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Chapter 1

Introduction

1.1 What is the Python Control package?

The Python Control Package is for analysis and design of dynamic systems in general and
feedback control systems in particular. The package resembles the Control System Toolbox
in Matlab.

The package is developed at California Institute of Technology (Caltech), USA, by prof.
Richard M. Murray and coworkers.

The package requires Numpy, Scipy, and Matplotlib (these packages are installed with the
Anaconda distribution of Python tools).

The home page of the Python Control package is

https://pypi.org/project/control/

A complete list of the functions in the package is available via the link named Homepage on
the above home page.

1.2 About this guide

The guide covers basic functions in the Python Control Package. If you master these
functions, you should be well prepared for using other functions in the package.

Most of the tutorial is about continuous-time models, i.e. transfer functions based on the
Laplace transform and state space models based on differential equations. Discrete-time
models are briefly covered in one chapter at the end of the tutorial. That coverage is brief
because the basic functions for continuous-time models can be used also for discrete-time
models, i.e. with the same syntax, however with the sampling time (period) as an extra
input argument in the functions.
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1.3 Installing the Python Control package

You can install the package with the command

pip install control

executed e.g. at the Anaconda prompt (in the Anaconda command window)1.

Some functions in the Python Control package, for example the lqr function for calculating
the stationary controller gain G in LQ control, requires that the package slycot is installed.
You can install it with the following command at the Anaconda prompt:

conda install -c conda-forge slycot

(The straightforward “pip install slycot” may not work.)

1.4 Importing the Python Control package into Python

The following command (in Python) imports the Python Control package into Python:

import control

1.5 Using arrays for numerical data

In Python, tuples, lists, dictionaries, and arrays can be used to store numerical data.
However, only arrays are practical for mathematical operations on the data, like addition
and multiplication. Therefore, I use arrays as the numerical data type consistently in this
book.

To use arrays, you must import the numpy package. It has become a tradition to rename
the numpy package as np. Thus, to import numpy, include the following command in the
beginning of your program:

import numpy as np

1In Windows: Start menu / Anaconda / Anaconda prompt.
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Chapter 2

Transfer functions

This section is about Laplace transform based transfer functions, which may be referred to
as s-transfer functions (s is the “Laplace variable”). Discrete time transfer functions, or
z-transfer functions, are covered by Section 5.1.2.

2.1 How to create transfer functions

There are two ways to create transfer functions in the Python Control Package:

• By defining a variable named ’s’ representing the Laplace variable, and creating
transfer functions in terms of s, see Section 2.1.1.

• By creating arrays (or lists) to represent the numerator and denominator of the
transfer function, see Section 2.1.2.

Usually, I prefer the first of these ways since it is closer to how I define transfer functions
with hand-writing.

2.1.1 Creating transfer functions using the Laplace variable

For illustration, assume that the transfer function is

H(s) =
b1s+ b0
a1s+ a0

(2.1)

In this case, we can create H(s) in Python Control Package simply with the following two
lines of Python code:

s = control.tf(’s’)

which defines s as the Laplace variable, and

H = (b1*s + b0)/(a1*s + a0)

where H is the resulting transfer function (an object). Above it is assumed that b1, b0, a1
and a0 have already been defined as Python variables with some values.
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Example 2.1 Creating a transfer function using the Laplace variable

Let us create the following transfer function:

H(s) =
2

5s+ 1
(2.2)

The Python program 2.1 creates this transfer function. The code print(’H(s) = ’, H) is used
to present the transfer function in the console (of Spyder).

http://techteach.no/control/python/create tf using s.py

Listing 2.1: create tf using s.py

import control

# %% Creating the transfer function:

s = control.tf(’s’)

H = 2/(5*s + 1)

# %% Displaying the transfer function:

print(’H(s) =’, H)

The result as shown in the console is:

H(s) =
2

--------
5 s + 1

If you execute “H” (+ enter) in the Spyder console, the transfer function is more nicely
displayed, see Figure 2.1.

Figure 2.1: The transfer function nicely displayed with H (+ enter) executed in the console.

[End of Example 2.1]

2.1.2 Creating transfer functions using coefficient arrays of numerator
and denominator

As an alternative to defining transfer functions with the Laplace variable, they can be
defined using coefficient arrays of numerator and denominator. The syntax is as follows:
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H = control.tf(num, den)

where H is the resulting transfer function. num (representing the numerator) and den
(representing the denominator) are arrays where the elements are the coefficients of the
s-polynomials in descending order from left to right. Of course, you can use any other
names than H, num, and den in your own programs.

To illustrate the syntax, assume that the transfer function is

H(s) =
b1s+ b0
a1s+ a0

(2.3)

The Python code:

num = np.array([b1, b0])

den = np.array([a1, a0])

where, of course, the values of b1, b0, a1 and a0 have already been defined and assigned
values.

