, y(k). The formula must be calculated once per
time step, and it can be implemented in a While loop or a For loop in a
computer program. Assume as an example that y(1), y(0) and u(0) are
zero. Then (7.4) gives

y(2) = −a1y(1)− a0y(0) + b0u(0) (7.5)

y(3) = −a1y(2)− a0y(1) + b0u(1) (7.6)

y(4) = −a1y(3)− a0y(2) + b0u(2) (7.7)

and so on.

The static response — which is the (steady-state) response of the system
when all variables are assumed to have constant values — can be calculated
from the static version of the difference equation. The static version is
found by neglecting all time-dependencies in the difference equation, and
setting y(k) = ys, y(k − 1) = ys etc. where subindex s is for static. For
example, the static version of (7.4) is

ys = −a1ys − a0ys + b0us (7.8)

The static response is

ys =
b0

1 + a1 + a0
us (7.9)



Chapter 8

Discretizing continuous-time
models

8.1 Simple discretization methods

Typical applications of difference equation models are computer-based
implementations of

• simulators,

• signal filters,

• controllers.

Often the simulator model, the filter, or the controller, is originally given
as a continuous-time model in the form of a differential equation or a
Laplace transfer function. The obtain a corresponding differential equation
(ready for implementation in a computer program), you have to discretize
the continuous-time model. This approximation can be made in many
ways. My experience is that in most applications it is sufficient to apply
one of the following (simple) methods, which are based on approximations
of the time derivatives of the differential equation:

• (Euler’s) Forward differentiation method, which is commonly
used in developing simple simulators.

• (Euler’s) Backward differentiation method, which is commonly
used in discretizing simple signal filters and industrial controllers.

93



94

The Forward differentiation method and the Backward differentiation
method will be explained in detail below. But you should at least have
heard about some other methods as well, see below [2]:

• Zero Order Hold (ZOH) method : It is assumed that the system has a
zero order hold element on the input side of the system. This is the
case when the physical system is controlled by a computer via a DA
converter (digital to analog). Zero order hold means that the
physical input signal to the system is held fixed between the discrete
points of time. The discretization method is relatively complicated to
apply, and in practice you will probably use a computer tool (e.g.
MATLAB or LabVIEW) to do the job.

• Tustin’s method : This method is based on an integral approximation
where the integral is interpreted as the area between the integrand
and the time axis, and this area is approximated with trapezoids.
(The Euler’s methods approximates this area with a rectangle.)

• Tustin’s method with frequency prewarping, or Bilinear
transformation: This is the Tustin’s method but with a modification
so that the frequency response of the original continuous-time system
and the resulting discrete-time system have exactly the same
frequency response at one or more specified frequencies.

Some times you want to go the opposite way — transform a discrete-time
model into an equivalent continuous-time model. Such methods will
however not be described in this document.

The Forward differentiation method is somewhat less accurate than the
Backward differentiation method, but it is simpler to use. Particularly,
with nonlinear models the Backward differentiation method may give
problems since it results in an implicit equation for the output variable,
while the Forward differentiation method always gives an explicit equation
(the nonlinear case will be demonstrated in an example).

Figure 8.1 illustrates both the Forward and the Backward differentiation
methods. The Forward differentiation method can be seen as the following
approximation of the time derivative of a time-valued function which here
is denoted x:

Forward differentiation method: ẋ(tk) ≈
x(tk+1)− x(tk)

Ts
(8.1)

Ts is the time step, i.e. the time interval between two subsequent points of
time. The name “Forward differentiation method” stems from the x(tk+1)
term in (8.1).



95

x

t

Ts

tk-1 tk

Slope with 
Forward
Differensiation 
method

x(tk)

x(tk-1)

tk+1

x(tk+1)
x(tk)

Exact
slope,

Slope with
Backward
Differensiation 
method

x(tk)

Ts

Figure 8.1: The Forward differentiation method and the Backward differentia-
tion method

The Backward differentiation method is based on the following
approximation of the time derivative:

Backward differentiation method: ẋ(tk) ≈
x(tk)− x(tk−1)

Ts
(8.2)

The name “Backward differentiation method” stems from the x(tk−1) term
in (8.2), see Figure 8.1.

The examples in the subsequent sections demonstrate the application of the
Forward differentiation method and the Backward differentiation method.
It is also demonstrated how to get an equivalent differential equation from
an original transfer function model or an integral equation (the time
derivatives of the differential equation is then approximated with the
Forward differentiation method or the Backward differentiation method).

8.2 Discretizing a simulator of a dynamic system

A simulator of a dynamic system, e.g. a motor, liquid tank, a ship etc.,
must of course be based on the mathematical model of the system.
Typically, the model is in the form of a nonlinear differential equation



96

model. The Forward differentiation method may be used to discretize such
nonlinear models.

As an example, let us discretize the following nonlinear model:

ẋ(t) = −K1

√
x(t) +K2u(t) (8.3)

where u is the input, x is the output, and K1 and K2 are parameters.1 We
will now derive a simulator algorithm or formula for x(tk). Let us first try
applying the Backward differentiation method with time step h to the time
derivative in (8.3):

x(tk)− x(tk−1)
Ts

= −K1

√
x(tk) +K2u(tk) (8.4)

x(tk) appears on both sides of (8.4). We say that x(tk) is given implicitly —
not explicitly — by (8.4). Solving for for x(tk) in this implicit equation is
possible, but a little difficult because of the nonlinear function (the square
root). (If the difference equation was linear, it would be much easier to
solve for x(tk).) In other cases, nonlinear functions may cause big
problems in solving for the output variable, here x(tk).

Since we got some problems with the Backward differentiation method in
this case, let us in stead apply the Forward differentiation method to the
time derivative of (8.3):

x(tk+1)− x(tk)

Ts
= −K1

√
x(tk) +K2u(tk) (8.5)

Solving for x(tk+1) is easy:

x(tk+1) = x(tk) + Ts

[
−K1

√
x(tk) +K2u(tk)

]
(8.6)

Reducing each time index by one and using the simplifying notation
x(tk) = x(k) etc. finally gives the simulation algorithm:

x(k) = x(k − 1) + Ts

[
−K1

√
x(k − 1) +K2u(k − 1)

]
(8.7)

In general it is important that the time-step Ts of the discrete-time
function is relatively small, so that the discrete-time function behaves
approximately similar to the original continuous-time system. For the
Forward differentiation method a (too) large time-step may even result in

1This can be the model of a liquid tank with pump inflow and valve outflow. x is the
level. u is the pump control signal. The square root stems from the valve.



97

an unstable discrete-time system! For simulators the time-step Ts should
be selected according to

Ts ≤
0.1

|λ|max
(8.8)

Here |λ|max is the largest of the absolute values of the eigenvalues of the
model, which is the eigenvalues of the system matrix A in the state-space
model ẋ = Ax+Bu. For transfer function models you can consider the
poles in stead of the eigenvalues (the poles and the eigenvalues are equal
for most systems not having pol-zero cancellations). If the model is
nonlinear, it must be linearized before calculating eigenvalues or poles.

In stead of, or as a supplementary using However, you may also use a
trial-and-error method for choosing Ts (or fs): Reduce h until there is a
negligible change of the response of the system if Ts is further reduced. If
possible, you should use a simulator of your system to test the importance
of the value of Ts before implementation.

8.3 Discretizing a signal filter

A lowpass filter is used to smooth out high frequent or random noise in a
measurement signal. A very common lowpass filter in computer-based
control systems is the discretized first order filter — or time-constant filter.
You can derive such a filter by discretizing the Laplace transfer function of
the filter. A common discretization method in control applications is the
Backward differentiation method. We will now derive a discrete-time filter
using this method.

The Laplace transform transfer function — also denoted the
continuous-time transfer function — of a first order lowpass filter is

H(s) =
y(s)

u(s)
=

1

Tfs+ 1
=

1
s
ωb

+ 1
=

1
s

2πfb
+ 1

(8.9)

Here, u is the filter input, and y is the filter output. Tf [s] is the
time-constant. ωb is the filter bandwidth in rad/s, and fb is the filter
bandwidth in Hz. (In the following, the time-constant will be used as the
filter parameter since this is the parameter typically used in filter
implementations for control systems.)

Cross-multiplying in (8.9) gives

(Tfs+ 1) y(s) = u(s) (8.10)



98

Resolving the parenthesis gives

Tfsy(s) + y(s) = u(s) (8.11)

Taking the inverse Laplace transform of both sides of this equation gives
the following differential equation (because multiplying by s means
time-differentiation in the time-domain):

Tf ẏ(t) + y(t) = u(t) (8.12)

Let us use tk to represent the present point of time — or discrete time:

Tf ẏ(tk) + y(tk) = u(tk) (8.13)

Substituting the time derivative by the Backward differentiation
approximation gives

Tf
y(tk)− y(tk−1)

Ts
+ y(tk) = u(tk) (8.14)

Solving for y(tk) gives

y(tk) =
Tf

Tf + Ts
y(tk−1) +

Ts

Tf + Ts
u(tk) (8.15)

which is commonly written as

y(tk) = (1− a) y(tk−1) + au(tk) (8.16)

with filter parameter

a =
Ts

Tf + Ts
(8.17)

which has a given value once you have specified the filter time-constant Tf

and the time-step Ts is given. (8.16) is the formula for the filter output. It
is ready for being programmed. This filter is denoted the exponentially
weighted moving average (EWMA) filter, but we can simply denote it a
first order lowpass filter.

It is important that the filter time-step Ts is considerably smaller than the
filter time-constant Tf , otherwise the filter may behave quite differently
from the original continuous-time filter (8.9) from which it is derived. A
rule of thumb for the upper limit of Ts is

Ts ≤
Tf

5
(8.18)



99

8.4 Discretizing a PID controller

8.4.1 Computer based control loop

Figure 8.2 shows a control loop where controller is implemented in a
computer. The computer registers the process measurement signal via an
AD converter (from analog to digital). The AD converter produces a
numerical value which represents the measurement. As indicated in the
block diagram this value may also be scaled, for example from volts to
percent. The resulting digital signal, y(tk), is used in the control function,
which is in the form of a computer algorithm or program calculating the
value of the control signal, u(tk).

Process

Sensor with 
measurement 

filter

v

yu(t)Discrete-time
PID controller

Scaling and
DA-converter

with signal holding

AD-converter
and scaling

SamplingTs

u(tk)e(tk)r (tk)

y(tk)

tk=kTs

Ts

r(tk)

tk

e(tk)

tk

u(tk) u(t)

t t

y(t)

tk

y(tk)

t

Measured
y(t)

Figure 8.2: Control loop where the controller function is implemented in a
computer

The control signal is scaled, for example from percent to milliamperes, and
sent to the DA converter (from digital to analog) where it is held constant
during the present time step. Consequently the control signal becomes a
staircase signal. The time step or the sampling interval, Ts [s], is usually
small compared to the time constant of the actuator (e.g. a valve) so the
actuator does not feel the staircase form of the control signal. A typical
value of Ts in commercial controllers is 0.1 s.



100

8.4.2 Development of discrete-time PID controller

The starting point of deriving the discrete-time PID controller is the
continuous-time PID (proportional + integral + derivate) controller:

u(t) = u0 +Kpe(t) +
Kp

Ti

∫ t

0
e dτ +KpTdėf (t) (8.19)

where u0 is the control bias or manual control value (to be adjusted by the
operator when the controller is in manual mode), u is the controller output
(the control variable), e is the control error:

e(t) = r(t)− y(t) (8.20)

where r is the reference or setpoint, and y is the process measurement. ef
is the filtered control error. It is the output of the following lowpass filter:

ef (s) =
1

Tfs+ 1
e(s) (8.21)

where Tf is the filter time-constant, which is typically selected as

Tf = aTd (8.22)

where typically a = 0.1.

We will now derive a discrete-time formula for u(tk), the value of the
control signal for the present time step. The discretization can be
performed in a number of ways. Probably the simplest way is as follows:
Differentiating both sides of (8.19) gives2

u̇(t) = u̇0 +Kpė(t) +
Kp

Ti
e(t) +KpTdëf (t) (8.23)

Applying the Backward differentiation method (8.2) to u̇, ė, and ëf gives

u(tk)− u(tk−1)
Ts

=
u0(tk)− u0(tk−1)

Ts
(8.24)

+Kp
e(tk)− e(tk−1)

Ts
(8.25)

+
Kp

Ti
e(tk) (8.26)

+KpTd
ėf (tk)− ėf (tk−1)

Ts
(8.27)

2The time derivative of an integral is the integrand.



101

Applying the Backward differentiation method on ėf (tk) and ėf (tk−1) in
(8.24) gives

u(tk)− u(tk−1)
Ts

=
u0(tk)− u0(tk−1)

Ts
(8.28)

+Kp
e(tk)− e(tk−1)

Ts
(8.29)

+
Kp

Ti
e(tk) (8.30)

+KpTd

ef (tk)−ef (tk−1)
Ts

− ef (tk−1)−ef (tk−2)
Ts

Ts
(8.31)

Solving for u(tk) finally gives the discrete-time PID controller:

u(tk) = u(tk−1) + [u0(tk)− u0(tk−1)] (8.32)

+Kp [e(tk)− e(tk−1)] (8.33)

+
KpTs

Ti
e(tk) (8.34)

+
KpTd

Ts
[ef (tk)− 2ef (tk−1) + ef (tk−2)] (8.35)

The discrete version of the filter (8.21) can be derived as described in
Section 8.3.

The discrete-time PID controller algorithm (8.32) is denoted the absolute
or positional algorithm. Automation devices typically implements the
incremental or velocity algorithm. because it has some benefits. The
incremental algorithm is based on splitting the calculation of the control
value into two steps:

1. First the incremental control value ∆u(tk) is calculated:

∆u(tk) = [u0(tk)− u0(tk−1)] (8.36)

+Kp [e(tk)− e(tk−1)] (8.37)

+
KpTs

Ti
e(tk) (8.38)

+
KpTd

Ts
[ef (tk)− 2ef (tk−1) + ef (tk−2)] (8.39)

2. Then the total or absolute control value is calculated with

u(tk) = u(tk−1) +∆u(tk−1) (8.40)



102

The summation (8.40) implements the (numerical) integral action of the
PID controller.

The incremental PID control function is particularly useful if the actuator
is controlled by an incremental signal. A step-motor is such an actuator.
The motor itself implements the numerical integration (8.40). It is (only)
∆u(tk) that is sent to the motor.

8.4.3 Some practical features of the PID controller

A practical PID controller must have certain features to be functional:

• Integrator anti windup: Large excitations of the control system,
typically large disturbances or large setpoint changes, may cause the
control signal to reach its maximum or minimum limits with the
control error being different from zero. The summation in (8.40),
which is actually a numerical integration, will then cause u to
increase (or descrease) steadily — this is denoted integral windup — so
that u may get a very high (or low) value. When the excitations are
back to normal values, it may take a very long time before the large
value of u is integrated back to a normal value (i.e. within 0 — 100%),
causing the process output to deviate largely from the setpoint.

Preventing the windup is (not surprisingly) denoted anti windup, and
it can realized as follows:

1. Calculate an intermediate value of the control variable u(tk)
according to (8.40), but do not send this value to the DA
(Digital-to-Analog) converter.

2. Check if this intermediate value is greater than the maximum
value umax (typically 100%) or less than the minimum value
umin (typically 0%). If it exceeds one of these limits, set ∆u(tk)
in (8.40) to zero.

3. Write u(tk) to the DA converter.

• Bumpless transfer: Suppose the controller is switched from
automatic to manual mode, or from manual to automatic mode (this
will happen during maintenance, for example). The transfer between
modes should be bumpless, ideally. Bumpless transfer can be realized
as follows:



103

— Bumpless transfer from automatic to manual mode: In manual
mode it is only the manual (or nominal) control signal u0 —
adjusted by the operator — that controls the process. Manual
mode is equivalent to setting the controller gain to zero (or
multiplying the gain by zero). We assume here that the control
signal u(tk) in (8.40) has a proper value, say ugood, so that the
control error is small, immediately before the switch to manual
mode. To implement bumpless transfer, set u(tk−1) in (8.40)
equal to ugood immediately after the switching moment.

— Bumpless transfer from manual to automatic mode: Nothing
special has to be done during the switching except activting all
term in (8.36) — (8.39).

8.4.4 Selecting the sampling time of the control system

The DA converter (digital to analog) which is always between the
discrete-time control function and the continuous-time process to be
controlled, implements holding of the calculated control signal during the
time-step (sampling interval). This holding implies that the control signal
is time delayed approximately Ts/2, see Figure 8.3. The delay influences

t

Ts/2

u

The original signal time-delayed Ts /2
= average stair-formed signal

Original discrete-time signal

The signal 
held fixed

Figure 8.3: The DA-converter holds the calculated control signal throyghout
the sampling interval, thereby introducing an approximate time-delay of Ts/2.

the stability of the control loop. Suppose we have tuned a continuous-time
PID controller, and apply these PID parameters on a discrete-time PID
controller. Then the control loop will get reduced stability because of the
approximate delay of Ts/2. As a rule of thumb (this can be confirmed from
a frequency response based analysis), the stability reduction is small and
tolerable if the time delay is less than one tenth of the response-time of the



104

control system as it would have been with a continuous-time controller or a
controller having very small sampling time:

Ts

2
≤ Tr

10
(8.41)

which gives

Ts ≤
Tr

5
(8.42)

The response time is here the 63% rise time which can be read off from the
setpoint step response. For a system the having dominating time constant
T , the response-time is approximately equal to this time constant.



Chapter 9

Discrete-time state space
models

9.1 General form of discrete-time state space
models

The general form of a discrete-time state space model is

x(k + 1) = f [x(k), u(k)] (9.1)

y(k) = g[x(k), u(k)] (9.2)

where x is the state variable, u is the input variable which may consist of
control variables and disturbances (in this model definition there is no
difference between these two kinds of input variables). y is the output
variable. f and g are functions — linear or nonlinear. x(k + 1) in (9.1)
means the state one time-step ahead (relative to the present state x(k)).
Thus, the state space model expresses how the systems’ state (variables)
and output variables evolves along the discrete time axis.

The variables in (9.1) — (9.2) may actually be vectors, e.g.

x =






x1
x2
...
xn






(9.3)

where xi is a (scalar) state variable, and if so, f and/or g are vector
evaluated functions.

105



106

9.2 Linear discrete-time state space models

A special case of the general state space model presented above is the
linear state space model:

x(k + 1) = Ax(k) +Bu(k) (9.4)

y(k) = Cx(k) +Du(k) (9.5)

where A is the transition matrix, B is the input gain matrix, C is the
output gain matrix or measurement gain matrix and D is the direct output
gain matrix (in most cases, D = 0).

9.3 Discretization of continuous-time state space
models

9.3.1 Discretization of non-linear continuous-time
state-space models

Here are some situations where you need to discretize a continuous-time
non-linear state-space model:

• Creating a simulation algorithm from a process model. This was
actually described in Section 8.2.

• Defining the process model to be used as the basis of a state
estimator in form of an observer, cf. Chapter 17, or a Kalman Filter,
cf. Chapter 18.

The Forward Discretization method, cf. Section 8.1, is the simplest, most
commonly used, and the most flexible method. Only this method will be
described here.

Given this continuous-time state space model

ẋ(t) = fc [x(t), u(t)] (9.6)

Approximating the time derivative with Forward differentiation gives

x(tk+1)− x(tk)

Ts
= fc [x(tk), u(tk)] (9.7)



107

Solving for x(tk+1) gives

x(tk+1) = x(tk) + Tsfc [x(tk), u(tk)] (9.8)

which is a discrete-time state-space model, which is non-linear if fc is a
non-linear function of x and u.

9.3.2 Discretization of linear continuous-time state-space
models

One situation where you need to discretize a continuous-time linear
state-space model is in calculation of the Kalman gain of a Kalman Filter
state estimator, cf. Chapter 18.

The most appropriate discretization methods are the Forward difference
method, cf. 8.1, and the Zero-order hold method. These are described in
the following.

Forward difference method

If you are going to implement the discretization “manually”, you may use
the Forward difference method, cf. 8.1, because it is simple to use, and
gives a discrete-time state-space model with no direct term in the output
equation, i.e. the matrix D in y(k) = Cx(k) +Du(k) is zero, which may be
benefical (simplifying) in controller and estimator designs. However, the
dynamic properties — e.g. the stability — of the resulting model may differ
noticeably from the properties of the original model. For example, if the
time-step is too large compared to the time-constants of the system (you
can calculate time-constants from the transfer function of the state-space
model), the discrete-time system may be unstable even if the original
continuous-time system is stable. However, with a reasonable value of the
time-step — say less than one fifth of the smallest time-constant — the
dynamic properties are almost the same.

Assume given the linear continuous-time state-space model

ẋ(t) = Acx(t) +Bcu(t) (9.9)

y(t) = Ccx(t) +Dcu(t) (9.10)

Approximating the time derivative with Forward differentiation gives

x(tk+1)− x(tk)

h
= Acx(t) +Bcu(t) (9.11)



108

Solving for x(tk+1) gives

x(tk+1) =

A︷ ︸︸ ︷
(I + hAc)x(tk) +

B︷︸︸︷
hBcu(tk) (9.12)

= Ax(tk) +Bu(tk) (9.13)

The output is given by

y(tk) =

C︷︸︸︷
Cc x(tk) +

D︷︸︸︷
Dc u(tk) (9.14)

= Cx(tk) +Du(tk) (9.15)

(9.13) and (9.15) constitute a linear discrete-time state-space model.

Zero-order hold discretization

Often the process model to be discretized is the model of a physical having
a sample-and-hold element on its input, as when the process is controlled
by a computer via a DA converter (digital to analog). In such situations
the input signal is held constant during the sampling interval, see Figure
9.1. This is denoted Zero order hold or ZOH.

Cont.-
time

process

y(t)uh(t)DA-converter
with holding

tk

u(tk) uh(t)

t t

y(t)

Sampling

tk

y(tk)=y(k)u(tk)=u(k)

y(tk)

Figure 9.1: Block diagram of a process having a zero order hold element on its
input. uh is the piecewise constant (held) input signal.

Discretization with the ZOH discretization method gives a perfect
discrete-time model. This means that the discrete-time model will produce
excactly the same response as produced by the continuous-time model at
the discrete points of time. (If we discretize using e.g. the Forward
discretization method the responses will differ a little.) If you in a given
application need to discretize a linear continuous-time system which has a



109

ZOH element at it’s input, you should use the ZOH discretization method,
unless you have practical reasons for not doing it.

The ZOH discretization method is complicated to implement manually. In
practice you will use functions in e.g. MATLAB or LabVIEW. Therefore, I
will not describe the analytical methods for ZOH discretization.

Example 9.1 Discretization of state-space model in MATLAB

Here is an example of using the c2d function (continuos-to-discrete) in
MATLAB:

A = [0,1;0,0];
B = [0;1];
C = [1,0];
D = [0];
Ts=0.1;%Sampling time
model_cont=ss(A,B,C,D);%ss creates a state-space model
model_disc=c2d(model_cont,Ts,’zoh’)
A=model_disc.a
B=model_disc.b
C=model_disc.c
D=model_disc.d

The result as shown in MATLAB is:

Sampling time: 0.1
Discrete-time model.
A =
1.0000 0.1000
0 1.0000
B =
0.0050
0.1000
C =
1 0
D =
0

[End of Example 9.1]



110



Chapter 10

The z-transform

10.1 Definition of the z-transform

The z-transform of discrete-time signals plays much the same role as the
Laplace transform for continuous-time systems.

The z-transform of the discrete-time signal {y(k)}, or just y(k), is defined
as follows:

Z {y(k)} =
∞∑

k=0

y(k)z−k (10.1)

For simplicity, I will use the symbol y(z) for Z {y(k)} when it can not be
misunderstood. Strictly, a different variable name should be used, for
example Y (z).

Example 10.1 z-transform of a constant

Assume that the signal y(k) has constant value A. This signal can be
regarded a step of amplitude A at time-step 0. z-transforming y(k) gives

y(z) =
∞∑

k=0

y(k)z−k =
∞∑

k=0

Az−k =
A

1− z−1
=

Az

z − 1
(10.2)

[End of example 10.1]

111



112

10.2 Properties of the z-transform

Below are the most important properties of the z-transform. These
properties can be used when calculating the z-transform of composite
signals.

• Linearity:
k1y1(z) + k2y2(z)⇐⇒ k1y1(k) + k2y2(k) (10.3)

• Time delay: Multiplication by z−n means time delay of n
time-steps:

z−ny(z)⇐⇒ y(k − n) (10.4)

• Time advancing: Multiplication by zn means time advancing by n
time-steps:

zny(z)⇐⇒ y(k + n) (10.5)

10.3 z-transform pairs

Below are several important z-transform pairs showing discrete-time
functions and their corresponding z-transforms. The time functions are
defined for k ≥ 0.

Unity impulse at time-step k: δ(k) ⇐⇒ zk (10.6)

Unity impulse at time-step k = 0: δ(0) ⇐⇒ 1 (10.7)

Unity step at time-step k = 0: 1 ⇐⇒ z

z − 1
(10.8)

Time exponential: ak ⇐⇒ z

z − a
(10.9)

Example 10.2 z-transformation of a composite signal

Given the following discrete-time function:

y(k) = Bak−n (10.10)

(which is a time delayed time exponential). The inverse z-transform of
y(k) can be calculated using (10.9) together with (10.3) and (10.4). The
result becomes

y(z) = Bz−n z

z − a
= B

z1−n

z − a
(10.11)

[End of example 10.2]



113

10.4 Inverse z-transform

Inverse z-transformation of a given z evaluated function, say Y (z), is
calculating the corresponding time function, say y(k). The inverse
transform may be calculated using a complex integral1, but this method is
not very practical. Another method is to find a proper combination of
precalculated z-transformation pairs, possibly in combination with some of
the z-transform properties defined above.

In most cases where you need to calculate a time signal y(k), its
z-transform Y (z) stems from a transfer function excited by some
discrete-time input signal. You may then calculate y(k) by first transfering
the transfer function to a corresponding difference equation, and then
calculating y(k) iteratively from this difference equation as explained in
Section 7.2.

1y(k) = 1
2πj

∮
Y (z)zk dz

z
, where the integration path must be in the area of convergence

of Y (z).[2]



114



Chapter 11

Discrete-time (or z-) transfer
functions

11.1 Introduction

Models in the form of difference equations can be z-transformed to
z-transfer functions, which plays the same role in discrete-time systems
theory as s transfer functions do in continuous-time systems theory. More
specific:

• The combined model of systems in a serial connection can be found
my simply multiplying the individual z-transfer functions.

• The frequency response can be calculated from the transfer function.

• The transfer function can be used to represent the system in a
simulator or in computer tools for analysis and design (as
SIMULINK, MATLAB or LabVIEW)

11.2 From difference equation to transfer
function

As an example we will derive the discrete-time or z-transfer function from
input u to output y from the difference equation (7.4), which is repeated
here:

y(k) = −a1y(k − 1)− a0y(k − 2) + b0u(k − 2) (11.1)

115



116

First, we take the z-transform of both sides of the difference equation:

Z {y(k)} = Z {−a1y(k − 1)− a0y(k − 2) + b0u(k − 2)} (11.2)

Using the linearity property (10.3) and the time delay property (10.4)
(11.2) can be written as

Z {y(k)} = −Z {a1y(k − 1)} − Z {a0y(k − 2)}+Z {b0u(k − 2)} (11.3)

and
y(z) = −a1z

−1y(z)− a0z
−2y(z) + b0z

−2u(z) (11.4)

which can be written as

y(z) + a1z
−1y(z) + a0z

−2y(z) = b0z
−2u(z) (11.5)

or [
1 + a1z

−1 + a0z
−2] y(z) = b0z

−2u(z) (11.6)

y(z) =
b0z

−2

1 + a1z−1 + a0z−2︸ ︷︷ ︸
H(z)

u(z) (11.7)

=
b0

z2 + a1z1 + a0︸ ︷︷ ︸
H(z)

u(z) (11.8)

where H(z) is the z-transfer function from u to y. Hence, z-transfer
functions can be written both with positive and negative exponents of z.1

11.3 From transfer function to difference
equation

In the above Section we derived a z-transfer function from a difference
equation. We may go the opposite way — to derive a difference equation
from a given z-transfer function. Some applications of this are

• Deriving a filtering algorithm from a filtering transfer function

• Deriving a control function from a given controller transfer function
1 In signal processing theory transfer functions ares usually written with negative ex-

ponents of z, while in control theory they are usually written with positive exponents.



