Homepage of the specialized course
Process Control
at Norwegian University of Life Sciences (NMBU)
Spring semester 2018
|
Lesson |
Topic |
Teaching activity |
Powerpoint present- |
Literature |
Videos tutorials |
N/A |
Problems (voluntary). |
Introduction (“INT”): |
|||||||
INT1 |
Introduction to the course |
Lecture 1 (L1) 21.12.17, |
- |
- |
- |
- |
- |
INT2 |
Introduction
to process control |
L1 |
B-T: Ch. 1 B-T: App. A |
- |
B-E:
1.1, 1.2, 1.3, 1.4, 1.5. |
||
INT3 |
Some Internet resources for process control |
L1 |
- |
- |
- |
- |
|
Instrumentation (“INS”): |
|||||||
INS1 |
Instrumentation of control systems: |
Self-study |
|
B-T: 9 Literature: The PPT-files (at left) |
- |
- |
B-E:
9.1, 9.3. |
Basic systems theory (“BST”): |
|||||||
BST1 |
Differential equation models, incl. block
diagram representation (of diff eqs) and state space model form |
L1 |
- |
B-T: 2 |
- |
- |
B-E: 2.1, 2.2, 2.3, 2.4. |
BST2 |
Mathematical mechanistic (first principles) modeling |
L1 |
- |
B-T: 3.1, 3.2, 3.3, 3.4. |
- |
- |
B-E:
3.1, 3.2, 3.3. |
BST3 |
From diff eq to simulation algorithm (ready for programming) |
L1 |
- |
A-T: 6, 7, 8.1, 8.2. |
- |
- |
A-E:
6.1, 7.1, 7.2, 7.3, 8.1, 8.2. |
BST4 |
Laplace transform |
L1 |
- |
B-T: 4. |
- |
- |
B-E:
4.1, 4.2. |
BST5 |
Transfer functions |
L1 |
- |
B-T: 5. |
- |
- |
B-E:
5.1, 5.2, 5.3, 5.4, 5.6. |
BST6 |
Process
dynamics |
L1 |
B-T:
6. |
- |
B-E: 6.1, 6.3, 6.4, 6.6, 6.7. |
||
Learning/reviewing relevant computer programming: |
|||||||
CP1 |
Matlab |
Self-study |
- |
Tutorials
at MathWorks |
- |
- |
|
CP2 |
Matlab Control System Toobox |
Self-study |
- |
Tutorial
for Control System Toolbox for Matlab |
- |
- |
- |
CP3 |
Simulink |
Self-study |
- |
Tutorials
at MathWorks |
- |
- |
|
Compulsory
exercise for Lecture 1. Deadline: Tuesday 9.1 2018, 16:00. Solutions by students: Abhilash.
Aleksander.
Duo.
Karla.
Xiaodong.
|
|||||||
PID control (“PID”): |
|||||||
Lesson |
Topic |
Teaching activity |
PPT |
Literature |
Videos tutorials |
N/A |
Problems (voluntary) |
PID1 |
Measurement filtering, incl. discrete-time filter algorithm |
Lecture 2 (L2) Date: 11.1.18. Room: |
B-T: 7.2.2 A-T: 8.3 |
- |
B-E:
7.1. A-E:
8.3. |
||
PID2 |
Feedback control with PID controller, incl. discrete-time PID
control algorithm |
L2 |
PPT:
Reverse or direct action in the PID- controller |
B-T: 7.1-7.4 A-T: 8.4.1, 8.4.2 |
Reverse or direct action in the
PID controller? |
- |
B-E:
7.4, 7.5, 7.6, 7.7, 7.9, 7.10. A-E:
8.4, 8.6, 8.7. |
PID3 |
Feedback
control with On/off-controller |
L2 |
The PPT-files
(at left) |
- |
- |
- |
|
PID4 |
Experimental performance analysis of control systems: The IAE index. |
L2 |
- |
Ch. 2.8 in PID Control (text-book, 2004) |
- |
- |
- |
PID5 |
Experimental stability analysis (in terms of gain margin and phase
margin) of control systems |
L2 |
Section 3.2.2 in the article “Relaxed
Ziegler-Nichols Closed Loop Tuning of PI Control- |
- |
- |
||
PID6 |
Tuning
of PID controllers: |
L2 |
B-T:
10 PPT-file:
Ziegler-Nichols method (at left) PPT-file:
Skogestad method (at left) |
PID controller tuning with
Ziegler-Nichols' oscillations method |
- |
B-E:
10.1, 10.2, 10.3, 10.4, 10.6, 10.7,
10.8, 10.9. |
|
PID7 |
How a
control system may become unstable, and how to recover stability by
controller retuning |
L2 |
PPT:
How a control system may become unstable |
B-T:
7.5 |
- |
B-E: 7.11, 7.12, 7.13. |
|
Compulsory
exercise for Lecture 2. |
|||||||