Example 2.2 Creating a transfer function using coefficient arrays

We will create the following transfer function:

H(s) =
2

5s+ 1
(2.4)

The Python program 2.2 creates this transfer function. The code print(’H(s) = ’, H) is used
to present the transfer function in the console (of Spyder).

http://techteach.no/control/python/create tf.py

Listing 2.2: create tf.py

import numpy as np

import control

# %% Creating the transfer function:

num = np.array ([2])

den = np.array([5, 1])

H = control.tf(num , den)

# %% Displaying the transfer function:

print(’H(s) =’, H)

The result of the code above is shown as follows in the console:

H(s) =
2

--------
5 s + 1

[End of Example 2.2]
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2.2 Combinations of transfer functions

The following sections shows how we can combine transfer functions in

• series combination

• parallel combination

• feedback combination

2.2.1 Series combination

Figure 2.2 illustrates a series combination of two transfer functions.

u y
H2H1

Figure 2.2: A series combination of two transfer functions, H1(s) and H2(s).

The resulting transfer function is

y(s)

u(s)
= H(s) = H2(s)H1(s) (2.5)

If you are to calculate the combined transfer function manually using (2.5), the order of the
factors in (2.5) is of no importance for SISO1 transfer functions. But for MIMO2 transfer
functions, the order in (2.5) is crucial.

Whether SISO or MIMO, you can create a series combination with the multiplication
operator, *, in Python:

H = H1*H2

Example 2.3 Series combination of transfer functions

Assume a series combination,

H(s) = H1(s)H2(s)

of the following two transfer functions:

H1(s) =
K1

s
(2.6)

H2(s) =
K2

T1s+ 1
(2.7)

where K1 = 2, K2 = 3, and T = 4.

1SISO = Single Input Single Output
2MIMO = Multiple Input Multiple Output

10



CHAPTER 2. TRANSFER FUNCTIONS

Manual calculation gives:

H(s) =
K1

s
· K2

Ts+ 1
=

K1K2

Ts2 + s
=

6

4s2 + s

Program 2.3 shows how the calculations can be done with the * operator.

http://techteach.no/control/python/series tf.py

Listing 2.3: series tf.py

import control

s = control.tf(’s’)

K1 = 2

K2 = 3

T = 4

H1 = K1/s

H2 = K2/(T*s + 1)

H = H1*H2

print(’H =’, H)

The result of the code above as shown in the console is:

H =
6

------------
4 sˆ2 + s

[End of Example 2.3]

Alternative: control.series()

As an alternative to using the * operator, you can use the series() function of the Python
Control package:

H = control.series(H1, H2)

2.2.2 Parallel combination

Figure 2.3 illustrates a parallel combination of two transfer functions.

The resulting transfer function is

y(s)

u(s)
= H(s) = H2(s) +H1(s) (2.8)

You can create a parallel combination with the sum operator, +, in Python:

11
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u y

H2

H1
+

+

Figure 2.3: A parallel combination of two transfer functions, H1(s) and H2(s).

H = H1 + H2

Example 2.4 Parallel combination of transfer functions

Given the transfer functions, H1(s) and H2(s), as in Example 2.3.

Manual calculation of their parallel combination gives3:

H(s) =
2

s
+

3

4s+ 1
=

2(4s+ 1) + 3s

s(4s+ 1)
=

11s+ 2

4s2 + s

Program 2.4 shows how the calculations can be done with the control.parallel() function.

http://techteach.no/control/python/parallel tf.py

Listing 2.4: parallel tf.py

import control

s = control.tf(’s’)

K1 = 2

K2 = 3

T = 4

H1 = K1/s

H2 = K2/(T*s + 1)

H = H1 + H2

print(’H =’, H)

The result of the code above as shown in the console is:

H =
11 s + 2

------------
4 sˆ2 + s

3For simplicity, I insert here the numbers directly instead of the symbolic parameters, but in general I
recommend using symbolic parameters.
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[End of Example 2.4]

Alternative: control.parallell()

As an alternative to using the + operator, you can use the control.parallell() function:

H = control.parallel(H1, H2)

2.2.3 Feedback combination

Figure 2.4 illustrates a feedback combination of two transfer functions.

r y

H2

H1
_

Figure 2.4: A feedback combination of two transfer functions, H1(s) and H2(s).

The resulting transfer function, from r (reference) to y, which can be denoted the closed
loop transfer function, can be calculated from the following expression defining y (for
simplicity, I drop the argument s here):

y = H1 · (r −H2y) = H1r −H1H2y

which gives

y =
H1

1 +H1H2
r

Thus, the resulting transfer function is

y(s)

r(s)
= T (s) =

H1(s)

1 +H1(s)H2(s)
(2.9)

The transfer function (2.9) can be derived with following Python code with ordinary
arithmetic operators:

T = H1/(1 + H1*H2)

where it is assumed that the transfer functions H1 and H2 has already been defined.