117

• Deriving a simulation algorithm from the transfer function of the
system to be simulated

The procedure will be illustrated via a concrete example. Assume given
the following transfer function:

H(z) =
b0

z2 + a1z + a0
=

y(z)

u(z)
(11.9)

We start by cross multiplying (11.9):
(
z2 + a1z + a0

)
y(z) = b0u(z) (11.10)

which can be written as

z2y(z) + a1zy(z) + a0y(z) = b0u(z) (11.11)

Taking the inverse transform of the above expression gives

z2y(z)
︸ ︷︷ ︸
y(k+2)

+ a1zy(z)︸ ︷︷ ︸
a1y(k+1)

+ a0y(z)︸ ︷︷ ︸
a0y(k)

= b0u(z)︸ ︷︷ ︸
b0u(k)

(11.12)

Reducing each of the time indexes by 2 yields

y(k) + a1y(k − 1) + a0y(k − 2) = b0u(k − 2) (11.13)

Usually it is practical to have the output variable alone on the left side:

y(k) = −a1y(k − 1)− a0y(k − 2) + b0u(k − 2) (11.14)

11.4 Calculating time responses for discrete-time
transfer functions

Assume given a transfer function, say H(z), with input variable u and
output variable y. Then,

y(z) = H(z)u(z) (11.15)

If u(z) is given, the corresponding time response in y can be calculated in
several ways:

1. By finding a proper transformation pair in Section 10.3, possibly
combined with some of the z-transform properties in Section 10.2.

2. By deriving a differential equation corresponding to the transfer
function and then calculating y(k) iteratively according to the
difference equation. The procedure of deriving a differential equation
corresponding to a given transfer function is explained in Section
11.3, and the calculation of time responses for a difference equation is
described in Section 7.2.



118

11.5 Static transfer function and static response

The static version Hs of a given transfer function H(z) will now be
derived. Using the static transfer function the static response can easily be
calculated. Assume that the input variable u is a step of amplitude U . The
stationary response can be found using the final value theorem:

lim
k→∞

y(k) = ys = lim
z→1

(z − 1)y(z) (11.16)

= lim
z→1

(z − 1)H(z)u(z) (11.17)

= lim
z→1

(z − 1)H(z)
zU

z − 1
(11.18)

= H(1)U (11.19)

Thus, we have the following static transfer function:

Hs =
ys
us

= lim
z→1

H(z) = H(1) (11.20)

Using the static transfer function the static response can be calculated by

ys = HsU (11.21)

Example 11.1 Static transfer function

Let us consider the following transfer function:

H(z) =
y(z)

u(z)
=

az

z − (1− a)
(11.22)

which is the transfer function of the lowpass filter (8.16) which is repeated
here:

y(k) = (1− a) y(k − 1) + au(k) (11.23)

The corresponding static transfer function is

Hs =
ys
us

= lim
z→1

H(z) = lim
z→1

a

1− (1− a) z−1
=

a

1− (1− a) · 1 = 1 (11.24)

Thus,
ys = Hsus = us (11.25)

Can we find the same correspondence between us and ys from the
difference equation (11.23)? Setting y(k) = y(k − 1) = ys and u(k) = us

gives
ys = (1− a) ys + aus (11.26)



119

giving
ys
us

=
a

1− (1− a)
= 1 (11.27)

which is the same as (11.24).

[End of Example 11.1]

11.6 Poles and zeros

Poles and zeros of z-transfer functions are defined in the same way as for s
transfer functions: The zeros of the transfer function are the z-roots of
numerator polynomial, and the poles are the z-roots of the denominator
polynomial.

One important application of poles is stability analysis, cf. Section 13.

Example 11.2 Poles and zeros

Given the following z-transfer function:

H(z) =
(z − b)

(z − a1) (z − a2)
(11.28)

The poles are a1 and a2, and the zero is b.

[End of Example 11.2]

11.7 From s-transfer functions to z-transfer
functions

In some cases you need to find a discrete-time z-transfer function from a
given continuous-time s transfer function:

• In accurate model based design of a discrete controller for a process
originally in the form of a continuous-time s transfer function, Hp(s).
The latter should be discretized to get a discrete-time process model
before the design is started.



120

• Implementation of continuous-time control and filtering functions in
a computer program.

There are several methods for discretization of an s transfer function. The
methods can be categorized as follows, and they are described in the
following sections:

1. Discretization based on having a zero order hold (ZOH)
element on the input of the system. This method should be
used in controller design of a process which has a sample and hold
element on its input, as when a physical process is controlled by a
computer via a DA converter (digital to analog). Zero order hold
means that the input signal is held constant during the time-step or
sampling interval. Figure 11.1 shows a block diagram of a
continuous-time process with transfer function model H(s) having a
zero order hold element on its input.

Cont.-
time

process

y(t)uh(t)DA-converter
with holding

tk

u(tk) uh(t)

t t

y(t)

Sampling

tk

y(tk)=y(k)u(tk)=u(k)

y(tk)

Figure 11.1: Block diagram of a process having a zero order hold element on
its input. uh is the piecewise constant (held) input signal.

ZOH discretization gives a perfect z-transfer function in the sense
that it produces excactly the same response as produced by the
s-transfer function at the discrete points of time. (If we discretize
using e.g. the Forward differentiation the responses will differ a
little.) The ZOH discretization method is actually complicated to
implement manually, but tools as Matlab and LabVIEW have
functions that perform the discretization easily, and in most practical
applications, you will be using such tools.

2. Using an apropriate approximation to time-derivatives, as
Forward Difference method, or Backward Difference method, or
Tustin’s method, cf. Section 8.1. In such cases the input signal is a



121

discrete-time signal with no holding (no ZOH element is assumed).
The procedure has the following steps:

• From the given the continuous-time s-transfer function Hc(s),
derive the corresponding differential equation.

• Apply some approximation to the time-derivatives of the
differential equation. If you do not have any other preferences,
use the Backward difference method. The result is a difference
equation.

• Calculate the z-transfer function from the difference equation,
cf. Section 11.2.

The first two steps of this procedure are the same as used to
discretize continuous-time lowpass filter in Section 8.3.

Here is an example of discretization using the c2d function in MATLAB:

Example 11.3 Discretization using the c2d function in MATLAB

The MATLAB code shown below discretizes the s-transfer function

Hcont(s) =
2

3 + 4s
(11.29)

with sampling time Ts = 0.1.

Hcont = tf([2],[3,4]);
Ts=0.1;
Hdisc=c2d(Hcont,Ts,’zoh’)

The result as shown in MATLAB is

Transfer function:

0.06241
–––-
z - 0.8752

Sampling time: 0.1

[End of Example 11.3]

Here is an example of discretizing a s-transfer function manually using the
Backward differentiation approximation:



122

Example 11.4 Discretizing a first order transfer function

We will discretize the following continuous-time transfer function:

Hc(s) =
K

Ts+ 1
=

y(s)

u(s)
(11.30)

1. Deriving the corresponding differential equation: Cross-multiplying
gives

(Ts+ 1) y(s) = Ku(s) (11.31)

Resolving the parenthesis gives

Tsy(s) + y(s) = Ku(s) (11.32)

Taking the inverse Laplace transform of both sides of this equation
gives the following differential equation (because multiplying by s
means time-differentiation in the time-domain):

T ẏ(t) + y(t) = Ku(t) (11.33)

Let us use tk to represent the present point of time — or discrete time:

T ẏ(tk) + y(tk) = Ku(tk) (11.34)

2. Applying the Backward differentiation approximation:

T
y(tk)− y(tk−1)

Ts
+ y(tk) = Ku(tk) (11.35)

Solving for y(tk) gives the following difference equation:

y(tk) =
T

T + Ts
y(tk−1) +

TsK

T + Ts
u(tk) (11.36)

3. Taking the z-transform of the difference equation:

y(z) =
T

T + Ts
z−1y(z) +

TsK

T + Ts
u(tk) (11.37)

from which we obtain the following z-transfer function:

H(z) =
y(z)

u(z)
=

(
z − T

T + Ts

)−1 zTsK

T + Ts
(11.38)

[End of Example 11.4]



Chapter 12

Frequency response of
discrete-time systems

As for continuous-time systems, the frequency response of a discrete-time
system can be calculated from the transfer function: Given a system with
z-transfer function H(z). Assume that input signal exciting the system is
the sinusoid

u(tk) = U sin(ωtk) = U sin(ωkTs) (12.1)

where ω is the signal frequency in rad/s. The time-step is Ts.

It can be shown that the stationary response on the output of the system is

y(tk) = Y sin(ωkTs + φ) (12.2)

= UA sin(ωkTs + φ) (12.3)

= U

A︷ ︸︸ ︷∣∣H(ejωTs)
∣∣

︸ ︷︷ ︸
Y

sin




ωtk + argH(ejωTs)

︸ ︷︷ ︸
φ




 (12.4)

where H(ejωTs) is the frequency response which is calculated with the
following substitution:

H(ejωTs) = H(z)|z=ejωTs (12.5)

The amplitude gain function is

A(ω) = |H(ejωTs)| (12.6)

The phase lag function is

φ(ω) = argH(ejωTs) (12.7)

123



124

A(ω) and φ(ω) can be plotted in a Bode diagram.

Figure 12.1 shows as an example the Bode plot of the frequency response
of the following transfer function (time-step is 0.1s):

H(z) =
b

z − a
=

0.0952

z − 0.9048
(12.8)

Note that the plots in Figure 12.1 are drawn only up to the Nyquist
frequency which in this case is

Figure 12.1: Bode plot of the transfer function (12.8). ωN = 31.4 rad/s is the
Nyquist frequency (sampling time h is 0.1s).

ωN =
ωs

2
=

2π/Ts

2
=

π

Ts
=

π

0.1
= 10π ≈ 31.4 rad/s (12.9)

The plots are not drawn (but they exist!) above the Nyquist frequency
because of symmetry of the frequency response, as explained in the
following section.

Example 12.1 Calculating the frequency response manually from
the z-transfer function



125

Given the z-transfer function

H(z) =
b

z − a
(12.10)

The frequency response becomes

H(ejωTs) =
b

ejωTs − a
(12.11)

=
b

cosωTs + j sinωTs − a
(12.12)

=
b

(cosωTs − a)
︸ ︷︷ ︸

Re

+ jsinωTs︸ ︷︷ ︸
Im

(12.13)

=
b

√
(cosωTs − a)2 + (sinωTs)

2ej arctan[(sinωTs)/(cosωTs−a)]

(12.14)

=
b

√
(cosωTs − a)2 + (sinωTs)

2
e
j
[
− arctan

(
sinωTs

cosωTs−a

)]

(12.15)

The amplitude gain function is

A(ω) = |H(ejωTs)| = b
√
(cosωTs − a)2 + (sinωTs)

2
(12.16)

and the phase lag function is

φ(ω) = argH(ejωTs) = − arctan

(
sinωTs

cosωTs − a

)
[rad] (12.17)

[End of Example 12.1]

Even for the simple example above, the calculations are cumbersome, and
prone to errors. Therefore you should use some computer tool for
calculating the frequency response, as MATLAB’s Control System Toolbox
or LabVIEW’s Control Design Toolkit.

Symmetry of frequency response

It can be shown that the frequency response is symmetric as follows:
|H(ejωTs)| and argH(ejωTs) are unique functions in the frequency interval
[0, ωN ] where ωN is the Nyquist frequency. In the following intervals
[mωs, (m+ 1)ωs] (m is an integer) the functions are mirrored as indicated
in Figure 12.2 which has a logarithmic frequency axis. (The Bode plots in
this section are for the transfer function (12.8).) The symmetry appears



126

Figure 12.2: Bode plots of frequency response of (12.16). The frequency axis
is logarithmic.

clearer in the Bode plots in Figure 12.3 where the frequency axis is linear.

Due to the symmetry of the frequency response, it is strictly not necessary
to draw more of frequency response plots than of the frequency interval
[0, ωN ].



127

Figure 12.3: Bode plots of frequency response of (12.17). The frequency axis
is linear to make the symmetries if the frequency responses clearer.



128



Chapter 13

Stability analysis of
discrete-time dynamic
systems

13.1 Definition of stability properties

Assume given a dynamic system with input u and output y. The stability
property of a dynamic system can be defined from the impulse response1 of
a system as follows:

• Asymptotic stable system: The steady state impulse response is
zero:

lim
k→∞

yδ(k) = 0 (13.1)

• Marginally stable system: The steady state impulse response is
different from zero, but limited:

0 < lim
k→∞

yδ(k) <∞ (13.2)

• Unstable system: The steady state impulse response is unlimited:

lim
k→∞

yδ(k) =∞ (13.3)

The impulse response for the different stability properties are illustrated in
Figure 13.1. (The simulated system is defined in Example 13.1.)

1An impulse δ(0) is applied at the input.

129



130

Figure 13.1: Impulse response and stability properties

13.2 Stability analysis of transfer function models

In the following we will base the analysis on the following fact: The
transfer function is the z-transformed impulse response. Here is the proof
of this fact: Given a system with transfer function H(z). Assume that the
input u is an impulse, which is a signal having value 1 at time index k = 0
and value zero at other points of time. According to (10.7) u(z) = 1. Then
the z-transformed impulse response is

y(z) = H(z)u(z) = H(z) · 1 = H(z) (13.4)

(as stated).

Now, we proceed with the stability analysis of transfer functions. The
impulse response yδ(k), which defines the stability property of the system,
is determined by the poles of the system’s poles and zeros since the
impulse responses is the inverse z-transform of the transfer function:

yδ(k) = Z−1{H(z)} (13.5)



131

Consequently, the stability property is determined by the poles and zeros
of H(z). However, we will soon see that only the poles determine the
stability.

We will now derive the relation between the stability and the poles by
studying the impulse response of the following system:

H(z) =
y(z)

u(z)
=

bz

z − p
(13.6)

The pole is p. Do you think that this system is too simple as a basis for
deriving general conditions for stability analysis? Actually, it is sufficient
because we can always think that a given z-transfer function can be partial
fractionated in a sum of partial transfer functions or terms each having one
pole. Using the superposition principle we can conclude about the stability
of the original transfer function.

In the following, cases having of multiple (coinciding) poles will be
discussed, but the results regarding stability analysis will be given.

The system given by (13.6) has the following impulse response calculated
below. It is assumed that the pole in general is a complex number which
may be written on polar form as

p = mejθ (13.7)

where m is the magnitude and θ the phase. The impulse response is

yδ(k) = Z−1
{

bz

z − p

}
(13.8)

= Z−1
{

p

1− pz−1

}
(13.9)

= Z−1
{

b
∞∑

k=0

pkz−k

}

(13.10)

= bpk (13.11)

= b|m|kejkθ (13.12)

From (13.12) we see that it is the magnitude m which determines if the
steady state impulse response converges towards zero or not. From (13.12)
we can now state the following relations between stability and pole
placement (the statements about multiple poles have however not been
derived here):

• Asymptotic stable system: All poles lie inside (none is on) the
unit circle, or what is the same: all poles have magnitude less than 1.



132

• Marginally stable system: One or more poles — but no multiple
poles — are on the unit circle.

• Unstable system: At least one pole is outside the unit circle. Or:
There are multiple poles on the unit circle.

The “stability areas” in the complex plane are shown in Figure 13.2.

Re

Im
Pole area of

instability
(outside unit circle)Unit circle

Pole area of
asymptotic stability

j

1

Figure 13.2: The different stability property areas of the complex plane

Let us return to the question about the relation between the zeros and the
stability. We consider the following system:

H1(z) =
y(z)

u(z)
=

b(z − c)

z − p
= (z − c)H(z) (13.13)

where H(z) is it the “original” system (without zero) which were analyzed
above. The zero is c. H1(z) can be written as

H1(z) =
bz

z − p
+
−bc

z − p
(13.14)

= H(z)− cz−1H(z) (13.15)

The impulse response of H1(z) becomes

yδ1(k) = yδ(k)− cyδ(k − 1) (13.16)

where yδ(k) is the impulse response of H(z). We see that the zero does not
influence wether the steady state impulse response converges towards to
zero or not. We draw the conclusion that the zeros of the transfer function
do not influence the stability of the system.



133

Example 13.1 Stability analysis of discrete-time system

The three responses shown in Figure 13.1 are actually the impulse
responses in three systems each having a transfer function on the form

y(z)

u(z)
= H(z) =

b1z + b0
z2 + a1z + a0

(13.17)

The parameters of the systems are given below:

1. Asymptotically stable system: b1 = 0.019, b0 = 0.0190, a1 = −1.885
and a0 = 0.923. The poles are

z1, 2 = 0.94± j0.19 (13.18)

They are shown in Figure 13.3 (the zero is indicated by a circle). The
poles are inside the unity circle.

2. Marginally stable system: b1 = 0.020, b0 = 0.020, a1 = −1.96 and
a0 = 1.00. The poles are

z1, 2 = 0.98± j0.20 (13.19)

They are shown in Figure 13.3. The poles are on the unity circle.

3. Unstable system: b1 = 0.021, b0 = 0.021, a1 = −2.04 and a0 = 1.08.
The poles are

z1, 2 = 1.21± j0.20 (13.20)

They are shown in Figure 13.3. The poles are outside the unity circle.

[End of Example 13.1]

13.3 Stability analysis of state space models

Assume that the system has the following state space model:

x(k + 1) = Ax(k) +Bu(k) (13.21)

y(k) = Cx(k) +Du(k) (13.22)

We can determine the stability by finding the corresponding transfer
function from u to y, and then calculating the poles from the transfer
function, as we did in the previous section. Let’s derive the transfer



134

Figure 13.3: Example 13.1: Poles (and zeros) for the three systems each having
different stability property

function: Take the Z-transform of (13.21) — (13.22) to get (I is the
identity matrix of equal dimension as of A)

zIx(z) = Ax(z) +Bu(z) (13.23)

y(z) = Cx(z) +Du(z) (13.24)

Solving (13.23) for x(z) gives

x(z) = (zI −A)−1Bu(z) (13.25)

Inserting this x(z) into (13.24) gives

y(z) =
[
C(zI −A)−1B +D

]
u(z) (13.26)



135

So, the transfer function is

H(z) =
y(z)

u(z)
= C(zI −A)−1B +D ≡ C

adj(zI −A)

det(zI −A)
B +D (13.27)

The stability property can now be determined from the poles of this
transfer function. The poles are the roots of the characteristic equation:

det(zI −A) = 0 (13.28)

But (13.28) actually defines the eigenvalues of A, eig(A)! The eigenvalues
are the z-solutions to 13.28. Therefore, the poles are equal to the
eigenvalues, and the relation between stability properties and eigenvalues
are the same relation as between stability properties and poles, cf. Section
13.2. To make it clear:

• Asymptotic stable system: All eigenvalues (poles) lie inside (none
is on) the unit circle, or what is the same: All eigenvalues have
magnitude less than 1.

• Marginally stable system: One or more eigenvalues — but no
multiple eigenvalues — are on the unit circle.

• Unstable system: At least one eigenvalue is outside the unit circle.
Or: There are multiple eigenvalues on the unit circle.

The “stability areas” in the complex plane are as shown in Figure 13.2.

Example 13.2 Stability analysis of a state-space model

Given the following state-space model:

x(k + 1) =

[
0.7 0.2
0 0.8

]

︸ ︷︷ ︸
A

x(k) +

[
1
1

]
u(k) (13.29)

y(k) =
[
1 0

]
x(k) +

[
0
]
u(k) (13.30)

It can be shown that the eigenvalues of A are 0.7 and 0.8. Both lies inside
the unit circle, and hence the system is asymptotically stable.

[End of Example 13.2]



136



Chapter 14

Analysis of discrete-time
feedback systems

You can analyze the dynamics (frequency response) and the stability of
discrete-time feedback systems in the same way as you can analyze the
dynamics and stability of continuous-time feedback systems, cf. Chapters 3
and 4, respectively. I assume that you already have knowledge about these
topics.

Here is a summary of the relevant differences between analysis of
continuous-time and discrete-time feedback systems:

• In the block diagrams etc. every s-transfer function is replaced by an
equivalent z-transfer function, using a proper discretization method,
e,g, the ZOH method.

• The stability property of any discrete-time system is given by the
placement of the z-poles (or eigenvalues) in the complex plane. A
discrete-time feedback system is asymptotically stable if all the poles
of the closed-loop system lie inside the unit circle. These closed-loop
poles are the poles of the tracking transfer function, T (z).

• The stability property of a discrete-time feedback system can be
analyzed in a Nyquist diagram or a Bode diagram stability based on
the frequency response of the loop transfer function L(z), which is
the product of all the individual transfer functions of the feedback
loop. Definitions of crossover frequencies and stability margins are as
for continuous-time systems.

137



138

Here are some examples:

Example 14.1 Pole based stability analysis of feedback system

Assume given a control system where the P controller

Hc(z) = Kp (14.1)

controls the process (which is actually an integrating process)

Hp(z) =
KiTs

z − 1
(14.2)

We assume that Ki = 1 and Ts = 1. The loop transfer function becomes

L(z) = Hc(z)Hp(z) =
Kp

z − 1
=

nL(z)

dL(z)
(14.3)

We will calculate the range of values of Kp that ensures asymptotic
stability of the control system.

The characteristic polynomial is, cf. (5.4),

c(z) = dL(z) + nL(z) = z − 1 +Kp (14.4)

The pole is
p = 1−Kp (14.5)

The feedback system is asymptotically stable if p is inside the unity circle
or has magnitude less than one:

|p| = |1−Kp| < 1 (14.6)

which is satisfied with
0 < Kp < 2 (14.7)

Assume as an example that Kp = 1.5. Figure 14.1 shows the step response
in ym for this value of Kp.

[End of Example 14.1]

Example 14.2 Stability analysis in Nyquist diagram

Given the following continuous-time process transfer function:

Hp(s) =
ym(z)

u(z)
=

K
(

s
ω0

)2
+ 2ζ s

ω0
+ 1

e−τs (14.8)



139

Figure 14.1: Example 14.1: Step resonse in ym. There is a step in ymSP
.

with parameter values

K = 1; ζ = 1; ω0 = 0.5 rad/s; τ = 1 s (14.9)

The process is controlled by a discrete-time PI-controller having the
following z-transfer function, which can be derived by taking the
z-transform of the PI control function (8.32),

Hc(z) =
Kp

(
1 + Ts

Ti

)
z −Kp

z − 1
(14.10)

where the time-step (or sampling interval) is

Ts = 0.2 s (14.11)

Tuning the controller with the Ziegler-Nichols’ closed-loop method [5] in a
simulator gave the following controller parameter settings:

Kp = 2.0; Ti = 5.6 s (14.12)

To perform the stability analysis of the discrete-time control system Hp(s)
is discretized assuming zero order hold (using MATLAB or LabVIEW).
The result is

Hpd(z) =
0.001209z + 0.001169

z2 − 1.902z + 0.9048
z−10 (14.13)



140

The loop transfer function is

L(z) = Hc(z)Hpd(z) (14.14)

Figure 14.2 shows the Nyquist plot of L(z). From the Nyquist diagram we

Figure 14.2: Example 14.2: Nyquist diagram of L(z)

read off
ω180 = 0.835 rad/s (14.15)

and
ReL(ejω180Ts) = −0.558 (14.16)

which gives the following gain margin, cf. (5.29),

GM =
1

|ReL(ejω180Ts)| =
1

|−0.558| = 1.79 = 5.1 dB (14.17)

The phase margin can be found to be

PM = 35◦ (14.18)

Figure 14.3 shows the step response in ym (unity step in setpoint ymSP
).

[End of Example 14.2]

Example 14.3 Stability analysis in Bode diagram



141

Figure 14.3: Example 14.2: Step response in ym (unity step in setpoint ymSP
)

See Example 14.2. Figure 14.4 shows a Bode plot of L(ejωTs). The
stability margins are shown in the figure. They are

GM = 5.12dB = 1.80 (14.19)

PM = 35.3◦ (14.20)

which is in accordance with Example 14.2.

[End of Example 14.3]



142

Figure 14.4: Example 14.3: Bode plot of L



Part III

STOCHASTIC SIGNALS

143





Chapter 15

Stochastic signals

15.1 Introduction

In practical systems there are signals that vary more or less randomly. For
example, measurement signals contain random noise, and process
disturbances have some random component. Consequently, control signals
and controlled variables, i.e. process output variables, have some random
behaviour. The future value of a random signal can not be predicted
precisely, i.e. such signals are non-deterministic, while steps, ramps and
sinusoids are deterministic. In stead, random signals can be described with
statistical measures, typically expectation (or mean) value and standard
deviation or variance (standard deviation is square root of variance).

Random signals may be denoted stochastic signals. Characteristics of
assumed random process disturbances and random measurement noise are
used in design of state estimators with Kalman Filters in Chapter 18.

15.2 How to characterize stochastic signals

15.2.1 Realizations of stochastic processes

A stochastic process may be characterized by its mean and standard
deviation or variance. The stochastic process can be observed via one or
more realizations of the process in the form of a sequence or time-series of
samples, say {x(0), x(1), x(2) . . .}. Another realization of the same
stochastic process will certainly show different sample values, but the mean

145



146

value and the variance will be almost the same (the longer the realization
sequence is, the more equal the mean values and the variances will be).
Figure 15.1 shows as an example two different realizations (sequences) of
the same stochastic process, which in this case is Gaussian (normally)
distributed with expectation (mean) value 0 and standard deviation 1. We
see that the sequences are not equal.

Figure 15.1: Two different realizations of the same stochastic process, which
in this case is Gaussian (normally) distributed with expectation value 0 and
standard deviation 1 . (Created with the Gaussian White Noise function in
LabVIEW.)

15.2.2 Probability distribution of a stochastic variable

As known from statistics a stochastic variable can be described by its
probability distribution function, PDF. Figure 15.2 shows two commonly
used PDFs, the Normal (Gaussian) PDF and the Uniform PDF. With the



147

Normal (Gaussian) probability 
distribution function (PDF)

x

A-A

Uniform probability 
distribution function (PDF)

x

Figure 15.2: The Normal (Gaussian) PDF and the Uniform PDF

Normal PDF the probability that the variable has value in the range {−σ,
+σ} where σ is the standard deviation is approximately 68% (the standard
deviation is defined below). With the Uniform PDF the probability that
the variable has a value the {−A, +A} range is uniform (constant) and the
variable can not take any value outside this range.

A stochastic process is stationary if the PDF is time independent
(constant), or in other words, if the statistical properties are time
independent.

15.2.3 The expectation value and the mean value

The expectation value , E(x), of the stochastic variable x is the mean (or
average) value of x calculated from an infinite number of samples of x. For



148

a limited number N of samples the mean value can be calculated from

Mean value:

mx =
1

N

N−1∑

k=0

x(k) (15.1)

Often these two terms (expectation value and mean value) are used
interchangeably.

If x is a vector, say

x(k) =

[
x1(k)
x2(k)

]
(15.2)

then the mean value of x has the form

mx =

[
mx1

mx2

]
=




1
N

∑N−1
k=0 x1(k)

1
N

∑N−1
k=0 x2(k)



 (15.3)

15.2.4 Variance. Standard deviation

The variance of a stochastic variable is the mean or expected value of the
squared difference between the value and its mean value:

Var(x) = E
{
[x(k)−mx]

2
}

(15.4)

The variance can be calculated from a sequence of samples as follows:

Var(x) =
1

N − 1

N−1∑

k=0

[x(k)−mx]
2 (15.5)

(Statistically it is better to divide by N − 1 and not by N since the
estimate of the statistical variance becomes unbiased using N − 1.) The
variance is some times denoted the power of the signal.

The standard deviation may give a more meaningful value of the variation
of a signal. The standard deviation is the square root of the variance:

σ =
√
Var(x) (15.6)

In many situations σ2 is used as a symbol for the variance.



149

15.2.5 Auto-covariance. Cross-covariance

Sometimes it is useful to express how a stochastic variable, say x(k), the
time-index axis (k). This type of variance can be expressed by the
auto-covariance :

Auto-covariance:

Rx(L) = E{[x(k + L)−mx][x(k)−mx]} (15.7)

where L is the lag. Note that the argument of the auto-covariance function
is the lag L. Figure 15.3 shows Rx(L) for a signal x where the covariance
decreased as the lag increases (this is typical). As indicated in Figure 15.3
the auto-covariance usually has a peak value at lag L = 0.