Control structures (“CS”): |
|||||||
Lesson |
Topic |
Teaching activity |
PPT |
Literature |
Videos tutorials |
N/A |
Problems |
CS1 |
Feedforward
control |
Lecture 3 (L3) Date: 1.2.18 Room: |
B-T: 8 |
- |
B-E:
8.2. |
||
CS2 |
Cascade control |
L3 |
B-T: 11.1 |
- |
B-E: 11.1. |
||
CS3 |
Ratio
control |
L3 |
B-T:
11.2 |
- |
- |
B-E: 11.4. |
|
CS4 |
Split-range
control |
L3 |
B-T:
11.3 |
- |
- |
B-E: 11.5. |
|
CS5 |
Averaging
level control of buffer tanks (equalization magazines) |
L3 |
B-T:
11.4 |
- |
- |
B-E:
11.6. |
|
CS6 |
Plantwide
control |
L3 |
B-T:
11.5 |
- |
- |
B-E:
11.7, 11.8. |
|
CS7 |
Sequential
control |
L3 |
B-T:
12 |
- |
B-E: 12.1. |
||
Compulsory
exercise for Lecture 3. |
|||||||
Advanced
systems theory (“AST”): |
|||||||
Lesson |
Topic |
Teaching activity |
PPT |
Literature |
Videos tutorials |
N/A |
Problems (voluntary) |
AST1 |
Continuous-time
state-space models, incl. linearization |
Lecture 4 (L4) Date: 22.2.18 Room: |
- |
A-T: 1 |
- |
- |
A-E:
1.1, 1.2, 1.3. |
AST2 |
Stability
analysis of continuous-time dynamic systems |
L4 |
- |
A-T: 4 |
- |
- |
A-E:
4.1, 4.2, 4.3. |
AST3 |
Stability
analysis of continuous-time feedback systems (pole/eigenvalue based
analysis) |
L4 |
- |
A-T:
5.1, 5.2 |
- |
- |
A-E:
5.1. |
AST4 |
Discrete-time state-space models |
L4 |
- |
A-T: 9. |
- |
- |
A-E:
9.1, 9.2, 9.3, 9.4. |
AST5 |
The z-transform |
L4 |
- |
A-T: 10. |
- |
- |
A-E:
10.1, 10.4. |
AST6 |
z-transfer functions |
L4 |
- |
A-T: 11.1, 11.2, 11.3, 11.6, 11.7. |
- |
- |
A-E:
11.1, 11.2, 11.5, 11.6. |
AST7 |
Stability analysis of discrete-time state-space models |
L4 |
- |
A-T: 13, except 13.2. |
- |
- |
A-E:
13.1, 13.2, 13.3, 13.4. |
AST8 |
Stochastic
signals |
L4 |
- |
A-T:
15. SimView
simulators: |
- |
- |
A-E:
15.1.1, 15.1.2, 15.1.3, 15.3, 15.4, 15.5. |
AST9 |
Introduction to optimization methods (used in later lessons for
optimal estimation and optimal control) |
L4 |
- |
Matlab scripts: |
- |
- |
Exercise included in the compulsory exercises for this lecture. |
Compulsory
exercise for Lecture 4. |
|||||||
Estimation of model parameters (“EMP”): |
|||||||
Lesson |
Topic |
Teaching activity |
PPT |
Literature |
Videos tutorials |
N/A |
Problems |
EMP1 |
Estimation of model parameters using Least Squares method |
Lecture 5 (L5) Date: Room: |
- |
A-T: 16, except 16.3.5 |
- |
- |
A-E:
16.1, 16.2, 16.4, 16.6, 16.7. |
EMP2 |
Estimation
of model parameters using nonlinear optimization |
L5 |
- |
- |
- |
- |
|
EMP3 |
Estimation
of transfer function models using Subspace identification |
L5 |
- |
A-T:
16.3.5 Matlab
script with subspace id. of DC motor using these experimental data. |
- |
- |
A-E:
16.8. |
Estimation
of state variables (“ESV”): |
|||||||
ESV1 |
State
estimation with Observer |
L5 |
- |
A-T:
17 |
- |
- |
A-E:
17.1. |
Compulsory
exercise for Lecture 5. |
|||||||
Model-predictive control
(“MPC”): |
|||||||
Lesson |
Topic |
Teaching activity |
PPT |
Literature |
Videos tutorials |
N/A |
Problems |
ESV2 |
State
estimation with Kalman Filter |
Lecture 6 (L6) Date: 12.4.18 Room: |
A-T:
18 |
- |
A-E:
18.1. |
||
ESV3 |
State
estimation with Moving Horizon Estimator (MHE) |
L6 |
- |
- |
- |
||
MPC1 |
Model-based
Predictive Control (MPC) |
L6 |
Simulations run in the lecture (to appear): |
A-T: 22 |
- |
- |
- |
Compulsory exercise
for Lecture 6. |
|||||||
Exam: |
|||||||
2.5.17 |
Exam (oral) |
TF102 |
- |
- |
- |
- |
- |
Updated 29 April 2018 by Finn Aakre Haugen, course teacher.