A note about (non)minimal transfer functions

Creating transfer functions using arithmetic operators in Python may produce a
non-minimal transfer function, which means that there are one or more common factors in
the numerator and denominator. To obtain a minimal transfer function, i.e. to remove
common factors, you can use the control.minreal() function:

13
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T min = control.minreal(T nonmin)

Example 2.5 Transfer function of negative feedback combination

Given a negative feedback loop with the following open loop transfer function:

L(s) =
2

s
(2.10)

Manual calculation of the closed loop transfer function T (s) based on (2.12) gives

T (s) =
L(s)

1 + L(s)
=

2
s

1 + 2
s

=
2

s+ 2
(2.11)

Program 2.5 shows how the calculations can be implemented with Python code with
arithmetic operators. The program include code for obtaining a minimal transfer function.
Both the minimal transfer function (T min) and the non-minimal transfer function
(T nonmin) are presented.

http://techteach.no/control/python/feedback tf.py

Listing 2.5: feedback tf.py

import control

s = control.tf(’s’)

L = 2/s

T_nonmin = L/(1 + L)

T_min = control.minreal(T_nonmin)

print(’T_min =’, T_min)

print(’T_nonmin =’, T_nonmin)

The result:

T min =
2

---------
s + 2
T nonmin =

2 s
---------
sˆ2 + 2 s

[End of Example 2.5]

Alternative: control.feedback()

As an alternative to using the ordinary arithmetic operators to derive the transfer function
of a feedback combination, you can use the control.feedback() function:
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H = control.feedback(H1, H2, sign=−1)

where negative feedback is assumed. You may drop the argument sign = −1 if there is
negative feedback since negative feedback is the default setting.

You must use sign = 1 if there is a positive feedback instead of a negative feedback in
Figure 2.4.

In most cases – at least in feedback control systems – a negative feedback with H2(s) = 1 in
the feedback path is assumed. Then, H1() is the open loop transfer function, L(s), and
(2.9) becomes

y(s)

r(s)
= H(s) =

L(s)

1 + L(s)
(2.12)

In such cases, you can use this code:

H = control.feedback(L, 1)

L(s) may be the series combination (i.e. the product) of the controller, the process, the
sensor, and the measurement filter:

L(s) = C(s) · P (s) · S(s) · F (s) (2.13)

Series combination of transfer functions is described in Section 2.2.1.

2.3 How to get the numerator and denominator of a transfer
function

You can get (read) the numerator coefficients and denominator coefficients of a transfer
function, say H, with the control.tfdata() function:

(num list, den list) = control.tfdata(H)

where num list and den list are lists (not arrays) containing the coefficients.

To convert the lists to arrays, you can use the np.array() function:

num array = np.array(num list)

and

den array = np.array(den list)

Example 2.6 Getting the numerator and denominator of a transfer function

See Program 2.6.

http://techteach.no/control/python/get tf num den.py

Listing 2.6: get tf num den.py

import numpy as np

import control

15
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# %% Creating a transfer function:

num = np.array ([2])

den = np.array([5, 1])

H = control.tf(num , den)

# Alternatively , using the Laplace variable , s:

# s = control.tf(’s’)

# H = 2/(5*s + 1)

# %% Getting the num and den coeffs as lists and then as arrays:

(num_list , den_list) = control.tfdata(H)

num_array = np.array(num_list)

den_array = np.array(den_list)

# %% Displaying the num and den arrays:

print(’num_array =’, num_array)

print(’den_array =’, den_array)

The result:

num array = [[[2]]]
den array = [[[5 1]]]

To “get rid of” the two inner pairs of square brackets, i.e. to reduce the dimensions of the
arrays:

num array = num array[0,0,:]
den array = den array[0,0,:]

producing:

[2]
[5 1]

[End of Example 2.6]

2.4 Simulation with transfer functions

The function control.forced response() is a function for simulation with transfer function
and state space models. Here, we focus on simulation with transfer functions.

control.forced response() can simulated with any user-defined input signal. Some
alternative simulation functions assuming special input signals are:

• control.step response()

• control.impulse response()

16
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• control.initial response()

control.forced response() may be used in any of these cases. Therefore, I limit the
presentation in this document to the control.forced response() function.

The syntax of control.forced response() is:

(t, y) = control.forced response(sys, t, u)

where:

• Input arguments:

– sys is the transfer function to be used in the simulation.

– t is the user-defined array of points of simulation time.

– u is the user-defined array of values of the input signal of same length at the
simulation time array.

• Output (return) arguments:

– t is the returned array of time – the same as the input argument.

– y is the returned array of output values.

To plot the simulated output (y above), and maybe the input (u above), you can use the
plotting function in the matplotlib.pyplot module which requires import of this module.
The common way to import the module is:

import matplotlib.pyplot as plt

Example 2.7 Simulation with a transfer function

We will simulate the response of the transfer function

Y (s)

U(s)
=

2

5s+ 1

with the following conditions:

• Input u is a step of amplitude 4, with step time t = 0.

• Simulation start time is t0 = 0 sec.

• Simulation stop time is t1 = 20 sec.

• Simulation time step, or sampling time, is dt = 0.01 s.

• Initial state is 0.

Program 2.7 implements this simulation.

http://techteach.no/control/python/sim tf.py
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Listing 2.7: sim tf.py

"""

Sim of time constant system with forced_response () of Python Control package

Finn Aakre Haugen , TechTeach. finn@techteach.no

2022 12 22

"""

# %% Import:

import numpy as np

import control

import matplotlib.pyplot as plt

# %% Creating model:

s = control.tf(’s’)

H = 2/(5*s + 1)

# %% Defining signals:

t0 = 0

t1 = 20

dt = 0.01

nt = int(t1/dt) + 1 # Number of points of sim time

t = np.linspace(t0, t1, nt)

u = 2*np.ones(nt)

# %% Simulation:

(t, y) = control.forced_response(H, t, u)

# %% Plotting:

plt.close(’all ’)

plt.figure (1)

plt.subplot(2, 1, 1)

plt.plot(t, y, ’blue ’, label=’y’)

#plt.xlabel(’t [s]’)

plt.grid()

plt.legend ()

plt.subplot(2, 1, 2)

plt.plot(t, u, ’green ’, label=’u’)

plt.xlabel(’t [s]’)

plt.grid()

plt.legend ()

# plt.savefig(’sim_tf.pdf ’)

plt.show()

Figure 2.5 shows plots of the output y and the input u.