Auto-covariance

L0

Rx(L)

1 2 3-2 -1-3

Figure 15.3: The auto-covariance for a signal x where the covariance decreased
as the lag increases (this is typical)

If L = 0 the auto-covariance becomes the variance:

Rx(0) = E{[x(k + 0)−mx][x(k)−mx]} (15.8)

= E{[x(k)−mx]
2} = Var(x) = σ2 (15.9)

In some applications x is a vector, say

x(k) =

[
x1(k)
x2(k)

]
(15.10)

What does the auto-covariance look like in this case? For simplicity,
assume that each of the four variables above have zero mean. The



150

auto-covariance then becomes

Rx(L) = E{[x(k + L)][x(k)]T} (15.11)

= E

{[
x1(k +L)
x2(k +L)

] [
x1(k) x2(k)

]}
(15.12)

=

[
E[x1(k + L)x1(k)] E[x1(k + L)x2(k)]
E[x2(k + L)x1(k)] E[x2(k + L)x2(k)]

]
(15.13)

If L = 0, the auto-covariance becomes

Rx(0) =






E
{
[x1(k)]

2
}

︸ ︷︷ ︸
=Var(x1)

E[x1(k)x2(k)]

E[x2(k)x1(k)] E
{
[x2(k)]

2
}

︸ ︷︷ ︸
=Var(x2)






(15.14)

Hence, the variances are on the diagonal.

The cross-covariance between two different scalar signals, say x and y, is

Cross-covariance:

Rxy(L) = E{[x(k + L)−mx][y(k)−my]} (15.15)

The cross-covariance can be estimated from sequences of sample values of
x and y of length N with

Rxy(L)

= S

N−1−|L|∑

k=0

[x(k + L)−mx][y(k)−my], L = 0, 1, 2, . . . (15.16)

= S

N−1−|L|∑

k=1

[y(k − L)−my][x(k)−mx] = Ryx(−L), L = −1,−2, . . .

(15.17)

where S is a scaling factor which is defined below:

• Raw estimate:
S = 1 (15.18)

• Normalized estimate:

S =
1

Rxy(0) in the raw estimate
(15.19)

This gives Rxy(0) = 1.



151

• Unbiased estimate:

S =
1

N − L
(15.20)

This calculates Rxy(L) as an average value of the product
[x(k + L)−mx][y(k)−my]. However, Rxy(L) may be very “noisy” if
L is large since then the summation is calculated with only a few
additive terms (it is assumed that there are noise or random
components in x and/or y).

• Biased estimate:

S =
1

N
(15.21)

With this option Rxy(L) is not an average value of the product
[x(k+L)−mx][y(k)−my] since the sum of terms is divided by N no
matter how many additive terms there are in the the summation.
Although this makes Rxy(L) become “biased” it reduces the “noise”
in Rxy(L) because the “noisy” terms are weighed by 1/N in stead of
1/(N − L). Unless you have reasons for some other selection, you
may use biased estimate as the default option.

Correlation (auto/cross) is the same as covariance (auto/cross) except that
the mean value, as mx, is removed from the formulas. Hence, the
cross-correlation is, cf. (15.15),

rxy(L) = E{x(k + L)y(k)} (15.22)

15.3 White and coloured noise

15.3.1 White noise

An important type of stochastic signals are the so-called white noise
signals (or processes). “White” is because in some sense white noise
contains equally much of all frequency components, analogously to white
light which contains all colours. White noise has zero mean value:

Mean value of white noise:

mx = 0 (15.23)

There is no co-variance or relation between sample values at different
time-indexes, and hence the auto-covariance is zero for all lags L except for
L = 0. Thus, the auto-covariance is the pulse function shown in Figure
15.4. Mathematically the auto-covariance function of white noise is



152

Auto-covariance
of white noise

L0

Rx(L)

1 2 3-2 -1-3

Var(x)

= V

0

=

Figure 15.4: White noise has auto-correlation function like a pulse function.

Rx(L) = Var(x)δ(L) = σ2δ(L) = V δ(L) (15.24)

Here, the short-hand symbol V has been introduced for the variance. δ(L)
is the unit pulse defined as follows:

Unit pulse:

δ(L) =

{
1 when L = 0
0 when L �= 0

(15.25)

White noise is an important signal in estimation theory because the
random noise which is always present in measurements, can be represented
by white noise. For example, the variance of the assumed white
measurement noise is used as an input parameter in the Kalman Filter
design, cf. Chapter 18.

If you calculate the auto-covariance of a white noise sequence of finite
length, the auto-covariance function will not be excactly as the ideal
function shown in Figure 15.4, but the main characteristic showing a
relatively large value at lag L = 0 is there.

Example 15.1 White noise

Figure 15.5 shows a simulated white noise signal x and its auto-covariance
Rx(L) (normalized) calculated from the most recent N = 50 samples of x.1

The white noise characteristic of the signal is clearly indicated by Rx(L).

[End of Example 15.1]

1 Implemented in LabVIEW.



153

Figure 15.5: Example 15.1: Simulated white noise signal x and its auto-
covariance Rx(L) (normalized) calculated from the most recent N = 50 samples
of x.

15.3.2 Coloured noise

As opposite to white noise, coloured noise does not vary completely
randomly. In other words, there is a co-variance between the sample values
at different time-indexes. As a consequence, the auto-covariance Rx(L) is
non-zero for lags L �= 0. Rx(L) will have a maximum value at L = 0, and
Rx(L) will descrease for increasing L.

You may generate coloured noise from white noise by sending the white
noise through a dynamic system, typically a lowpass filter. Such a system
is denoted shaping filter . The output signal of the shaping filter will be
coloured noise. You can tune the colour of the coloured noise by adjusting
the parameters of the shaping filter.

Example 15.2 Coloured noise

Figure 15.6 shows a simulated coloured noise signal x and its



154

auto-covariance Rx(L) (normalized) calculated from the most recent
N = 50 samples of x.2 The coloured noise is the output of this shaping
filter:

x(k) = ax(k − 1) + (1− a)v(k) (15.26)

which is a discrete-time first order lowpass filter. The filter input v(k) is
white noise. The filter parameter is a = 0.98. (If the filter parameter is 0
the filter performs no filtering, and the output is just white noise.) The

Figure 15.6: Example 15.1: Simulated coloured noise signal x and its auto-
covariance Rx(L) (normalized) calculated from the most recent N = 50 samples
of x.

coloured noise characteristic of the signal is shown both in the plot of the

2 Implemented in LabVIEW.



155

signal x(k) in the upper diagram of Figure 15.6 and in the auto-covariance
Rx(L) shown in the lower diagram of Figure 15.6.

[End of Example 15.2]

15.4 Propagation of mean value and co-variance
through static systems

If a stochastic (“random”) signals excites a static or dynamic system, the
mean value and the co-variance of the output signal is different from those
of the input. In this section we will concentrate on static systems. The
results are useful e.g. in calculating the system gain needed to obtain a
random signal of a specified variannce when the source signal is a random
signal of fixed variance.

The theory of the propagation of mean value and co-variance through
dynamic systems is certainly important if you are going to analyze and
design signal filters, controllers and state estimators assuming they are
excited by random signals. However, it is my experience that this theory is
not needed to be able to use the tools that exist for such applications (e.g.
the Kalman Filter for state estimation). Therefore, I have omitted the
topic of propagation of mean value and co-variance through dynamic
systems in this book.

Assume given the following static linear system:

y(k) = Gv(k) +C (15.27)

where v is a stationary stochastic input signal with mean value mv and
co-variance Rv(L). y is the output of the system. G is the gain of the
system, and C is a constant. In a multivariable system G is a matrix and
C is a vector, but in the following we will assume that G and C are
scalars, which is the most usual case.

Let us calculate the mean value and the auto-covariance of the output y.
The mean value becomes

my = E[y(k)] = E[] = GE [v(k)] +C (15.28)

= Gmv +C (15.29)



156

The auto-covariance of the output becomes

Ry(L) = E{[y(k +L)−my][y(k)−my]} (15.30)

= E {([Gv(k + L) +C]− [Gmv +C]) ([Gv(k) +C]− [Gmv +C])}(15.31)

= E {(Gv(k + L)−Gmv) (Gv(k)−Gmv)} (15.32)

= E {(G [v(k + L)−mv]) (G [v(k)−mv])} (15.33)

= G2E {([v(k + L)−mv]) ([v(k)−mv])}︸ ︷︷ ︸
=Rv(L)

(15.34)

= G2Rv(L) (15.35)

If the system (15.27) is multivariable, that is, if v and y are vectors, G is a
matrix and C is a vector. In this case we will get

Ry(L) = GRv(L)G
T (15.36)

Let us sum it up: For a scalar system (15.27):

Mean of output of stochastic static system:

my = Gmv +C (15.37)

and

Co-variance of output of stochastic static system:

Ry(L) = G2Rv(L) (15.38)

The variance, which is equal to Ry(0), becomes

Variance of output of stochastic static system:

σ2y = G2σ2v (15.39)

And the standard deviation becomes

Standard deviation of output of stochastic static system:

σy = Gσv (15.40)

Example 15.3 Mathematical operations to achieve specified
output mean and variance

Assume that you have signal generator available in a computer tool that
can generate a white noise signal v having mean mv = 0 and variance
σ2v = 1, and that you want to generate a signal y of mean my = M and



157

variance σ2y = V . Find proper mathematical operations on v that create
this y.

The gain G can be calculated from (15.39):

G =

√
σ2y
σ2v

=

√
V

1
=
√

V = σy (15.41)

The constant C can be calculated from (15.37):

C = my −Gmv = M −G · 0 = M (15.42)

So, the mathematical operation is

y(k) = Gv(k) +C =
√

V · v(k) +M = σyv(k) +M (15.43)

In words: Multiply the input by the specified standard deviation and add
the specified mean value to this result.

[End of Example 15.3]



158



Part IV

ESTIMATION OF
PARAMETERS AND

STATES

159





Chapter 16

Estimation of model
parameters

16.1 Introduction

Mathematical models are the basis of simulators and theoretical analysis of
dynamic systems, as control systems. The model can be in form of
differential equations developed from physical principles or from transfer
function models, which can be regarded as “black-box”-models which
expresses the input-output property of the system. Some of the parameters
of the model can have unknown or uncertain values, for example a heat
transfer coefficient in a thermal process or the time-constant in a transfer
function model. We can try to estimate such parameters from
measurements taken during experiments on the system, see Figure 16.1.

Many methods for parameter estimation are available[6]. In this chapter
the popular least squares method — or the LS-method — is described. You
will see how the LS-method can be used for parameter estimation of both
static models and dynamic models of a given structure.

In some cases, for example in analysis and design of feedback control
systems and in signal modeling, you may want a black-box model which is
a dynamic model in the form of a state-space model or a transfer function
with non-physical parameters. Developing such black-box models is briefly
described in the final section of this chapter.

161



162

Physical
system

Parameter
estimator

for mathematical
model

Input signal Output signal

u(t) y(t)

Model parameters
(parameter vector)

Figure 16.1: Estimation of parameters of a mathematical model from time-
series of the input variable and the output variable.

16.2 Parameter estimation of static models with
the Least squares (LS) method

In the following, the Least squares (LS-) method for calculating a solution
of a set of linear equations, is briefly described, using terminology suitable
for parameter estimation. After the LS-method is presented, a number of
examples of parameter estimation follows.

16.2.1 The standard regression model

Assume given the following model:

y = ϕ1θ1 + · · ·+ ϕnθn (16.1)

=
[

ϕ1 · · · ϕn

]
︸ ︷︷ ︸

ϕ






θ1
...
θn






︸ ︷︷ ︸
θ

(16.2)

= ϕθ (16.3)

which is called the regression model . ϕi is the regression variable (with
known value). ϕ is the regression vector (with known value). y is the



163

observed variable (with known value). θ is an unknown parameter vector,
and we will use the LS-method to estimate a value of θ. Note that the
regression model is linear in the parameter vector θ.

Assume that we have m corresponding values of y and ϕ. Then we can
write the following m equations according to the model:

y1 = ϕ11θ1 + · · ·+ ϕ1nθn = ϕ1θ (16.4)
...

ym = ϕm1θ1 + · · ·+ ϕmnθn = ϕmθ (16.5)

These m “stacked” equations can more compactly be written as






y1
...

ym






︸ ︷︷ ︸
Y

=






ϕ11 · · · ϕ1n
...

. . .
...

ϕm1 · · · ϕmn






︸ ︷︷ ︸
Φ






θ1
...
θn






︸ ︷︷ ︸
θ

(16.6)

=






ϕ1
...

ϕm






︸ ︷︷ ︸
Φ






θ1
...
θn






︸ ︷︷ ︸
θ

(16.7)

or, even more compact, as

Y = Φθ (16.8)

which is a set of equations from which we will calculate or estimate a value
of the unknown θ using the LS-method.1

1 In matematical litterature (16.8) is more often written on the form b = Ax. I have
used symbols which are common in the field of system identification.



164

16.2.2 The LS problem

We define the equation-error vector or prediction-error vector 2, E, as the
difference between the left side and the right side of (16.8):

E =






e1
...

em




 (16.9)

=






y1 − ϕ1θ
...

ym − ϕmθ




 (16.10)

= Y −Φθ (16.11)

Figure 16.2 illustrates the equation-errors or prediction errors for the case
of the model

y = ϕθ (16.12)

to be fitted to two data points.

y

y1

y2

Figure 16.2: Equation-errors or prediction errors e1 and e2 for a simple case

The problem is to calculate a value — an estimate — of the unknown
parameter-vector θ so that the following quadratic criterion function, V (θ),

2The name prediction-error vector is because the term Φθ can be regarded as a pre-
diction of the observed (known) “output” y.



165

is minimized:

V (θ) = e1
2 + e2

2 + · · ·+ em
2 (16.13)

= ETE (16.14)

= (Y −Φθ)T (Y −Φθ) (16.15)

=
(
Y T − θTΦT

)
(Y −Φθ) (16.16)

= Y TY − Y TΦθ − θTΦTY + θTΦTΦθ (16.17)

In other words, the problem is to estimate θ so that the sum of quadratic
prediction errors is minimized.

16.2.3 The LS solution

Since V (θ) is a quadratic function of the unknown parameters θ, the
minimum value of V (θ) can be calculated by setting the derivative of V
with respect to θ equal to zero. This is illustrated in Figure 16.3. Using
the differentiation rules for expressions containing vectors and then setting
the derivative equal to zero, yields

dV (θ)

dθ
= 2ΦTΦθ − 2ΦTY

!
= 0 (vector) (16.18)

or
ΦTΦθ = ΦT y (16.19)

(16.19) is called the normal equation. The θ-solution of (16.19) can be
found by pre-multiplying (16.19) with (ΦTΦ)−1. The result is

θLS = (ΦTΦ)−1ΦTY (16.20)

which is the LS-solution of (16.8)3. All right side terms in (16.8) are
known.

Note: To apply the LS-method, the model must be written on the
regression model form (16.8), which consists of m (16.3) “stacked”.

Example 16.1 LS-estimation of two parameters

Given the model
z = cx+ d (16.21)

3 (ΦTΦ)−1ΦT is the so-called pseudo-inverse of Φ.



166

Figure 16.3: The LS solution θLS corresponds to the minimum value of
the quadratic function V (θ), and can be calculated by setting the derivative
V (θ)/dθ to zero.

where the parameters c and d will be estimated from three given sets of
corresponding values of z and x, as shown here:

0.8 = c · 1 + d (16.22)

3.0 = c · 2 + d (16.23)

4.0 = c · 3 + d (16.24)

which can be written on the form



0.8
3.0
4.0





︸ ︷︷ ︸
Y

=




1 1
2 1
3 1





︸ ︷︷ ︸
Φ

[
c
d

]

︸ ︷︷ ︸
θ

(16.25)

=




ϕ1
ϕ2
ϕ3





︸ ︷︷ ︸
Φ

[
c
d

]

︸ ︷︷ ︸
θ

(16.26)



167

which is on the required regression model form (16.8). We can now
calculate the LS-estimate of θ using (16.20):

θLS = (ΦTΦ)−1ΦTY (16.27)

=




[
1 2 3
1 1 1

]


1 1
2 1
3 1









−1 [
1 2 3
1 1 1

]


0.8
3.0
4.0



 (16.28)

=

[
1.6
−0.6

]
=

[
cLS
dLS

]
(16.29)

[End of Example 16.1]

Example 16.2 LS-estimation of valve parameter

Figure 16.4 shows a valve. We assume that the flow q is given by the model

q = Kvu
√

p (16.30)

where u is the control signal and p is the pressure drop. The valve

p

u

q

+
_

Kv

Figure 16.4: Valve where the valve parameter Kv shall be estimated

parameter Kv will be estimated from m corresponding values of q, u and p.
We start by writing the model on the regression model form y = ϕθ:

q︸︷︷︸
y

= u
√

p
︸︷︷︸
ϕ

Kv︸︷︷︸
θ

(16.31)

The “stacked” regression model (16.8) becomes





q1
...

qm






︸ ︷︷ ︸
Y

=






u1
√

p1
...

um
√

pm






︸ ︷︷ ︸
Φ

[Kv]︸︷︷︸
θ

(16.32)



168

LS-estimate KvLS can now be calculated from (16.20):

θLS = KvLS = (ΦTΦ)−1ΦTY (16.33)

=





[

u1
√

p1 · · · um
√
pm
]





u1
√

p1
...

um
√

pm











−1

(16.34)

·
[

u1
√

p1 · · · um
√
pm
]





q1
...

qm




 (16.35)

=
q1u1

√
p1 + · · ·+ qmum

√
pm

(
u1
√
p1
)2

+ · · ·+
(
um
√

pm
)2 (16.36)

[End of Example 16.2]

16.2.4 Criterion for convergence of estimate towards the
true value

The prediction-error vector is

E = Y −ΦθLS (16.37)

It can be shown [6] that the LS-estimate θLS converges towards the true
value θ0 of the parameter vector as the number m of sets of observations
goes to infinity, only if E is “white noise”. White noise means that the
elements of E are random numbers with zero mean value. The opposite of
white noise is coloured noise. A constant having value different from zero
is an (extreme) example of coloured noise. E becomes coloured if there are
systematic equation errors. Such systematic equation errors can be
reduced or eliminated by choosing a more accurate model structure, for
example by assuming the model y = ax+ b in stead of y = ax if the
observed values of y contains a constant term b.

16.2.5 How to compare and select among several
candidates?

If you are to compare and select the best model among a number of
estimated models, you may use some mathematical criterion as the basis of
your selection. The criterion function V given by (16.13) can be used. The
procedure is to calculate the value of V with the estimated parameter
vector θLS inserted for θ. In general, the less V , the better is the estimate.



169

V given by (16.13) depends on the number m of observations or equations
in the regression model. To compare values of V from different estimates,
a normalized criterion should be used, for example

Vnorm =
1

m
V (θLS) =

1

m
ETE (16.38)

where E is calculated using (16.37).

You can expect an estimate to give a smaller value of the criterion V if the
number of parameters n is increased. This is because increasing n
introduces more degreees of freedom in the model. If we increased n to be
equal to m (giving equal numbers of unknown parameters and equations)
we could achieve perfect modeling and hence V = 0! The drawback of
choosing a large n is that the random noise in the experimental data will
be modeled, causing the model to loose its generality since the noise in one
experiment is not equal to the noise in another experiment. A good
strategy is to use approximately one half of the logged data (time-series)
for model development (estimation) and the rest of the data for validation
(calculating V ). In this way you can avoid ending up with a model which
includes a noise model.

If you must choose among models of a different number of parameters, you
can apply the Parsimony Principle: Among a number of proper models,
choose the simplest one, i.e, the one having smallest number of parameters,
n. Proper models are those models which have normalized criterion
functions V of roughly equal value. The parsimony principle expresses that
a high number of parameters, n, should be punished. This can be stated
mathematically as follows. The FPE index (Final Prediction Error) is
defined as [6]

FPE =
1 + n

m

1− n
m

V (16.39)

The fraction in (16.39) increases as n increases, and concequently, large
values of n are punished. So, the proper model is chosen as that model
having the smallest value of FPE.

16.3 Parameter estimation of dynamic models

16.3.1 Introduction

In this section you will see how unknown parameters in dynamic models, as
differential equations or transfer functions, can be estimated. The



170

LS-method (least squares) can be used to estimate a model that has a
predefined model form or model order, e.g. e specific first order nonlinear
differential equation with one or more unknown parameters which we want
to estimate. A so-called subspace method can be used to estimate
black-box models which are models that does not have any specific model
order, but we seek a model that reflects the dynamic properties of the
process. Both the LS-method and a subspace method are described in
sections that follow.

16.3.2 Good excitation is necessary!

Assume, as an example, that you want to estimate the time-constant T of
a first order transfer function. You can not estimate T , which is related to
the dynamics of the system, if y and u have constant values all the time.
Thus, it is necessary that the excitation signal, u(t), has sufficiently rich
variation to give the LS-method enough information about the dynamics of
the system to produce an accurate estimate of T . Several good excitation
signals are described in the following.

PRB-signal (Pseudo-Random Binary signal)

Figure 16.5 shows a realization of a PRB-signal. This signal can have only

Figure 16.5: PRB-signal with probability of shift equal to p = 0.1. The time-
step of the signal is h = 0.1 sec.

one of two possible values, say U and −U , with the probability p for the



171

signal to change value from one time-step to the next. You (the user) must
choose p (and the signal amplitudes, of course). The less p, the more
seldom the signal changes value. p should be chosen small enough for the
system to have a chance to react with a significant response before the
input value changes.

Below is a pseudo-program which realizes a PRB-signal with 1 and −1 as
possible values. In the program it is assumed that the rand-function
returns a uniformly distributed random signal between 0 and 1.
4

p=0.1; %Probability is set to 0.1.

u=1;

while not stop

{

if rand<p

{

u=-u;

}

}

Chirp signal

See Figure 16.6. This is a sine wave where the frequency increases linearly

Figure 16.6: The chirp signal is a sine wave with constantly increasing frequency.

4 In MATLAB the function rand returns a random number uniformly distributed be-
tween 0 and 1. In LabVIEW the function Random Number does the same.



172

with time:
u(t) = U sin(2πft) (16.40)

where the frequency f [Hz] is

f = Kf t (16.41)

where the frequency coefficient Kf is chosen so that a proper frequency
range is covered so that the dynamics of the system is excited sufficiently.

Up-down-up signal

See Figure 16.7. This signal is simple to generate manually during the
experiment. This signal gives in many cases enough excitation for the
estimator to calculate accurate parameter estimates, but the period of the
signal shift must be large enough to give the system output a chance to
approximately stabilize between the steps.

Figure 16.7: Up-down-up signal

16.3.3 How to check that a model is good?

To check that an estimated model is good (accurate), you can select one or
more of the methods below:

• Compare simulated signal with measured signal: You can
simulate using the estimated model and compare the simulated



173

output signal with the logged or measured output signal. Of course,
the simulator model and the real system must excited by the same
input signal. This input signal should not be the same as that used
for model estimation. As mentioned on page 168, one strategy is to
use approximately one half of the logged data (time-series) for model
development and the rest of the data for validation (here,
simulation). If the error between the simulated and the measured
output signals is small, you may conclude that the model gives a
good representation of the true system. A large error may come from
poor (weak) excitation or a wrong model structure.

Figure 16.8 illustrates the procedure described above.

Real 
system

Input sequence, utotal(k)

System
identification

uestim(k)

Measured response, ytotal(k)

Model, M

Real 
system

Model
M

If quite similar , the model is 
probably good.

1. Excite the real system, and log input and output:

Logging

3. Estimate model:

4. Check (validate) model using e.g. simulation:

Split data
(e.g. into 

two 
halves)

utotal(k)

ytotal(k)

uestim(k)
yestim(k)
uvalid(k)
yvalid(k)

yestim(k)

uvalid(k) yvalid(k)

ysim(k)

(Simulation )

2. Split data, for estimation and for validation :

Figure 16.8: Procedure for system identification, and checking that the model
is good.

• Frequency response; Poles; Time constants etc.: These
quantities can be calculated from an estimated model, and they must
be in accordance with assumed or observed properties of the system.



174

For example, estimated poles should match with the dynamic
properties of the system to be modeled.

• Check prediction error: The prediction error E given by (16.37)
should be “white”, that is, it should be similar to a random signal.
The less coloured prediction error, the better estimate. The “colour”
of the prediction error can be checked by calculating (and plotting)
the auto-correlation of E.

Probably, the best method for checking if the model is good is the first
among these (comparing simulated with measured response), and it may
be sufficient to use only this method.

16.3.4 Estimation of differential equation models using the
LS-method

Assume as an example the following non-linear a differential equation:

Aḣ(t) = −K1

√
h(t) +K2u(t) (16.42)

(which can be the model describing the level h in a liquid tank with
outflow through a valve with fixed opening and inflow via a pump
controlled by the signal u). Suppose that K1 and K2 will be estimated,
while A is known. (16.42) written on regression model form (16.3) becomes

Aḣ(t)
︸ ︷︷ ︸

y

=
[
−
√

h(t) u(t)
]

︸ ︷︷ ︸
ϕ

[
K1

K2

]

︸ ︷︷ ︸
θ

(16.43)

Eventual time-delayed signals causes no problems for regression model
form. Here is an example of a model with time-delay:

ẋ(t) = ax(t) + bu(t− τ) (16.44)

which written on regression model form (16.3) is

ẋ(t)
︸︷︷︸
y

=
[

x(t) u(t− τ)
]

︸ ︷︷ ︸
ϕ

[
a
b

]

︸ ︷︷ ︸
θ

(16.45)

Time-derivatives, as ḣ(t) in (16.43), must be calculated numerically when
used in a regression model. Two simple numerical approximations to the
time-derivatives is the Euler’s forward method ::

ẋ(tk) ≡ ẋk ≈
xk+1 − xk

Ts
(16.46)



175

where Ts is the time-step between the discrete points of time, tk and tk−1,
and the Euler’s backward method :

ẋk ≈
xk − xk−1

Ts
(16.47)

A more accurate approximation to time-derivatives is the center difference
method, which is the average of the two Euler methods described above:

ẋk ≈
xk+1−xk

Ts
+ xk−xk−1

Ts

2
=

xk+1 − xk−1
2Ts

(16.48)

The center difference method is illustrated in Figure 16.9.

x

t

2Ts

tk-1 tk+1

Line with
slope

tk

xk+1

xk-1

xk+1 - xk-1

2Ts

Tangent to x(t)-
curve at tk

x(tk)

Slope of
tangent is

Line and tangent
have almost
same slope

Figure 16.9: The center difference method as an approximation to a time-
derivative: ẋ(tk) ≈ xk+1−xk−1

2Ts

Higher order derivatives can be calculated numerically by successive
application of the center difference method in cascade, as follows:

ẍ(tk) = ẍk ≈
ẋk+1 − ẋk−1

2Ts
=

xk+2−xk
2Ts

− xk−xk−2
2Ts

2Ts
=

xk+2 − 2xk + xk−2
4T 2s

(16.49)

16.3.5 Estimation of black-box models using subspace
methods

A black-box model is a dynamic model in the form of a state-space model
or a transfer function with non-physical parameters. A black-box model



176

represents the dynamic properties of the system and does not contain
explicit information about the physics of the system. Such models are
useful in many situations, for example in model-based analysis and design
(as controller tuning) of control systems and in signal modeling.

It is common to have black-box models in the form of discrete-time models
— not continuous-time models. This is because discrete-time models are
more directly related to the discrete-time nature of the sampled data
(time-series) from experiments from which the black-box model is
developed.

Once you have a discrete-time model — a transfer function model or a
state-space model, you can analyze it in many ways:

• Run simulations

• Plot frequency response

• Plot poles or eigenvalues

• Transform to equivalent continuous-time model to find e.g.
time-constants or other dynamic characteristics.

How can you estimate a black-box model in practice? Several estimation
methods are available[6], as the least squares method described earlier in
this chapter, the prediction error method, and a subspace method. I
suggest you using a subspace method . These are effective, and easy to use
in practice. Subspace methods estimate a discrete-time black-box
state-space model on the form of a linear — possibly multivariable —
state-space model

x(tk+1) = Ax(tk) +Bu(tk) +Ke(tk) (16.50)

y(tk) = Cx(tk) +Du(tk) + e(tk) (16.51)

with initial state x(0). x(tk) is the state vector, which is actally calculated
during the estimation. u(tk) is the known input vector, y(tk) is the known
output vector, e(tk) is the (white or random) noise-vector, and A, B, C,
D, and K are coefficient matrices. tk+1 means the time at timestep no. k
which is an integer time-index. tk = kTs where Ts [sec] is the timestep or
sampling time. The order n of this model is the number of states, which is
the number of elements in the state-vector.

From this state-space model a z-transfer function from u til y can be
calculated with the following formula:

Hy,u(z) = C(zI −A)−1B +D (16.52)



177

This formula can be derived by taking the Z-transform of (16.50) — (16.51)
and then solving for output y(z), cf. Section 13.3. However, in practice
you will probably use a proper function in e.g. MATLAB or LabVIEW, cf.
the examples below.

All the five matrices in (16.50) — (16.51) are estimated. These matrices are
assumed having some special canonical forms. Even the initial state is
estimated, from known time-series of the input u and the corresponding
output y. Once a state-space model is estimated, a transfer function may
be calculated using (16.52). You must select the model order n so that you
are content with the accuracy of the model. This can be done by running
simulations with the model for different orders n, see Figure 16.8.

Note that if you assume that the system contains a time-delay of Td [s],
you need at least the following model order to include the time-delay in
the model properly:

nmin =
Td

Ts
(16.53)

where Ts is the sampling time.

In the following are two examples about estimating a black-box model of
an electrical motor using subspace estimation, with MATLAB (System
Identification Toolbox) and LabVIEW (System Identification Toolkit),
respectively.

Example 16.3 Subspace model estimation in MATLAB

Figure 16.10 shows an electrical DC motor. It is manipulated with an
input voltage signal, u, and the rotational speed is measured with a
tachometer which produces a output voltage signal, y, which is
proportional to the speed. During one experiment lasting for about 17
seconds, u was adjusted manually, and both the sequences (time series) of
u(tk) and y(tk) were saved to a file. The sampling time was 0.02 s. Figure
16.11 shows a small extract of the log file as displayed with Notepad.5 The
first column contains time stamps, but they are not used in this
application. The second column contains the input sequence u(tk), and the
third column contains the output sequence, y(tk).

Actually, the input and output sequences were divided into two parts:

5The whole logfile, named logfile1.lvm, is available from the home page of this book at
http://techteach.no.



178

Figure 16.10: Example 16.3: Electrical (DC) motor for which an s-transfer
function is estimated

• The first half, named uestim and yestim, were used to estimate a
transfer function.

• The second half, named uvalid and yvalid, were used to check that the
model is a good model. This is done by simulating the model with
uvalid as input signal and comparing the simulated response, ysim,
with yvalid. If yvalid is quite similar to ysim we can conclude that the
model is good.

The estimation is made with the n4sid-function in MATLAB’s System
Identification Toolbox.

Below is the MATLAB-code which accomplishes the task.

%Loads data from file into workspace.
load logfile1.lvm;
Ts=0.02; %Sampling interval
L=length(logfile1);%(Matrix name becomes same as logfile name.)
N=round(L/2);
%Generates proper time signal, and extracts data from logfile:
t_estim=Ts*[1:N]’;
u_estim=logfile1(1:N,2);
y_estim=logfile1(1:N,3);
t_valid=Ts*[N+1:L]’;
u_valid=logfile1(N+1:L,2);
y_valid=logfile1(N+1:L,3);
modelorder=1;%Defines order of estimated model.



179

Figure 16.11: Example 16.3: An extract of the log file.

%Estimation of model. Model is on internal theta-format:
model_est=n4sid([y_estim u_estim],modelorder);
%th2tf-function calculates numerator and denominator coeff. arrays
%in z-transfer function:
[num,den]=th2tf(model_est);
H_disc=tf(num,den,Ts); %Generates an LTI-model from z-transf func.
y_sim=lsim(H_disc,u_valid,t_valid);%Simulates with u_valid as input.
figure(1)
%Plots y_estim and u_estim:
plot(t_estim,[y_estim,u_estim]);
ylabel(’[V]’);xlabel(’t [s]’)
figure(2)
%Plots y_sim, y_valid, and u_valid.
plot(t_valid,[y_sim,y_valid,u_valid]);
ylabel(’[V]’);xlabel(’t [s]’)
H_cont=d2c(H_disc,’zoh’) %Converts to s-transfer function.

Figure 16.12 shows the input uestim and output yestim used for the
estimation.

I selected order n = 1 for the model because it seemed not to be any large
improvement in using a higher order, and according to the parsimony
principle of system identification, you should select the simplest model
among proper models. Figure 16.13 shows the input uvalid and output
yvalid used for validating the model, together with the simulated output
ysim. Since yvalid is quite similar to ysim we can conclude that the model is
good.



180

Figure 16.12: Example 16.3: The input uestim and output yestim used for the
estimation.

The resulting discrete-time transfer function model was

Hdisc(z) =
0.05788

z − 0.9344
(16.54)

This model was converted to the following continuous-time transfer
function using the d2c function:

Hcont(s) =
2.993

s+ 3.393
(16.55)

=
2.993/3.393

(1/3.393)s+ 1
=

0.88

0.29s+ 1
=

K

Ts+ 1
(16.56)

Thus, the gain is 0.88, and the time-constant is 0.29 sec. I know from
experience with the motor that these are good values!

[End of Example 16.3]

The next example shows how I used LabVIEW to accomplish the same
system identification task as in Example 16.3.

Example 16.4 Subspace model estimation in LabVIEW

The introduction to the example is the same as in is Example 16.3.



181

Figure 16.13: Example 16.3: The input uvalid and output yvalid used for vali-
dating the model, together with the simulated output ysim.

Figure 16.14 shows the front panel (the user interface) of the LabVIEW
program (sysid.vi), Figure 16.15 shows the block diagram (progamming
code) of the program.

The result of the estimation is the continuous-time transfer function

Hcont(s) =
y(s)

u(s)
=

0.0031s+ 3.08

s+ 3.54
≈ 3.08

s+ 3.54
(16.57)

=
3.08/3.54

(1/3.54)s+ 1
=

0.87

0.28s+ 1
=

K

Ts+ 1
(16.58)

with no time-delay. Thus, the gain is 0.87, and the time-constant is 0.28
sec, which are very similar to the values found with MATLAB in Example
16.3 (and these parameter values are good).

Below are a number of comments to the front panel and to the block
diagram of the LabVIEW program:

Comments to the front panel, see Figure 16.14:

1. The program loop time of 1 sec is the loop or cycle time of the
program. This means that the code implementing the estimation etc.
is executed each second. This continuous program execution makes it
possible for the user to see the consequences of adjusted settings
“immediately”.



182

Figure 16.14: Example 16.4: The front panel of the LabVIEW program sysid.vi.

2. The user can select the model order.

3. The user can select the percentage portion of the original time-series
to be used for estimation. In this example I have selected to use the
first 50% for estimation, and the second 50% for validation via
simulation.

4. The front panel shows in respective charts the data used for
estimation (left) and the data used for validation (right). From the
chart to the right we see that the model is good, as ysim and yvalid
are quite similar.

Comments to the block diagram, see Figure 16.15:

1. The Read From Measurement File function reads the saved data
(sequences) from the log file and makes them available to the
LabVIEW program. The 2-dimensional arrays of data in the file are
extracted to proper 1-dimensional arrays using Index Array
functions.

2. The function SI Split Signal splits the signals to be used for



183

Figure 16.15: Example 16.4: The block diagram of the LabVIEW program
sysid.vi.

estimation and validation (simulation) according to the Estim
Portion (%) value.

3. The function SI Estimate State-Space Model6 estimates a
discrete-time state-space model using a subspace estimation method.

4. The estimated model is eventually converted to a continuous-time
transfer function, Hcont(s), using functions in the Control and
Simulation toolkit (at the right part of the block diagram). The
result is (16.57).

5. The function SI Model Simulation simulates the estimated model
using uvalid as input signal. The simulated response, ysim, is shown

6SI = System Identification



184

together with yvalid in the chart at the right side of the front panel.

[End of Example 16.4]



Chapter 17

State estimation with
observers

17.1 Introduction

An observer is an algorithm for estimating the values of state variables of
a dynamic system. Why can such state estimates be useful?

• Supervision: State estimates can provide valuable information
about important variables in a physical process, for example feed
composition to a reactor, environmental forces acting on a ship, load
torques acting on a motor, etc.

• Control: In general, the more information the controller has about
the process it controls, the better (more accurate) it can control it.
In particular, some control methods assumes that the state of the
process to be controlled are known. If the state variables are not
measured, they may be estimated, and the estimates can be used by
the controller as if they were measurement.

Note that even process disturbances and process parameters can be
estimated. The clue is to model the disturbances or parameters as
ordinary state variables.

Relevant control methods that may benefit from state estimators are:

— Feedforward control [5], where the feedforward can be based on
estimated disturbances.

— Cascade control [5], where the inner loops can be based on
estimated states.

185



186

— Feedback linearization, see Section 20, where the feedbacks can
be based on estimated states.

— LQ (linear quadratic) optimal control, see Section 21, where the
feedbacks can be based on estimated states.

— Model-based predictive control (MPC), see Section 22, where the
prediction of future behaviour and optimization can be based on
an estimated present state.

Observers are calculated from specified estimator error dynamics, or in
other words: how fast and stable you want the estimates to converge to the
real values (assuming you could measure them). An alternative to
observers is the Kalman Filter which is an estimation algorithm based on
stochastic theory. The Kalman Filter produces state estimates that
contain a minimum amount of noise in the assumed presence of random
process disturbances and random measurement noise. In observers
however, such stochastic signals acting on the system is not in focus. The
theory and implementation of observers are simpler than with Kalman
Filters, and this is benefical. One particular drawback about observers is
that they are not straightforward to design for systems having more than
one measurement, while this is straightforward for Kalman Filters. The
Kalman Filter is described in Chapter 18, for discrete-time systems (the
discrete-time Kalman Filter is more commonly used than the
continuous-time Kalman Filter).

I have chosen to describe continuous-time — not discrete-time — observers.
This makes the mathematical operations involved in design of the observer
simpler. In a practical implementation you will use a computer, which
operates in discrete time. Consequently, to obtain an observer ready for
computer implementation, you will need to discretize the observer
algorithm, but that is straightforward using Forward discretization. There
is a potential danger about just discretizing a continuous-time algorithm:
The resulting algorithm may become unstable if the sampling time is too
large. However, with the computer power of today, there is probably no
problem selecting sufficiently small sampling time in the implementation
for any given application.

As with every model-based algorithm you should test your observer with a
simulated process before applying it to the real system. You can implement
a simulator in e.g. LabVIEW or MATLAB/Simulink since you already
have a model (the observer is model-based). In the testing, you start with
testing the observer with the nominal model in the simulator, including
process and measurement noise. This is the model on which you are basing
the observer. Secondly, you should introduce some reasonable model errors



187

by making the simulator model somewhat different from the observer
model, and check if the observer still produces usable estimates.

17.2 How the observer works

The purpose of the observer is to estimate assumed unknown states in the
process. Figure 17.1 shows a block diagram of a real system (process) with
observer. The operating principle of the observer is that the

Process

K

Cf()

u

dxe/dt xe

e = y - ye

y

ye

Ke

Applied state 
estimate

vw

Control variable
Sensor

x

State variable 
(unknown value)

Measurement 
variable

dx/dt= f(x,u,w) y = Cx + v

Innovation variable 
(measurement estimation error)

Observer
gain

Real system
(process)

Process 
disturbance
(environmental or 
load variable)

Observer

xe

System 
function

Measurement 
function

Estimation loop with 
error-driven correction of 
estimate

Measurement 
noise

xe0

Known 
disturbance

wk

Figure 17.1: Real system (process) with observer

mathematical model of the process is running — or being simulated — in
parallel with the process. If the model is perfect, xe will be equal to the
real states, x. But in practice there are model errors, so there will be a
difference between x and xe. It is always assumed that at least one of the
states are measured. If there is a difference between x and xe, there will
also be a difference between the real measurement y and the estimated
measurement ye. This difference is the error e of the measurement estimate



188

ye (it is also denoted the innovation variable):

e = y − ye (17.1)

This error is used to update the estimate via the observer gain K. Thus,
the correction of the estimates is error-driven — which is the same principle
as of a error-driven control loop.

The numerical value of the observer gain determines the strength of the
correction. In the following section we will calculate a proper value of K.

17.3 How to design observers

17.3.1 Deriving the estimation error model

We assume that the process model is (the time t is omitted for simplicity)

ẋ = f (x, u,w) (17.2)

where x is the state variable (vector), u is the control variable (vector), and
w is the disturbance (vector). f is a possibly nonlinear function (vector).

Furthermore we assume that the process measurement y is given by

y = Cx+ v (17.3)

C is a matrix, and v is measurement noise, which is assumed to be
random, and therefore not predictible. This noise influence the state
estimates, and we will later see how we can reduce or minimize the
influence of noise. If the sensor (including scaling) is producing a value in a
proper engineering unit, e.g. m/s, ◦C or Pa, the element(s) of C have
numerical value 1 or 0. For example, if the system has the two states x1 =
position and x2 = speed, and only the position is measured with a sensor
which gives the position in unit of meter, then

C =
[
1 0

]
(17.4)

The state estimates, xe, are calculated from the model together with a
correction term being proportional to the measurement estimate error:

ẋe = f (xe, u,wk) +Ke (17.5)

= f (xe, u,wk) +K (y − ye) (17.6)

= f (xe, u,wk) +K (Cx+ v −Cxe) (17.7)

= f (xe, u,wk) +KC (x− xe) +Kv (17.8)



189

where wk are process disturbances that are assumed to have known values
by measurement etc.

The measurement estimate is given by

ye = Cxe (17.9)

The measurement noise v is not included in (17.9) because v is assumed
not to be predictible.

It is of course of crucial importance that the error of the state estimate is
small. So, let us derive a model of the state estimate error. We define this
error as

ex = x− xe (17.10)

These variables are actually vectors. In detail (17.10) looks like this:





ex1
ex2
...

exn





=






x1
x2
...
xn





−






x1e
x2e
...

xne






(17.11)

Now, we subtract (17.8) from (17.2):

ẋ− ẋe = f (x, u,w)− [f (xe, u,wk) +KC (x− xe) +Kv] (17.12)

= [f (x, u, w)− f (xe, u,wk)]−KC (x− xe)−Kv (17.13)

Let us assume that the difference between the values of the two functions
in the square bracket in (17.13) is caused by a small difference between x
and xe. Then we have

[f (x, u,w)− f (xe, u, wk)] ≈
∂f(·)
∂x

∣∣∣∣
xe(t), u(t),wk(t)

· (x− xe) (17.14)

Here we define

Ac ≡
∂f(·)
∂x

∣∣∣∣
xe(t), u(t),wk(t)

(17.15)

Ac is the Jacobian (partial derivative) of the system function f (subindex c
in Ac is for “continuous-time”), and it is the same as the resulting
transition matrix after linearization of the non-linear state-space model, cf.
Section 1.4. Now, (17.13) can be written

ẋ− ẋe = Ac (x− xe)−KC (x− xe)−Kv (17.16)

or, using (17.10):

ėx = Acex −KCex −Kv (17.17)

= (Ac −KC) ex −Kv (17.18)



190

which defines the error dynamics of the observer. (17.18) is the estimation
error model of the observer. Now, assume that we disregard the impact
that the measurement noise v has on ex. Then the estimation error model
is

ėx = (Ac −KC) ex (17.19)

which is an autonomous system (i.e. not driven by external inputs). If that
system is asymptotically stable, each of the error variables, exi , will
converge towards zero from any non-zero initial value. Of course this is
what we want — namely that the estimation errors become zero. More
specifically, the dynamics (with respect to speed and stability) of ex is
given by the eigenvalues of the system matrix,

Ae ≡ Ac −KC (17.20)

And the observer gain K is a part of Ae! (The next section explains how
we can calculate K.)

Note that the matrices Ac and C in (17.20) are matrices of a linearized
process model, assumed to be on the form

∆ẋ = Ac∆x+Bc∆u (17.21)

∆y = C∆x+D∆u (17.22)

As pointed out above, Ac can be calculated by linearization of the system
function at the operating point:

Ac ≡
∂f(·)
∂x

∣∣∣∣
xe(t), u(t),wk(t)

(17.23)

To calculate the observer gain the Bc matrix is actually not needed, but
when you use e.g. the LabVIEW function named CD Ackerman.vi to
calculate K, you still need Bc, as demonstrated in Example 17.2. Bc is
found by linearization:

Bc ≡
∂f(·)
∂u

∣∣∣∣
xe(t), u(t),wk(t)

(17.24)

In (17.22) the C and D matrices comes “automatically”. For example, if
the system has the two states x1 = position and x2 = speed, and only the
position is measured with a sensor which gives the position in unit of
meter, then

C =
[
1 0

]
(17.25)

And D is a matrix of proper dimension containing just zeros.



191

17.3.2 Calculation of the observer gain

Here is a procedure for calculating K:

1. Specify proper error dynamics in the term of the eigenvalues of
(17.20). As explained below, these eigenvalues can be calculated from
the specified response time of the observer.

2. Calculate K from the specified eigenvalues.

These two steps are explained in detail in the following.

Regarding step 1: What are “proper eigenvalues” of the error dynamics?
There are many options. A good option is Butterworth eigenvalues, and
we will concentrate on this option here. The characteristic equation from
which the eigenvalues are calculated, is then a Butterworth polynomial.
They are a common way to specify the denominator of a lowpass filter in
the area of signal processing. The step response of such filters have a slight
overshoot, with good damping. (Such step responses will also exist in an
observer if a real state variable changes value abruptly.) Below are
Butterworth polynomials of order 2, 3, and 4, which are the most relevant
orders.1

B2(s) = (Ts)2 + 1.4142 (Ts) + 1 (17.26)

B3(s) = (Ts)3 + 2 (Ts)2 + 2 (Ts) + 1 (17.27)

B4(s) = (Ts)4 + 2.6131 (Ts)3 + 3.4142 (Ts)2 + 2.6131 (Ts) + 1 (17.28)

The parameter T is used to define the speed of the response. (In
normalized Butterworth polynomials T = 1.) The speed is inversely
proportional to T , so the smaller T the faster response. (We will specify T
more closely below.) To give an impression of Butterworth dynamics,
Figure 17.2 shows the step response of Butterworth filters of order 2, 3,
and 4, all with T = 1:

H2(s) =
1

B2(s)
(17.29)

H3(s) =
1

B3(s)
(17.30)

H4(s) =
1

B4(s)
(17.31)

Let us define the response time Tr as the observer response time as the
time that the step response needs to reach 63% of the steady state value of

1Other orders can be found from the butter function in MATLAB and LabVIEW.



192

Figure 17.2: Step response of normalized Butterworth filters (with T = 1) of
order 2, 3 and 4.

the response2. From Figure 17.2 we can see that a rough and simple — still
useful — estimate of Tr is

Tr ≈ nT (17.32)

where n is the order of the transfer function, which is the number of the
poles and eigenvalues. Tr will be the only tuning parameter of the observer!
Once Tr is specified, the T parameter to be used in the appropriate
Butterworth polynomial among (17.26) — (17.28) is

T ≈ Tr

n
(17.33)

And once the Butterworth polynomial among (17.26) — (17.28) is
determinded, you must calculate the eigenvalues {s1, s2, . . . , sn} as the
roots of the polynomial:

{s1, s2, . . . , sn} = root(Bn) (17.34)

Figure 17.3 sums up the procedure of calculating the observer gain K.

2Similar to the time-constant of first order dynamic system.



193

Calculate
K

Ac

C
Determine 

Butterworth 
polynomial of 
error-model

Observer
response time

Tr

System 
matrices

n
System order

Bn(s)
Calculate 

eigenvalues 
as roots of 

Bn(s)
{s1, s2, …, sn}

Observer
gain

K

Figure 17.3: The procedure of calculating the observer gain K.

Calculation of observer gain in MATLAB and LabVIEW

Both MATLAB and LabVIEW has functions to calculate the roots of a
polynomial (e.g. in MATLAB the function is roots).

Step 2 in the procedure list above is calculate the observer gain K from
the specified eigenvalues {s1, s2, . . . , sn} of A−KC. We have

eig (A−KC) = {s1, s2, . . . , sn} (17.35)

As is known from mathematics, the eigenvalues are the s-roots of the
characteristic equation:

det [sI − (A−KC)] =(s− s1)(s− s2) · · · (s− sn) = 0 (17.36)

By equating the polynomials on the left and the right side of (17.36) you
can calculate the elements of K. Here are some options for doing this:

• Manual calculations (cf. Example 17.1).

• Use functions in e.g. MATLAB or LabVIEW (cf. Example
17.2):

— In LabVIEW you can also use the function (block) CD
Ackerman.vi, which is straightforward.

— In MathScript you can use the function acker which is
straightforward.

— In MATLAB you can use the function acker. However, using
acker is a little tricky: acker (MATLAB) calculates the gain
K1 so that the eigenvalues of the matrix (A1 −B1K1) are as
specified. acker is used as follows:
K1=acker(A1,B1,eigenvalues)

But we need to calculate K so that the eigenvalues of (A−KC)



194

is as specified. Now, the eigenvalues of A−KC are the same as
the eigenvalues of

(A−KC)T = AT −CTKT (17.37)

Therefore we use acker as follows:
K1=acker(A’,C’,eigenvalues);

K=K1’

In Example the observer gains are calculated with manual calculations,
and in Example with MATLAB and LabVIEW.

Example 17.1 Calculating the observer gain K with manual
calculations

Given a second order continuous-time model with the following system
matrices:

A =

[
0 1
0 0

]
, B =

[
0
1

]
, C =

[
1 0

]
, D = [0] (17.38)

State-variable x2 shall be estimated with an observer. x1 = y is measured.
We specify that the response time of the estimator is 0.2 s, which implies
that the parameter T in (17.33) is

T =
Tr

n
=

0.2

2
= 0.1 s (17.39)

The eigenvalues of the observer error dynamics are the roots of the
characteristic equation:

0 = det [sI − (A−KC)] (17.40)

= det

{[
s 0
0 s

]
−
([

0 1
0 0

]
−
[

K1

K2

] [
1 0

])}

(17.41)

= det









s+K1 −1

K2 s









(17.42)

= s2 +K1s+K2 (17.43)

The Butterworth polynomial, which is of second order, becomes

B2(s) = (Ts)2 + 1.4142 (Ts) + 1 = T 2s2 + 1.4142Ts+ 1 (17.44)



195

Before comparing polynomials we divide (17.44) by T 2 so that it gets the
same form as (17.43):

B∗
2(s) = s2 +

1.4142

T
s+

1

T 2
(17.45)

s2 +
1.4142

T
s+

1

T 2
≡ s2 +K1s+K2 (17.46)

Comparing coefficients between (17.43) and (17.45) gives the following
observer gains:

K1 =
1.4142

T
=

1.4142

0.1
= 14.1 (17.47)

K2 =
1

T 2
=

1

0.12
= 100 (17.48)

[End of Example 17.1]

Example 17.2 Calculating the observer gain K in MATLAB and
LabVIEW

Given a second order continuous-time model with the following system
matrices:

A =

[
0 1
0 0

]
, B =

[
0
1

]
, C =

[
1 0

]
, D = [0] (17.49)

State-variable x2 shall be estimated with an observer. x1 = y is measured.
We specify that the response time of the estimator is 0.2 s, which implies
that the parameter T in (17.33) is

T =
Tr

n
=

0.2

2
= 0.1 s (17.50)

The Butterworth polynomial becomes

B2(s) = (Ts)2 + 1.4142 (Ts) + 1 = T 2s2 + 1.4142Ts+ 1 (17.51)

from which we can calculate the roots, which are the specified eigenvalues
of the observer.

MATLAB:

The following MATLAB-script calculates the estimator gain K:

A = [0,1;0,0];

B = [0;1];



196

C = [1,0];

D = [0];

n=2;

Tr=0.2;

T=Tr/n;

B2=[T*T,1.4142*T,1];

eigenvalues=roots(B2);

K1=acker(A’,C’,eigenvalues);

K=K1’

The result is

K =

14.142

100

which are the same as found with manual calculations in Example 17.1.

LabVIEW/MathScript:

The following MathScript-script calculates the estimator gain K:

A = [0,1;0,0];

B = [0;1];

C = [1,0];

D = [0];

n=2;

Tr=0.2;

T=Tr/n;

B2=[T*T,1.4142*T,1];

eigenvalues=roots(B2);

K=acker(A,C,eigenvalues,’o’) %o for observer

The result is as before

K =

14.142

100

LabVIEW/Block diagram:

The function CD Ackerman.vi on the Control Design and Simulation
Toolkit palette in LabVIEW can also be used to calculate the observer gain
K. Figure 17.4 shows the front panel, and Figure 17.5 shows the block
diagram of a LabVIEW program. The same K as above is obtained.



197

Figure 17.4: Example 17.2: Front panel of the LabVIEW program to calculate
the observer gain K

[End of Example 17.2]

What if the estimates are too noisy?

Real measurement contains random noise. This noise will propagate
through the observer via the term Ke = K(y − ye) where y is the
more-or-less noisy measurement. This implies that the state estimate xe

will contain noise. What can you do if you regard the amount of noise to
bee too large? You can reduce the measurement-based updating of the
estimate by ensuring that the observer gain K is be smaller. You can
obtain this by increasing the specified response time Tr defined earlier in
this section.3

17.4 Observability test of continuous-time
systems

It can be shown that a necessary condition for placing the eigenvalues of
the observer for a system at an arbitrary location in the complex plane is
that the system is observable. A consequence of non-observability is that
the acker functions in MATLAB and in LabVIEW used to calculate K
(cf. Example 17.2) gives an error message.

3Don’t just reduce the values of K directly. The consequence can be an unstable
observer loop!



198

Figure 17.5: Example 17.2: Block diagram of the LabVIEW program to calcu-
late the observer gain K

How is observability defined? A dynamic system given by

ẋ = Ax+Bu (17.52)

y = Cx+Du (17.53)

is said to be observable if every state x(t0) can be determined from the
observation of y(t) over a finite time interval, [t0, t1].

How can you check if a system is non-observable? Let us make a definition:

Observability matrix:

Mobs =






C
CA
...

CAn−1






(17.54)

The following can be shown:

Observability Criterion:

The system (17.52) — (17.53) is observable if and only if the observability
matrix Mobs has rank equal to n where n is the order of the system model

(the number state variables).



199

The rank can be checked by calculating the determinant of Mobs. If the
determinant is non-zero, the rank is full, and hence, the system is
observable. If the determinant is zero, system is non-observable.

Non-observability has several concequences:

• The transfer function from the input variable u to the output variable
y has an order that is less than the number of state variables (n).

• There are state variables or linear combinations of state variables
that do not show any response.

• The eigenvalues of an observer for the system can not be placed
freely in the complex plane, and the acker functions in MATLAB
and in LabVIEW and also the CD Ackerman.vi in LabVIEW used
to calculate K (cf. Example 17.2) gives an error message.

Example 17.3 Observability

Given the following state space model:
[

ẋ1
ẋ2

]
=

[
0 a
0 0

]

︸ ︷︷ ︸
A

[
x1
x2

]
+

[
0
1

]

︸ ︷︷ ︸
B

u (17.55)

y =
[

c1 0
]

︸ ︷︷ ︸
C

[
x1
x2

]
+ [0]
︸︷︷︸
D

u (17.56)

The observability matrix is (n = 2)

Mobs =

[
C

CA2−1 = CA

]
=






[
c1 0

]

−−−−−−−−−−−
[

c1 0
] [ 0 a

0 0

]




 =

[
c1 0
0 ac1

]

(17.57)
The determinant of Mobs is

det (Mobs) = c1 · ac1 − 0 · 0 = a c1
2 (17.58)

The system is observable only if a c1
2 �= 0.

• Assume that a �= 0 which means that the first state variable, x1,
contains some non-zero information about the second state variable,
x2. Then the system is observable if c1 �= 0, i.e. if x1 is measured.