[End of Example 2.7]
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0 1 2 3 4 5 6
0

1

2 y

0 1 2 3 4 5 6
t [s]

0

2

4 u

Figure 2.5: Plots of the output y and the input u.

2.5 Poles and zeros of transfer functions

Poles and zeros of a transfer function, H, can be calculated and plotted in a cartesian
diagram with

(p, z) = control.pzmap(H)

Example 2.8 Poles and zeros of a transfer function

Given the following transfer function:

H(s) =
s+ 2

s2 + 4

Manual calculations gives:

• Poles:
p1,2 = ±2j

• Zero:
z = −2

Program 2.8 calculates the poles and the zero and plots them with the control.pzmap()
function. The plt.savefig() function is used to generate a pdf file of the diagram.

http://techteach.no/control/python/poles tf.py

Listing 2.8: poles tf.py

import control

import matplotlib.pyplot as plt

s = control.tf(’s’)

H = (s + 2)/(s**2 + 4)

(p, z) = control.pzmap(H)

19
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plt.grid()

print(’poles =’, p)

print(’zeros =’, z)

plt.savefig(’poles_zeros.pdf ’)

The result:

poles = [-0.+2.j 0.-2.j]
zeros = [-2.]

Figure 2.6 shows the pole-zero plot.

4 3 2 1 0 1 2
Real

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Im
ag

in
ar

y

Pole Zero Map

Figure 2.6: Pole-zero plot.

[End of Example 2.8]

2.6 The Padé-approximation of a time delay

The transfer function of a time delay is

e−Tds (2.14)

where Td is the time delay. In the Python Control Package, there is no function to define
this s-transfer function (while this is straightforward for z-transfer functions, cf. Ch. 5.1.2).
However, you can use the control.pade() function to generate a Padé-approximation of the
time delay (2.14).

Once you have a Padé-approximation of the time delay, you may use the control.series()
function to combine it with the transfer function having no time delay:

Hwith delay(s) = Hwithout delay(s) ·Hpade(s) (2.15)

Example 2.9 Padé-approximation

20
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Given the following transfer function with time constant of 10 s and no time delay:

Hwithout delay(s) =
1

10s+ 1
(2.16)

Assume that this transfer function is combined in series with a transfer function, Hpade(s),
of a 10th order Padé-apprioximation representing a time delay of 5 s. The resulting transfer
function is:

Hwith delay(s) = Hwithout delay(s) ·Hpade(s) =
1

10s+ 1
·Hpade(s) (2.17)

Program 2.9 generates these transfer functions and simulated a step response of
Hwith delay(s).

http://techteach.no/control/python/pade approx.py

Listing 2.9: pade approx.py

import numpy as np

import control

import matplotlib.pyplot as plt

# %% Generating transfer function of Pade approx:

T_delay = 5

n_pade = 10

(num_pade , den_pade) = control.pade(T_delay , n_pade)

H_pade = control.tf(num_pade , den_pade)

# %% Generating transfer function without time delay:

s = control.tf(’s’)

K = 1

T = 10

H_without_delay = K/(T*s + 1)

# %% Generating transfer function with time delay:

H_with_delay = H_without_delay*H_pade

# %% Simulation of step response:

t = np.linspace(0, 40, 100)

(t, y) = control.step_response(H_with_delay , t)

# %% Plotting

plt.plot(t, y, label=’y’)

plt.legend ()

plt.title(’Step response of time delay with Pade -approx.’)

plt.xlabel(’t [s]’)

plt.grid()

# plt.savefig(’pade_approx.pdf ’)

plt.show()
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Figure 2.7 shows the step response of Hwith delay(s).

0 5 10 15 20 25 30 35 40
t [s]

0.0

0.2

0.4

0.6

0.8

1.0
Step response of time delay with Pade-approx.

y

Figure 2.7: Step response of Hwith delay(s) where the time delay is approximated with a Padé-
approximation.

[End of Example 2.9]

22



Chapter 3

Frequency response

3.1 Frequency response of transfer functions

The function control.bode plot() generates frequency response data in terms of magnitude
and phase. The function may also plot the data in a Bode diagram. However, in the
following example, I have instead used the plt.plot() function to plot the data as this gives
more freedom to configure the plot.

Example 3.1 Frequency response

A first order lowpass filter has the following transfer function:

H(s) =
1

s
ωb

+ 1
(3.1)

where ωb = 1 rad/s, which is the bandwidth.