200

• Assume that a = 0 which means that x1 contains no information
about x2. In this case the system is non-observable despite that x1 is
measured.4

[End of Example 17.3]

17.5 Discrete-time implementation of the
observer

The model defining the state estimate is given by (17.5), which is repeated
here:

ẋe = f (xe, u,wk) +Ke (17.59)

Of course, it is xe(t) that you want. It can be found easily by solving the
above differential equation numerically. The easiest numerical solver,
which probably is accurate enough — given that the sampling or
discretization time, h, is small enough — is the Forward integration
method. This method can be applied by substituting the time-derivative
by the forward difference:

ẋe ≈
xe(tk+1)− xe(tk)

Ts
= f [xe(tk), u(tk), wk(tk)]︸ ︷︷ ︸

f(·,tk)

+Ke(tk) (17.60)

Solving for xe(tk+1) gives the observer algorithm, which is ready for being
programmed:

Observer:

xe(tk+1) = xe(tk) + Ts [f(·, tk) +Ke(tk)] (17.61)

An example of discrete-time implementation is given in Example 17.4.

It is important to prevent the state estimates from getting unrealistic
values. For example, the estimate of a liquid level should not be negative.
And it may be useful to give the user the option of resetting an estimate to
a predefined value by clicking a button etc. The following code implements
such limitation and reset of the estimate x1e:

...
x1e_k1=x1e_k+Ts*(f_k1+K1*e); //Normal update of estimate.

4When I tried to calculate an observer gain for this system with a = 0, I got the
following error message from LabVIEW/MathScript: “Error in function acker at line 9.
Control Design Toolset: The system model is not observable.”



201

if(x1e_k1>x1_max) {x1e_k1=x1_max;} //Limit to max.
if(x1e_k1>x1_min) {x1e_k1=x1_min;} //Limit to min.
if(reset==1) {x1e_k1=x1_reset;} //Reset
...

17.6 Estimating parameters and disturbances
with observers

In some applications it may be useful to estimate parameters and/or
disturbances in addition to the “ordinary” state variables. One example is
dynamic positioning systems for ship position control where the
Kalman Filter is used to estimate environmental forces acting on the ship
(these estimates are used in the controller as a feedforward control signal).

These parameters and/or disturbances must be represented as state
variables. They represent additional state variables. The original state
vector is augmented with these new state variables which we may denote
the augmentative states. The observer is used to estimate the augmented
state vector which consists of both the original state variables and the
augmentative state variables. But how can you model these augmentative
state variables? The augmentative model must be in the form of
differential equations because that is the model used when designing
observers. To set up an augmentative model you must make an
assumption about the behaviour of the augmentative state. Let us look at
some augmentative models.

• Augmentative state is (almost) constant, or we do not know
how it varies: Both these assumptions are expressed with the
following differential equations describing the augmentative state
variable xa:

ẋa(t) = 0 (17.62)

This is the most common way to model the augmentative state.

• Augmentative state has (almost) constant rate: The
corresponding differential equation is

ẍa = 0 (17.63)

or, in state space form, with xa1 ≡ xa,

ẋa1 = xa2 (17.64)



202

ẋa2 = 0 (17.65)

where xa2 is another augmentative state variable.

Once you have defined the augmented model, you can design and
implement the observer in the usual way. The observer estimates both the
original states and the augmentative states.

The following example shows how the state augementation can be done in
a practical (simulated) application.

Example 17.4 Observer for estimating level and flow

Figure 17.6 shows a liquid tank with a level control system (PI controller)
and an observer. (This system is also be used in Example 18.2 where a
Kalman Filter is used in stead of an observer.) We will design an observer
to estimate the outflow Fout. The level h is measured.

Mass balance of the liquid in the tank is (mass is ρAh)

ρAtankḣ(t) = ρKpu− ρFout(t) (17.66)

= ρKpu− ρFout(t) (17.67)

After cancelling the density ρ the model is

ḣ(t) =
1

Atank
[Kpu− Fout(t)] (17.68)

We assume that we do not know how the outflow is actually varying, so we
use the following augmentative model describing its behaviour:

Ḟout(t) = 0 (17.69)

The model of the system is given by (17.68) — (17.69). The parameter
values of the tank are displayed (and can be adjusted) at the front panel,
see Figure 17.6. The sampling time is

Ts = 0.1 s (17.70)

Although it is not strictly necessary, it is convenient to rename the state
variables using standard names. So we define

x1 = h (17.71)

x2 = Fout (17.72)



203

Figure 17.6: Example 17.4: Liquid tank with level control system and observer
for estimation of outflow

The model (17.68) — (17.69) is now

ẋ1(t) =
1

Atank
[Kpu(t)− x2(t)] ≡ f1(·) (17.73)

ẋ2(t) = 0 ≡ f2(·) (17.74)

The measurement equation is

y = x1 (17.75)

The initial estimates are as follows:

x1p(0) = x1(0) = y(0) (from the sensor) (17.76)

x2p(0) = 0 (assuming no information about initial value) (17.77)



204

The observer algorithm is, according to (17.61),

x1e(tk+1) = x1e(tk) + Ts [f1(·, tk) +K1e] (17.78)

= x1e(tk) + Ts

{
1

Atank
[Kpu(tk)− x2e(tk)] +K1e

}
(17.79)

x2e(tk+1) = x2e(tk) + Ts [f2(·, tk) +K2e] (17.80)

= x2e(tk) + TsK2e (17.81)

To calculate observer gain K we need a linearized process model on the
form

∆ẋ = Ac∆x+Bc∆u (17.82)

∆y = C∆x+D∆u (17.83)

Here:

Ac =






∂f1
∂x1

= 0 ∂f1
∂x2

= − 1
Atank

∂f2
∂x1

= 0 ∂f2
∂x2

= 0






∣∣∣∣∣∣∣
xe(tk), u(tk)

(17.84)

=




0 − 1

Atank

0 0



 (17.85)

Bc =






∂f1
∂u =

Kp

Atank

∂f2
∂u = 0






∣∣∣∣∣∣∣
xe(tk), u(tk)

(17.86)

=




− 1

Atank

0



 (17.87)

C =
[
1 0

]
(17.88)

D = [0] (17.89)

The Butterworth polynomial is (17.26) which is repeated here:

B2(s) = (Ts)2 + 1.4142 (Ts) + 1 (17.90)

where T is given by (17.33) which is repeated here:

T ≈ Tr

n
(17.91)



205

Figure 17.7: Example 17.4: While-loop for calculating the observer gain K

where n = 2 (the number of states). I specify the observer response time
Tr to be

Tr = 2 s (17.92)

The observer gain K is calculated using function blocks in LabVIEW, see
Figure 17.5. The result is

K =

[
K1

K2

]
=

[
1.414
−0.1

]
(17.93)

Figure 17.8 shows the responses after a stepwise change of the outflow.
(The level is controlled with a PI controller with settings Kc = 10 and
Ti = 10 s.) The figure shows the “real” (simulated) and estimated level
and outflow. We see from the lower chart in the figure that the Kalman
Filter seems to estimate the outflow well, with response time
approximately 2 sec, as specified, and with zero error in steady state.

Figure 17.9 shows the implementation of the observer with C-code in a
Formula Node. (The Formula Node is just one part of the block diagram.



206

Figure 17.8: Example 17.4: The responses after a stepwise change of the
outflow.

The total block diagram consists of one While loop where the observer
gains are calculated, and one Simulation loop containing the Formula
Node, PID controller, and the tank simulator.) Limitation of the estimated
states to maximum and minimum values is included in the code. The
input a is used to force the observer to run just as a simulator which is
very useful at sensor failure, cf. Section 17.8.

[End of Example 17.4]



207

Figure 17.9: Example 17.4: Implementation of the observer in a Formula Node.
(The observer gain K is fetched from the While loop in the Block diagram, see
Figure 17.7, using local variables.)

17.7 Using observer estimates in controllers

In the introduction to this chapter are listed several control functions
which basically assumes that measurements of states and/or disturbances
(loads) are available. If measurements from “hard-sensors” for some reason
are not available, you can try using an estimate as provided by a
soft-sensor as an observer (or Kalman Filter) in stead. One such control
function is feedforward control. Figure 17.10 shows feedforward from
estimated disturbance.

Example 17.5 Level control with feedforward from estimated
disturbance (load)



208

Process

d

yySP ue PID-
controller

State estimator
(Observer or

Kalman Filter)

Feedforward 
controller

uf

uPID

Feedback
Sensor

dest

Disturbance

ym

Feed-
forward

Figure 17.10: Control system including feedforward control from estimated
disturbance (with observer or Kalman Filter)

Figure 17.6 in Example 17.4 shows the front panel of a LabVIEW program
of a simulated level control system. On the front panel is a switch which
can be used to activate feedforward from estimated outflow, Foutest . The
estimator for Foutest based on observer was derived in that example. Let us
now derive the feedforward controller, and then look at simulations of the
control system.

The feedforward controller is derived from a mathematical model of the
process. The model is given by (17.68), which is repeated here:

ḣ(t) =
1

Atank
[Kpu− Fout(t)] (17.94)

Solving for the control variable u, and substituting process output variable
h by its setpoint hSP gives the feedforward controller:

uf (t) =
AtankḣSP (t)

Kp︸ ︷︷ ︸
ufSP

+
Fout(t)

Kp︸ ︷︷ ︸
ufd

(17.95)

Let us assume that the level setpoint hSP is constant. Then, ḣSP (t) = 0,
and the feedforward controller becomes

uf (t) =
Fout(t)

Kp
(17.96)



209

Assuming that the estimate Foutest(t) is used in stead of Fout, the
feedforward controller becomes

uf (t) =
Foutest(t)

Kp
(17.97)

Let us look at a simulation where the outflow has been changed as a step
from 0.002 to 0.008 m3/s. Figure 17.11 shows the level response with
feedforward. Compare with Figure 17.8 which shows the response without

Figure 17.11: Example 17.5: Level response with feedforward from estimated
outflow

feedforward. There is a substantial improvement by using feedforward
from outflow— even if the outflow was not measured (only estimated)!

[End of Example 17.5]



210

17.8 Using observer for increased robustness of
feedback control at sensor failure

If in a feedback control system the sensor fails so that the controller (e.g. a
PID controller) receives an erroneous measurement signal, then the
controller will adjust the control signal to a too large or a too low value.
For example, assume that the level sensor fails and sends zero level
measurement signal to the level controller. Then the level controller adjusts
the control signal to maximum value, causing the tank to become full.

This problem can be solved as follows:

• Base the feedback on the estimated measurement, ye, as calculated
by an observer (or a Kalman Filter).

• While the sensor is failing (assuming some kind of measurement error
detection has been implemented, of course): Prohibit the estimate
from being updated by the (erroneous) measurement. This can be
done by simply multiplying the term Ke by a factor, say a, so that
the resulting estimator formula is

xe(tk+1) = xe(tk) + Ts [f(·, tk) + aKe(tk)] (17.98)

a is set to 1 is the default value, to be used when xe is to be updated
by the measurement (via the measurement estimate error e). a is set
to 0 when xe shall not be updated, impying that xe effectively is

xe(tk+1) = xe(tk) + Tsf(·, tk) (17.99)

which is just a simulator of the process. So, the controller uses a
more-or-less correct simulated measurement in stead of an erroneous
real measurement. This will continue the “normal” operation of the
control system, delaying or preventing dangerous situations.

Example 17.6 Increased robustness of level control system with
observer at sensor failure

This example is based on the level control system studied earlier in this
chapter.

The following two scenarios are simulated. In both, the level sensor fails by
suddenly producing zero voltage (indicating zero level) at some point of
time.



211

• Scenario 1 (not using observer): Nothing special has been done
to handle the sensor failure. The level controller continues to control
using the erroneous level measurement. (Actually, the observer is not
in use.) The measurement value of zero causes the controller to act
as the tank actually is empty, thereby increasing the control signal to
the inlet pump to maximum, causing the tank to become full (which
could be a dangerous situation in certain cases or with other
processes). Figure 17.12 shows the simulated responses.

Figure 17.12: Example 17.6: Scenario 1: Simulation of level control system
with sensor failure.

• Scenario 2 (using observer): The level controller uses
continuously the estimated level as calculated by the observer for
feedback control. When the sensor fails (as detected by some
assumed error-detection algorithm or device), the state estimates are
prevented from being updated by the measurement. This is done by
setting the parameter a in (17.98) equal to zero, and consequently
the observer just runs as a simulator. To illustrate that the control



212

system continues to work well after the has sensor failed, the level
setpoint is changed from 0.5 to 0.7 m. The outflow is changed
towards the end of the simulation.

The simulations show that the control system continues to work
despite the sensor failure: The level follows the setpoint. However,
when the outflow is increased, the level is decreasing. This is because
the estimator is not able to estimate the outflow correctly since the
observer has no measurement-based update of the estimates. So, the
control system may work well for some time, but not for ever because
unmodeled disturbances can cause the states to diverge from the true
states. Still the robustness against sensor failure has been largely
improved!

[End of Example 17.6]



213

Figure 17.13: Example 17.6: Scenario 2: Simulation of level control system
with sensor failure. Robustness is increased thanks to the observer!



214



Chapter 18

State estimation with
Kalman Filter

18.1 Introduction

This chapter describes the Kalman Filter which is a commonly used
method to estimate the values of state variables of a dynamic system that
is excited by stochastic (random) disturbances and stochastic (random)
measurement noise. Such state estimates may be useful for the purpose of
supervision and control, cf. the introductory section to the chapter about
observers, see page 17.

The Kalman Filter algorithm was developed by Rudolf E. Kalman around
1960 [7]. There is a continuous-time version of the Kalman Filter and
several discrete-time versions. (The discrete-time versions are immediately
ready for implementation in a computer program.) Here the
predictor-corrector version of the discrete-time Kalman Filter will be
described. This version seems to be the most commonly used version.

An alternative to Kalman Filters are observers. Observers have the same
structure as the Kalman Filter, but they are calculated from specified
estimator error dynamics, or in other words: how fast and stable you want
the estimates to converge to the real values (assuming you could measure
them). The theory and implementation of observers are simpler than woth
Kalman Filters, and this is benefical. One particular drawback about
observers is that they are not straightforward to design for systems having
more than one measurement, while this is straightforward for Kalman
Filters. Observers are described in Chapter 17.

215



216

As with every model-based algorithm you should test your Kalman Filter
with a simulated process before applying it to the real system. You can
implement a simulator in e.g. LabVIEW or MATLAB/Simulink since you
already have a model (the Kalman Filter is model-based). In the testing,
you start with testing the Kalman Filter with the nominal model in the
simulator, including process and measurement noise. This is the model on
which you are basing the Kalman Filter. Secondly, you should introduce
some reasonable model errors by making the simulator model somewhat
different from the Kalman Filter model, and check if the Kalman Filter
still produces usable estimates.

18.2 Observability of discrete-time systems

A necessary condition for the Kalman Filter to work correctly is that the
system for which the states are to be estimated, is observable. Therefore,
you should check for observability before applying the Kalman Filter.
(There may still be other problems that prevent the Kalman Filter from
producing accurate state estimates, as a faulty or inaccurate mathematical
model.)

Observability of discrete-time systems can be defined as follows [18]: The
discrete-time system

x(k + 1) = Ax(k) +Bu(k) (18.1)

y(k) = Cx(k) +Du(k) (18.2)

is observable if there is a finite number of time steps k so that knowledge
about the input sequence u(0), . . . , u(k − 1) and the output sequence
y(0), . . . , y(k − 1) is sufficient to determine the initial state state of the
system, x(0).

Let us derive a criterion for the system to be observable. Since the
influence of input u on state x is known from the model, let us for
simplicity assume that u(k) = 0. From the model (18.1) — (18.2) we get

y(0) = Cx(0) (18.3)

y(1) = Cx(1) = CAx(0) (18.4)
...

y(n− 1) = CAn−1x(0) (18.5)



217

which can be expressed compactly as






C
CA
...

CAn−1






︸ ︷︷ ︸
Mobs

x(0) =






y(0)
y(1)
...

y(n− 1)






︸ ︷︷ ︸
Y

(18.6)

Let us make a definition:

Observability matrix:

Mobs =






C
CA
...

CAn−1






(18.7)

(18.6) has a unique solution only if the rank of Mobs is n. Therefore:

Observability Criterion:

The system (18.1) — (18.2) is observable if and only if the observability
matrix has rank equal to n where n is the order of the system model (the

number state variables).

The rank can be checked by calculating the determinant of Mobs. If the
determinant is non-zero, the rank is full, and hence, the system is
observable. If the determinant is zero, system is non-observable.

Non-observability has several concequences:

• The transfer function from the input variable u to the output variable
y has an order that is less than the number of state variables (n).

• There are state variables or linear combinations of state variables
which do not show any response.

• The steady-state value of the Kalman Filter gain can not be
computed. This gain is used to update the state estimates from
measurements of the (real) system.

Example 18.1 Observability



218

Given the following state space model:
[

x1(k + 1)
x2(k + 1)

]
=

[
1 a
0 1

]

︸ ︷︷ ︸
A

[
x1(k)
x2(k)

]
+

[
0
1

]

︸ ︷︷ ︸
B

u(k) (18.8)

y(k) =
[

c1 0
]

︸ ︷︷ ︸
C

[
x1(k)
x2(k)

]
+ [0]
︸︷︷︸
D

u(k) (18.9)

The observability matrix is (n = 2)

Mobs =

[
C

CA2−1 = CA

]
=






[
c1 0

]

−−−−−−−−−−−
[

c1 0
] [ 1 a

0 1

]




 =

[
c1 0
c1 ac1

]

(18.10)
The determinant of Mobs is

det (Mobs) = c1 · ac1 − c1 · 0 = a c1
2 (18.11)

The system is observable only if a c1
2 �= 0.

• Assume that a �= 0 which means that the first state variable, x1,
contains some non-zero information about the second state variable,
x2. Then the system is observable if c1 �= 0, i.e. if x1 is measured.

• Assume that a = 0 which means that x1 contains no information
about x2. In this case the system is non-observable despite that x1 is
measured.

[End of Example 18.1]

18.3 The Kalman Filter algorithm

18.3.1 The basic Kalman Filter algorithm

The Kalman Filter is a state estimator which produces an optimal
estimate in the sense that the mean value of the sum (actually of any
linear combination) of the estimation errors gets a minimal value. In other
words, The Kalman Filter gives the following sum of squared errors:

E[ex
T (k)ex(k)] = E

[
ex1

2 (k) + · · ·+ exn
2 (k)

]
(18.12)



219

a minimal value. Here,

ex(k) = xest(k)− x(k) (18.13)

is the estimation error vector. (The Kaman Filter estimate is sometimes
denoted the “least mean-square estimate”.) This assumes actually that the
model is linear, so it is not fully correct for nonlinear models. It is assumed
that the system for which the states are to be estimated is excited by
random (“white”) disturbances ( or process noise) and that the
measurements (there must be at least one real measurement in a Kalman
Filter) contain random (“white”) measurement noise.

The Kalman Filter has many applications, e.g. in dynamic positioning of
ships where the Kalman Filter estimates the position and the speed of the
vessel and also environmental forces. These estimates are used in the
positional control system of the ship. The Kalman Filter is also used in
soft-sensor systems used for supervision, in fault-detection systems, and in
Model-based Predictive Controllers (MPCs) which is an important type of
model-based controllers.

The Kalman Filter algorithm was originally developed for systems
assumed to be represented with a linear state-space model. However, in
many applications the system model is nonlinear. Furthermore the linear
model is just a special case of a nonlinear model. Therefore, I have decided
to present the Kalman Filter for nonlinear models, but comments are given
about the linear case. The Kalman Filter for nonlinear models is denoted
the Extended Kalman Filter because it is an extended use of the original
Kalman Filter. However, for simplicity we can just denote it the Kalman
Filter, dropping “extended” in the name. The Kalman Filter will be
presented without derivation.

The Kalman Filter presented below assumes that the system model
consists of this discrete-time (possibly nonlinear) state space model:

x(k + 1) = f [x(k), u(k)] +Gw(k) (18.14)

and this (possibly nonlinear) measurement model:

y(k) = g[x(k), u(k)] +Hw(k) + v(k) (18.15)

A linear model is just a special case:

x(k + 1) = Ax(k) +Bu(k)
︸ ︷︷ ︸

=f

+Gw(k) (18.16)



220

and
y(k) = Cx(k) +Du(k)

︸ ︷︷ ︸
=g

+Hw(k) + v(k) (18.17)

The models above contains the following variables and functions:

• x is the state vector of n state variables:

x =






x1
x2
...
xn






(18.18)

• u is the input vector of m input variables:

u =






u1
u2
...

um






(18.19)

It is assumed that the value of u is known. u includes control
variables and known disturbances.

• f is the system vector function:

f =






f1()
f2()
...

fn()






(18.20)

where fi() is any nonlinear or linear function.

• w is random (white) disturbance (or process noise) vector:

w =






w1
w2
...

wq






(18.21)

with auto-covariance
Rw(L) = Qδ(L) (18.22)

where Q (a q × q matrix of constants) is the auto-covariance of w at
lag L = 0. δ(L) is the unit pulse function, cf. (15.25). A standard



221

assumption is that

Q =






Q11 0 0 0
0 Q22 0 0

0 0
. . . 0

0 0 0 Qnn





= diag(Q11,Q22, · · · ,Qnn) (18.23)

Hence, the number q of process disturbances is assumed to be equal
to the number n of state variables. Qii is the variance of wi.

• G is the process noise gain matrix relating the process noise to the
state variables. It is common to assume that q = n, making G square:

G =






G11 0 0 0
0 G22 0 0

0 0
. . . 0

0 0 0 Gnn






(18.24)

In addition it is common to set the elements of G equal to one:

Gii = 1 (18.25)

making G an identity matrix:

G =






1 0 0 0
0 1 0 0

0 0
. . . 0

0 0 0 1





= In (18.26)

• y is the measurement vector of r measurement variables:

y =






y1
y2
...
yr






(18.27)

• g is the measurement vector function:

g =






g1()
g2()
...

gr()






(18.28)

where gi() is any nonlinear or linear function. Typically, g is a linear
function on the form

g(x) = Cx (18.29)

where C is the measurement gain matrix.



222

• H is a gain matrix relating the disturbances directly to the
measurements (there will in addition be an indirect relation because
the disturbances acts on the states, and some of the states are
measured). It is however common to assume that H is a zero matrix
of dimension (r × q):

H =






0 0 0 0

0 0
. . .

...
0 0 · · · Hrq




 (18.30)

• v is a random (white) measurement noise vector:

v =






v1
v2
...
vr






(18.31)

with auto-covariance
Rv(L) = Rδ(L) (18.32)

where R (a r × r matrix of constants) is the auto-covariance of v at
lag L = 0. A standard assumption is that

R =






R11 0 0 0
0 R22 0 0

0 0
. . . 0

0 0 0 Rrr





= diag(R11, R22, · · · , Rrr) (18.33)

Hence, Rii is the variance of vi.

Note: If you need to adjust the “strength” or power of the process noise w
or the measurement noise v, you can do it by increasing the variances, Q
and R, respectively.

Here you have the Kalman Filter: (The formulas (18.35) — (18.37) below
are represented by the block diagram shown in Figure 18.1.)

Calculation of Kalman Filter state estimate:

1. This step is the initial step, and the operations here are executed only
once. Assume that the initial guess of the state is xinit. The initial
value xp(0) of the predicted state estimate xp (which is calculated
continuously as described below) is set equal to this initial value:

Initial state estimate

xp(0) = xinit (18.34)



223

2. Calculate the predicted measurement estimate from the predicted
state estimate:

Predicted measurement estimate:

yp(k) = g [xp(k)] (18.35)

(It is assumed that the noise terms Hv(k) and w(k) are not known or
are unpredictable (since they are white noise), so they can not be
used in the calculation of the predicted measurement estimate.)

3. Calculate the so-called innovation process or variable – it is actually
the measurement estimate error – as the difference between the
measurement y(k) and the predicted measurement yp(k):

Innovation variable:

e(k) = y(k)− yp(k) (18.36)

4. Calculate the corrected state estimate xc(k) by adding the corrective
term Ke(k) to the predicted state estimate xp(k):

Corrected state estimate:

xc(k) = xp(k) +Ke(k) (18.37)

Here, K is the Kalman Filter gain. The calculation of K is described
below.

Note: It is xc(k) that is used as the state estimate in applications1.

About terminology: The corrected estimate is also denoted the
posteriori estimate because it is calculated after the present
measurement is taken. It is also denoted the measurement-updated
estimate.

Due to the measurement-based correction term of the Kalman Filter,
you can except the errors of the state estimates to be smaller than if
there were no such correction term. This correction can be regarded
as a feedback correction of the estimates, and it is well known from
dynamic system theory, and in particular control systems theory,
that feedback from measurements reduces errors. This feedback is
indicated in Figure 18.1.

5. Calculate the predicted state estimate for the next time step,
xp(k + 1), using the present state estimate xc(k) and the known
input u(k) in process model:

Predicted state estimate:

xp(k + 1) = f [xc(k), u(k)] (18.38)

1Therefore, I have underlined the formula.



224

(It is assumed that the noise term Gv(k) is not known or is
unpredictable, since it is random, so it can not be used in the
calculation of the state estimate.)

About terminology: The predicted estimate is also denoted the priori
estimate because it is calculated before the present measurement is
taken. It is also denoted the time-updated estimate.

(18.35) — (18.38) can be represented by the block diagram shown in Figure
18.1.

Process

1/z

K

g()f()

u(k)

xp(k+1) xp(k)

xc(k)

e(k)

y(k)

yp(k)

Ke(k)

Applied state 
estimate

v(k)w(k)

Known inputs
(control variables 
and disturbances)

Measurement
noise

Sensor
x(k)

State variable 
(unknown value)

Measurement 
variable

x(k+1) = f[x(k),u(k)] + Gw(k) y(k) = g[x(k),u(k)]
+ Hw(k) + v(k)

Predicted
estimate

Corrected
estimate

Innovation
variable
or ”process”

Kalman gain

Real system (process)

Process noise
(disturbances)

Kalman Filter

(Commonly no connection)

(Commonly no connection)

xc(k)

Unit
delay

System 
function

Measurement 
function

(Commonly no connection)

Feedback 
correction 
of estimate

Figure 18.1: The Kalman Filter algorithm (18.35) — (18.38) represented by a
block diagram

The Kalman Filter gain is a time-varying gain matrix. It is given by the
algorithm presented below. In the expressions below the following matrices
are used:

• Auto-covariance matrix (for lag zero) of the estimation error of the



225

corrected estimate:

Pc = Rexc (0) = E
{
(x−mxc) (x−mxc)

T
}

(18.39)

• Auto-covariance matrix (for lag zero) of the estimation error of the
predicted estimate:

Pd = Rexd
(0) = E

{
(x−mxd) (x−mxd)

T
}

(18.40)

• The transition matrix A of a linearized model of the original
nonlinear model (18.14) calculated with the most recent state
estimate, which is assumed to be the corrected estimate xc(k):

A = Adisc =
∂f(·)
∂x

∣∣∣∣
xc(k), u(k)

(18.41)

There are two alternative orders in calculating A = Adisc:

Number one: First linearize continuous-time model, then discretize:

1. Given the continuous-time nonlinear process model. Linearize it
at the operating point to obtain

Acont =
∂fcont(·)

∂x

∣∣∣∣
xc(k), u(k)

(18.42)

2. Then calculate A = Adisc as the discretized version of Acont.
You may use the Forward method of discretization in manual
calculations:

A = Adisc = I + TsAcont = I + Ts ·
∂fcont(·)

∂x

∣∣∣∣
xc(k), u(k)

(18.43)

However, it may be more convenient to use a proper function in
the mathematical tool at hand, e.g. MATLAB or LabVIEW, to
accomplish the discretization.

Number two: First discretize continuous-time model, then linearize:

1. Given the continuous-time nonlinear process model. Discretize
it to obtain x(k + 1) = f [x(k), u(k)].

2. Then calculate A = Adisc as the linearized version of
f [x(k), u(k)]:

Adisc =
∂fdisc(·)

∂x

∣∣∣∣
xc(k), u(k)

(18.44)



226

It is my experience that order number one is the most convenient of
the two: First linearize continuous-time model, then discretize. This
is because it is somewhat easier to linearize the continuous-time
model, and in addition you can exploit the computer for
discretization.

• The measurement gain matrix C of a linearized model of the original
nonlinear model (18.15) calculated with the most recent state
estimate:

C =
∂g(·)
∂x

∣∣∣∣
xc(k), u(k)

(18.45)

However, it is very common that C = g(), and in these cases no
linearization is necessary.

The Kalman Filter gain is calculated as follows (these calculations are
repeated each program cycle):

Calculation of Kalman Filter gain:

1. This step is the initial step, and the operations here are executed
only once. The initial value Pp(0) can be set to some guessed value
(matrix), e.g. to the identity matrix (of proper dimension).

2. Calculation of the Kalman Gain:

Kalman Filter gain:

K(k) = Pp(k)C
T [CPp(k)C

T +R]−1 (18.46)

3. Calculation of auto-covariance of corrected state estimate error :

Auto-covariance of corrected state estimate error:

Pc(k) = [I −K(k)C]Pp(k) (18.47)

4. Calculation of auto-covariance of the next time step of predicted state
estimate error :

Auto-covariance of predicted state estimate error:

Pp(k + 1) = APc(k)A
T +GQGT (18.48)



227

18.3.2 Practical issues

1. Order of formulas in the program cycle: The Kalman Filter
formulas can be executed in the following order:

• (18.46), Kalman Filter gain

• (18.36), innovation process (variable)

• (18.37), corrected state estimate, which is the state estimate to
be used in applications

• (18.38), predicted state estimate of next time step

• (18.47), auto-covarience of error of corrected estimate

• (18.41), transition matrix in linear model

• (18.45), measurement matrix in linear model

• (18.48), auto-covarience of error of predicted estimate of next
time step

2. Limiting and resetting the state estimates. It is important to
prevent the state estimates from getting unrealistic values. For
example, the estimate of a liquid level should not be negative. And it
may be useful to give the user the option of resetting an estimate to
a predefined value by clicking a button etc. The following code
implements such limitation and reset of the corrected estimate x1c :

...
x1c=x1p+K11*e;
if(x1c>x1_max) {x1c=x1_max;}
if(x1c>x1_min) {x1c=x1_min;}
if(reset==1) {x1c=x1_reset;}
...

And the following code implements such a limitation and reset of the
predicted estimate x1p :

...
x1p1=x1c+Ts*f1;
if(x1p1>x1_max) {x1p1=x1_max;}
if(x1p1>x1_min) {x1p1=x1_min;}
if(reset==1) {x1p1=x1_reset;}
...

3. Steady-state Kalman Filter gain. If the model is linear and time
invariant (i.e. system matrices are not varying with time) the
auto-covariances Pc and Pp will converge towards steady-state values.
Consequently, the Kalman Filter gain will converge towards a



228

steady-state Kalman Filter gain value, Ks
2, which can be

pre-calculated. It is quite common to use only the steady-state gain
in applications.

For a nonlinear system Ks may vary with the operating point (if the
system matrix A of the linearized model varies with the operating
point). In practical applications Ks may be re-calculated as the
operating point changes.

Figure 18.2 illustrates the information needed to compute the
steady-state Kalman Filter gain, Ks.

Steady state 
Kalman 

Filter gain
Ks

A

Q
R

G
C

Ks

Transition matrix
Process noise gain matrix
Measurement gain matrix

Process noise auto-covariance
Measurement noise auto -covariance

Figure 18.2: Illustration of what information is needed to compute the steady-
state Kalman Filter gain, Ks.

4. Dual-rate Kalman Filter. Assume that the measurement rate is
relatively small compared to the rate at which we want the Kalman
Filter to produce a state estimate. Here are some cases where this
apply:

• You want to have a larger rate of updating the predicted
(simulated) state estimate than is used for reading the
measurement from the sensor, perhaps because the process
model needs a high-rate

• This is the case if the sensor for some reason is sampled slowly
compared to the rate of calculating the predicted (or simulated)
estimat. — or in the extreme case is deactivated due to e.g.
failure. In such situations you can actually let the Kalman Filter
run as normal, that is, with the same rate of both the corrector
part and the predictor part — but you force the effective Kalman
gain K to become zero. This can be done by simply multiplying
K by a factor, say a, so that the corrected estimate is

xc(k) = xp(k) + aKe(k) (18.49)

2MATLAB and LabVIEW have functions for calculating the steady-state Kalman Gain.



229

a = 1 is the default value, to be used when xc is to be updated
by the measurement (via the innovation process e), and a = 0 is
used when xc shall not be updated, impying that xc is equal to
xp:

xc(k) = xp(k) + 0 ·Ke(k) = xp(k) (18.50)

18.3.3 Features of the Kalman Filter

1. Model errors. There are always model errors since no model can
give a perfect description of a real (practical system). It is possible to
analyze the implications of the model errors on the state estimates
calculated by the Kalman Filter, but this will not be done in this
book. However, in general, the estimation errors are smaller with the
Kalman Filter than with a so-called ballistic state estimator , which is
the state estimator that you get if the Kalman Filter gain K is set to
zero. In the latter case there is no correction of the estimates. It is
only the predictions (18.38) that make up the estimates. The
Kalman Filter then just runs as a simulator.

Note that you can try to estimate model errors by augmenting the
states with states representing the model errors. Augmented Kalman
Filter is described in Section 18.5.

2. The error-model: Assuming that the system model is linear and
that the model is correct (giving a correct representation of the real
system), it can be shown that the behaviour of the error of the
corrected state estimation, exc(k), cf. (18.13), is given by the
following error-model :3

Error-model of Kalman Filter:

exc(k + 1) = (I −KC)Aexc(k) + (I −KC)Gv(k)−Kw(k + 1)
(18.51)

This model can be used to analyze the Kalman Filter.

Note: (18.13) is not identical to the auto-covariance of the estimation
error which is

Pc(k) = E{[exc(k)−mxc(k)][exc(k)−mxc(k)]
T} (18.52)

But (18.13) is the trace of Pc (the trace is the sum of the diagonal
elements):

exc = trace [Pc(k)] (18.53)

3You can derive this model by subtracting the model describing the corrected state
estimate from the model that describes the real state (the latter is simply the process
model).



230

3. The dynamics of the Kalman Filter. The error-model (18.51) of
the Kalman Filter represents a dynamic system. The dynamics of the
Kalman Filter can be analyzed by calculating the eigenvalues of the
system matrix of (18.51). These eigenvalues are

{λ1, λ2, . . . , λn} = eig [(I −KC)A] (18.54)

4. The stability of the Kalman Filter. It can be shown that the
Kalman Filter always is an asymptotically stable dynamic system
(otherwise it could not give an optimal estimate). In other words,
the eigenvalues defined by (18.54) are always inside the unity circle.

5. Predictor type Kalman Filter. In the predictor type of the
Kalman Filter there is only one formula for the calculation of the
state estimate:

xest(k + 1) = Axest(k) +K[y(k)−Cxest(k)] (18.55)

Thus, there is no distinction between the predicted state estimate
and the corrected estimate (it the same variable). (Actually, this is
the original version of the Kalman Filter[7].) The predictor type
Kalman Filter has the drawback that there is a time delay of one
time step between the measurement y(k) and the calculated state
estimate xest(k + 1).

18.4 Tuning the Kalman Filter

Usually it is necessary to fine-tune the Kalman Filter when it is connected
to the real system. The process disturbance (noise) auto-covariance Q
and/or the measurement noise auto-covariance R are commonly used for
the tuning. However, since R is relatively easy to calculate from a time
series of measurements (using some variance function in for example
LabVIEW or MATLAB), we only consider adjusting Q here.

What is good behaviour of the Kalman Filter? How can good behaviour
be observed? It is when the estimates seems to have reasonable values as
you judge from your physical knowledge about the physical process. In
addition the estimates must not be too noisy! What is the cause of the
noise? In real systems it is mainly the measurement noise that introduces
noise into the estimates. How do you tune Q to avoid too noisy estimates?
The larger Q the stronger measurement-based updating of the state
estimates because a large Q tells the Kalman Filter that the variations in
the real state variables are assumed to be large (remember that the process



231

noise influences on the state variables, cf. (18.15)). Hence, the larger Q the
larger Kalman Gain K and the stronger updating of the estimates. But
this causes more measurement noise to be added to the estimates because
the measurement noise is a term in the innovation process e which is
calculated by K:

xc(k) = xp(k) +Ke(k) (18.56)

= xp(k) +K {g [x(k)] + v(k)− g [xp(k)]} (18.57)

where v is real measurement noise. So, the main tuning rule is as follows:
Select as large Q as possible without the state estimates becoming too noisy.

But Q is a matrix! How to select it “large” or “small”? Since each of the
process disturbances typically are assumed to act on their respective state
independently, Q can be set as a diagonal matrix:

Q =






Q11 0 0 0
0 Q22 0 0

0 0
. . . 0

0 0 0 Qnn





= diag(Q11, Q22, · · · ,Qnn) (18.58)

where each of the diagonal elements can be adjusted independently. If you
do not have any idea about numerical values, you can start by setting all
the diagonal elements to one, and hence Q is

Q = Q0






1 0 0 0
0 1 0 0

0 0
. . . 0

0 0 0 1






(18.59)

where Q0 is the only tuning parameter. If you do not have any idea about
a proper value of Q0 you may initially try

Q0 = 0.01 (18.60)

Then you may adjust Q0 or try to fine tune each of the diagonal elements
individually.

18.5 Estimating parameters and disturbances
with Kalman Filter

In many applications the Kalman Filter is used to estimate parameters
and/or disturbances in addition to the “ordinary” state variables. One



232

example is dynamic positioning systems for ship position control where the
Kalman Filter is used to estimate environmental forces acting on the ship
(these estimates are used in the controller as a feedforward control signal).

These parameters and/or disturbances must be represented as state
variables. They represent additional state variables. The original state
vector is augmented with these new state variables which we may denote
the augmentative states. The Kalman Filter is used to estimate the
augmented state vector which consists of both the original state variables
and the augmentative state variables. But how can you model these
augmentative state variables? The augmentative model must be in the
form of a difference equation because that is the model form when
designing a Kalman Filter. To set up an augmentative model you must
make an assumption about the behaviour of the augmentative state. Let
us look at some augmentative models.

• Augmentative state is (almost) constant: The most common
augmentative model is based on the assumption that the
augmentative state variable xa is slowly varying, almost constant.
The corresponding differential equation is

ẋa(t) = 0 (18.61)

Discretizing this differential equation with the Euler Forward method
gives

xa(k + 1) = xa(k) (18.62)

which is a difference equation ready for Kalman Filter algorithm. It
is however common to assume that the state is driven by some noise,
hence the augmentative model become:

xa(k + 1) = xa(k) +wa(k) (18.63)

where wa is white process noise with assumed auto-covariance on the
form Rwa(L) = Qaδ(L). As pointed out in Section 18.3, the variance
Qa can be used as a tuning parameter of the Kalman Filter.

• Augmentative state has (almost) constant rate: The
corresponding differential equation is

ẍa = 0 (18.64)

or, in state space form, with xa1 ≡ xa,

ẋa1 = xa2 (18.65)

ẋa2 = 0 (18.66)



233

where xa2 is another augmentative state variable. Applying Euler
Forward discretization with sampling interval h [sec] to (18.65) —
(18.66) and including white process noise to the resulting difference
equations gives

xa1(k + 1) = xa1(k) + hxa2(k) +wa1(k) (18.67)

xa2(k + 1) = xa2(k) +wa2(k) (18.68)

Once you have defined the augmented model, you can design and
implement the Kalman Filter in the usual way. The Kalman Filter then
estimates both the original states and the augmentative states.

The following example shows how the state augementation can be done in
a practical (simulated) application. The example also shows how to use
functions in LabVIEW and in MATLAB to calculate the steady state
Kalman Filter gain.

Example 18.2 Kalman Filter for estimating level and flow

This example is essentially the same as Example 17.4 where an observer
was used.

Figure 17.6 shows the system as drawn on the front panel of a LabVIEW
based simulator. In stead of the observer (see down left on the front panel)
a Kalman Filter is now used. We will design a steady state Kalman Filter
to estimate the outflow Fout. The level h is measured.

Mass balance of the liquid in the tank is (mass is ρAh)

ρAtankḣ(t) = ρKpu− ρFout(t) (18.69)

= ρKpu− ρFout(t) (18.70)

After cancelling the density ρ the model is

ḣ(t) =
1

Atank
[Kpu− Fout(t)] (18.71)

We assume that the unknown outflow is slowly changing, almost constant.
We define the following augmentative model:

Ḟout(t) = 0 (18.72)

The model of the system is given by (18.71) — (18.72). Although it is not
necessary, it is convenient to rename the state variables using standard
names. So we define

x1 = h (18.73)



234

x2 = Fout (18.74)

The model (18.71) — (18.72) is now

ẋ1(t) =
1

Atank
[Kpu(t)− x2(t)] ≡ fcont1 (18.75)

ẋ2(t) = 0 ≡ fcont2 (18.76)

Applying Euler Forward discretization with time step Ts and including
white disturbance noise in the resulting difference equations yields

x1(k + 1) = x1(k) +
Ts

Atank
[Kpu(k)− x2(k)]

︸ ︷︷ ︸
f1(·)

+w1(k) (18.77)

x2(k + 1) = x2(k)︸ ︷︷ ︸
f2(·)

+w2(k) (18.78)

or
x(k + 1) = f [x(k), u(k)] +w(k) (18.79)

w1 and w2 are independent (uncorrelated) white process noises with
assumed variances Rw1(L) = Q1δ(L) and Rw2(L) = Q2δ(L) respectively.
Here, Q1 and Q2 are variances. The multivariable noise model is then

w =

[
w1
w2

]
(18.80)

with auto-covariance
Rw(L) = Qδ(L) (18.81)

where

Q =

[
Q11 0
0 Q22

]
(18.82)

Assuming that the level x1 is measured, we add the following measurement
equation to the state space model:

y(k) = g [xp(k), u(k)] + v(k) = x1(k) + v(k) (18.83)

where v is white measurement noise with assumed variance

Rv(L) = Rδ(L) (18.84)

where R is the measurement variance.

The following numerical values are used:

Sampling time: Ts = 0.1 s (18.85)



235

Atank = 0.1 m2 (18.86)

Kp = 0.002 (m3/s)/V (18.87)

Q =

[
0.01 0
0 0.0001

]
(18.88)

R = 0.0001 m2 (Gaussian white noise) (18.89)

We will set the initial estimates as follows:

x1p(0) = x1(0) = y(0) (from the sensor) (18.90)

x2p(0) = 0 (assuming no information about initial value) (18.91)

The Kalman Filter algorithm is as follows: The predicted level
measurement is calculated according to (18.35):

yp(k) = g [xp(k), u(k)] = x1p(k) (18.92)

with initial value as given by (18.90). The innovation variable is calculated
according to (18.36), where y is the level measurement:

e(k) = y(k)− yp(k) (18.93)

The corrected state estimate is calculated according to (18.37):

xc(k) = xp(k) +Ke(k) (18.94)

or, in detail: [
x1c(k)
x2c(k)

]
=

[
x1p(k)
x2p(k)

]
+

[
K11

K21

]

︸ ︷︷ ︸
K

e(k) (18.95)

This is the applied esimate!

The predicted state estimate for the next time step, xp(k+1), is calculated
according to (18.38):

xp(k + 1) = f [xc(k), u(k)] (18.96)

or, in detail:

[
x1p(k + 1)
x2p(k + 1)

]
=

[
f1
f2

]
=

[
x1c(k) +

Ts
Atank

[Kpu(k)− x2c(k)]

x2c(k)

]
(18.97)



236

To calculate the steady state Kalman Filter gain Ks the following
information is needed, cf. Figure 18.2:

A = I + Ts
∂fcont
∂x

∣∣∣∣
xp(k), u(k)

(18.98)

= I + Ts






∂fcont1
∂x1

= 0
∂fcont1
∂x2

= − 1
Atank

∂fcont2
∂x1

= 0
∂fcont2
∂x2

= 0






∣∣∣∣∣∣∣
xp(k), u(k)

(18.99)

=




1 − Ts

Atank

0 1



 (18.100)

G =

[
1 0
0 1

]
= I2 (identity matrix) (18.101)

C =
∂g(·)
∂x

∣∣∣∣
xp(k), u(k)

(18.102)

=
[
1 0

]
(18.103)

Q =

[
0.01 0
0 0.0001

]
(initially, may be adjusted) (18.104)

R = 0.000001 m2 (18.105)

Figure 18.3 shows the “real” (simulated) and estimated level and outflow.
We see from the lower chart in the figure that the Kalman Filter estimates
the outflow well, and with zero error in steady state.

Figure 18.4 shows how the steady state Kalman Filter gain Ks is calculated
using the Kalman Gain function. The figure also shows how to check for
observability with the Observability Matrix function. The linear
continuous-time model is discretized using the Convert Continuous to
Discrete function. Figure 18.5 shows the values of the Kalman gains.

Figure 18.6 shows the implementation of the Kalman Filter equations in a
Formula Node. (The Formula Node is just one part of the block diagram.
The total block diagram consists of one While loop where the Kalman
gains are calculated, and one Simulation loop containing the Formula
Node, PID controller, and the tank simulator.)

The steady state Kalman Gain Ks is calculated in the LabVIEW program.
Alternatively, Ks can be calculated in MATLAB, as shown below. The
dlqe4 function belongs to the Control System Toolbox.

4dlqe = Discrete-time linear quadratic estimator.



237

Figure 18.3: Example 18.2: Responses in the level and the real and estimated
outflow

A_tank=0.1;

Kp=0.002;

A_cont=[0,-1/A_tank;0,0]

B_cont=[Kp/A_tank;0];

C_cont=[1,0];

D_cont=[0];

Ts=0.1;

%Generates a state-space model:

sys_cont=ss(A_cont,B_cont,C_cont,D_cont);

sys_disc=c2d(sys_cont,Ts); %Discretizing

A=sys_disc.a;

C=sys_disc.c;

G=[1,0;0,1]



238

Figure 18.4: Example 18.2: Calculation of the steady state Kalman Filter
gain with the Kalman Gain function, and checking for observability with the
Observability Matrix function.

C=[1,0]

Q=[0.01,0;0,1e-4]

R=[1e-6];

[Ks,Pp,Pc,E] = dlqe(A,G,C,Q,R)

Ks is the steady state Kalman Filter gain. (Pp and Pc are steady state
estimation error auto-covariances, cf. (18.48) and (18.47). E is a vector
containing the eigenvalues of the Kalman Filter, cf. (18.54).)

MATLAB answers

Ks =

0.99991

-0.09512



239

Figure 18.5: Example 18.2: The Kalman gains

which are the same values as calculated by the LabVIEW function
Kalman Gain, cf. Figure 18.6.

[End of Example 18.2]

18.6 Using the Kalman Filter estimates in
controllers

In the introduction to this chapter are listed several control functions
which basically assumes that measurements of states and/or disturbances
(loads) are available. If measurements from “hard-sensors” for some reason
are not available, you can try using an estimate provided by a soft-sensor
as Kalman Filter — or an observer — in stead. Figure 17.10 shows the
structure of the system, with observer.

I will not show any example here. In stead I refer to the Example 17.5
where feedforward from estimated outflow (disturbance) in a level control
system was implemented. The outflow was estimated with an observer, but
the control structure will be exactly the same if a Kalman Filter was used
in stead of an observer. The principle is the same as in Example 17.5 —
and the simulated responses show the same improvement — so I refer to
that example.

18.7 Using the Kalman Filter for increased
robustness of feedback control at sensor
failure

The Kalman Filter can be used to increase the robustness of a feedback
control system against sensor failure. This is explained — and a concrete
example including simulated responses is given — in Section 17.8 about



240

Figure 18.6: Example 18.2: Implementation of the Kalman Filter equations in
a Formula Node. (The Kalman Filter gain is fetched from the While loop in the
Block diagram, see Figure 18.4, using local variables.)

using observers for this purpose. Kalman Filters and observers are used in
the same way, so I refer to that section for detailed information about this
topic.



Part V

MODEL-BASED CONTROL

241





Chapter 19

Testing robustness of
model-based control systems
with simulators

This part of the compendium describes several model-based controllers. A
model-based controller contains the mathematical model of the process to
be controlled — either explicitly (as in Feedback Linearization, cf. Chapter
20) or implicitly (as in LQ Optimal Control, cf. Chapter 21). Of course, a
process model can never give a perfect description of a physical process.
Hence, there are model errors. The model errors are in the form of

• erroneous model structure, and/or

• erroneous parameter values.

So, the controller is based on more or less erroneous information about the
process. If the model errors are large, the real control system may behave
quite different from what is specified during the design. The control
system may even become unstable.

A control system that is supposed to work in real life must be sufficiently
robust. How can you check if the system is robust (before
implementation)? You can simulate the control system. In the simulation
you include reasonable model errors. How do you include model errors in a
simulator? By using different models in the control function and in the
process in the simulator. This is illustrated in Figure 19.1. You may use
the intial model, M0, in the control function, while you use a changed

243



244

Control
function

Process

Model M0 Model M1

Process 
measurement

Setpoint Control
signal

Figure 19.1: Testing the control system with model errors. Models M0 and M1

are made different by purpose.

model, M1, for the process. You must thoroughly plan which model errors
(changes) that you will make, and whether the changes are additive or
multiplicative. A parameter, say K, is changed additively if it is changed as

K1 = K0 +∆K (19.1)

A multiplicative change is implemented with

K1 = FK0 (19.2)

where the factor F may be set to e.g. 1.2 (a 20% increase) or 0.8 (a 20%
decrease).

Even if the process model is accurate, the behaviour of the controller can
be largely infuenced by measurement noise. Therefore, you get a more real
picture if you also include measurement noise in the simulator. Typically
the measurement noise is a random signal1.

Finally, I will mention that there are control system design methods which
ensures roubustness of the control system. In the design phase you specify
assumed maximum model errors, together with performance specifications.
The control function is typically a non-standard controller, which have to
be simplified before implementation. It is however beyond the scope of this
compendium to describe these design methods. More information can be
found in e.g. [13].

1Simulation tools as LabVIEW and Simulink contains signal generators for random
signals.



Chapter 20

Feedback linearization

20.1 Introduction

Feedback linearization is a multivariable control method1 that is based on
a mathematical model of the process to be controlled. Hence it is a
model-based control method. The model is a state-space model. It is
assumed that the values of all of the state variables and process
disturbances are available at any instance of time — either from
measurements or from an estimator (an observer or a Kalman Filter).
Hence, this control method demands much information about the process
which may not be easy to get in practical applications. However, when this
information is available the control system may give faster control than
with PID controllers or other linear control functions. Since the control
function is model-based, the performance may be ensured over a large
operating range.

The control function consists of two parts:

• A decoupler and linearizer which is based on the process model and
the instantaneous values of the states and the disturbances.

• A multiloop PID controller which is designed for the decoupled linear
process.

1The method can be applied to monovariable processes, too.

245



246

20.2 Deriving the control function

The following two sections cover these cases, respectively:

• All the state variables are controlled

• Not all the state variables are controlled

20.2.1 Case 1: All state variables are controlled

It assumed that the process model is a state space model on the following
form:

ẋ = f(x, v) +B(x, v) · u (20.1)

or, simpler,
ẋ = f +Bu (20.2)

x is the state vector, v is the disturbance vector, and u is the control
vector. f is a vector of scalar functions, and B is a matrix of scalar
functions.

Note that the control vector u is assumed to appear linearly in the model.

Assume that the output vector is

y = x (20.3)

By taking the derivative of (20.3) and using (20.2) we obtain the following
differential equation describing the process output vector:

ẏ = f +Bu (20.4)

Assume that ry is the reference (or setpoint) of y.

With the above assumptions, we derive the control function as follows: We
start by defining the transformed control vector as

z
def
= f +Bu (20.5)

Then (20.4) can be written as
ẏ = z (20.6)

which are n decoupled or independent integrators (n is the number of state
variables), because y(t) =

∫ t
0 z dτ . The transfer function from z to y is

y(s)

z(s)
=

1

s
(20.7)



247

We can denote (20.6) as the transformed process.

We will now derive the control function for this integrator process, and
thereafter derive the final control function. How can you control an
integrator? With feedback and feedforward! A good choice for the feedback
controller is a PI controller (proportional plus integral) because the
controller should contain integral action to ensure zero steady-state control
error in the presence of unmodelled disturbances (and there are such in a
real system). The proportional action is necessary to get a stable control
system (if a pure integral controller acts on an integration process the
closed loop system becomes marginally stable, i.e. it is pure oscillatory).
The multiloop feedback PI controller is

zfb = Kpe+Ki

∫ t

0
edτ (20.8)

where e is the control error:

e
def
= ry − y (20.9)

In (20.8) Kp and Ki are diagonal matrices:

Kp =






Kp1 0 · · · 0
0 Kp2 · · · 0
...

...
. . .

...
0 0 · · · Kpn





= diag(Kp1 ,Kp2 , · · · ,Kpn) (20.10)

Ki =






Ki1 0 · · · 0
0 Ki2 · · · 0
...

...
. . .

...
0 0 · · · Kin





= diag(Ki1 ,Ki2 , · · · ,Kin) (20.11)

where the scalar values are

Kij =
Kpj

Tij

(20.12)

where Kpj is the proportional gain and Tij is the integral time of control
loop no. j. Kpj and Tij can be calculated in several ways. Skogestad’s
method is one option. Skogestad’s method is reviewed in Appendix A.
From Table A.1 (the second row) we get, since τ = 0 and K = 1,

Kpj =
1

TCj

(20.13)

and
Tij = cTCj (20.14)



248

where TCj is the specified time constant of feedback loop no. j, and c is a
coefficient that can be set to e.g. 2, cf. Appendix A.

In addition to the PI feedback action the controller should contain
feedforward from the reference ry to get fast reference tracking when
needed (assuming the reference is varying). The feedforward control
function can be derived by substituting the process output y in the process
model (20.6) by ry and then solving for y, giving

zff = ṙyf (20.15)

where index f indicates lowpass filter which may be of first order. A pure
time differentiation should not be implemented because of noise
amplification by the differentiation. Therefore the reference should be
lowpass filtered before its time derivative is calculated.

The control function for the process (20.6) based on the sum of the
feedback control function and the feedforward control function is as
follows:2

z = zfb + zff (20.16)

= Kpe+Ki

∫ t

0
edτ

︸ ︷︷ ︸
zfb

+ ṙyf︸︷︷︸
zff

(20.17)

Now it is time to get the final control function, that is, the formula for the
control vector u. From (20.5) we get

u = B−1 (z − f) (20.18)

Here we use (20.17) to get the final control function:

u = B−1
(
Kpe+Ki

∫ t

0
edτ + ṙyf − f

)
(20.19)

If the reference is constant, as is the typical case in process control, the ṙyf
term has value zero, and it can therefore be left out in the control function.

Figure 20.1 shows a block diagram of the control system.

Here are some characteristics of the control system:

• The controller is model based since it contains f and B from the
process model.

2 It is the sum because the process (the integrator) has a linear mathematical model.



249

x = y

x(0)

f

BB-1

f

Multi -
loop

PI-contr.

ry

d/dt

uzfb

zff

e z

FeedforwardLP-
filters

Feedback

Controller Process

Decoupler and 
linearizer

ryf

Figure 20.1: Block diagram of the control system based on feedback lineariza-
tion

• Since the process disturbance is an argument of f and/or B the
controller implements feedforward from the disturbance. (It also
implements feedforward from the reference, due to the term ṙyfM in
the controller.)

• The control system is linear even if the process is nonlinear.

• The control system consists of n decoupled single-loop control
systems. This is illustrated in Figure 20.2.

Example 20.1 Feedback Linearization applied to level control

In this example Feedback Linearization will be applied to a level control
system. Figure 20.3 shows the control system. It assumed that the
outflow is proportional to the control signal u and to the square root of the
pressure drop along the control valve. The process model based on mass
balance is (ρ is density)

ρAḣ = ρqin − ρKvu
√

dP (20.20)

or

ḣ =
qin
A︸︷︷︸
=f

+

(

−Kv

√
dP

A

)

︸ ︷︷ ︸
=B

u (20.21)



250

x1 = y1

x1(0)

PI-
controller

r y1

d/dt

e1 z1

LP-
filter

Controller Process
ryf1

1/s

x2 = y2

x2(0)

PI-
controller

ry2

d/dt

e2 z2

LP-
filter

Controller Process
ryf2

1/s

•
•
•

Figure 20.2: The control system consists of n decoupled single-loop control
systems.