Program 3.1 generates and plots frequency response of H(s) in terms of magnitude and
phase.

http://techteach.no/control/python/bode plot lowpass filter.py

Listing 3.1: bode plot lowpass filter.py

import numpy as np

import control

import matplotlib.pyplot as plt

# %% Creating transfer function:

s = control.tf(’s’)

wb = 1 # Bandwidth [rad/s]

H = 1/((1/ wb)*s + 1)

# %% Generating Bode plot:

w0 = 0.1

w1 = 10
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dw = 0.001

nw = int((w1-w0)/dw) + 1 # Number of points of freq

w = np.linspace(w0, w1, nw)

(mag , phase_rad , w) = control.bode_plot(H, w)

# %% Plotting:

plt.close(’all ’)

plt.figure(1, figsize =(12, 9))

plt.subplot(2, 1, 1)

plt.plot(np.log10(w), mag , ’blue ’)

#plt.xlabel(’w [rad/s]’)

plt.grid()

plt.legend(labels=(’ Amplitude gain ’,))

plt.subplot(2, 1, 2)

plt.plot(np.log10(w), phase_rad *180/np.pi , ’green ’)

plt.xlabel(’w [rad/s]’)

plt.grid()

plt.legend(labels=(’Phase shift [deg]’,))

# plt.savefig(’bode_plot_filter.pdf ’)

plt.show()

Figure 3.1 shows the Bode plot. In the plot we can that bandwidth is indeed 1 rad/s (which
is at 0 = log10(1) rad/s in the figure).

[End of Example 3.1]

3.2 Frequency response and stability analysis of feedback
loops

Figure 3.2 shows a feedback loop with its loop transfer function, L(s).

control.bode plot()

We can use the function control.bode plot() to calculate the magnitude and phase of L, and
to plot the Bode plot of L.

The syntax of control.bode plot() is:

(mag, phase rad, w) = control.bode plot()

Several input arguments can be set, cf. Example 3.2.

In addition to calculating the three return arguments above, control.bode plot() can show
the following analysis values in the plot:

• The amplitude cross-over frequency, ωb [rad/s], which is also often regarded as the
bandwidth of the feedback system.
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Figure 3.1: Bode plot.

• The phase cross-over frequency, ω180 [rad/s].

• The gain margin, GM, which is found at ω180 ≡ ωg [rad/s] (g for gain margin).

• The phase margin, PM, which is found at ωb ≡ ωp [rad/s] (p for phase margin).

control.margin()

The control.bode plot() does not return the above four analysis values to the workspace
(although it shows them in the Bode plot). Fortunately, we can use the control.margin()
function to calculate these analysis values. control.margin() can be used as follows:

(GM, PM, wg, wp) = control.margin(L)

where L is the loop transfer function, and the four return arguments are as in the list above.
Note that GM has unit one; not dB, and that PM is in degrees.

Example 3.2 demonstrates the use of control.bode plot() and control.margin().

Example 3.2 Frequency response

Given a control loop where the process to be controlled has the following transfer function
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r y
L(s)

_

Figure 3.2: A feedback loop with its loop transfer function, L(s)

(an integrator and two time constants in series):

P (s) =
1

(s+ 1)2s

The controller is a P controller:
C(s) = Kc

where Kc = 2 is the controller gain.

The loop transfer function becomes:

L(s) = P (s) · C(s) =
Kc

(s+ 1)2s
=

Kc

s3 + 2s+ s
(3.2)

Program 3.2 generates and plots frequency response of H(s), and shows the stability
margins and the cross-over frequencies. The control.minreal() function is used to ensure
L(s) is a minimum transfer function, cf. Section 2.2.3.

http://techteach.no/control/python/bode plot with stab margins.py

Listing 3.2: bode plot with stab margins.py

import numpy as np

import control

import matplotlib.pyplot as plt

# %% Creating the loop transfer function:

s = control.tf(’s’)

Kp = 1

C = Kp

P = 1/(s**3 + 2*s**2 + s)

L = C*P

L = control.minreal(L) # To obtain minimum transf func

# %% Frequencies:

w0 = 0.1

w1 = 10

dw = 0.001

nw = int((w1-w0)/dw) + 1 # Number of points of freq

w = np.linspace(w0, w1, nw)
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# %% Plotting:

plt.close(’all ’)

plt.figure(1, figsize =(12, 9))

(mag , phase_rad , w) = control.bode_plot(L,

w,

dB=True ,

deg=True ,

margins=True)

plt.grid()

# %% Calculating stability margins and crossover frequencies:

(GM, PM, wg, wp) = control.margin(L)

# %% Printing:

print(f’GM [1 (not dB)] = {GM:.2f}’)

print(f’PM [deg] = {PM:.2f}’)

print(f’wg [rad/s] = {wg:.2f}’)

print(f’wp [rad/s] = {wp:.2f}’)

# %% Generating pdf file of the plotting figure:

plt.savefig(’bode_with_stab_margins.pdf ’)

Below are the results of control.margin() as shown in the console. The values are the same
as shown in the Bode plot in Figure 3.3 (2 dB ≈ 6).

GM [1 (not dB)] = 2.00
PM [deg] = 21.39
wg [rad/s] = 1.00
wp [rad/s] = 0.68

[End of Example 3.2]
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Figure 3.3: Bode plot including the stability margins and the crossover frequencies.
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State space models

4.1 How to create state space models

The function control.ss() creates a linear state space model with the following form:

ẋ = Ax+Bu (4.1)

y = Cx+Bu (4.2)

where A,B,C,D are the model matrices.