The control function becomes, cf. (20.19),

u = B−1
(
Kpe+Ki

∫ t

0
edτ + ṙyf − f

)
(20.22)

=

(

−Kv

√
dP

A

)−1(
Kpe+Ki

∫ t

0
edτ + ṙyf −

qin
A

)
(20.23)

= − A

Kv

√
dP

(
Kpe+Ki

∫ t

0
edτ + ṙyf −

qin
A

)
(20.24)

This control function requires that the differential pressure dP the inflow
qin are measured.

[End of Example 20.1]



251

LT LC

u

h [m]

qin [m3/s]

Process

A [m2]

qout [m3/s]

dP [N/m2]

Figure 20.3: Example 20.1: Level control system

20.2.2 Case 2: Not all state variables are controlled

In Section 20.2.1 it is assumed that all the state variables are to be
controlled, i.e. there is a reference for each of the state variables. Feedback
linearization can be used also in cases where not all the state variables are
controlled. The typical case is in positional control. Positions are only one
set of the state variables. The other set is the velocities (rate of change of
position). We will here focus on this typical case.

With position and velocity as state variables, the model of the process (e.g.
motor or vessel) can be written on the following form where x is position,
and u is the input (control variable), and y is the output:

ẍ = f(x, ẋ, v) +B(x, ẋ, v) · u (20.25)

or simply
ẍ = f +Bu (20.26)

The output variable is the position:

y = x (20.27)

By taking the second order time-derivative of (20.27) and using (20.26) we



252

obtain this differential equation describing the process output:

ÿ = f +Bu (20.28)

Assume that ry is the reference of y (position). To derive the control
function we define the transformed control vector as

z
def
= f +Bu (20.29)

(20.28) can then be written as

ÿ = z (20.30)

which are n decoupled (independent) double integrators. The transfer
function from z to y is

y(s)

z(s)
=

1

s2
(20.31)

These double integrators can be controlled with feedback with PID
controllers plus feedforward:

zfb = Kpe+Ki

∫ t

0
edτ +Kd

def
dt

(20.32)

where e is the control error:

e
def
= ry − y (20.33)

In (20.32) ef is lowpass filtered control error (the derivative term should
always contain a lowpass filter). Kp, Ki and Kd are diagonal matrices
similar to (20.10). The scalar values on the diagonal of these matrices are

Kpj (20.34)

Kij =
Kpj

Tij

(20.35)

Kdj = KpjTdj (20.36)

Kpj , Tij and Tdj can be calculated with e.g. Skogestad’s method , cf.
Appendix A. According to Skogestad’s formulas shown in Table A.1 (the
bottom row with τ = 0 and K = 1),

Kpj =
1

4
(
TCj

)2 (20.37)

and
Tij = 4TCj (20.38)

Tdj = 4TCj (20.39)

where TCj is the specified time constant of feedback loop no. j.

Note the following about using Skogestad’s method for tuning
double-integrators:



253

• Skogestad’s formulas assumes a serial PID function. If your
controller actually implementes a parallel PID controller (as in the
PID controllers in LabVIEW PID Control Toolkit and in the
Matlab/Simulink PID controllers), you should transform from serial
PID settings to parallell PID settings. If you do not implement these
transformations, the control system may behave unnecessarily
different from the specified response. The serial-to-parallel
transformations are given by (A.8) — (A.10).

• For the double integrator I have seen in simulations that the actual
response-time (63% rise-time) of the closed-loop system may be
about twice the specified time-constantTC . Consequently, you can
set TC to about half of the response-time you actually want to obtain.

In addition to the PID feedback action the controller should contain
feedforward from the reference yr to get fast reference tracking when
needed (assuming the reference is varying). The feedforward control
function can be derived by substituting the process output y in the process
model (20.6) by yr and then solving for y, giving

zff = r̈yf (20.40)

where index f indicates lowpass filter, which should be of second order.

Now, we have the following control function for the process (20.30)
consisting of the sum of the feedback control function and the feedforward
control function:

z = zfb + zff (20.41)

= Kpe+Ki

∫ t

0
edτ +Kd

def
dt︸ ︷︷ ︸

zfb

+ r̈yf︸︷︷︸
zff

(20.42)

The final control function is found from (20.29):

u = B−1 (z − f) (20.43)

Here we use and (20.42) to get

u = B−1
(
Kpe+Ki

∫ t

0
edτ +Kd

def
dt

+ r̈yf − f

)
(20.44)

If the reference is constant, as is the typical case in process control, the r̈yf
term has value zero, and it can therefore be left out in the control function.



254

x = y

x(0)

f

BB-1

f

Multi -
loop

PI-contr.

ry

d/dt

uzfb

zff

e z

FeedforwardLP-
filters

Feedback

Controller Process

Decoupler and 
linearizer

ryf

x(0)•

Figure 20.4: Block diagram of the control system based on feedback lineariza-
tion

Figure 20.4 shows a block diagram of the control system.

The control system consists of n decoupled single-loop control systems.
This is illustrated in Figure 20.5.

Example 20.2 Feedback Linearization applied to motion control

Given the following mathematical model of a body:

mÿ = Fc + Fd (20.45)

where y [m] is position, m = 10 kg is mass, Fc [F] is force generated by the
controller, and Fd [N] is net disturbance force (sum of damping, friction,
gravitation, etc).

Assume that the position reference of y is ry, and that the specified
time-constant of the control system is 1 s. Also, assume that the PID
controller is a parallel PID controller.

To derive the control function we first write the process model on the
standard form (20.26):

ÿ =
1

m
Fd

︸ ︷︷ ︸
f

+
1

m︸︷︷︸
B

Fc︸︷︷︸
u

(20.46)

The control function becomes

u = B−1
(
Kpe+Ki

∫ t

0
edτ +Kd

def
dt

+ r̈yf − f

)
(20.47)

=

(
1

m

)−1 [
Kpe+Ki

∫ t

0
edτ +Kd

def
dt

+ r̈yf −
(

1

m
Fd

)]
(20.48)



255

x1 = y1

x1(0)

PID-
controller

ry1

d2/dt2

e1 z1

LP-
filter

Controller Process
ryf1

1/s

•
•
•

x1(0)

1/s

•

x2 = y2

x2(0)

PID-
controller

ry2

d2/dt2

e2 z2

LP-
filter

Controller Process
ryf2

1/s

x2(0)

1/s

•

Figure 20.5: The control system consists of n decoupled single-loop control
systems.

where e is the control error:
e = ry − y (20.49)

Now, we use Skogestad’s method to tune the PID controller. Since for a
double integrator the actual response-time (63% rise-time) of the
closed-loop system is about twice the specified time-constantTC , we specify

TC = 0.5 s (20.50)

The PID parameters of an assumed serial PID controller becomes

Kps =
1

4 (TC)
2 =

1

4 (0.5)2
= 1 (20.51)

Tis = 4TC = 4 · 0.5 = 2 s (20.52)

Tds = 4TC = 4 · 0.5 = 2 s (20.53)



256

Finally, the PID parameters of an assumed parallel PID controller
becomes, cf. (A.8) — (A.10),

Kpp = Kps

(
1 +

Tds

Tis

)
= 1 ·

(
1 +

2 s
2 s

)
= 2 (20.54)

Tip = Tis

(
1 +

Tds

Tis

)
= 2 s ·

(
1 +

2 s
2 s

)
= 4 s (20.55)

Tdp = Tds

1

1 +
Tds
Tis

= 2 s · 1

1 + 2 s
2 s

= 1 s (20.56)

[End of Example 20.2]



Chapter 21

LQ (Linear Quadratic)
optimal control

21.1 Introduction

Optimal control of a process means that the control function is designed so
that a given optimization criterion or performance index gets a minimal
value. It is assumed that the process can be described by a linear model,
and that the criterion contains a quadratic function of the state variables
and the control variables.1 This type of optimal control is therefore
denoted Linear Quadratic control — or LQ control. The reference (setpoint)
is assumed to be zero in the basic LQ control problem, and hence the term
LQ regulation or LQR is also used. We will however consider a non-zero
reference in this chapter, cf. Section 21.3.

A particular feature of the LQ controller is that it will stabilize any linear
process! However, you do not have a guarantee that is will stabilize any
nonlinear process, even if this process is linearizable. A simulation study
should be made to check if the control system works well under varying
conditions, including model errors.

LQ control can be applied to both monovariable and multivariable
processes. It turns out that the control function is based on feedback from
all the states of the process. If not all the states can be measured, an
observer or a Kalman Filter can be used to estimate the states, and the
controller then uses the estimated states as if they were measured. This

1The main reason why a quadratic criterion is used is that the control function is
relatively easy to derive and easy to implement :-)

257



258

principle is denoted the certainty equivalence principle. It turns out that
the control function and the state estimator can be designed independently
as long as the process is linear. The principle of separate design of the
controller and the estimator is denoted the separation principle.

LQ controllers can be designed for continuous-time and for discrete-time
systems, and for stochastic systems (systems excited by random
disturbances) and determinstic systems (random noise is not taken into
account in the controller design). I have chosen to describe LQ control for
deterministic continuous-time systems. Of course, in a practical
implementation you will (probably) need a discrete-time implementation of
the controller, and this will be described in this chapter.

LQ control is quite similar to Model-based Predictive Control (MPC),
which has become an important control function the last decades. Also
MPC is based on a quadratic criterion. However, MPC takes into account
limitations in the control variables and the state variables, hence making it
somewhat more useful than LQ controller, but also much more
computational demanding to implement. MPC is described in Chapter 22.

21.2 The basic LQ controller

In basic LQ control it is assumed that the process to be controlled is given
by the following linear state-space model

ẋ(t) = Ax(t) +Bu(t) (21.1)

The LQ controller brings the state x from any initial state x(0) to zero in
an optimal way. What is “optimal”? It is defined by the optimization
criterion:

J =

∫ t=∞

t=0

[
xT (t)Qx(t) + uT (t)Ru(t) + 2xT (t)Nu(t)

]
dt (21.2)

It is very common that the weight matrix N is a zero matrix (of proper
dimension), and in these cases the criterion is

J =

∫ t=∞

t=0

[
xT (t)Qx(t) + uT (t)Ru(t)

]
dt (21.3)

N is assumed to be zero in the following.

Q and R are weight matrices of the states and the control signal,
respectively. Q and R are selected by the user, and they are the tuning



259

parameters of the LQ controller. Q is a symmetric positive semidefinite
matrix, and R is a symmetric positive definite matrix.

The criterion (21.2) gives you (the user) the possibility to punish large
variations in the states (by selecting a large Q) or to punish large
variations in the control variable u (by selecting a large R). It is fair to say
that the LQ controller is a user-friendly controller because the tuning
parameters (Q and R) are meaningful, at least in the qualitative sense.

As an example, assume that the system has two state variables, x1 and x2,
hence

x =

[
x1
x2

]
(21.4)

and one (scalar) control variable, u, and that the weight matrices are:

Q =

[
Q11 0
0 Q22

]
(21.5)

R = [R11] (21.6)

The criterion J becomes

J =

∫ t=∞

t=0

[
xTQx+ uTRu

]
dt (21.7)

=

∫ t=∞

t=0

{[
x1
x2

]T [
Q11 0
0 Q22

][
x1
x2

]
+ uRu

}

dt (21.8)

=

∫ t=∞

t=0

{
Q11x

2
1 +Q22x

2
2 +R11u

2
}
dt (21.9)

Thus, J is a sum of quadratic terms of the state variables and the control
variable.

It can be shown that the control function that gives J a minimum value is
as follows

Optimal (LQ) controller:

u(t) = −G(t)x(t) (21.10)

In other words, the control signal is based on feedback from a linear
combination of the state variables. The controller gain G(t) (a matrix) is
given by a so-called Riccati equation which will not be shown here. Figure
21.1 shows a block diagram of the control system.

In the above example the controller becomes

u(t) = −G(t)x(t) = −
[

G11(t) G12(t)
] [ x1(t)

x2(t)

]
(21.11)

= − [G11(t)x1(t) +G12(t)x2(t)] (21.12)



260

-G Process

x0

xu

LQ-
controller

Figure 21.1: Control system with optimal LQ controller

It is common to implement the steady-state value Gs of the controller gain:

Steady-state optimal (LQ) controller:

u(t) = −Gsx(t) (21.13)

Gs can be calculated offline, and in advance (before the control system is
started).

Figure 21.2 illustrates the information that the Linear Quadratic
Regulator function needs to compute the steady-state LQ controller gain
Gs.

Steady state 
LQ 

controller 
gain
Gs

A

Q
R

B Gs

Transition matrix
Input gain matrix

State weight matrix
Control signal weight matrix

Figure 21.2: Information needed to compute the steady-state LQ controller
gain, Gs.

Matlab and LabVIEW have functions to calculate Gs:

• Matlab: The syntax of using the Matlab function dlqr (discrete
linear quadratic regulator) is
[Gs,S,E] = dlqr(A,B,Q,R,N)

where Gs is the steady-state controller gain, S is the solution of the
Riccati-equation mentioned above (not shown here), and E is the
vector containing the eigenvalues of the control system (see comment
below). If N is actually a zero matrix, which is typically the case, it
can be omitted from the argument list of dlqr.



261

• MathScript (in LabVIEW): The name and the syntax of the
MathScript function is the same as for dlqr in Matlab.

• LabVIEW Control Design Toolkit palette: The function CD Linear
Quadratic Regulator calculates the steady-state controller gain.
To construct the state-space model you can use CD Construct
State-Space Model. This is shown in Figure 21.3.

Figure 21.3: On the Control Design Toolkit palette in LabVIEW you can use
the function CD Linear Quadratic Regulator. (If N is zero, you can keep this
input unwired.) The state-space model can be constructed using CD Construct
State-Space Model.

Here are comments about the LQ controller:

• The reference is zero, and there are no process
disturbances: These assumptions seem somewhat unrealistic,
because in real control systems the reference is typically non-zero,
and the disturbances are non-zero. Therefore, for the controller to
represent realistic control problems, the variables in (21.1) should
actually be regarded as deviation variables about some operating
point. Then, how do you bring the states to the operating point, so
that the mean value control error is zero? By enforcing integrators
into the controller. This is described in detail in Section 21.3.

• Controllability: The process to be controlled has to be controllable.
If it is not controllable, there exists no finite steady-state value of the
gain G. Controllability means that there exists a control signal u(t)
so that any state can be reached from any initial state in finite time.



262

It can be shown that a system is controllable if the rank of the
controllability matrix

Mcontrol =

[
B
...AB

...A2B
... · · · ...An−1B

]
(21.14)

is n (the order of A, which is the number of state variables).

• Non-measured states: If not all the states are measured, you can
use estimated states in stead of measured states in the controller:

u(t) = −Gsxest(t) (21.15)

where xest is the estimated state vector from a state estimator
(observer or Kalman Filter). Figure 21.4 shows a block diagram of
the control system with state estimator.

State 
estimator

w

yu

LQ-
controller

Process
with sensor

v

Disturbance
Measurement 
noise

-G

xest

Measurement

Estimated
state variable

Figure 21.4: Control system with state estimator

• The eigenvalues of the control system: Assume that the
controller is (21.15). By combining this controller with the process
model (21.1) we get the following model of the control system (the
closed-loop system):

ẋ = Ax+B (−Gsx) (21.16)

= (A−BGs)x (21.17)

The eigenvalues {s1, s2,...sn} of the control system are the
eigenvalues of the transition matrix (A−BGs) in (21.17):

0 = det [sI − (A−BGs)] (21.18)

= (s− s1)(s− s2) · · · (s− sn) (21.19)

= sn + an−1s
n−1 + · · ·+ a1s+ a0 (21.20)



263

• Stability of the control system: It can be shown that a LQ
control system is asymptotically stable.2 In other words, the
eigenvalues of the control system are in the left half of the complex
plane.

• Tuning of the LQ controller: From the criterion (21.2) we can
conclude that a larger value of the weigth of one particular state
variable causes the time response of that state variable to become
smaller, and hence the control error (deviation from zero) is smaller.
But what should be the initial values of the weight matrices, before
they are tuned? One possibility is

Q = diag
{

1

|ximax |2
}

(21.21)

where ximax is the assumed maximum value of state variable xi, and

R = diag

{
1

|ujmax |2

}

(21.22)

where ujmax is the assumed maximum value of control variable uj .

• Pole placement design of the control system: Above it was
stated that the eigenvalues of the control system are the roots of the
characteristic equation

0 = det [sI − (A−BG)] (21.23)

For most systems, the poles, {si}, of the system are the same as the
eigenvalues. In the following the term poles are used in stead of
eigenvalues. In pole placement design of control systems the poles
are specified by the user, and, assuming the controller has the linear
feedback structure as given by (21.13), it is usually possible to solve
(21.23) for the controller gain matrix G. This is exactly the same
problem as with observer design, cf. Chapter 17, but we do not
address pole placement design of controllers any further here.

Example 21.1 LQ control of pendulum

This example is about stabilization of a pendulum on a cart using LQ
optimal control. A reference for the system described here is the text-book
Nonlinear Systems by H. K. Khalil (Pearson Education, 2000). The

2Not a big surprise, since the controller minimizes the criterion J .



264

original reference is Linear Optimal Control Systems by H. Kwakernaak
and R. Sivan (Wiley, 1972).

Mathematical model

Figure 21.5 shows the cart with the pendulum.

a [rad]

mg [N]

2L [m]

m [kg]

M [kg]

V [N]

H [N]

L

F [N]

y [m]0 m

-dy [N]

Figure 21.5: Cart with pendulum

A motor (in the cart) acts on the cart with a force F . This force is
manipulated by the controller to stabilize the pendulum in an upright
position or in a downright position at a specified position of the cart.

A mathematical model of the system is derived below. This model is used
to design a stabilizing controller, namely an optimal controller. The
mathematical model is based on the following principles:

1. Force balance (Newton’s Second Law) applied to the horizontal
movement of the center of gravity of the pendulum:

m
d2

dt2
(y + L sin a) = H (21.24)

The differentiation must be carried out, but the result of it not
shown here.

2. Force balance applied to the vertical movement of the center of



265

gravity of the pendulum:

m
d2

dt2
(L cos a) = V −mg (21.25)

The differentiation must be carried out, but the result of it not
shown here.

3. Torque balance (the rotational version of the Newton’s Second Law
applied to the center of gravity of the pendulum:

Iä = V L sina−HL cos a (21.26)

4. Force balance applied to the cart:

Mÿ = F −H − dẏ (21.27)

In the above equations,

• I is the moment of inertia of the pendulum about it’s center of
gravity. For the pendulum shown in Figure 1,

I =
mL2

12
(21.28)

• V and H are vertical and horizontal forces, respectively, in the pivot.

• d is a damping coefficient.

From Eq. (21.24) — (21.27), the internal forces V and H can be eliminated,
resulting in two differential equations (not containing V and H), which are
not shown here. These two differential equations can be written as the
following non-linear state-space model:

ẋ1 = x2 (21.29)

ẋ2 =
−m2L2g cosx3 sinx3 +

(
u+mL x4

2 sinx3 − dx2
) (

I +mL2
)

D1
(21.30)

ẋ3 = x4 (21.31)

ẋ4 =
(m+M) (mgL sinx3)−

(
u+mL x4

2 sinx3 − dx2
)
mL cosx3

D1
(21.32)

where
D1 =

(
I +mL2

)
(m+M)−m2L2 cos2 x3 (21.33)

In the above model,



266

• x1 = y (cart horizontal position)

• x2 = ẏ (cart horizontal speed)

• x3 = a (pendulum angular position)

• x4 = ȧ (pendulum angular speed)

Controller

To stabilize the pendulum either vertically up or vertically down, a
specified possibly non-zero position, r, of the cart, a steady-state LQ
(Linear Quadratic Regulator) controller is used. The feedback control
function is as follows:

u = −G11 [x1 − r]−G12x2 −G13x3 −G14x4 (21.34)

The controller output, u, is applied as the force F acting on the cart.
Hence the force is calculated as a linear combination of the states of the
system. The states are assumed to be available via measurements. (Thus,
there is a feedback from the measured states to the process via the
controller.)

The controller gains, G11, G12, G13, G14, are calculated by the LabVIEW
MathScript function lqr (Linear Quadratic Regulator) which has the
following syntax:

[G, X, E] = lqr(A, B, Q, R);

where G is the calculated gain. (X is the steady-state solution of the
Riccatti equation, and E is the eigenvalue vector of the closed loop
system.) A and B are the matrices of the linear state-space process model
corresponding to the nonlinear model (21.29) — (21.32). A and B are
presented below. Q is the state variable weight matrix and R is the control
variable weight matrix used in the LQ(R) optimization criterion given by
(21.3).

Q has the following form:

Q =






Q11 0 0 0
0 Q22 0 0
0 0 Q33 0
0 0 0 Q44




 (21.35)

while Qii can be used as controller tuning parameters. R is

R = [R11] (21.36)



267

and is also used as tuning parameter.

The control system can be used to stabilize the cart and the pendulum in
two different operation points, namely vertically up and vertically down.
The process model is nonlinear. Therefore, the linear matrices A and B
are derived for each of these operating points. The linearization of (21.29)
— (21.32) can be carried out using the following assumptions:

• When the angular position x3 = a is close to zero, cosx3 is
approximately equal to 1.

• When the angular position x3 = a is close to 180◦ = π rad, cosx3 is
approximately equal to −1.

• When the angular position x3 = a is close to zero or close to 180◦ = π
rad, sinx3 is very similar to x3, and hence is substituted by x3.

• The angular speed x4 = ȧ is small, approximately zero in both
operating points.

Using these assumptions, it can be shown that the linearized model
becomes






∆ẋ1
∆ẋ2
∆ẋ3
∆ẋ4




 =






0 1 0 0

0 −(I+mL2)d
D2

−sm2L2g
D2

0

0 0 0 1

0 smLd
D2

(m+M)mgL
D2

0






︸ ︷︷ ︸
A






∆x1
∆x2
∆x3
∆x4




+






0
I+mL2

D2

0
mL
D2






︸ ︷︷ ︸
B

[∆u]

(21.37)
where

D2 =
(
I +mL2

)
(m+M) (21.38)

and

S =

{
1 for pendulum in vertical up position
−1 for pendulum in vertical down position

(21.39)

The total control signal is

u(t) = uop +∆u(t) (21.40)

where uop is the control signal needed to keep the system at the operating
point, nominally. However, uop = 0 in both operating points.

Because the parameters of the linear model (parameters of A, only) are
different in these two operating points, the controller gains will also be
different.



268

Model for simulator and model for controller design

The model (21.24) — (21.27) is the basis of both the simulator
(representing the real process) and the controller. However, to make it
possible to check if the control system is robust, two sets of model
parameters are available in the front panel of the simulator:

• Model parameters Mreal, mreal, Lreal, dreal used in the simulator.

• Model parameters Mmodel, mmodel, Lmodel, dmodel used in the design
of the controller.

By default, these two parameter sets have equal numerical values, but if
you want to check for robustness of the controller against variations or
inaccurate knowledge about one certain parameter, you must set the values
of the corresponding parameters to different values, e.g. set dmodel to a
different value from dreal.

Figure 21.6 shows simulated responses for the control system. The
positional reference was changed. The cart converges to the reference
value, and the pendulum is stabilized upright despite the changes of the
the cart position.

[End of Example 21.1]

21.3 LQ controller with integral action

21.3.1 Introduction

The basic LQ controller described in Section 21.2 is based on assumptions
that in many applications are unrealistic or idealized. The following is
more realistic:

• The reference is non-zero.

• There is a reference for a number of the states variables (not for the
whole state vector).

• The process disturbance has non-zero mean value.



269

Figure 21.6: Simulated responses for the control system of the pendulum on
the cart

The controller given by (21.13) does not ensure zero steady-state control
error under these assumptions. What is needed is integral action in the
controller!

21.3.2 Including integrators in the controller

Figure 21.7 shows a block diagram of the control system with integrators
included in the controller. The integrator block actually represents a
number of single integrators, as many as there are reference variables.

Example 21.2 LQ controller with integrator

Figure 21.8 shows the detailed structure of a process with two state
variables being controlled by a LQ controller with integrator.

[End of Example 21.2]

The output of the integrators are regarded as augmentative state variables,
xint. These state variables are given by the following differential



270

w

yu

Optimal controller 
with integral action

Process
with sensor

v

Process
disturbance

Measurement 
noise

-G

x

r x

xr

xint

Con-
catenate

Split

xtot

Integrator
Gain

e =

x

xint
•

Figure 21.7: Optimal control system with integrators in the controller. e is the
contol error.

equation(s):
ẋint = rx − xr (21.41)

which corresponds to this integral equation:

xint(t) =

∫ t

0
(rx − xr)dτ (21.42)

Here, rx is the reference vector for the state vector xr which consists of
those state variables among the process state vector x that are to track a
reference. (In the above equations it is assumed that xr is directly
available from measurements. If xr is taken from a state estimator, xr,est is
used in stead of xr, of course.)

The total state vector that is used to design the LQ controller is the state
vector consisting of the original process state vector augmented with the
integrator state vector:

xtot =




x
· · ·
xint



 (21.43)

The control variable u is given by the control function

u = −Gxtot = −G




x
· · ·
xint



 (21.44)



271

y = x1
u

Optimal controller 
with integral action

Process

-G11

r

Integrator

e
x2

-G21

-G31

x2x1

u = -Gx
x3

Figure 21.8: Example 21.2: A process with two state variables being controlled
by a LQ controller with integrator

Note: When writing up the state-space model that is used for designing
the LQ controller, you can disregard the reference rx, i.e. you set it to zero
because it is not taken into account when calculating the controller gain G.
But of course it must be included in the implemented controller which is
given by (21.44), with xint given by (21.46).

21.3.3 Discrete-time implementation of the LQ controller

In a computer-based implementation of a LQ controller you will probably
need to discretize the continuous-time integrator (21.41). This can be done
using Backward or Forward discretization. The Backward method is the
best with respect to numerical accuracy, and it can be applied to (21.41)
without any problems because it is a linear differential equation. Applying
Backward discretization on (21.41) gives

ẋint(tk) ≈
xint(tk)− xint(tk−1)

Ts
= rx(tk)− xr(tk) (21.45)

Solving for xint(tk) gives the final integrator algorithm ready for being
programmed:

xint(tk) = xint(tk−1) + Ts [rx(tk)− xr(tk)] (21.46)

A practical issue of any controller having integral action is anti windup,
which is a feature to prevent the integrator to “wind up” — or increasing its



272

output continually — while the total control signal is at its saturation limit,
either the maximum or the minimum limit. If anti windup is not
implemented, the control error may become unnecessarily large for an
unnecessarily long time. Anti windup can be implemented in a control
program loop as follows:

x_int_k=x_int_k1+Ts*(rx-xr);
...//Calculate x_tot.
u_draft=-G*x_tot;

if (u_draft > u_max)
{
x_int_k=x_int_k1;//Integral not changed
...//Calculate x_tot.
u=-G*x_tot;
}

elseif (u_draft < u_min)
{
x_int_k=x_int_k1;//Integral not changed
...//Calculate x_tot.
u=-G*x_tot;
}

else
{
u=u_draft;
}

DAC(u);

Above, DAC(u) means send u to the digital-analog converter.



Chapter 22

Model-based predictive
control (MPC)

Model-based predictive control or MPC has become an important control
method, and it can be regarded as the next most important control
method in the industry, next to basic PID control and PID control based
methods. Commercial MPC products are available as separate products,
or as modules included in automation products. Matlab has support for
MPC with the MPC Toolbox. LabVIEW has support for MPC with the
Control Design and Simulation Toolkit.

MPC has found many applications, for example

• Dynamic positioning (positional control) of sea vessels

• Paper machine control

• Batch process control

• Control of oil/water/gas separator trains

MPC can be applied to multivariable processes1 and — depending on the
MPC implementation — non-linear processes. The controller function is
based on a continuous calculation of the optimal or “best” future sequence
or time-series of the control variable, u. This calculation is based on
predicting the future behaviour of the process to be controlled. Of course,
a mathematical process model is used to predict this future behaviour.

1which are processes with more than one control variable and process output variables.

273



274

The optimization criterion which is minimized by an optimization
algorithm in the MPC tool has typically the following quadratic form2:

Optimization criterion, J (22.1)

=

Np∑

k=0

{
Q1 [e1(tk)]

2 +Q2 [e2(tk)]
2 + ...+Qn [en(tk)]

2
}

(22.2)

+
Nc∑

k=1

R1

{
[∆u1(tk)]

2 +R2 [∆u2(tk)]
2 + ...+Rr [∆ur(tk)]

2
}

(22.3)

= Sum of weighed future squared control errors

+Sum of weighed future squared increments of control variables

Here:

• k is discrete time index.

• i is the time index along the prediction horizon.

• ei is the difference between the reference (setpoint) ri and the
predicted process variable ŷi:

ei = ri − ŷi (22.4)

• ∆uj(tk) is the predicted change in control action at time k.

• Np (a scalar) is the prediction horizon, i.e. the number of samples in
the future during which the MPC controller predicts the plant
output.

• Nc (a scalar) is the control horizon, i.e. the number of samples
within the prediction horizon during which the MPC controller can
affect the control action.

• Qi is the weight (or cost) of control error no. i. This is typically a
tuning parameter. The larger Qi, the smaller the control error ei —
typically causing the control signal to vary more.

• Rj is the weight (or cost) of the increment or change of control
variable no. j. This is a tuning parameter. The larger Rj, the
smaller is the variations of the control variable — typically causing
the control error to vary more.

2The main reason why the criterion contains quadratic (squared) terms is that it makes
solving the optimization problem easier, mathematically.



275

The kind of mathematical process model that the MPC algorithm uses to
predict the future behaviour of the process varies between the different
MPC implementation. The alternatives are:

• Impulse response model (which can be derived from simple
experiments on the process)

• Step response model (same comment as above)

• Transfer function model (which is a linear dynamic model which may
be derived from experiments on the process)

• Linear state-space model

• Non-linear state-space model (which is the most general model form
since it may include nonlinearities and it may be valid over a wide
operating range)

In addition to the process model the optimization takes into account
constraints, i.e. specified maximum and minimum values, of y and ∆u, and
u (the total control signal):

ymin ≤ y ≤ ymax (22.5)

∆umin ≤ ∆u ≤ ∆umax (22.6)

umin ≤ u ≤ umax (22.7)

The ability to take into account such constraints in a well-defined way is a
strong feature of MPC.

Figure 22.1 illustrates how predictive control works. The MPC controller
predicts the plant output for time k +Np. At the next sample time, k + 1,
the prediction and control horizons move forward in time, and the MPC
controller predicts the plant output again. Figure 22.2 shows how the
prediction horizon moves at each sample time k. The control horizon
moves forward along with the prediction horizon. This is called the
receding horizon-principle. Before moving forward, the controller sends the
control action u(tk) to the plant. If there is a change of the reference or
the disturbance within the prediction horizon and the controller knows
about this change, the MPC will adjust the control variable in advance.

The MPC controller needs information about the present state of the
process and disturbances (environmental variables) acting on the process
when using the model to predict the future responses. These states and
disturbances must be either measured or estimated.



276

Figure 22.1: How MPC works

Figure 22.2: How the prediction horizon moves at each sample time k

Example 22.1 MPC control of a real air heater

Figure 22.3 shows a lab process consisting of an heated air tube where the
air temperature (at temperature sensor 1) has been controlled with both
MPC and — for comparison — a PID controller in a number of different
cases described in the following. The control system is implemented on a
PC with LabVIEW. The MPC controller and the Advanced PID controller
in LabVIEW Control Design and Simulation Toolkit are used. The
sampling time is 0.5 s.

Mathematical modeling

The MPC controller in LabVIEW requires a process model in the form of a
discrete-time state-space model. Although advanced system identification



277

Temperature 
sensor 1

Temperature 
sensor 2

NI USB-6008
for analog I /O

Fan speed 
adjustment

On/Off
switch

PC with 
LabVIEW

USB cable

Electrical heater

Fan

Mains cable
(220/110 V)

3 x Voltage AI (Temp 1, Temp 2, Fan 
indication)
1 x Voltage AO (Heating)

Air

Pulse Width 
Modulator 

(PWM)

PWM
indicator

AC/DC 
converter

Pt100/
milliampere
transducer

Air pipe

Figure 22.3: Example 22.1: A lab process consisting of a heated air tube where
the air temperature will be controlled.

functions are available in LabVIEW System Identification Toolkit, a
simple, manual model development is accomplished in this example: The
model is estimated manually from the step response of the process.

Figure 22.4 shows to the left the process step response, i.e. the response in
the temperature due to a step change of the control signal to the heater.
This response indicates that a proper model is a “time-constant with
time-delay” transfer function with the following parameters:

Gain: K = 3.5 oC/V (22.8)

Time-constant: T = 22 s (22.9)

Time-delay: τ = 2 s (22.10)

To validate the model, and to possibly fine-tune model parameters, a
simulator based on the estimated transfer function is run in real time and
in parallel with the real process. The simulator and the real process is of
course excited by the same control signal, which is an arbitrarily adjusted



278

Measured (real) and simulated process 

response (temperature) due to an 

arbitrarily adjusted control signal

Process response (temperature) due 

to a step change of control signal

Disturbance applied

by covering air inlet

with hand for 10 sec)

Figure 22.4: Example 22.1: Left: Process step response (step in control signal)
used for model estimation. Right: Process response after arbitrarily adjusted
control signal used for model validation

signal, see the plots to the right in Figure 22.4. It is clear that the model is
quite good (accurate).

To obtain a discrete-time state-space model, model conversion functions in
LabVIEW are used. (The state-space model is however not shown here.)

Settings of MPC and PID controller

MPC settings

Figure 22.5 shows the settings of various MPC parameters:

• Horizons: The prediction and control horizons are set not so
different from process time-constant. They are set to 30, which
corresponds to 15 sec since the the sampling time is 0.5 sec. (The
process time-constant is 22 sec.)

• Weightings: The Output Error Weighting is set to 1. The Control
Action Change Weighting is set by trial-and-error on real system to
40 (it can also be adjusted on the simulator, of course). Small



279

Figure 22.5: Example 22.1: MPC parameter settings

weightings gives fast, abrupt control. Large weighting gives sluggish
control.

• Constraints: The constraints of the control signal u and the
process output (measurement) y are set to the physical limits. The
control signal range is 0 — 5 V, and the temperature measurement
range is 20 — 50 oC.

PID settings

The PID controller is used as a PI controller with the following settings:

Kp = 0.42 (22.11)

Ti = 18 s (22.12)

(The controller is tuned with Skogestad’s method with the closed-loop
time-constant set to — somewhat arbitrarily — 10 sec.)



280

Setpoint tracking with future setpoint step

Figure 22.6 shows the responses in the temperature and the control signal
with PI control and MPC control after step changes of setpoint. MPC

PID MPC

Figure 22.6: Example 22.1: Responses after step changes of the setpoint

control is much better then PID, because the MPC controller plans the
control properly by taking into account the future setpoint changes.
Observe that MPC starts changing control ahead of the setpoint change,
while the PI controller changes the control action after setpoint is changed.

Setpoint tracking with future setpoint ramp

Figure 22.7 shows the responses with ramped changes of the setpoint. The
MPC control gives excellent control, with almost zero control error, while
the PI controller gives a clear non-zero control error. With a known future
setpoint trajectory, the MPC is capable of giving superior control.

Propagation of measurement noise

Figure 22.8 shows how the measurement noise is propagated through the
PID controller and MPC controller. The noise is more smoothened
through the MPC (less propagation of noise), which is because more
samples of the measurement signal are used in calculation of the control



281

PID MPC

Figure 22.7: Example 22.1: : Responses after ramped changes of the setpoint.

signal with the MPC controller than with the PID controller. In other
words, there is more “averaging” with the MPC controller.

Constrained control

Figure 22.9 shows the response in the temperature with MPC control when
a maximum constraint of 30 oC is set for the process output variable
(temperature). This constraint is one of the MPC parameters which the
user can set. Actually, a tolerance of 0.5 K is set for this constraint. The
Barrier method, which is an alternative to the Dual method, is used to
define the constraints in the LabVIEW MPC used in this experiment.
(The Dual method may give oscillations at the constraint limit, while the
Barrier method does not.)

As seen from the response in Figure 22.9 the maximum limit of 30 oC is
maintained, with a margin below of about 0.5 K.

Changing the weight of incremental control signal

Figure 22.10 shows responses with MPC control with increased and
decreased weight of the control signal increment. As expected, with
increased weight (more “expensive” control increments) the control signal
will vary less, causing the process ouput variable (temperature) to respond



282

PID MPC

Figure 22.8: Example 22.1: Measurement noise propagation through the PI
controller and the MPC controller

more slowly, cf. the left plots in Figure 22.10. And with decreased weight
(“cheaper” control increments) the control signal will vary more, causing
the process ouput variable (temperature) to respond more quickly, cf. the
right plots in Figure 22.10. If the weight is set very close to zero, the MPC
controller acts almost like an On/off controller, which is denoted
“dead-beat control”.

[End of Example 22.1]



283

Figure 22.9: Example 22.1: Setting the process measurement contraint to 30
oC.

Weight decreased from 40 to 0.01:Weight increased from 40 to 1000:

Disturbance applied

by covering air inlet

with hand for 10 sec)

Figure 22.10: Example 22.1: Adjusting the weighting of incremental control
signal to a relatively large value (left) and to a small value (right).



284



Chapter 23

Dead-time compensator
(Smith predictor)

The dead-time compensator — also called the Smith predictor [15] — is a
control method particularly designed for processes with dead-time (time
delay). Compared to ordinary feedback control with a PI(D) controller,
dead-time compensation gives improved setpoint tracking in all cases, and
it may under certain conditions give improved disturbance compensation.

It is assumed that the process to be controlled has a mathematical model
on the following transfer function form:

Hp(s) = Hu(s)e
−τs (23.1)

where Hu(s) is a partial transfer function without time delay, and e−τs is
the transfer function of the time delay.

Simply stated, with dead-time compensation the bandwidth (quickness) of
the control system is independent of the dead-time, and relatively high
bandwidth can be achieved. However, the controller function is more
complicated than the ordinary PID controller since it contains a transfer
function model of the process. A dead-time compensator are implemented
in some controller products.

Figure 23.1 shows the structure of the control system based on dead-time
compensation. In the figure ymp is a predicted value of ym — therefore the
name Smith predictor. ym1p is a predicted value of the non time delayed
internal process variable ym1. There is a feedback from the predicted or
calculated value ym1. The PID controller is the controller for the non
delayed process, Hu(s), and it is tuned for this process. The controller

285



286

Hu(s)
u ymymSP

Hv(s)

vProcess

Disturbance

Process
measure-
ment

Control
variableSetpoint

(t-�)

Hu,dc(s) (t-�dc)

Controller
(with dead-time compensator )

Dead-time,

ymp

Hpid(s)

PID
controller

Process model

ym1

ym1p

ep

Figure 23.1: Structure of a control system based on dead-time compensation

tuning can be made using any standard method, e.g. the Skogestad’s
method which is reviewed in Appendix A. The bandwidth of this loop can
be made (much) larger compared to the bandwidth if the time delay were
included in the loop. The latter corresponds to an ordinary feedback
control structure.

As long as the model predicts a correct value of ym, the prediction error ep
is zero, and the signal in the outer feedback is zero. But if ep is different
from zero (due to modeling errors), there will be a compensation for this
error via the outer feedback.

What is the tracking transfer function, T (s), of the control system? To
make it simple, we will assume that there are no modeling errors. From
the block diagram in Figure 23.1 the following can be found:

T (s) =
ym(s)

ymSP
(s)

=
Hpid(s)Hu(s)

1 +Hpid(s)Hu(s)
e−τs =

L(s)

1 + L(s)
e−τs (23.2)

where
L(s) = Hpid(s)Hu(s) (23.3)

is the loop transfer function of the loop consisting of the PID controller
and the partial non time-delayed process Hu(s).



287

How is the setpoint tracking and the disturbance compensation
performance of the control system?

• Setpoint tracking is as if the feedback loop did not have time
delay, and therefore faster setpoint tracking can be achieved with a
dead-time compensator than with ordinary feedback control (with
PID controller). However, the time delay of the response in the
process measurement can not be avoided with a dead-time
compensator.

• Disturbance compensation: In [11] the disturbance compensation
with a dead-time compensating control system is investigated for a
first order with time delay process. It was found that dead-time
compensation gave better disturbance compensation (assuming a
step in the disturbance) compared to ordinary feedback control only
if the time delay (dead-time) τ is larger than the time constant T of
the process.

Example 23.1 Dead-time compensator

Given a process with the following transfer functions (cf. Figure 23.1):

Hp(s) =
Ku

Tus+ 1︸ ︷︷ ︸
Hu(s)

e−τs (23.4)

Hv(s) =
Kv

Tvs+ 1
(23.5)

where

Ku = 1; Tu = 0.5; Kv = 1; Tv = 0.5; τ = 2 (23.6)

The following two control systems have been simulated:

• Dead-time compensator for the process defined above. The internal
controller, Hpid(s), is a PI controller with the following parameter
values:

Kp = 2.0; Ti = 0.36 (23.7)

These PI parameters are calculated using Skogestad’s method, cf.
Table A.1, with τ = 0, TC = 0.25 (= T/2) and k1 = 1.44.



288

• Ordinary feedback control with PI controller for the process defined
above.The PI controller, Hpid(s), is a PI controller with the following
parameter values:

Kp = 0.12; Ti = 0.5 (23.8)

These PI parameters are calculated using Skogestad’s method, cf.
Table A.1, with TC = 2 (= τ) and k1 = 1.44.

Figure 23.2 shows the simulated responses for the two control systems due
to a setpoint step and a disturbance step. The dead-time compensator
gives better setpoint tracking and better disturbance compensation than
ordinary feedback control does.

Figure 23.2: Example 23.1: Simulated responses for the two control systems
due to a setpoint step and a disturbance step

[End of Example 23.1]

The dead-time compensator is model-based since the controller includes a
model of the process. Consequently, the stability and performance
robustness of the control system depend on the accuracy of the model.
Running a sequence of simulations with a varied process model (changed
model parameters) in each run is one way to investigate the robustness.



Appendix A

Model-based PID tuning
with Skogestad’s method

The information about Skogestad’s method in this appendix is the same as
given in [5].

A.1 The principle of Skogestad’s method

Skogestad’s PID tuning method [12]1 is a model-based tuning method
where the controller parameters are expressed as functions of the process
model parameters. It is assumed that the control system has a transfer
function block diagram as shown in Figure A.1.

Comments to this block diagram:

• The transfer function Hpsf (s) is a combined transfer function of the
process, the sensor, and the measurement lowpass filter. Thus,
Hpsf (s) represents all the dynamics that the controller “feels”. For
simplicity we may denote this transfer function the “process transfer
function”, although it is a combined transfer function.

• The process transfer function can stem from a simple step-response
experiment with the process. This is explained in Sec. A.3.

• The block diagram shows a disturbance acting on the process.
Information about this disturbance is not used in the tuning, but if

1Named after the originator Prof. Sigurd Skogestad

289



290

Hc(s) Hpsf(s)
u(s) ymf(s)ymSP(s)

ve(s)

Process with
sensor and

measurement
filter

Setpoint

Equivalent 
(effective)
process 
disturbance

Filtered 
process 

measurementControl
error

Control
variable

Controller

Figure A.1: Block diagram of the control system in PID tuning with Skogestad’s
method

you are going to test the tuning on a simulator to see how the control
system compensates for a process disturbance, you should add a
disturbance at the point indicated in the block diagram, which is at
the process input. It turns out that in most processes the dominating
disturbance influences the process dynamically at the “same” point
as the control variable. Such a disturbance is called an input
disturbance . Here are a few examples:

— Liquid tank: The control variable controls the inflow. The
outflow is a disturbance.

— Motor: The control variable controls the motor torque. The
load torque is a disturbance.

— Thermal process: The control variable controls the power supply
via a heating element. The power loss via heat transfer through
the walls and heat outflow through the outlet are disturbances.

The design principle of Skogestad’s method is as follows. The control
system tracking transfer function T (s), which is the transfer function from
the setpoint to the (filtered) process measurement, is specified as a first
order transfer function with time delay:

T (s) =
ymf (s)

ymSP
(s)

=
1

TCs+ 1
e−τs (A.1)

where TC is the time-constant of the control system which the user must
specify, and τ is the process time delay which is given by the process model



291

(the method can however be used for processes without time delay, too).
Figure A.2 shows as an illustration the response in ymf after a step in the
setpoint ymSP

for (A.1).

Figure A.2: Step response of the specified tracking transfer function (A.1) in
Skogestad’s PID tuning method

From the block diagram shown in Figure A.1 the tracking transfer function
is

T (s) =
Hc(s)Hpsf (s)

1 +Hc(s)Hpsf (s)
(A.2)

Setting (A.2) equal to (A.1) gives

Hc(s)Hpsf (s)

1 +Hc(s)Hpsf (s)
=

1

TCs+ 1
e−τs (A.3)

Here, the only unknown is the controller transfer function, Hc(s). By
making some proper simplifying approximations to the time delay term,
the controller becomes a PID controller or a PI controller for the process
transfer function assumed.



292

A.2 The tuning formulas in Skogestad’s method

Skogestad’s tuning formulas for several processes are shown in Table A.1.2

Process type Hpsf (s) (process) Kp Ti Td

Integrator + delay K
s e−τs 1

K(TC+τ) c (TC + τ) 0

Time-constant + delay K
Ts+1e

−τs T
K(TC+τ) min [T , c (TC + τ)] 0

Integr + time-const + del. K
(Ts+1)se

−τs 1
K(TC+τ) c (TC + τ) T

Two time-const + delay K
(T1s+1)(T2s+1)

e−τs T1
K(TC+τ) min [T1, c (TC + τ)] T2

Double integrator + delay K
s2

e−τs 1
4K(TC+τ)2

4 (TC + τ) 4 (TC + τ)

Table A.1: Skogestad’s formulas for PI(D) tuning

For the “Two time-constant + delay” process in Table A.1 T1 is the largest
and T2 is the smallest time-constant.3

Originally, Skogestad defined the factor c in Table A.1 as 4. This gives
good setpoint tracking. But the disturbance compensation may become
quite sluggish. To obtain faster disturbance compensation, you can use

c = 2 (A.4)

The drawback of such a reduction of c is that there will be more overshoot
in the setpoint step respons, and the stability of the control loop will be
reduced. Also, the robustness against changes of process parameters (e.g.
increase of process gain and increase of process time-delay) will be
somewhat reduced.

Skogestad suggests using
TC = τ (A.5)

for TC in Table A.1 — unless you have reasons for a different specification
of TC .

A.3 How to find model parameters from
experiments

The values of the parameters of the transfer functions in Table A.1 can be
found from a mathematical model based on physical principles. The

2 In the table, “min” means the minimum value (of the two alternative values).
3 [12] also describes methods for model reduction so that more complicated models can

be approximated with one of the models shown in Table A.1.



293

parameter values can also be found from a step-response experiment with
the process. This is shown for the model Integrator with time-delay and
Time-constant with time-delay in the following respective figures.

Prosess with 
sensor and 

measurement filter

U

0 t0

t0

Slope S=KU
(unit e.g. %/sec)

u(t) ymf(t)

Step: Step response :

Time-delay

Integrator with
time - delay

Figure A.3: How the transfer function parameters K and τ appear in the step
response of an Integrator with time-delay prosess

Prosess with 
sensor and 

measurement filter

U

0 t0

T
0

KU

u(t) ymf(t)

Step: Step response :

Time-
delay

Time-constant 
with time-delay

Time-
constant

63%

100%

0%
t

Figure A.4: How the transfer function parameters K , T , and τ appear in the
step response of a Time-constant with time-delay prosess

A.4 Transformation from serial to parallel PID
settings

Skogestad’s formulas assumes a serial PID controller function
(alternatively denoted cascade PID controller) which has the following



294

transfer function:

u(s) = Kps

(Tiss+ 1) (Tdss+ 1)

Tiss
e(s) (A.6)

where Kps , Tis , and Tds are the controller parameters. If your controller
actually implementes a parallel PID controller (as in the PID controllers in
LabVIEW PID Control Toolkit and in the Matlab/Simulink PID
controllers), which has the following transfer function:

u(s) =

[
Kpp +

Kpp

Tips
+KppTdps

]
e(s) (A.7)

then you should transform from serial PID settings to parallell PID
settings. If you do not implement these transformations, the control
system may behave unnecessarily different from the specified response.4

The serial-to-parallel transformations are as follows:

Kpp = Kps

(
1 +

Tds

Tis

)
(A.8)

Tip = Tis

(
1 +

Tds

Tis

)
(A.9)

Tdp = Tds

1

1 +
Tds
Tis

(A.10)

Note: The parallel and serial PI controllers are identical (since Td = 0 in a
PI controller). Therefore, the above transformations are not relevant for PI
controller, only for PID controllers.

A.5 When the process has no time-delay

What if the process Hp(s) is without time-delay? Then you can not specify
TC according to (A.5) since that would give TC = 0 (zero response time of
the control system). You must specify TC to some reasonable value larger
than zero. If you do not know what could be a reasonable value, you can
simulate the control system for various values of TC . If the control signal
(controller output signal) is changing too quickly, or often reaches the
maximum and minimum values for reasonable changes of the setpoint or
the disturbance, the controller is too aggressive, and you can try increasing

4The transformations are important because the integral time and the derivative time
are equal, cf. (20.38) and (20.39). If the integral time is substantially larger than the
derivative time, e.g. four times larger, the transformations are not necessary.



295

TC . If you don’t want to simulate, then just try setting TC = T/2 where T
is the dominating (largest) time-constant of the process (assuming the
process is a time-constant system, of course).

For the double integrator (without time-delay) I have seen in simulations
that the actual response-time (or 63% rise-time) of the closed-loop system
may be about twice the specified time-constantTC . Consequently, you can
set TC to about half of the response-time you actually want to obtain.



296



Bibliography

[1] Franklin G. F. , J. D. Powell, A. Emami-Naeini, Feedback Control of
Dynamic Systems. Addison-Wesley, 1994.

[2] Franklin G. F. and J. D. Powell, Digital Control of Dynamic Systems,
Addison Wesley, 1980.

[3] Goodwin G., Graebe S. F., Salgado M. E., Control System Design,
Prentice Hall, 2001.

[4] Grewal M. S. and A. P. Andrews, Kalman Filtering, Theory and
Practice, Prentice Hall, 1993.

[5] Haugen F, Basic Dynamics and Control, TechTeach
(http://techteach.no), 2010.

[6] Ljung L. , System Identification, System Identification—Theory For
The User, Prentice-Hall, 1998.

[7] Kalman R. E., A New Approach to Linear Filtering and Prediction
Problems, Trans. ASME (Am. Soc. of Mech. Engineers), J. Basic
Eng., mars 1960.

[8] Kalman R. E. and R. C. Bucy, New Results in Linear Filtering and
Prediction Theory, Trans. ASME (Am. Soc. of Mech. Engineers), J.
Basic Eng., mars 1961.

[9] Maciejowski J., Predictive Control with Constraints, Prentice Hall,
2002

[10] Marlin Th. E. , Process Control, McGraw-Hill, 1995.

[11] Meyer C., Seborg D. E., Wood R. K.: A Comparison of the Smith
Predictor and Conventional Feedback Control, Chem. Eng. Sci., Vol .
31, 1976

[12] S. Skogestad: Simple Analytical Rules for Model Reduction and PID
Controller Tuning, J. Process Control, Vol. 13, 2003

297



298

[13] Skogestad S. and Postlethwaite I., Multivariable feedback control -
Analysis and design, 2nd Edition, Wiley, 2005.

[14] Slotine J. J. E. and W. Li, Applied Nonlinear Control, Prentice-Hall,
1991.

[15] Smith O. J.: Closer Control of Loops with Dead Time, Chem. Eng.
Progr. 53.

[16] Sorenson, H. W. (red.), Kalman Filtering: Theory and Application,
IEEE Press, 1985.

[17] Seborg D. , T. F. Edgar and D. A. Mellichamp, Process Dynamics and
Control, John Wiley & Sons, 1989.

[18] Åström K. J. and B. Wittenmark, Computer Controlled Systems,
Prentice-Hall, 1990.



Index

absolute form of PID controller,
101

AD-converter, 99
amplitude crossover frequency, 75
amplitude gain, 26
analysis of control systems, 39
anti wind-up, 102
anti windup, 271
asymptotically stable, 57
asymptotically stable system, 60
augmented Kalman Filter, 231
augmented observer, 201
auto-covariance, 149

Backward differentiation method,
94

ballistic state estimator, 229
bandpass filters, 33
bandstop filters, 33
bandwidth, 34, 46
bandwitdh

1. ordens lavpassfilter, 35
black-box model, 161, 175
Bode diagram, 28
Bode-Nyquist stability criterion,

78
bumpless transfer, 102

center difference method, 175
certainty equivalence principle,

258
characteristic equation, 59
characteristic polynomial, 59, 68
chirp signal, 171
coloured noise, 153
compensation properties, 41

computer, 99
controllability, 261
convergence of LS-estimate, 168
correlation, 151
cross-covariance, 150
crossover frequency, 46

DA-converter, 99
dB, 28
dead-time compensator, 285
decibel, 28
decoupling, 245
difference equation, 91
discretize, 93

equation-error vector, 164
equilibrium point, 22
error dynamics, 186, 190
error model, 190
error-model, 229
estimation, 161
estimation error model, 190
Estimation of parameters in

dynamic models, 174
Euler’s backward method, 175
Euler’s forward method, 174
excitation in parameter

estimation, 170
Expectation value, 147
extended Kalman Filter, 219

feedback linearization, 245
filter, 33
Forward differentiation method,

94
frequency components, 25
frequency response, 25, 28, 29

299



300

frequency response analysis, 45
frequency response and transfer

function, 28

gain function, 28
gain margin, 77

highpass filters, 33

impulse response, 56
incremental form of PID

controller, 101
input disturbance, 290
integral anti wind-up, 102

Kalman Filter, 215, 218

least squares method, 161
linearization of non-linear models,

19
local model, 20
loop transfer function, 43
lowpass filter

2. ordens, 34
lowpass filters, 33
LQ control, 257
LQR, 257
LS-method, 161

marginally stable, 57
marginally stable system, 60
mass-spring-damper, 16, 62

stabilitetsanalyse, 62
mean value, 147
measurement estimate error, 188
measurement-updated estimate,

223
model errors, 229, 243
model-based predictive control,

273
MPC, 273
multiloop PID controller, 245

normal equation, 165
Nyquist’s spesial stability

criterion, 75

Nyquist’s stability criterion, 70
Nyquist’s stability criterion for

open stable systems, 75

observability, 197, 216
observability matrix, 198, 217
observed variable, 163
observer, 185
observer response time, 191
operating point, 21
optimal control, 257
order

state-space model, 15

parameter estimation, 161
parameter vector, 163
parsimony principle, 169
passband, 33
performance, 41
phase crossover frequency, 75
phase function, 28
phase lag, 26
phase margin, 77
pole-funksjonen (MATLAB), 69
poles and stability, 58
positional form of PID controller,

101
posteriori estimate, 223
power of a signal, 148
PRB-signal, 170
prediction-error vector, 164
predictor type Kalman Filter, 230
priori estimate, 224
Pseudo Random Binary Signal,

170
pzmap-funksjonen (MATLAB),

69

RC-circuit, 36
som lavpassfilter, 36

regression model, 162
regression variable, 162
regression vector, 162
reguleringssystem

stabilitetsanalyse, 69



301

RHP (right half plane), 72
robust control, 243
robustness, 82, 210, 239, 288
roots-funksjonen (MATLAB), 69
Routh’s stability criterion, 67

self regulation, 51
sensitivity bandwidth, 47
sensitivity function, 43
sensor failure, 210, 239
separation principle, 258
shaping filter, 153
signal filter, 33
Skogestad’s method, 247, 252,

289
Smith predictor, 285
stabilitet

tilstandsrommodeller, 64
stability, 55, 67

transferfunksjonsmodeller, 58
stability margins, 77
standard deviation, 148
state-space model, 15
static response, 92
steady state Kalman Filter gain,

228
stochastic signals, 145
stopband, 33
subspace methods, 176

testing, 186, 215
time-updated estimate, 224
tracking properties, 41
transfer function and frequency

response, 28
transformed control vector, 246,

252
transformed process, 247

unit pulse, 152
unstable, 57
unstable system, 61
up-down-up signal, 172

velocity form of PID controller,
101

weight matrices, 258
white noise, 151

zero order hold (zoh), 120
ZOH discretization, 120