The syntax of control.ss() is:

S = control.ss(A, B, C, D)

where S is the resulting state space model, and the matrices A, B, C, D are in the form of
2D arrays in Python. (Actually, they may be of the list data type, but I recommend using
arrays, cf. Section 1.5.)

Example 4.1 Creating a state space model

Figure 4.1 shows a mass-spring-damper-system.

z is position. F is applied force. D is damping constant. K is spring constant. Newton’s 2.
Law gives the following mathematical model:

mz̈(t) = F (t)−Dż(t)−Kz(t) (4.3)

Let us define the following state variables:

• Position:

x1 = z

• Speed:

x2 = ż = ẋ1
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m [kg]

K [N/m]

D [N/(m/s)]

F [N]

0 z [m]

Figure 4.1: Mass-spring-damper system.

Let us define the position x1 as the output variable:

y = x1

Eq. (4.3) can now be expressed with the following equivalent state space model:

[
ẋ1
ẋ2

]
︸ ︷︷ ︸

ẋ

=

 0 1

−K
m −D

m


︸ ︷︷ ︸

A

[
x1
x2

]
︸ ︷︷ ︸

x

+

 0

1
m


︸ ︷︷ ︸

B

F (4.4)

y =
[
1 0

]︸ ︷︷ ︸
C

[
x1
x2

]
︸ ︷︷ ︸

x

+
[
0
]︸ ︷︷ ︸

D1

F (4.5)

Assume following parameter values:

m = 10 kg

k = 4 N/m

d = 2 N/(m/s)

Program 4.1 creates the above state space model with the control.ss() function.

http://techteach.no/control/python/create ss.py

Listing 4.1: create ss.py

import numpy as np

import control

# %% Model parameters:

m = 10 # [kg]

k = 4 # [N/m]

d = 2 # [N/(m/s)]
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# %% System matrices as 2D arrays:

A = np.array ([[0, 1], [-k/m, -d/m]])

B = np.array ([[0] , [1/m]])

C = np.array ([[1, 0]])

D = np.array ([[0]])

# %% Creating and printing the state space model:

S = control.ss(A, B, C, D)

print(’S =’, S)

The results as shown in the console of Spyder:

A = [[ 0. 1.]
[-0.4 -0.2]]

B = [[0. ]
[0.1]]

C = [[1. 0.]]

D = [[0.]]

4.2 How to get the model matrices of a state space model

You can get (read) the model matrices of a given state space model, say S, with the
control.ssdata() function:

(A list, B list, C list, D list) = control.ssdata(S)

where the matrices are in the form of lists (not arrays).

To convert the lists to arrays, you can use the np.array() function, e.g.

A array = np.array(A list)

Example 4.2 Getting the model matrices of a given state space model

Program 4.2 creates a state space model and gets its matrices with the control.ssdata()
function.

http://techteach.no/control/python/get ss matrices.py

Listing 4.2: get ss matrices.py

import numpy as np

import control

# %% Creating a state space model:

A = np.array ([[0, 1], [2, 3]])
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B = np.array ([[4] , [5]])

C = np.array ([[6, 7]])

D = np.array ([[8]])

S = control.ss(A, B, C, D)

# %% Getting the model matrices as lists and then as arrays:

(A_list , B_list , C_list , D_list) = control.ssdata(S)

A_array = np.array(A_list)

B_array = np.array(B_list)

C_array = np.array(C_list)

D_array = np.array(D_list)

# %% Displaying the matrices as arrays:

print(’A_array =’, A_array)

print(’B_array =’, B_array)

print(’C_array =’, C_array)

print(’D_array =’, D_array)

The results as shown in the console:

A array = [[0. 1.] [2. 3.]]
B array = [[4.] [5.]]
C array = [[6. 7.]]
D array = [[8.]]

[End of Example 4.2]

4.3 Simulation with state space models

Simulation with state space models can be done with the control.forced response() function:

(t, y, x) = control.forced response(sys, t, u, x0, return x=True)

where sys is the state space model, cf. Section 4.1.

Example 4.3 Simulation with a state space model

The program shown below runs a simulation with the state space model presented in
Example 4.1 with the following conditions:

• Force (input signal) F is a step of amplitude 10 N, with step time t = 0.

• Simulation start time: t0 = 0 s.

• Simulation stop time: t1 = 50 s.

• Simulation time step, or sampling time: dt = 0.01 s.

• Initial states: x1,0= 1 m, x2,0 = 0 m/s.

Program 4.3 implements the simulation.
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http://techteach.no/control/python/sim ss.py

Listing 4.3: sim ss.py

# %% Import:

import numpy as np

import control

import matplotlib.pyplot as plt

# %% Model parameters:

m = 10 # [kg]

k = 4 # [N/m]

d = 2 # [N/(m/s)]

# %% System matrices as 2D arrays:

A = np.array ([[0, 1], [-k/m, -d/m]])

B = np.array ([[0] , [1/m]])

C = np.array ([[1, 0]])

D = np.array ([[0]])

# %% Creating the state space model:

S = control.ss(A, B, C, D)

# %% Defining signals:

t0 = 0 # [s]

t1 = 50 # [s]

dt = 0.01 # [s]

nt = int(t1/dt) + 1 # Number of points of sim time

t = np.linspace(t0, t1, nt)

F = 10*np.ones(nt) # [N]

# %% Initial state:

x1_0 = 1 # [m]

x2_0 = 0 # [m/s]

x0 = np.array ([x1_0 , x2_0])

# %% Simulation:

(t, y, x) = control.forced_response(S, t, F, x0,

return_x=True)

# %% Extracting individual states:

x1 = x[0,:]

x2 = x[1,:]

# %% Plotting:

plt.close(’all ’)
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plt.figure(1, figsize =(12, 9))

plt.subplot(3, 1, 1)

plt.plot(t, x1 , ’blue ’)

plt.grid()

plt.legend(labels=(’x1 [m]’,))

plt.subplot(3, 1, 2)

plt.plot(t, x2 , ’green ’)

plt.grid()

plt.legend(labels=(’x2 [m/s]’,))

plt.subplot(3, 1, 3)

plt.plot(t, F, ’red ’)

plt.grid()

plt.legend(labels=(’F [N]’,))

plt.xlabel(’t [s]’)

# plt.savefig(’sim_ss.pdf ’)

plt.show()

Figure 4.2 shows the simulated signals.
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Figure 4.2: Plots of the simulated signals of the mass-spring-damper system.

[End of Example 4.3]
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4.4 From state space model to transfer function

The function control.ss2tf() derives a transfer function from a given state space model. The
syntax is:

H = control.ss2tf(S)

where H is the transfer function and S is the state space model.

Example 4.4 From state space model to transfer function

In Example 4.1 a state space model of a mass-spring-damper system is created with the
control.ss() function. The program shown below derives the following two transfer functions
from this model:

• The transfer function, H1, from force F to position x1. To obtain H1, the output
matrix use is set as

C = [1, 0]

• The transfer function, H2, from force F to position x2. To obtain H2, the output
matrix is set as

C = [0, 1]

Program 4.4 derives the two transfer functions from a state space model.

http://techteach.no/control/python/from ss to tf.py

Listing 4.4: from ss to tf.py

import numpy as np

import control

# %% Model params:

m = 10 # [kg]

k = 4 # [N/m]

d = 2 # [N/(m/s)]

# %% System matrices as 2D arrays:

A = np.array ([[0, 1], [-k/m, -d/m]])

B = np.array ([[0] , [1/m]])

D = np.array ([[0]])

# %% Creating the state space model with x1 as output:

C1 = np.array ([[1, 0]])

S1 = control.ss(A, B, C1 , D)

# %% Deriving transfer function H1 from S1:

H1 = control.ss2tf(S1)
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# %% Displaying H1:

print(’H1 =’, H1)

# %% Creating the state space model with x2 as output:

C2 = np.array ([[0, 1]])

S2 = control.ss(A, B, C2 , D)

# %% Deriving transfer function H2 from S2:

H2 = control.ss2tf(S2)

# %% Displaying H1:

print(’H2 =’, H2)

The result of the code above, as shown in the console of Spyder, is shown below. The very
small numbers – virtually zeros – in the numerators of H1 and H2 are due to numerical
inaccuracies in the control.ss2tf() function.

H1 =
0.1

---------------------
sˆ2 + 0.2 s + 0.4

H2 =
0.1 s + 1.665e-16
---------------------
sˆ2 + 0.2 s + 0.4

[End of Example 4.4]
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Discrete-time models

5.1 Transfer functions

5.1.1 Introduction

Many functions in the Python Control Package are used in the same way for discrete-time
transfer functions, or z-transfer functions, as for continuous-time transfer function, or
s-transfer function, except that for z-transfer functions, you must include the sampling time
Ts as an additional parameter. For example, to create a z-transfer function, the control.tf()
is used in this way:

H d = control.tf(num d, den d, Ts)

where Ts is the sampling time. H d is the resulting z-transfer function.

Thus, the descriptions in Ch. 2 gives you a basis for using these functions for z-transfer
functions as well. Therefore, the descriptions are not repeated here. Still there are some
specialities related to z-transfer function, and they are presented in the subsequent sections.

5.1.2 How to create transfer functions

The control.tf() function is used to create z-transfer functions with the following syntax:

H = control.tf(num, den, Ts)

where H is the resulting transfer function (object). num (representing the numerator) and
den (representing the denominator) are arrays where the elements are the coefficients of the
z-polynomials of the numerator and denominator, respectively, in descending order from left
to right, with positive exponentials of z. Ts is the sampling time (time step).

Note that control.tf() assumes positive exponents of z. Here is one example of such a
transfer function:

H(z) =
0.1z

z − 1
(5.1)

(which is used in Example 5.1). However, in e.g. signal processing, we may see negative
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exponents in transfer functions. H(z) given by (5.1) and written in terms of negative
exponents of z, are:

H(z) =
0.1

1− z−1
(5.2)

(5.1) and () are equivalent. But, in the Python Control Package, we must use only positive
exponents of z in transfer functions.

Example 5.1 Creating a z-transfer function

Given the following transfer function1:

H(z) =
0.1z

z − 1
(5.3)

Program 5.1 creates H(z). The code print(’H(z) = ’, H) is used to present the transfer
function in the console (of Spyder).

http://techteach.no/control/python/create tf z.py

Listing 5.1: create tf z.py

import numpy as np

import control

# %% Creating the z-transfer function:

Ts = 0.1

num = np.array ([0.1 , 0])

den = np.array([1, -1])

H = control.tf(num , den , Ts)

print(’H(z) =’, H)

The result as shown in the console:

H(z) =
0.1 z

--------
z - 1

dt = 0.1

[End of Example 5.1]

5.1.3 Discretizing an s-transfer function

The control.sample system() function can be used to discretize given continuous-time
models, including s-transfer functions:

sys disc = control.sample system(sys cont, Ts, method=’zoh’)

1This is the transfer function of an integrator based on the Euler Backward method of discretization:
yk = yk−1 + Ts · ukwith sampling time Ts = 0.1 s.
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where:

• sys cont is the continuous-time model – a transfer function, or a state space model.

• Ts is the sampling time.

• The discretization method is ’zoh’ (zero order hold) by default, but you can
alternatively use ’matched’ or ’tustin’. (No other methods are supported.)

• sys disc is the resulting discrete-time model – a transfer function, or a state space
model.

Example 5.2 Discretizing an s-transfer function

Given the following s-transfer function:

Hc(s) =
3

2s+ 1
(5.4)

Program 5.2 discretizes this transfer function using the zoh method with sampling time 0.1
s.

http://techteach.no/control/python/discretize tf.py

Listing 5.2: discretize tf.py

import control

# %% Creating the s-transfer function:

s = control.tf(’s’)

H_cont = 3/(2*s + 1)

# %% Discretizing:

Ts = 0.1 # Time step [s]

H_disc = control.sample_system(H_cont , Ts , method=’zoh ’)

print(’H_disc(z) =’, H_disc)

The result as shown in the console:

H disc(z) =
0.1463

-----------
z - 0.9512

dt = 0.1

[End of Example 5.2]
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5.1.4 Exact representation of a time delay with a z-transfer function

In Section 2.6 we saw how to use the control.pade() function to generate a transfer function
which is an Padé-approximation of the true transfer function of the time delay, e−Tds. As
alternative to the Padé-approximation, you can generate an exact representation of the time
delay in terms of a z-transfer function.

The z-transfer function of a time delay is:

Hd(z) =
1

znd
(5.5)

where

nd =
Td

Ts
(5.6)

Example 5.3 Creating a z-transfer function of a time delay

Assume the time delay is
Td = 5 s

and the sampling time is
Ts = 0.1 s

So, the transfer function of the time delay becomes

Hdelay(z) =
1

znd

with

nd =
Td

Ts
=

5

0.1
= 50

Python program 5.3 creates Hdelay(z), which represents this time delay exactly. The
program also simulates the step response of Hdelay(z).

2

http://techteach.no/control/python/time delay hz.py

Listing 5.3: time delay hz.py

import numpy as np

import control

import matplotlib.pyplot as plt

# %% Generating a z-transfer function of a time delay:

Ts = 0.1

Td = 5

nd = int(Td/Ts)

denom_tf = np.append ([1], np.zeros(nd))

H_delay = control.tf([1], denom_tf , Ts)

# %% Displaying the z-transfer function:

2For some reason, the returned simulation array, y, becomes a 2D array. I turn it into a 1D array with y
= y[0,:] for the plotting.
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print(’H_delay(z) =’, H_delay)

# %% Sim of step response of time delay transfer function:

t = np.arange(0, 10+Ts, Ts)

(t, y) = control.step_response(H_delay , t)

plt.plot(t, y)

plt.xlabel(’t [s]’)

plt.grid()

plt.savefig(’step_response_hz_time_delay.pdf ’)

The result as shown in the console:

H delay(z) =
1

--------
zˆ50

dt = 0.1

Figure 5.1 shows the step response of Hdelay(z).
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Figure 5.1: The step response of Hdelay(z)

[End of Example 5.3]

5.2 Frequency response

Frequency response analysis of z-transfer functions is accomplished with the same functions
as for s-transfer function. Therefore, I assume it is sufficient that I refer you to Ch. 3.

However, note the following comment in the manual of the Python Control Package: “If a
discrete time model is given, the frequency response is plotted along the upper branch of
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the unit circle, using the mapping z = exp(j omega dt) where omega ranges from 0 to pi/dt
and dt is the discrete timebase. If not timebase is specified (dt = True), dt is set to 1.”

5.3 State space models

In the Python Control Package, discrete-time linear state space models have the following
form:

xk+1 = Adxk +Bduk (5.7)

yk = Cdxk +Budk (5.8)

where Ad, Bd, Cd, Dd are the model matrices.

Many functions in the package are used in the same way for both discrete-time linear state
space models and for continuous-time state space models, except that for discrete-time state
space models, you must include the sampling time Ts as an additional parameter. For
example, to create a discrete-time state space model, the control.ss() is used in this way:

S d = control.ss(A d, B d, C d, D d, Ts)

where Ts is the sampling time. S d is the resulting discrete time state space model.

Thus, the descriptions in Ch. 4 gives you a basis for using these functions for
continuous-time state space models as well. Therefore, the descriptions are not repeated
here.
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